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Vortex methods and vortex statistics 

. Alexandre J. Chorin 
Department of Mathematics and Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720, USA 

1. Introduction: what are vortex methods and why do we care? 

Vortex methods originated from the observation that in incompressible, inviscid, isen-

tropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be . 

readily deduced from the absence of tangential stresses. Thus if the vorticity is known at 

time t = 0, one can deduce the flow at a later time by simply following it around. In this 

narrow context, a vortex method is a numerical method that makes use of this observation. 

However, more generally, viscous flow problems have a Lagrangian, albeit stochas-

tic, representation [C6],[G2J,[L4]. Compressible flow has Lagrangian representations [L1]. 

More generally yet, in many problems there are variables such as charge, stellar or plasma 

mass, helicity, impulse, chemical species that are transported either passively or modified 

by known interactions; this transport/modification can be represented by the transport 

of particles, or polygons, or domain boundaries; by finite elements, finite differences, or 

boundary integrals. Lagrangian methods have a close resemblance to integral methods 

(see e.g. [G5]). Aspects of Lagrangian methods, such as particle creation at walls, have 

found application in non-Lagrangian methods (see e.g. [H5]). Fast summation methods, 

designed for particle methods, have found uses outside of computational physics. 

Even more generally, the analysis of vortex methods leads, as we shall see, to problems 

that are closely related to problems in quantum physics and field theory, as well as in 
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harmonic analysis. A broad enough definition of vortex methods ends up by encompassing 

much of science. Even the purely computational aspects of vortex methods encompass a 

range of ideas for which vorticity may not be the best unifying theme. 

We shall restrict ourselves in these lectures to a special class of numerical vortex 

methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics 

by smoothed particles ("blobs") and those whose understanding contributes to the under

standing of blob methods. Since excellent recent surveys are available [G7],[P2], the accent 

will be on recent developments. Blob methods started in the thirties as two-dimensional 

"point" methods [R7]. By the fifties, it was discovered that "point vortex" methods had 

drawbacks, and a misinterpretation of the Poincare recurrence theorem led to the con

clusion that the drawbacks could not be remedied (for an analysis, see [K12]). In the 

late sixties and early seventies, the virtues of smoothing were discovered [C12],[C24] and 

viscosity and boundaries were added. 

The generalization to three dimensions followed soon [C8],[L2],[L3], and was found to 

be non-unique. Arrows, filaments, dipoles, magnets, all generalize two-dimensional blobs, 

and we shall compare them below. All three-dimensional inviscid blob methods eventually 

lose stability; the analysis of that instability requires a deeper understanding of turbulence 

and contributes to the understanding of quantum fluids. 

Are vortex methods good numerical methods? The answer is time-dependent and 

problem dependent. Vortex methods made possible pioneering investigations of vortex 

sheets [KIO],[K13], high Reynolds number wakes [C4] and various three-dimensional prob

lems involving vortex rings, jets, and wakes (see e.g. [A5],[K6],[M6]). As time progressed, 
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other methods caught up with some of these applications, but then vortex methods also 

improved. Various hybrids involving vorticity have appeared in recent years and show 

great promise (see e.g. [C30],[R9],[Wl]). Vortex methods (i.e., "blob" methods) are a very 

useful part of the panoply of computational fluid mechanics, but do not exhaust it. 

I would like however to put some emphasis on a more arcane use of these methods. 

Vortex methods for inviscid flow lead to systems of ordinary differential equations that can 

be readily clothed in Hamiltonian form, both in three and two space dimensions, and they 

can preserve exactly a number of invariants of the Euler equations, including topological 

invariants. Their viscous versions resemble Langevin equations. As a result, they provide 

a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to 

some extent be analyzed analytically and more importantly, explored numerically, with 

importan~ implications also for superfluids, superconductors, and even polymers. In my 

view, vortex "blob" methods provide the most promising path to the understanding of 

these phenomena. 

2. Vortex methods in the plane. 

We begin with· a quick descriptive version of vortex methods for two-dimensional 

incompressible flow. Analysis will appear in a later section. 

Consider first inviscid flow in the absence of boundaries. The Euler equations take 

the form 

D~ = 0 div u = 0 
Dt ' 

(1 ) 

where u = (Ul,U2) is the velocity, Et = %t + U· '\7, t is the time, '\7 = (.:~~l' a~J, 

x = (Xl, X2) is the coordinate vector and e = 81 U2 - 82Ul is the vorticity, where 8j = a~i· 
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Define the stream function (scalar vector potential) by Ul - -82 'I/J , U2 = 81 'I/J; 'I/J exists 

because div u = o. A quick calculation yields 

(2) 

make the solution of (2) unique by requiring lui -:0 as Ixl -+ 00; (2) then yields 

. 'I/J = - J G(x - x')e(x')dx', 

where G· - 217r log Ixl i~ Green's function for the b. operator in two dimensions. Differen-

tiation of 'I/J yields 

U= K*e, (3) 

where K = (82G, -81 G) = (27rlxI2)-1( -y, x )T, and T denotes a transpose. Note that the 

kernel in the convolution integral is singular. The trajectory of a particle originally at a 

satisfies 

dx 
dt (a,t) = u(x(a,t),t) = K*e· (4) 

The integro-differential equation (4) is the starting point for vortex approximations. In a 

vortex "blob" method, one picks N points a1 ... aN in the support of the vorticity, and 

.J 

follows their subsequent motion by approximating (4); these trajectories will be denoted 

by Xi( t), Xj(O) = aj (the tilde will be omitted when there is no risk of confusion). It is 

natural to approximate the integral by a sum, and useful to modify the singular kernel so 

that it becomes smooth, K -+ 1(6 = K * <P6, where <P6 = fJ-2<p(x/fJ), f <pdx = I (using 

Hald's formalism [HI]), thus 

(5) 
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where the {j are constants, the approximate values of I;, assigned to the a j. Good choices 
~ \ 

for the ej are described e.g. in [A4],[B2],[B6], as well as below for problems with bound-

aries. The smoothing of K by ¢> removes the singularity in K, and thus ensures that 

the velocity field remains bounded. More generally, the choice of¢> controls accuracy, see 

below. Examples of useful <p's are: (i) <P = (27rlxI6)-1 for Ixi < 6, <P = 0 for Ixl > 8; (ii) 

<P = 7r-le-lxI2, seemore below. The velocity fieldu = 'L Ko(x-xj )ej is an approximation 

to the true velocity field; it is also the exact velocity field generated by I;, = 'L j ei¢>6(X -Xi) 

at time t. A term of the form ej¢>o(x - Xj) will be called a vortex blob or vortex for short. 

If <Po = 6 (Dirac delta) we recover th~ old "point" vortex approximation. We assume the 

reader can solve the ordinary differential equations (5) on a computer, and note that the 

system (5) is not particularly stiff; Runge-Kutta works fine. 

There are very useful Lagrangian approximations of equation (4) other than blob 

appro~imations [B13],[R9],[Wl]. In particular, suppose supp 1;" th~ support of 1;" can be 

approximated by a union of polygons (say, triangles) Ql ... QN, with I;, on Qi approximated 

by a polynomial Pi. The convolution integrals K *Pi , Pi = Pi on Qi, Pi = 0 otherwise, can 

be expressed in terms of elementary functions and defines everywhere a velocity field that 

can be used to move the polygons forward. The new vorticity field can be retriangulated 

efficiently, and the result is an accurate and reliable method. This method is most natural 

in cases where I;, is piecewise constant, when the polygons can be large. 

The Navier-Stokes equations in two space dimensions can be written as 

D~ __ R~1 AI;, d· 0 u, IV U = , Dt . 
(6) 

where R is the Reynolds number; we are interested in the case of large R. The inviscid 
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~ethods just described can be extended to this case by coupling them to a solution of 

the heat equation on a moving set of approximation points, see [C30],[Fl]. The random 

vortex method [C6] is based on the observation that equation (6) can be viewed as a 

Fokker-Planck equation for the stochastic ordinary differential equations 

dx = udt + ../2/ R dw, u = K * e, (7) 

where dw is two-dimensional Brownian motion and x( t) carried a constant vorticity ~. 

Equation (7) can be discretized in a straightforward manner; it is a Langevin equation for 

the vortex system. 

Suppose now a boundary is present. If R-1 = 0, the approximate boundary condition 

(often u . n = 0, where n is a normal to the boundary) is satisfied if G above is replaced 

by the Green function appropriate to the- domain at hand. In practice, all one has to do is 

add to u = K * e a potential flow up such that their sum satisfies the boundary condition. 

If R-1 i= 0, the condition U· T = VT must also be satisfied, where T is tangential to the 

boundary and VT is the tangential velocity of a solid boundary. In principle, all one has 

to do in this case is create a vortex sheet at the wall, with a strength calculated so as 

\ 

to annihilate unwanted deviations of U· T from its prescribed value. The vorticity in the 

sheet diffuses into the fluid and participates- in the subsequent motion; this process mimics 

the physical process of vorticity generation. 

What is simple in principle is not necessarily so simple in practice. If one calculates 

with a finite time step .6.t, and if at each time step one allows the vorticity to diffuse and be 

advected, the boundary condition u·T = VT is satisfied exactly only at the beginning and at 

the end of each step, with local error that is at best O( ViSi) [C26]. One has to create some 
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this is done naturally by symmetry. For example, if the boundary is the Xl axis, with the 

fluid in the X2 > 0 half-plane, then one can continue the flow to the lower half-plane by the 

. 
symmetry u(xl, -X2) = 2Vr - U(XI' X2), guaranteeing Ul(X}, 0) = Vr . Unfortunately, the 

Navier-Stokes equations are not invariant under this symmetry (consider what happens 

that approximate them near walls, are invariant. The Prandtl equations have a blob 

representation [e8], and onecan use the Prandtl blobs near walls, in a numerical boundary 

layer that should be thinner than any physical boundary layer, and then use a standard 

blob method in the interior. 

The problem that remains is the correct matching of boundary blobs with standard 

blobs. An easy and workable solution is to transfer circulation from one type to the other 

across some line parallel to the wall, while matching the velocities parallel to the wall. 

However, as is known from experience with matched asymptotic expansions, high accuracy 

requires a cleverer match. In particular, one· should note that the velocity field induced 

by a Prandtl blob in its own neighborhood differs substantially from the yelocity field 

induced by a standard blob, and the resulting mismatch of vertical velocities can deplete 

or overcrowd the vorticity in the transition zone and delay convergence. One would like 

an overlap between the numerical boundary layer and the interior, and a match of both 

velocity components. For an appropriate construction, see [R2] and also [BID]. 

Finally, note that equations (5) can be written in Hamiltonian form. The variable 
I~ 

conjugate to the Xl coordinate of the position of the vortex is the X2 coordinate of the 
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position; the Hamiltonian, in the case of point vortices, has the form 

with an appropriate smoothing when 4>6 =/:. b. H differs from the kinetic energy! J u 2dx 

by a constant, which is finite if ¢6 is smooth. 

3. Fast summation. 
I 

At first glance, a time step in a blob method with N blobs requires O( N 2
) operations, 

a forbidding number if N is large. It turns out that the calculations require far less effort, 

typically O( N log N) operations. 

The key observation, as explained by Almgren et al. [AI], is that interactions that 

can be described by partial differential equations are overwhelmingly local. In particular, 

interactions described by a Green's function for a Laplacian place a heavy emphasis on what 

happens when particles are near each other. For overall accuracy, it is enough if nearby 

interactions are calculated accurately, while distant interactions are calculated in a more 

global way, for example by confiating series or inverting an approximate Laplacian. Suth 

partitioning schemes can be relatively inexpensive. Examples of algorithms that embody 

. these observations are the local correction method [Al],[A2] the multipole expansion [G5], 

and other partitioning schemes [Bl]. To explain the idea here, we pick a construction that 
, 

is simple, elegant, and not very well known: Anderson's Poisson integration method [A3]. 

It can be viewed as a reformulation of the multipole method, and uses ideas developed by 

Rohklin. 

We consider the two-dimensional case (extension to three dimensions is straightfor-

ward). Diffusion does not affect the summation. To begin with, we consider point vortices, 
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¢6 = 0; the extension to blobs is trivial. We thus have N point vortices, whose effect we 

wish to evaluate at N points. For simplicity,· we shall write formulas as if the object were to 

evaluate a stream function '0; formulas for the velocity can be obtained by differentiation. 

Suppose one has M vortices within a circle C of radius a and boundary ac, centered at 

the origin for ease of notation. Remember that two stream functions that are irrotational 

outside C, have the corresponding velocity fields vanish at infinity, and agree on ac, are 

identical. At a point (r, 0) outside C, "p is given by 

"p(r,O} = tdogr+ ~ r "p(a,O)P(r,O')dO', 
271" Jac 

where K is a constant and 

P(r,O) = (1- (alr)2) 1(1- 2(alr)cos(O -0') + (air?) 

(7) 

(the Poisson integration formula). The logarithmic term is written explicitly for conve-

nience, and can be incorporated in the integral by adding a constant to '0(r,O). "p(a,O) is 

determin~d by the given vortices inside C. If the integral is approximated by a sum with ]{ 

terms, K ~ M, and one wishes to calculate the "p due to the M vortices at points outside 

C, then labor is saved. Accuracy for modest ]{ normally requires equidistant integration 

nodes on C. 

A reminder of the derivation of the Poisson formula brings some useful insights. "p(r,O) 

can be expanded outside C in planar harmonics, 

~ (a)k "kfJ '0(r,O) = Klogr + ~ Ck -:;: e' ; 
k=l 

on r = a, this series reduces to a Fourier series, and thus the Ck can be found. A summation 

and an interchange of summation and integration yields (7). Note: 
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(i) Numerical integration mishandles high wave numbers, and thus for numerical pur

poses the expansion in planar harmonics need only be carried up to a finite number of 

terms. Summation and exchange of limits then produce a new kernel PK that is better 

. conditioned than P.· 

(ii) The error in the expansion, and thus in the use of the Poisson formula, depends 

only on t/J(r,B) and on ria, and is therefore scale invariant. 

It is obvious that data on circles of one size can be used to produce values of tP on 

larger circles that surround the smaller ones. One can thus produce values of tP on a 

growing family of circles, each level using distant large Circles or nearly small circles as 

needed for accuracy. If </>6 =1= 0, the support of <Ps sets a lower bound on the radii of the 

circles; the results is an O( N log N) algorithm. 

For more detail, see [A3]; the general structure of fast summation algorithms is dis

cussed in [K 1] . 

4. The convergence of vortex methods. 

We now present a brief sketch of the convergence theory for vortex methods 

[B5],[B6],[C29],[H1],[H2],[R1], in the simplest case: two dimensions, R-l = 0, ~ of com

pact support and no boundaries. The theory presented should be sufficient .to illustrate 

the following points: (i) The error in vortex methods is primarily due to the error in the 

evaluation of the convolution integrals (4), and (ii) Accuracy depends on the properties 

of the smoothing <P, and can be enhanced by imposing on it certain moment conditions. 

The theory here should also give some of the flavor of the extensive and elegant body of 

work that has arisen in this context. The presentation here follows in the main references 
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[A4],[C28] . 
. ' 

Remember that the kernel K has been smoothed in the form: K --+ K o, Ko = K * cPo, 

4>0 = 8-2 4>(xj8), J 4>dx = 1. Suppose 4> is smooth enough (for precise requirements , see the 

references) and in addition, satisfies J x cx 4>(x)dx = 0, where X
CX = xr 1 X~2, lad = al + a2, 

and 0 < lal ~ p-1 for some p, i.e., the moments of 4> up to order p-1 vanish. The vortex 

method is written in the form (5): dxi/dt = Vi(x), where Vi(x) = L-jtjKo(Xi - Xj). 

Consider N blobs initially at aj, j = 1, ... , N, where the aj are nodes of a regular 

square mesh of mesh size h placed on the support of ~, and let (j = ~(aj). Let xj(aj, t) 

be the true trajectories issuing from the aj, and xj(aj, t) the computed trajectories. Let 

ej(t) = x j( a, t) - x j( a, t), and for the sake of brevity, omit the subscript j from now on. 

e = ~~ satisfies 

e - X - Vex), 

- em + ed + es , 

with 

em J K(x - x')~(x')dx' - J Ko(x - x')~(x')dx' 
, 

ed - J Ko(x -x')e(x')dx' - E j Ko(x - Xj){j 

es E j Ko(x- Xj){i - E j Ko(Xi - Xj ){j. 

em is the "moment error" which arises because K --+K 0 (the origin of the name will become 

clear in a moment); ed is the discretization error which results from the replacement of the 

,integral by a sum; es is the stability error which arises because the sum is evaluated on the 

computed rather than the exact location of the blobs. We shall now estimate these errors, 

noting that any integration over x or x' can be replaced by an integration over a or a' 

" 

(the Jacobian of the map a ~ x being 1 by incompressibility); the grid in the integrations 
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can thus be viewed as being regular even when the blob distribution has ceased to be 

regular as a result of the motion. 

We defined em = K * e - Ko * e; Thus 

where k is the variable conjugate to x and ~ denotes a Fourier transform;· 

em k(l- ~o)t, 

- k€ (~(O) - ~(8k)) , 

since 1 = J </Jdx = ¢(O). The moment condition guarantees that the derivatives of orders 

up to p - 1 of ¢ are zero, and straightforward manipulation yields \I em \I Ll::; constant ·8P • 

To estimate ed, we shall first exhibit some inequalities which prove the high order 
-, 

accuracy of trapezoidal rule integration for sufficiently smooth integrands. Elementary 

considerations show that if i = (il' i 2 ) is a pair of integers, i = 0- if i l = 0, i2 = 0, and 

define II 9 IIr= max(1I arg IILl) (the maximum of the Ll norms of all the derivatives of 9 

up to order r). Then, for r ;::: 3, 

~ g(ih) - J g(x)dx < (2~)r II 9 Ilr h
r 

I 

(trapezoidal rule integration is very accurate). Indeed, by the Poisson summation formula 

[D3], 

where 9 is the Fourier transform of. g .. Therefore, 

h2 Lg(ih)-j9(X)dX = ILY(ih)-y(O)1 =. Lg(i/h) 
i ~o 
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Then 

and forr 2: 3, 

To estimate ed, all we need is an estimate for the derivatives of Ko = K * <Po. Ko has as 

many derivatives as <p has, and if <p has L derivatives, a straightforward analysis yields at 

finite time T: 

. (h)L max II ed II Loo:::; constant· '7 . 8. 
o ::;t::;T u 

We omit the analysis of es , which can be bounded in such a way that the over-all error is 

bounded by a constant times (II edll + II em 11); thus 

II eITOr II L':O: constant (6' + G) L 6) . 
(Note the usefulness of 8.) If L is large enough, one can choose hl8 < 1 (thus making the 

blobs overlap) so that the error in the trajectories of the blobs is close to O(hP). We omit 

the discussion of how one goes from trajectory error to other measures of the error, and 

how one accounts for the effects of time discretization. For error estimates in the presence 

. , of viscosity or in three dimensions, see the references . 

The key to accuracy (or more precisely, to local accuracy, see below) in blob methods 

is, to satisfy the moment conditions J xCl' <pdx = 0 for a as large as possible. An appropriate 
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choice of <p can produce spectral accura<;:y [H2]. A popular choice of <p is the Beale-Majda 

fourth order (p =.4) core <P4 = e _r2 - t e _r2 /2; for a derivation, see [B6], where the 

three-dimensional case is 'discussed as well. 

The error in blob method does grow in time. One factor in this exponen~ial growth is 

the growing irregularity of the blob distribution and the resulting growth in the derivatives 

that enter the error in a trapezoidal rule. This growth can be remedied by periodic rezoning 

(see e.g. [N4]). By construction, the polygon methods mentioned above perform a rezoning 

at each time step, and as a result the errors they produce often grow less rapidly. 

Other limitations on long-time accuracy will be discussed in the next few sections. 

5. Vortex methods in three dimensions. 

In three space dimensions, vortex methods are a little more difficult to formulate 

because the vorticity is now a divergence-free vector whose magnitude changes in time. 

The Euler equations take the forms 

(8) 

div u ~ 0, 

where e = curl u is the vorticity. 'The definition of e can be inverted and yields, as in 

equation (3), 

u = K*e, (9) 

where the kernel K is now K = ~ (47rlxI3) -1 X, x denoting a cross-product. Equation (9) 

is known as the Biot-Savart law. In the filament method, one writes 
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where the supports of the ei are tubes of small cross-section tangent to the vorticity field 

("vortex filaments"). u is approximated by K6 * e = L,iK6 * ei, where K6 is a smoothed 

kernel K6 = K * <P6, and the integration along a filament is approximated by a sum. The 

non-constancy of u along the support of ei automatically takes care of vortex stretching 

(the effect of the right-hand-side of equation (8)). High order methods can be obtained 

through a good choice of <P in <P6 = 0-3<p(X/0) [B5],[G4]. With </>6 =f. 0, and the integral 

replaced by a sum, and u =f. K * e, and thus dive 1= 0, but one can make dive be small 

enough for practical purposes. Vortex stretching is a strong effect, and as it takes hold, 

approximation points mUst be added to the filaments [C10],[K5]. Practical applications 

can be found in [C10],[G1],[K7],[K14],[L3]. 

The pro})lem with the filament method is that it is not obvious how to couple it to 

a diffusion method; furthermore, there is little experience in producing filament at walls 

(but see [56]). A way around these difficulties is to approximate each filament by a sum of 

vortex segments, (also know as "sticks", "arrows" and "vortons"), and then proceed as if 

the segments were independent, relying on convergence to make dive", 0, see [B4],[C8]. 

Diffusion and boundary conditions can then be dealt with quite easily. On the other hand, 

it is very important for long-time accuracy that dive be very small [B14], and one may 

have to filter out the non:..divergence-free part of the vorticity field at frequent intervals. 

For a recent review, see [W5]. There is a substantial recent Russian literature on segment 

methods with <P6 = 0 (no smoothing), for reasons that are hard to fathom. 

An interesting alternative to segment methods that deals with "local" elements, en-

forces div e = 0 and can be coupled to diffusion has been introduced by Buttke [B14],[B15]; 
( 
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the computational elements are small vortex loops [OI],[R4],[R8], appropriately smoothed. 

At t = 0, pick a scalar function q and consider the equations of motion for m = u + grad q. 

m is a "magnetization" ,or "impulse density", or "dipole density", and q being arbitrary 

at t = 0, is clearly not unique. However, if P is the operator that projects arbitrary vec-

tor fields on their divergence-free part that is tangential to boundaries (P is well defined 

[C25]), and if m remains the sum of u and a gradient at later times, then u = Pm is 

uniquely defined. Let m = (ml' m2, m3)' One can readily check that the equations 

(10) 

produce a velocity field that is equal to the one produced by the N avier-Stokes equations 

with the same data. If R-1 = 0, (10) is equivalent to Euler's equations. 

The freedom in choosing q can be put to very good use. Suppose the vorticity e has 

compact support. The velocity. field u has support in a set that extends to infinity. Let 

H be the convex hull of the support of e. Outside H, u can be written as u = -grad q, 

since the complement of H is simply connect,ed. At t = 0, set q ~ q. The corresponding 

m has support in H and has thus been "localized". If one then writes m = L: mj, 

with the supports of the mj small and in H (mj is a "magnet"), then one obtains' a 

representation of the flow field by a sum of localized particles. The vorticity e = curl m 

satisfies dive = OJ, u can be obtained by u = K * e. If Xi is the "center" of the i-:-th 

magnet, then dxi/dt = u = L:j K * (curl mj). Equation (10) yields an evolution equation 

for mj K -+ K6 yields accuracy. If R- l = 0, the equations form a Hamiltonian system. If 

R-1 =I- 0, diffusion can be handled as in two dimensions. 

A comp~rison of u = K *curl m, where m is one magnet, with the velocity field indu~ed 
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by a small vortex loop at a large distance, shows that the magnetization m representation 

is in fact a representation in terms of small vortex loops. Consider a large-scale vort,e;x: f; 

to construct an m representation one finds a (non-unique) surface ~ that spans f, and one 

places magnets m on ~ so that they are normal to ~ and have magnitudes Iml = t Iflld~l, 

where Ifl is the circulation in the vortex loop r and d~ is the surface element on ~. It is 

easy to check that m remains orthogonal to ~ as both are evolved by the flow map. This 

construction points out a problem with the m representation: A vortex loop will eject fluid 

to its rear and thus ~ will balloon; as its area increases so does 2: Imj I; as a result the time 

steps may become small and the calculation expensive. Appropriate remaps to remedy this 

problem have been considered by Cortez [C27]. The magnetization representation has not 

yet been tested as a sufficient number of examples for firm conclusions about its usefulness 

to be drawn. If R-1 = 0, one can verify that the equations of motion of N magnets have 

Hamiltonian form. 

All inviscid three-dimensional vortex representations eventually run into the "folding" 

problem. As a flow evolves, vortex lines stretch; as they stretch they must fold, or else 

,energy conservation cannot be obeyed; folding creates the necessary cancellations between 

the velocity fields induced by the stretching vortex lines. Stretching and folding are real 

physical processes that occur in fluid flows [Cll],[C18],[C21]i their numerical versions are 

not necessarily faithful to reality. The explosive growth in stretching and folding that is 

characteristic of vortex methods can limit their usefulness. The reasons for this growth 

and the methods that control it can be understood in a statistical mechanics context that 

we shall now develop. The analysis also has direct applications to the analysis of vortex 
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motion in turbulent flow and in quantum fluids. 

6. Statistical mechanics of vortices in the plane. We start the statistical analysis 

by considering N vortices in the bounded region V in two dimensions. The entropy S of 

the system is the logarithm of the density of its states (the Boltzman constant can be set 

equal to 1 by using appropriate units). The temperature T is defined by T-l = dS/d(E) , 

where (E) s the average of the energy E. If the system has states labelled by a parameter 

s, then S = - 2:s Ps log Ps , where Ps is the probability of the state s and the sum is to be 

interpreted as an integral when the states form a continuum. In the canonical ensemble, 

Ps = Z-l exp(-E/T), whereE = E(s) is the energy of the state labelled by s and Z is a 

normalizing constant, the "partition function" Z= 2: Ps . 

One is used to having T > 0, but this inequality is not a law of nature. One can 

perfectly well imagine systems such that for (E) moderate there are many ways?f arranging 

their components so that the energy adds up to (E) but for (E) large there are "only a few 

ways ~f doing so. Then the derivative dSjd(E) is negative for (E) large enough and Tis 

negative. This situation will indeed occur for vortex systems. If T> 0 low energy states 

have a high probability, and if T < 0 high energy states have a high probability. 

Suppose one takes two systems, each separately in equilibrium, one with energy El 

(we drop the brackets) and entropy Sl, the other with energy E2 and entropy S2. Suppose 

one joins them; the resulting union has energy El + E2 and is not necessarily in equilibrium. 

Its entropy, initially S. Sl + S2, will increase in time t. Then 

dS _ dS l dS2 _ dSl dEl dS2 dE2 > 0 
dt - dt + dt - dEl dt + dE2 dt ' 
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while energy is conserved: 

dEl dE2 _ 0 
dt + dt - . 

Therefore 

Suppose T2 > TI, both positive; then dftl > 0, i.e., energy moves from the hotter body 

to the colder body. Now suppose T2 < O. It still follows that dftl > 0, i.e. a body 

with negative temperature is "hotter" than a body with positive temperature. Negative 

temperatures are above T = 00, rather than below absolute zero. Further, the canonical 

formula shows that T = -00 is indistinguishable from T = +00; ITI = 00 is the boundary 

between T < 0 and T > O. In terms of (3 = T-l, temperature increases as (3 varies 

from infinity' to zero through positive values, and then from zero to minus infinity through 

negative vhlues. 

Consider a collection of N vortices of small support occupying a finite portion 1) of 

the plane, of area A = 11)1 (see [Ell). The area can be made finite by surrounding it 

with rigid boundaries, in which case the vortex Hamiltonian must be modified through 

the addition of immaterial smooth terms; alternatively, one can confine the vortices to a 

finite area initially and conclude that they will remain in a finite are~, because the center 

of vorticity X = '£{ixd'£{i, Xi = positions of the vortices, and the angular momentum 

'£{; IXi - XI 2 are invariant. For the moment, consider inviscid flow with all the {i = 1. 

The entropy of this system is 
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where f is the probability that the first vortex is in a small neighborhood of Xl, the second 

in a small neighborhood of X2, etc. The energy of this system is E = H + B, where H is 

the two-dimensional vortex Hamiltonian and B is an appropriate constant. The entropy 

is maximum when 

f = constant = A -N. 

The corresponding energy is 

(E) = (Ec) = -~N(N-l) { dx ( dx"log Ix - x'I + B. 
. 411" Jp Jp 

Clearly, one can produce a larger (E) by bunching vortices together, and thus T-I -

dS/dE < 0 for E > (Ec ). This is Onsager's observation. If T > 0, the Gibbs factor 

exp( -E/T) gives a high probability to low energy states, and if T < 0, high energy states 

are favored; the latter are produced by bunching together vortices, forming large, concen-

trated vortex structures. The.! = constant state is the ITI = 00 boundary between T < 0 

and T > o. The T introduced here has no connection whatsoever with the molecular tem-

perature of the underlying fluid; in incompressible flow, the molecular degrees of freedom 
., 

and the vortex variables are insulated from each other. 

To give this argument a more quantitative form, we turn to the elementary combina-

torial method [J1]. We assume there are N vortices. N+ ,vortices have strengtht = 1, N-

have { =-1, N+ + N- = N. We divide V into M boxes of area h2,with nt positive and 

ni negative vortices in each. The corresponding probability (= multiplicity) W is 

To a good approximation, the entropy is S = log W (for the conditions under which this 

is true, see e.g. [E1],[C21]). To obtain an equilibrium, S is to be maximized subject to the 
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constraints ~nt = N+, Eni = N-, and 

1 . 
E = 2" I: I:(nt - ni)Gij(n; - nj) = constant, 

i j::/=1 , 

where Gij = -Zl
7r 

log IXi -xjl + B, Xi is in the i-th box, Xj is in the j-th box, and B is 

a constant. This E approximates the energy of a vortex system. The maximization of S 

produces a thermal equilibrium and leads to the equations 

199nt + a+ + fJL,'j Gij(n; - nj) - 0, 

logni - a+ + fJL,j Gij(n; - nj) 0, 

where a+ , a- ,fJ are Lagrange multipliers. A little algebra yields 

exp ( -a+ - fJ L,j Gij(nJ - nj») 

exp (-a- + fJ L,j Gij(nJ - nj») , 

(11) 

for i = 1, ... , M. Let h --+ 0 so that n; ,'ni --+ ~(x)hZ = ~(x)dx, (exp( -a-» /hz --+ d~, 

and EGij(nt -ni) --+ JG(X_X/)~(X/)dx/, where G(x) = -21
7r 10glxl+B. Equations (11) 

converge to 

e(x) = d+ exp( +fJ J G(x - X/)~(X/)dx/) + d_ exp( -(3 / G(x - X/)~(X/)dx/) 

where d+, d_ are appropriate normalization coefficients. 

Let ¢ be the stream function, U1 = -ih'I/J, U2 = 01 'I/J; an easy calculation glves 

~¢ = -~, ~ = Laplace operator and 'I/J = - J G(x - X/)~(X/)dx/. Thus, 

(12) 

This is the Joyce-Montgomery equation. In a periodic domain one can set ¢ = 0 on the 

boundary of a period; N+ = N- = N /2, d+ = d_ = d. Then 

N 
2d = f dxePtjJ' 
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-t:::..1/;(x) = ~(x) = dsinh (31fJ(x). 

N 
-t:::..1fJ =~(x) = Z exp ((31/;(x)). 

In either case, ~ is a function of 1/J. The Euler equation is 

where J = Jacobian of ~,1fJ which is zero when ~ = ~(1/;). The resulting average flow is 

a stationary (time-independent) solution of the Euler equation, with macroscopic motion, 

as expected when (3 < O. Appropriate forms of equation (12) can be derived, in which the 

limit N -:+ 00 can be easily taken [E1],[K3],[M9]. 

It should be emphasized that the ~ we have -calculated is not only a specific solution of 

Euler's equation, but more importantly it is the stationary average density of the vorticity. 

Specific flows may depart from this average, but one expects the departure to be small. 

For (3 > 0 and for -87l" N < (3 < 0 ~quation (12) can be shown to have solutions. In the 

latter case the solutions are non-unique; the solutions have mul~iple peaks; the solution 

that maximizes the entropy has a single sharp but smooth peak. For (3 < -87rN (i.e., 

"hotter" than T = -1/87r N), the Joyce-Montgomery equation with ~ ~ 0 has no classical 

solution and in fact does not describe reasonable physics. 

Statistical equilibria are of interest only if they are reached from most initial data. 

There is strong evidence, mainly numerical, that the two-dimensional equilibria constructed 

above are in fact reached. Some general st~tements can be made about the relaxation to 

equilibrium, and some equations remain open. 
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Suppose one starts from initial data that consist of two patches of vorticity, say ~ = 1 

in sets G1 , G2 , both bounded, G1 , G2 disjoint, and ~ = 0 elsewhere. Since vorticity is merely 

transported by the fluid motion, one has to imagine a process by which the vorticity in the 

patches is redistributed so as to match eacH the solution of the one-sign Joyce-Montgomery 

equation (12). One can imagine that the boundaries of GIl G2 sprout filaments, as in the 

convergence of subsets of the constant energy surface to the rnicrocanonical ensemble; the 

resulting filaments could reorganize so as to approximate ~oo on a sufficiently crude scale. 

The filamentation of the boundary should lower the energy_ Indeed, if a small vortex , 

patch is broken into two halves that are pulled apart, the energy goes down; two vortices of 

strength { = 1 each, near each other, act as one vortex of strength 2, whose energy is four 

times that of one of (them; two vortices of strength 1 far from each other have an energy that 
/ 

is the sum of their individual energies. To make up for the loss of energy in filarnentation 

the two patches have to approach each other. This process· of simultaneous filamentation 

and consolidation is well documented numerically. Similarly, one expects a non-circular 

patch to become nearly circular with a halo of filaments, the whole approximating eoo on a 

rough scale. Even a circular patch with non-constant e, increasing from its center outward, 

can reorganize its vorticity so that filaments shoot off while energy is being conserved. On 

the other hand, a patch with ~ decreasing as one moves away from
l 

the center is stable, 

and belongs to the set of initial data that do not approach eoo; such a patch of course does 

in itself constitute a rough version of eoo-

This process of simultaneous filamentation and consolidation can be deduced from 

the invariance of the energy and the ens trophy in spectral form: J E(k)dk = constant, 
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J k2 E( k )dk = constant, where E( k) is the energy spectrum. If some energy moves towards 

the large k's (small scales), then even more energy must move towards the small k's (large 

scales). On the whole, there is an energy "cascade" toward the small k's. 

If the initial e is complicated, and has many maxima and minima, one can imagine, 

and indeed see on the computer, a process of progressive curdling, in which nearly circular 

patches that look locally like eoo first form on small scales, then slowly migrate towards 

each other and consolidate if viewed on a crude enough scale. The curdles can never truly 

merge, since the flow map is one-to-one. At each stage of this curdling the nearly circular 
/ 

patches are nearly independent, with whatever correlations their locations have manifesting 

itself only on large scales. The flow can then be approximated as E1Jieoo(X - xi), TJi = 

random coefficients. The energy spectrum is approximately proportional to IkI 2 Itoo(k)12, 
\ 

where too is the Fourier transform of eoo(x), and is a property of ~ach curd individually. 

One then has local equilibria slowly consolidating into larger equilibria. 

This succeSSIve curdling picture provides a suggestion as to what happens in the 

presence of shear or in complex geometries. In three space dimensions the "universal" 

aspects of turbulence appear on small scales, and one can readily imagine that arbitrary 

large scale structures have "universal" small scale features. Here, in two dimensions, the 

universal structures grow to large scales, and an imposed shear or an imposed boundary 

mass interferes with them. It is readily imagined however that the curdling process will 

simply stop when it ceases to be compatible with the conditions imposed on the problem. 

Note that if <Po in the two-dimensional vortex method is identified with eoo, then the 

vortex method can be reinterpreted as a model of two-dimensional turbulence, in which 
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the smallest scales have reached equilibrium. Indeed, this is how the <P6 in [C5,[C6j was 

chosen. 

One can wonder about the effect of a small viscosity v on the processes just described. 

To the extent that the effect of viscosity is to smear the small scales, and as long as the 

time it takes to reach equilibrium is small compared to the time scale of viscous decay, 

the picture above should be unaffected. One could say a little more: suppose the effect of 

viscosity is approximated by Brownian motion (equation (7)). The Brownian motion can 

be thought of as being generated by the bombardment of the vortices by the molecules of 

an ambient fluid at a temperature v. The effect of the bombardment that has just been 

imagined is to couple weakly the "fluid" at the temperature 1/ with the vortex system, and 

if v < T = vortex temperature, to reduce the latter. If T < 0, the cooling of the vortex 

system brings one closer to the ITI = 00 equidistribution solution, in agreement with the 

intuitive idea that random pushes should interfere with the formation of concentrated 

vortices. After a long'enough time one may end up with ~ = constant. 

7. Statistics of vortex filaments in three dimensions. 

We now turn to the three-dimensional analogues of the constructions of the previous 

section. In three dimensions, vortex filaments are extended objects, more like polymers 

than like particles; vortex stretching is important, and only a statistically steady state can 

be expected as the time t --+ 00. To make the presentation easy, we consider a single vortex 

filament (a tight bunch of integral lines of the vorticity field) in a dilute "suspension" of 

such filaments; more general situations are considered in [C18],[C21j. 

Suppose our filament can be covered by N nearby circular cylinders, each of length 
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h > O.Endow the filament with an energy 

r 2 I:" I: t, ·t, E= _ I J 

871' , '~' Ii - jl 
I Jrl 

(13) 

where ti is a vector of length h originating'at the center of the i-th cylinder, Ii - jl is 

the distance between the i-th and j-th cylinders, and r is the circulation of the vortex. 

Equation (13) is the discrete analogue of the Lamb expression for the energy 

E = ]: j u 2 dx = 2- j dx jdxle(X)' e(x'). 
2 871' Ix - x'I 

The vortex is self avoiding: Ix - x'I =f. 0 for x E the i-th cylinder, x, E the j-thcylinder. 

Assume that each configuration C of the vortex has probability P( C) 

Z-l exp( -E/T), where Z = L:c P(C). T can be positive or negativej "increasing T" 

is defined as in the previous section. The average energy (E) = L:c E( C)P( C) is an 

increasing function of both T and vortex length L = N h. 
\ 

Define 

log(rN} 
J.lN,T = log N ' 

where r N is the end-to-end length of the vortex measured by a straight ruler, or alterna-

tively, the diameter of the vortex as it is usually defined. As N -t 00, h fixed for Nh fixed, 

J.lN,T tends to a limit J.lTj 1/ J.lT i~ the fra~tal dimension of the resulting limiting object 

[C18],[C21]. 

For fixed, finite N, a~T < OJ i.e., as T decreases, the vortex becomes an increasingly 

folded object. In the limit N -+ 00, J.lT = 1 for T < 0, J.lT = 1/3 for T > 0, J.lT ::: .59 for 

ITI = 00. Note that ITI = 00 is the maximum entropy state. 
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Suppose now that the "vortex" is imbedded in an Euler flow. Its length will increase, 

by stretching and by fractalization; df: > O. The average energy is an increasing fu~ction 

of both T and of the vortex length L. If energy is conserved, it follows that ~~ < 0 and 

the temperature decreases. Also, dar < 0 and the vortices fold, as described at the end of 

section 5. If the vortex is initially smooth, T( t = 0) < 0, and the temperature decreases 

tolTI = 00. The point ITI = 00 is an attracting fixed point for Euler dynamics; that is 

where the vortices will end up and generate a Kolmogorov spectrum [C19). ITI = 00 is an 

uncrossable barrier for Euler dynamics. Asymptotic vortex structures are poised at the 

boundary between T < 0 and T > O. 

Note that as long as N is finite, strong, organized, coherent structures contribute less 

to the energy dissipation than weaker, incoherent vortices. Indeed, contrast two vortex 

filaments with the same finite N but different circulations r 1 , r 2 , say r 1 > r 2 .. The 

energy integral being proportional to r 2 , the Gibbs weights attached to the two filaments 

are Z-lexp(-,BriE), Z-lexp(-,Br~E), whereE is the energy that results from r = l. 

The~e weights are the same as those one would obtain with r = 1 and Tl = T /ri in 

the first case, T2 = T /r~ in the second. If one thinks of D = 1/ fLN,T as an approximate 

fractal dimension, the vortex with larger r has a smaller ITI, and if T < 0 (which is 

the physically relevant case), then the vortex; with larger r has a smaller dimension and 

appears smoother . Strong vortices are less folded. The more folded vortex has a broader 

spectrum and thus contributes more t~ dissipation relative to its energy. 

In a numerical calculation, N remains finite, and the ITI = 00 barrier can be crossed. 

If it is, excess folding and stretching may follow, as is indeed observed. One can reduce 
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this excess by a systematic removal of folds ("hairpins") which can be justified as a renor-

malization. Hairpin removal thus becomes a very useful tool i~ vortex methods. 

There may however be simpler ways to arrest the crossing of the ITI = 06 barrier. A 

key observation in this respect is Qi's observation [Ql] that the crossing is most likely to 

happen where the vortex torsion is zero; .such points are readily identifiable before disaster 

strikes. 

8. Remarks on turbulence and on superfluid vortices. 

In the previous section we developed a theory of thermal equilibria of vortex filaments 

and used it to explain the folding instability of computational vortex filaments. The theory 

can also he applied directly to physical vortices. 

) 

In a classical (i.e., non quantum) fluid in turbulent motion vortex filaments typically 

form a dense suspension; their cross-sections vary rapidly and playa role in the dynamics. 

The equilibrium theory of filaments is a plausible cartoon of the equilibrium states of vortex 

filaments in this context, and reveals .important features of the motion; it must however 

be interpreted with some care [C21]. 

A major conceptual leap that must be made i~ order to apply the model to turbulence 

concerns the idea that the inertial range of turbulence can be described by an equilibrium 

model. In the usual presentation of the Kolmogorov theory, inertial scales do'little besides 

transfer energy from large to small scales, in an irreversible waterfall-like cascade that 

cannot be assimilated to a thermal equilibrium .. However, there is overwhelming experi-

mental [M8] and numerical [C21] evidence that energy goes both up and down the ladder 

of scales; in other problems, even in Burgers' equation, equilibrium and a power law spec-
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trum appear together. An equilibrium with a wide spectrum may enhance dissipation" 

but not necessarily be dominated by it. This argument is laid out in detail in [C21]. In 

superfluid (quantum) turbulence these arguments are easier to visualize. In a superfluid, 

vortices exist as physical entities; their cores are well defined. The dissipation mechanisms 

(e.g., the Hall-Vinen friction [H3]) do not concentrate at the smallest scales and the simple 

cascade ideas are not as attractive. Indeed, "fractal" vortex equilibria similar to the ones 

described above do occur, for example, near the T>.. transition to superfluidity [S4],[W3] or 

in the related problem of "vortex glasses" in "high temperature" superconductors [H6]. 

However, some paradoxes appear as soon as one considers turbulence in superfluids 

more closely. In many important respects, quantum and classical turbulence are very 

different. Quantum vortices generally look smoother than classical vortices. The rate 

at which vortex length per unit volume L is generated appears to be proportional to 

L 3
/

2 w, where w is a quantum "counterflow" velocity that vanishes in a non-superfluid. 

By contrast, the rate of change of L in classical turbulence is proportional to L [C21]. 

Thus vortex stretching appears to be much more important in classical than in quantum 

turbulence. 

A qualitative explanation of these differences is contained in the theory of the last 

section. The rate of cha?ge of L was connected with the rate of change of the temperature 

T. A classical fluid has a self-adjusting temperature T such that ITI -+ 00, and there 

are no bounds on L. In a quantum fluid (and maybe also in compressible turbulence) 

wave/vortex interactions control T and then L may be bounded. 'Deeper explanations 

remain to be explored; the relations of quantum to fluid vortex motion are discussed in 
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[CI9],[C21]. Vortex methods appear as the natural tools for analyzing these relations and 

the structure of turbulence in general. 

This may be the place to dwell on a numerical mystery. If vortex stretching and folding 

are inhibited in quantum turbulence, vortex motion in quantum and classical fluids shoUld 

be very different. In a partial recognition of this fact, superfluid physicists often replace the 

Biot-Savart law (9)by a different velocity fluid that depends only on a local curvature of 

the vortex filament. The equations obtained from this approximation, the "local induction 

approximation" (LIA) have a very different character from the Euler equations, and in 

particular they preserve vortex length [BI2],[CI0]. It is however persistently claimed in the 

superfluidity literature that the LIA and the Biot-Savart law can be used interchangeably. 

In one case, examined by Buttke [BI2], it turns out that the resemblance between 

the LIA and the Euler results claimed in earlier work is an artifact of the numerics; a 

sufficient refinement of the mesh in the LIA destroys this resemblance. There are however 

more subtle problems. For example, according to recent work [SI], waves propagate on 

vortex filaments with only a "confined chaos" and no breakdown of the vortex. A crude 

enough solution of the Euler equations in this case reproduces the results of the LIA' to a . 

good approximation .. A more resolved calculation is at sharp variance with the LIA, but 

an even more refined calculation produces again results that have a qualitative (but ndt 

quantitative) similarity to the results obtained by the LIA [Qll: A deeper understanding 

of this situation is not yet available. 
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