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ABSTRACT

The model for macroscopic nuclear properties introduced by Seyler
and Blanchard within the framework of the Thomas-Fermi approximetion is
developed in the Hartree approximation. The quantization dfrthe
velocity-dependent two-nucleon interaction is discussed, and the general
expressiens for the interaction-energy density and the effective single~-
particle Hamiitonian are establishedr The’developed model is applied
to semi-infinite symmetric nuclear matter and comparison is made with
the Thomas-Fermi results.,
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1. INTRODUCTION

' The nﬁclear model infroduced by Seylef and Blanchardl in l961_has
proved a very useful tool for the‘study of macroscopic propérties of
nuclei. The model is based oﬁ:a simple phenomenqlogic;; two-nucleon
interaction (often referred to aé thé‘seYIer-Bianchard interaction),

having the following form,

r -r =
12 2,2 e
V12 = -Cg( S ) (l - Plz/b ) ’ g(r) = -5 (1.1)
Here I, is the distance between the two interacting nuclei and
> > >

P, = pl-gz their relative momentum. Thus the spatiai part of the
Seyler-Blanchard interaction is a Yukawa function of range a. The
interaction stréngth Cc depénds on whether the two nucleons are 'like' -
(i.e., two neutrons of two protons) or 'unlike' (i.e., a neutron and a
proton). In addition, the strength of the interaction depends on thé
relative momgntum 1 2P of the two nucleons; it becémes weake?.as Py
increasés‘and for some value b (the 'saturatidn' momentum) it changes
from attractive to repulsive.

The momeﬁtum—dependent part of the Seyler-Blanchard interaction

imitates ‘the effect of a repulsive core in the two-nucleon potential

and is respbnsible for the production of a nuclear saturation. The

- interaction seems to account reasonably well for the low-energy part of

the effective nucleon-nucleus interaction inferred from éxéeriment.

Only a few input parameters enter into the model:  the Yukawa fange
a, the satﬁration momenpum b, and the interactions strengths Cz and
Cu pertaining to like and unlike hucleon pairs, respectively. They may:

be determined from the experimentally known values of the nuclear radius



constant r the volume-energy coefficient av, the surface-energy

o'
coefficient as, and the symmetry-energy coefficient J.

The faﬁt that one wishes to extract information about the macro-
séopic nuclear properties Only,véermits the use of relatively simpie
approximations for the treatment of the associated many—body problgm.

Up to now, the model has been studied almost exclﬁsiveiy within the
Thomaé—Fermi_apﬁroximation. Thié approximation leads to a very simple
description of the nuclear system.

Seyler and Blanchard showedl that in this way it was possible to
reproduce the gross nucleér energetics and sizes given by experiment,
fér reasonable values of the few input parameters. Later on, Myers and
Swiatecki2 adapted the model for their systematic study of macroscopic
properties of nuclei and tﬁey employed the model for the calculation of
the preliminary set of Droplet-Model coefficien£s. Furthermore, the
model has been uéed as a basis for studying the thermostatic properties
of nuclear matter.3 Recently it has been used for the estimation of
" the nuclear 'proxiﬁity' force.4 Presently, works'6 is being planned to
further employ the model in the study of static as well as dynamical
aspects of nucleus—nucleus‘collision processes,

The Seyler-Blanchard model, in its Thomas—Fermi_formulation, has
thus a wide range of applicability, ahd because of its great mathematical
simplicity it is a very helpful tool for the study of macroscopié nuclear
properties. It is obvious, however, that in the nuclear surface region,
where the potential varies rapidly, the Thomas-Fermi approximation is
rather crude as it neglects the phase correlations imposed by the surface

as well as the penetration of particles into the classically forbidden



region. Considering the great virtue of the model, it would be very
‘valuable to ciarify, in a qu@ntitative way, how much a more proper treat-
ment of the quantum-méchanics would affect the fesults.
in this papér we study fhé Seyler-Bianchard model within the Hartree
‘approkimatioﬁ. At the same timévwe formulate the model in more general
terms so that it applies also to the general situétion of non4static
systems, The Hartrée approximation treats the_quéntum—mechanics in an
exact way, within the restriction tﬁat the many-particle system be
described by a product wave function. Like the Thomas~Fermi approximation,
the Hartree approximation neglects effects associated with the correlation
-between individual particles, and it constitutes a natuial basis for
studying the macroscopic properties of a quantum system., Let us stress
at this point that the aim is not to develop a realistic microscopic
model for real nuclei, but rather to establish a canceptually simple
model from which the average behavior of nuclear matter may be inferred.
In so doing we are concerned with the macroscopic limit of a iarge
. particle number sovthat individual-particlé effects may be neglecﬁed.
The development of the Seyler-Blanchard model in the.Hartree approx-
imation provides'us with a possibility for determiﬂing the accuracy of
the Thomas-Fermi approximation for nuclear maﬁter. Moreover, it makes
it possible to obtain more accuraté values for the various macroscopic
nuclear properties, aé for examéle, those represented by the
Droplet-Model co‘efficients.2 |
In addition to thus yielding_a.more detailed inéight into the
. properties of isolated‘static nucleéf syéteﬁs,_thé development of the

model presented here has importance for more genéral situations encountered,



for example that of two colliding nuclei.

The paper is structured as follows. First we take the effort to
clarify the notationél framework and general formalism with which we
shall tackle the problem. We find this worthwhile in é;der to make the
lgter present;tion easy and transparent. After this, we anélyze in some
detail the problems associated with the quantﬁm representation of the
" momentum-dependent term of the interaction. With this problem settied,
we then préceed to develop the general formulae of the model; AsAan
“illustration, the model is then applied to semi-infinite symmetric nuclear
matter. Finally, we present a summary of the investigation togefher with
a discussion of various prospects., We héve added an Appendix forvan outline

of the numerical aspects of the semi-infinite problem.

2. FORMALISM‘
We shal; start out by describing the general formalism in terms of
which we shall develop the guantum-mechanical formulation of the model.
A clarification of the various definitions and concepts at this early
point will ease the presentation later on and, moreover, may serve as a
basis for future reference. - "
In this work we are concerned with a many-nucleon system which may
be described well in terms of independent-particle motion. Since the
nucleons are fermions, the proper type of wave function is ap_ahti—
symmetrical product of single-particle wave functions (a Slﬁter determinant);
oy oy (EpiEyeeenig) = #wvl(el)w;)z(zz)..;wv (g )

Y1727 A A (2.1)

Here the quantum numbers vi are a complete set of labels for the occupied
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one-parﬁicle orbits; and the coordinates of a particle i -(its.positipn
;i together with its sbin and isospin variables) are dendted by‘Ei. This
notation is in accordance with ref. 7. Furﬁhérmote,.ﬂz is the anti-
symmetrization operator, which transﬁorms a product wave function into the

the corresponding Slater determinant.

2.1. DensitysDistributions
The mécroscopic system properties we are_interésted in for our
present Stﬁdy (the ﬁatter distribution, the enefgy distribution,‘etc.)'
;re given in terms of one-point density distribﬁtions Q(;) dependingvon
one Spatial point ;. In quantum mechanics, a depsity distribution a(;)
to which we ascribe é physical reality is representéd'by a Hermitean
density operator a(;). {(The symbol " iS'employéd to ihdiéate an operator.)
The density operator &(;)‘representing a one-point densit& distributi;n
acts on the individual particles‘separaﬁely and‘thus.belong_to the genetal

category of one-particle operators.

In general, for a system of identical particles; a one-particle

operator F .has the form

Fo= JRE) = JE, (2.2)

The last relation introduces the brief notation Fi for the term of the
operator F referring to the coordinates. of particle i. For a one-

Py

particle operator F, the expectation value F in a many-particle state

Y is given in terms of one-particle expectation values:

(2.3)



F = <F>, = g <VilF|Vi> = g <F.>. . o (2.3)

~ Y

Here the brief notation <Fi>i denotes the expectation value of‘ F(gi) in
the singlé-particle state ‘vi>. Thus the anti-symmetrizationvdoes not
affect the expectation value (or, in general, the métrix elements) of a
one-particle operator. -

We may now proceed to introduce a numbei of density operators which
will be heléful for.the subsequent analysis of the Seyler—Blanchard
interaétion. .

bFor convenience, we shall define the densities such that they all
have the same dimension, namely inverse volume. |

"First, let us introduce the one-particle operator b representing
the matter density distribution p. According to our reﬁarks above, it

is sufficient to specify the part: Bi' It is given by

b.(r) = §(x-7r) (2.4)

: : ' -+
It is important here to distinguish between the particle coordinate ri
and the spatial variable r which plays the role of a parameter entering

in the operator. Thus the total matter density o is given by

> PN -
p (x) L <p, (¥)>,

i

* ,7r -> - -+ 3+
wav_(ri) 8(x - x) ¥, (xpar,
b § 1 : i

v @y, @ (2.5)
i i i :
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‘A second basic physical density distribution is the momentum

-+ -
density m which is represented by the operators

->
A p, R
> &> _ i ..i -~ ->
ﬂi(r) = 2{b ’ pi(r)}
P P
N o N N |
= 2<b §(r ri) + §(xr rl)b)
_ 1 > ﬁ$_ -
= 2(1ri+(r) +ons v(r)) - o (2.6)

Here, of course, P denotes the momentum operator for particle i, .

-

N e v o . . .
p; = -ih Vi; as no confusion can occur we omit the symbol over pi.

- Furthermore, we have used the anti-commutator construction {a,b}.E ab+ba

to ensure that the operator is Hermitean as it should be because it

represents a physical quantity. The last relation indicates that the
: > > : : ) > > ’—r_—*‘

total momentum n(r) is composed at two parts mt(r) and 17 (r), each of

T+

which is not Hermitean. For example, for a standing wave 1t is positive

- . . | » _
imaginary and . 7~ equally negative imaginary‘(which ensures the total

momentum associated with a standing wave to be zeto). It is important to

o : ) > >,
point out that only the total momentum density- w =_-]é'--(1r+ + 17) is

physically'meaningful and can have expe:imental significance. Notice

s ' . . .
that m measures the momentum density in units of b, the Seyler-

‘Blanchard saturation momentum.

~

Thirdly, we shall define the operator T representing the kinetic

energy density 1T in the system,
: 2

P.
1@ = Ml s &
L@ - Ll 5@ b2}
-+ 2 -> 9 : -
_ .];.((f_]:.) > _ > > > (.Pi)
= 2. = S(r ri) +v6(r ri) 5 (2.7)

Adain we have employed the anti-commutator construction to ensure

Hermiticity. We have defined T in teruis of the enexgy unit bz/zm; m
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being the (average).nucleon mass.

As it turns out in the analysis of the velocity-dependent part of
the Seyler-Blanchard inﬁeractidn, it is of interest to introduce two
’additionai kinetic densities « and y. The density « cofresponds to a

velocity—sQuared density and is represented by the operator

. -> >, ' .
A > = p‘_l,\ > P_J; - E_]; ’+_->
Ki(r) p.(r) b = §(r - r.) (2.8)

+-
b "1 i

o‘l’ﬁﬁ

The density y is the average of T and k¥ and, as will be shown, corresponds
to the proper quéntization of the Seyler-Blanchard velocity term, It is

represented by

| o | |
P _ 1 /7~ > ~" > _ l{pi i a > _ '
B = FEG kD) - F{E B, 5, (2.9)

The last relation involving the anti-commutators is elementary to prove.
It is obvious that in the classical limit th + 0) all three kinetic
densities T, K.and Y are identical. In the quantum case h # 0) they are
also équiv#lent in a region described by plane waves but they differ
substantially in regions neér a classical turning point. Thus the
velociﬁy-squared'density k is always positive while the kinetic-energy
density 1 turns negative in the classically forbidden region outside the
surface. This has the consequence that the density y, being the average
“of k and 1, vanishes in an exponential-tail region.
It is straightforward to show that the two kinetic density operators

Kk and %,are connected by the relation

-+ > '
@y = Yy - lipi jpi o s >
sci(r) = 'ri(r) _z[b ’[b ' pi(r)]] _ | (2.10)
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Hence the densities themselves satisfy

kE = @ + 2 f—z-' b (241

where Ap represents the Laplacian derivative of p.

2.la Folded Functions

In the model under study, the potential'functions are (as we shall
see) generated by folding the various densities with the spatial part
g of the two-body interaction. It is therefore helpfﬁl to introduce a
‘simple notation to represent the corresponding folded functions and we
shall use the corresponding capital curled letter. Thus the functions
=+ . o
cf?,~ﬁ7,47,off and S; are obtained from the densities p, 7, T, k and y

by folding with g. For example,

> oy . :
R0 = [ g(lr — )p('r") a’z - - (2.12)

The differentiation operation commutes with the folding procedure, ﬁence

the relation (2.11) also holds for the folded functions,

, |
K@ = TB + 3 g » (2.13)

2.2 Two-Body Interactions

We turn now to the formalism pertaining to the case When_two-bodj'
.interactions are present within the many-particle system.
In general, a two-particle operator acting in a system of identical

particles has the form’
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A 1 " 1 N
6 = 51 6kuen = 31 & (2.14)
Sij 1]

It may change the state of two particles which implies that its matrix
elements may be expressed in terms of matrix elements between two-particle
states.

The evaluation of a two-particle matrix element leads to a direct
term andvan exchange texrm. In the Hartree approximation the exchange
terms are neélected; this is equivalent to ignoriné the antisyﬁmetrization
of the producﬁ wave function, |

In the present investigation we are concerned_&ith the limit of
large systems.where the effect of a single particle can be neglected.
We need, therefore, not pay attention to the possible exclusion of tﬁe
term corresponding to i=3j in the sum in (2.14); the two indices ﬁay be
regarded as independent. We have introduced the brief notation 'éij
for the temm é(gi,gj) referring to the coordinates of particle .i and
j. For a system of identical particles the two-particle operator is
symmetric‘in ﬁhe particle coordinates. |

For a two-body interaction the basic gquantum-mechanical quantity
is the operator representing ﬁhe two-point interaction-energy density

distribution.. This two-point density operator is of ﬁhe form

o=

DIEENE) Gij(?, ) . (2.15)

ij
+ + . 3 . . 3
where r and r' are two spatial parameters which enter in a symmetrical
way .

The corresponding two-point interaction energy density w ' is given
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as the expectation value of the operator w,

F, 3 = <w@EEy =2 ] <u @ Ey =2 ] v @,r) 0 (2.16)

w(r, r = <wlr,r')>y, =3 | wij r,r')>y =5 L vz, .
1] 1]
Here the contribution due to the interaction between the particles i
and j 1is given by w,..
ij _
From this two-point density the usual one-point interaction-energy

density v may be obtained by performing an integration over one

argument,

V(@) = fw(?,?')d3?' (2.17)

Furthermore, the total two—boay interaction energy W may be obtained
from the density v by integration over all space.

This latter quantity W, the total interaction energy, is repre-
sented by the operator ‘W obtained from the basic interaction-energy
density operator w by integration’over the two spatial parameters,

W o= f[&(i’, ma’rar = 2] P (2.18)
. ij . .
Thus W ig'a'sum of contributions ﬁij given by

W, = ff&..('x’, nad &%  (2.19)
ij ij _

This operator represents the contribution to the total interaction energy -
originating from the particle pair (ij).
The total interaction energy W may thus alternatively be obtained

as the expectation value of the operator ﬁ,

A 1 Lol . l
W= <>y, o= 3 z <wij>‘i’ -3 2 .wij (2.20)
ij ij
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whgre Wij is the contribution due to the interaction between the.
particle pair (ij).

So far the formalism has been completely general. We turn now to
the specific case of the Hartree approximatioﬁ.

In the Hértree approximation one may introduce the effective single-
particle interaction-energy opérator Gi gdvefning the motion of partidle
i. It represents the average effect of all the oﬁhér particles and is
given by

vV, = Y<w >, = Z[w*
R A R 3

The last relation is included as an illustrétion, it pertaiﬁs to the
case of the interacfion being independent of spin and isospin.. In the
summation over j, the stafé i under consideration should be excluded;
hoWever, as explained above, we need not pay éttention to this compli-
cation for a macroscopic system,

The total effective interaction energy operator is given by

vV = Z\L and the total interaction energy may be obtained as
_ i - .

l ~ .
= —-— < >
W = g v, | (2.22)

3. QUANTIZATION OF THE SEYLER-BLANCHARD INTERACTION
After having clarified the general formal framework we are to work
within, we shall now proceed to discuss how the Seyler-Blanchard two-

body interaction should be represented in a quantum-mechanical framework.
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The Seyler-Blanchard interaction (1.1l) depends on the positions
(;1 and ;2) as well as on the momenta (;i and ;2) of the two interactihg
particles. .In general we must require that the two-body interaction be
independent of which inertial frame is used as referenée. For the
Seyler-Blanchard interaction this invariance property is ensured by the
fact that only the relative separation r12 = l?i-—;;] and the square df
the relative momentum ;12 = Ei-—;z enter, Oné should, however, remember
that Pys is not in general an invariant quantity; the generally inva;iant
quantity is the relative speed. For the present case also p12 is invar-
iant because all the particles have the same mass m. It is possible to ex-
tend the étandard Seyler-Blanchard interaction to the ﬁote general case
of unequél masses. Moreover, such a modification would ﬁave essentially
no impact on the subsequent discussion nor on the resulting formulae_
Hence we need not further consider this éossibility.

In order to ensure a consistent derivation of the interaction-energy
density as well as of the effective sihgie-partidle interaction it is in
a quantum treatment necessary to start from the ﬁnderlying two-point
interaction—enérgy density operator W.

The Seyler-Blanchard interaction is a sum of a velocity-independent

part Viz = -Cg(rlé/é) and a velocity-dependent part
Vi; = Cg(rlz/a)plg/bz_ The quantization of the first part is rather

trivial, its representation in terms of a two-point density operator

simply being given by+

TIn this section we shall not pay attention to the requirement that Gi‘
be symmetric in i ‘and j. This is justified because the subsequent
summation automatically yields a symmetric result. The proper wij'is
given as the average of (3.1) and the similar expression with i and j
interchanged. " - '
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r,. : .
~I +| +u = - ___l) ~ +| . +n
wij(r , ") Cg( pi(r )pj(r ) | | (3.1)

i
a
The quantization of the second part is not ﬁrivial and requires special
attention,

The usual quantization rule for a classical interaction written in'
terms of cob?dinates and momenta is to replace the momentum ; by the
.corresponding differentiation operator —ihg. This'is, ho&ever; only .

a qualitative rule and does not provide any specific prescripfion for

how to treat the associated commutator terms. Ih the choice of a specifié
quantization prescription, one must seek guidance in the general require-
ments to the qﬁéntum—mechanical interaction operator.

Thus, in generai, we must require a physical interaction to be
represented by a Hefmitean operator. This general iequirement implies
that the correct algebraic prescription for quantizing a first-order
product is provided by the anti-gommufator construction:

f(;); —*-;- {;, £} = % (;f + f-},;) . For products involving higher powers
of the momentum, however, the requirement of Hermiticityvis not
sufficient to‘uniquely determine the: quantum representafibn of that
product. In such case, no general rule has been established as of yet
and one must in each.specific case search for additional general
requirements of physical chafacter. We shall show below how, in

our case, a unique choice is en#ured by the requirement

that the expression for the Seyler-Blanchard energy density refer

to the momentum distribution only in terms of the total density w(r)
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> >_
rather than in terms of 7' and 1 separately.

In order to illustrate how this is brought about, and further to
illuminate the difference between the various possible algebraic prescrip-
tions, we shall in some detail consider the following two alternatives

. > 2 1 2 2

a) g(x)p —= 3 (p'g + gp) (3.2a)
> 2 -+ >

b) glr)po——=pgp ' (3.2b)

Both prescriptions obviously yield a Hermitean operator, but

they differ by the amount %-ﬁzAg. Let us examine them one by one.

Illustration a)

In the quantum formalism described in Section 2 the two-body
interaction-energy density operator corresponding to prescription a)

[i.e., (3.2a)] is given by
~ a +l -P" - i 2 A +| ~ -)" .
wij(r ") > {pij, g(rij)pi(r )pj(r )} . (3.3)

(In this principal discussion we disregard the numerical constants a,
b and C.)

We wish to deduce the corresponding energy density. Hence let us
first calculate the expectation vaiue of this operator with respect to

the single-particie state ¢

V.,
J
Aa +' +l'
<wij(r , ¥ )>j |
= -l-{pz <glr,.)p.(x")>, ¢ ('r“)} +<-1-{p2 alr..)p .(;“,)}> 6. (x")
‘ 20417 ij j j i 2 3 ' ii’" ;3 ‘ J i

(+ <B. glr, )p. @5, 5. (F) +<g(r, )p. D . 8 ( )+>
- . . r,. . (r , . (r r,. A\X > (! .
Pi<p; 9(r; oy 3P4 g Tij by P35 Py p;
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1 2 " ey 2 +|) + ") +u)A (—-*n
= E{Pi ’ g(ri )pj(r )o, (x } g(ri Tj(r p,(r )

_ > T I e + ' T N g >

(pi g(ri )ﬂj(r )pi(r ) g(ri )nj(r )pi(r )pi (334)
R -+ >

We have here used the convenient abbreviation ri“ = |ri - r"|. The

-

operator p; does not act on the wv and may be taken outside the matrix
3

element. This produces three types of term, one with-p2 outside, one

. 2, . : > ; ' >

with p~ inside, and crossterms with one p outside and one p inside. 1In

the last expression we have, wherever possible, introduced the various

densities defined in Subsection 2.1, Next, we form the expectation

value with respect to wv :
' i

a > - : a - ->
<<w,.(r', r")>.>, = w..(x', ")
1] J1 . 1]

FUr) T (Fp (F") + g(x)py (2) 1, (2")
- (g(r)?r’*ir'&') -'#’Jf(?") + XTI (E - %’J‘.('r’")) - (3.9

. R -> -> . .
where we have introduced r = |r'-r"|. Finally, summation over all

pairs results in the total two-point interaction-energy density

a,”> > 1 a > >
Wi, T = 5 L owiitet, £

i3 (3.6)

= %g(r)»‘r(;')p(;") + p(;l)T(;ll) - (-.;+(;l) . -T?"'(;") + ;—(;l) . ;‘(-r)u)))

At this point, we wish to draw the attention to the fact that in
this expression the momentum density is represented through its two
constituents ;4 and ;; separately rather than by the sum of them.

The dependence on the momentum density is generated by the cross

. , . 2 . .
terms, We notice that the contributions from the p terms are given in



-19-

terms of the kinetic-energy density T. This is because the construction

a is characteristic of the kinetic energy, cfr. éq. (2.7).

Illustration b)

Now let us perform a similar analysis of the alternative prescription

b. In this case the basic density operator is given by

b >, +;'_ L A a
wij(r , X ) = pij g(rij)pi(r )pj(r )pij : (3.7)
The derivation of the energy density is rather similar to the
previous one but we shall exhibit the various steps in order that com-

parison can be made and the occurring differences understood. Thus,

take first the expectation value with respect to wv R
- 3

< b (-’.l +I|)>
wij r', r 3

-»> ~ -> ~ > > > - -> —) A ->
<glr, )p.(x")>, p.(x")p. + <p. g(r,..)p.(x")p.>. p.(r")
p;<9 i3 pJ j °1( )pl pJ g 13’93( )pJ 3 P

-> A > " > > A > ~ > >
<g(r,.)o.(x")p.>. p.(xr") +<p, r.)p.(x")>, p.(xr")p.
(pl g 1J)pJ )p:j 3 pl(r ) pJ gl 13)p3(r ) 3 pl( )pl>

]

> N > A >
Py g(ri“)pj(r")pi(r')pi + g(ri")K(r")pi(r')

> = T 2, w4 2 A >\
(Pi glr, )wj(r o, (") + glx, )nj(r )o,(x )pi), (3.8)

and then with respect to wv '
i

b -)' —>" _ b +| +'
<<wij(r P T )>j>i = wij(r r ')

> -*Il _)l +"
= g(r)Ki(r )pj(r ) + g(r)pi(r )Kj(r )
- (g(r)?.‘(?') CT=@EM) 4+ g TT(EY) - ?r"f(I")) (3.9)
i 3 i J

Finally, sum over all pairs,
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- l ¢ b 2> = |
e = 3 Ll (3.10)

-;'-é(r) (.c('r")p("r’") roEeE) - (FFEY T EY + TED - ?*(3?")))

We notice that in this case the p2 contributions are given in terms of
the density -k because tﬁis density is definéd by a construction analogous
to pxescription b), cfr. eq. (2.8). Of course, by virtue of the connection
formula (2.11); the above expression may be rewritten in terms of t; this
would add a term containing Ap.

Furthermore, we observe that alternative b) is no better tﬁan
alternative .a) in producing an acceptable dependence on‘the'momentum
density.

How undesirable this appearance of the partial mo@entum densities
is may be illustrated 5y the simple case 6f a static system descfibed by
standing waves. In such a system there is no net flow and.therg should
be no momenfum contribution to the energy'density; Nevertheless, the
first alternative yields a contribution Gwa = %“ﬁ?g(r)gp(;') . gp(;")
while choice b) contributes just the_negative»of that émount; In regions .
of constant density there is no contribution but where the density varies
rapidly, as for example in the surface region, there is a considerable
effect.

From the above analysis it is now clear that.the additional
requirement, that the resulting energy density only'involve the total
momentum distribution and not its (unphysical) constituents separately,
leads to a unique prescription for the quantization of the velocity-

dependent part of the Seyler-Blanchard interaction. And moreover, as

©
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y
is readily seen, this unique algebraic prescription is just the average
of the two illustrative alternatives considered in detail above,
w=-]-'-(wa+wb).
2 " _ .
We thus conclude that the proper quantum representation of the

velocity-dependent part of the Seyler~Blanchard interaction is given in

terms of the following density operator

) : N 4 ->
. P,. (Pis /iy . _ .
e B« e H{FASL e s@nsanf) e

It is satisfactory to see that this specific algebraic prescription

for quantizing the second order product lgpz simply corresponds to the
- . . s 2

successive application of the anti-commutator construction gp —e
l > ;> . . . .
Z-{p, {p,g}} . This prescription thus constitutes an appeallng general-
.ization of the similar rule pertaining to a first order product.

From the analysis performed above it is easy to verify that the
resulting expression for the Seyler-Blanchard interaction-energy density -

itself is given by

Cw@,E = - %cg(f;)(p(?')p(?") - Y (Ep(E")
- -> > > > > >
- p(r)y(x") + 2x(x') - w(r")) s (3.12)

4, GENERAL RESULTS
After having thus settled the problem of quantizing the velocity
dependent interaction we now proceed to the generaluformulation of the

model in the Hartree approximation. .
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4.1. Multi-Component Systems

In general one may deal with a system composed ofvseverél different
components. In the nuclear case we have two compohents, neutrons and
protons, but as it poses no additional difficulties we shall formulate
the model for the general case of any number of components. The various
components are denoted by o, B, «... We shall keep the assumption that
all particles have equal masses. The mére general case where the masses
differ for different components may be treated in an analogous way but
requires.certain refinements as well concerning the two-body interaction
as concerning the various densities in terms of which the physical
properties of the system aré described. This assumptioh has no impli-r
cations for the subsequent applications to nuclear matter. Thus, all
the particles have equal masses but the interaction étrengﬁh'between two
particles depgnds on which two components the particles belong to. This

may be expressed as follows,

C(iea, jeB) = CaB (4.1)

Thus the interaétion-strength constants form a symmetric matrix
C = {CQB}.' Furthermore, the various density-distributions introduced
in Subsection 2.1 for a one-component system have now.the structure of
one-dimensional matfices (for example: p(T) = {pa(;)}) with one element
pertaining to each of the componenﬁs.‘ The totélrdensity of the combined
system is then the sum of contributions from each component

> ->
(P () = 1 p (X)),
Q

tot

Fortunately, the complication of having more than one component
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in the system does not influence the general formulae in the model,
provided that we interpret products involving the interactibn strength
in terms of matrix multiplicatiéns. To remind ourselves of the poésible
multi-component structure of such products we shall write the interaction

strength as <€ rather than C. Thus, for example,

P ERE = [ o, (M) Cp Ry (4.2)
af

With this interpretation all the formulae derived in the following have

general validity.

4.2, General‘EEEressions

As mentioned in Section 3, a consistent quantum treatment requires
the knowledgé of the two-body interaction-energy density operator &b from
which the energy density as well as the effective singlé-particie inter;
action operatoi derive. It emerges from the discussion in Section 3 that

for the Seyler-Blanchard interaction this operator is properly giveh by

o

A > -> 1 ~ -> ->
w(rl’ rn) = - z w..(rl’ ")
2 45 13 (4.3)
r e ' r
1 i3\~ > -> 1 i35 i id A > A o
. 1 Ciy wa (Zey _ L fT45 { i J) . .
) izj Cas (9( Y )"i(r )84 (x™) 4{ 5 VT Pilrey (e )}}>

where ieo and JjeB. This operator represents the two-point interaction-
energy density generated by the Seyler-Blanchard interaction in the

given system., The corresponding classical quantity.ié given by the

same expression, with the interpretation that ;ij is just the classical

relative momentum,
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The two-point interaction-energy density w is obtained from the
above operator by forming the expectatidn value with respect to

system considered. This leads to

w(z', ) | | (4.4)

- - 79E) @t - vEne ) - PGy GM) + 2R(ENCT(EN)

: -> ‘- ) . t. 3 B
where r = ]r'-—r"|. This expression is valid as well in classical as
in quantum mechanics. Moreover, its validity extends to the general case

oo . > > '
of a non-static system, for which 7 # O,

From the two-point density the one-point interaction-energy density

v may be derived by integrating over one of the spatial parameters.

-
@ = -pDERE + YDIERD + oDEQ @ - 21 (7) € P(F)

(4.5)

We have here made use of the notation introduced in Subsection 2.la that
the curly letters denote the folded functions. Again, of course, this
expression has general validity.

The two-body operator W representing the total interaction
energy is obtained from the two-point densityvoperator. w by integration

over both spatial parameters. Hence it is given by

P () -G e
1)

where ieo and 3jeB., As was the case for: &, the classical interaction
corresponding to W is given by the same expressioh, with the classical

interpretation of the momenta.
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Up to now, our results have been completely general. Let us now
concentrate on the Hartree approximation. As noted in Section 2, the
particular simplicity emerging in the Hartree approximation is the
existence of an effective interaction governing the motion of the indi-

~

vidual particles. This effective single-particle operator V is.given by

¢ > — o +| —’ll 3--)ll 3+| —
Vi(ri) = jypg <wij(r T )>j d’r" d'r' =
s L3 |
-Cﬂ(ri).+ 7 {-B-,{-B-,Cfe(ri)}} + C?‘(ri) - {?, Cp(ri) (4.7)

At this point it is worthwhile noticing that since the density vy

has the form:

- 1 . Pl2 ; * ;. P 2 *
i ii 4 vl b2 i b vi b wvl b? lp\)l wvl

(4.8)

it is not possible to generate the interaction-energy density v from

the effective one-particle operator V. - Thus, for example

1 .1 1

1 * 5 <y Lk
zvi # 3'<wv.(viwv,) * (Viwvi) wv,) : (4.9)

The difference integrates up to zero over all space but locally it may
be substantial, particularly in the surface region. This fact indicates
the importance of having a consistent formalism including the underlying

density operators.
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The effective Single—particle operator Gi depends on which component
a the particle belongs to. The first and third terms contribute to ﬁhé
static potential felt by the individual particles in component a. The
second term contains thé velocity squared and hence adds to the free
kinetic energy of the pafticle by way of renérmalizing the inertial mass
for the particle; this renormélized mass depends on the particle position
;. The last term has a linear ﬁelocity dependence and produces an-

additional force in case there is internal gross flow in the system.

4.3 Effective Single-Particle Hamiltonian

We have now carried through the derivation of the various geheral
expressions pertaining to the Seyler-Blanchard two—body interaction.

The motion of the individual particles in the systém is governed by the
corresponding effective single-particle Hamiltoniaﬁ vHi, which is the
free kinetic-energy operator pi2/2ﬁ plus the effecti?e interaction-energy
operator Gi' The effective Hamiltonian depends on which component o

the particle i belohgs to.

The algebraic form of the momentum—dependencefin‘the effective
interaction operator (4.7) reflects the specific construction used in
the quantization of the velocity-dependent term in the Seyler-Blanchard
interaction. For practical applications it is more cénvenient.to fewrite
the Hamiltonian in a simpler form. This is possible by virtue of the
relation (2.13) connecting the various kinetic const:uctions to each -
other, Thus it is elementary to show that the effecﬁive single-particle

Hamiltonian may be cast into the form

x
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> 1 - ' :
Ha = P, EPO‘ + Uy . (4.10)

- This form of the kinetic term leads to a Schrodinger equation
which is eésy to treat numerically (cfr. Appendix A).v.We have introduced
the following three position—&ependent quantities pertaining: to particles
from component a.

>
1) Effective mass B (r)

1 1 2m > -
S .5 cfe(r)) | (4.11)
2Ba(}’) 2m ( b’

The existence of an effective mass function is a direct consequence of
the velocity-squared dependence of the two-body interaction. The effective

mass is equal to the free mass outside the system (where.ﬁ? = 0) while

it is smaller within the field of the system.

> >
2) Effective momentum Pa(r)

N .
> > -> > > )
B (r) = p = By (x)U (x) _ (4.12)

> > _bam_ A > . . .
where Qla(r) = E-—E-Cﬂaa(r). The introduction of an effective momentum
. b
permits us to write the Hamiltonian in the simple form (4.10). The
-> .
quantity tl plays the role of an effective overall velocity distribution .

and only contributes if the system is not everywhere at rest.

->
3) Effective static potential U, (r)

v (B = -eR@ +cTD -,-21-13“(}.’)11&(?)2 (4.13)

The first term is the contribution from the momentum-independent part
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of the two-body interaction while the second term originates from the
momentum-dépendént term,
_ > > _

The presence of the terms containing U in P and U ensures that
the interaction energy‘is unaffected by an overall translatioﬁal velocity
of the system. Furthermore, one should notice that the potential U is
defined in terms of 57’ra£her than g?; this is a conséquence of the re-
arrangement of the kinetic term in the Hamiltonian (4.10). Therefore,
when written in the form (4.10), the effective Hémiltonian may be

N .
established from knowledge of the primary densities p, m and T alone;

it is not necessary to also know Y.

4,4 Self-Consistent Solution

The definition of the various deﬂsity distributions in terms of
the single-particle wave functions wv.' together with the effective :
single-particle SchrSdinger equation ;enerating these wave functions,
provide us with a simple iteration procedure for obtaining the self-
consistent solution to the many-body problem.

Thus, starting out with some approximate density distribﬁtioﬁs o,
;r) and t, the potential functions ﬁ ’ ﬁ and ‘7. entering in the effective
Hémiltonian are generated by folding with'the spatial function g. =
Having established in this way the effective single-particle Hamiltonian

Ha' we subsequently solve the corresponding SchrSdinger equation
H Y = E_V : (4.14)

for every particle i. This yields a set of wave functions from which
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modified density distributioﬁs p', ;"and T ma& be obtained. The:
prbcedure is repeated until sufficient self-éonsistency‘has.been reached.

This iteration scheme is conceptually very simplé; and our experi-
ence from actual applications indicates that the scheme will exhibit a
_rather fast convergence for all reasonable initial conditions;

In the ésymptotic bulk region of ﬁhe system, where the.potential
is constant and the surface fér away, this solution yiéids‘resﬁlts i@entical .\
to those of the Thomas-Fermi appgbximation, but, as we shail see, inter-
ference effects originating from the surface may persist deep‘into the

'system in the Hartree approximation,

4.4a Thomas-Fermi Approximation

It is of interest at this point to discuss thé connection of the
Thomas-Fermi approximation employed in refs. 1, 3 and 4 to the general
gquantum-mechanical framewoik derived above. |

In the Thomas-Fermi approximation, the system is locally treated
as the equivalent infinite homogeneous system. Since an infinite homo-
geneous system may be described by plane waves, the Thomas—Fermi'approxf
imation is often formulated as that of treating the»single-parﬁicie.wuve
function wv as a plane wave, with wave number and noxmalizétion factorb
determined from ciassical considerations (this implies tﬁat particles are
not permitted to penetrate'intova_cléssiéally forbidden region).

With this'approximation'thebsummation over states becomes trivial.
Remembefing that for a plane wave the momentum operator acts simply aé
a multiplication operator, we thus arrive at the following expressions

for the density p and the kinetic-energy density 1 (assuming the system
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to be at rest).

Pi 3
> t F 3> 4w PF
p(r) = -3 dp = —3-t—5-
. h h
(4.15)
P : 2 '
F - P .
.3 2 P 5 2
h b b

where t=4 is the spin-isospin degeneracy. The local Fermi momentum

PF(r) is determined from the condition of a constant Fermi energy EF'

. > 2- > -> .
B, = P(¥) V/ZB(r) + UG (4.16)

.One might notice that for the Thomas-Fermi system the energy

density e may be written as

2
e(® = %-(e(;) + T(;))'%ﬁr , - (4.17)

where the "eigenvalue" density € is given by

(3 + Bu@ 0@ (4.18)

e(z)
r) = .
B(r) . -b2

It should be realized that one must exercise care when incorporating
the Thomas-Fermi approximation into a quantum-mechanical scheme. It is a
characteristic feature of the approximation that when calculating the;_
action of the momentum operator‘on the single-particle'wave functipn the
variation of the normalization factor is neglected. This implies that
the Thomas-Fermi approximation cannot be formulated in terms of specific
approximate wave functions which are subsequently treated consistently

within the quantal framework. Thus the Thomas-Fermi approximation is
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conceptually closer to a classical treatment than, for example, the WKB
approximation, despite the fact that they yield similar density distri~

butions (in the classically allowed region).

5. SEMI-INFINITE SYMMETRIC NUCLEAR MATTER

We have now éompleted the generalbdevelopment of the modei ip the
Hartreé approximation. We shall then proceed to study the effect of the
quantization on the surfacg structure of symmetric nuclear matter. We
shall repért elsewhere on other applicatioﬁs.

Thus, we shall hére consider a semi-infinite éyStem with identical
neutron and proton distributions. In Appendix A we describe the
corre#ponding specialization of the formalism and, furthermore, outline
the various nﬁmerical methods used for the actual coﬁputatidn.

Our primary aim in this section'is to study the results §f the
quantization relative to the Thomas-Fermi approxiﬁatibn. We £herefofe
choose the values of the physicai input parameters determined in ref. 2.
They are

a - 0.62567 fm  (Yukawa range)
. b = 372.48 MeV (Saturation momentum) (5.1)

C = 328,61 MeV .(Interaction strength)

These valﬁes were determined from the extracted experimental §a1ues
for the nuclear-matter biﬁding energy, the nuclear-matter dénsity and the
nuclear surface energy as they are given in terms of the volume-energy
coefficient a, = 15.667 MeV, the radius constant ro = 1,2049 fm,'ahd the

surface-energy coefficient a_ = 18;560 MeV., The (average) nucleon mass
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is m = 938.903 MeV/cz. It should be added that for the case of identical
neutron and proton distributions the problem reduces effectively to that
of a one-component system and the corresponding interaction strength is

simply the average value C = %-(C2 + Cu), cfr. Appendix A and ref. 2.

'5.1. Density Profiles

For the parameter values specified above we have caldulatéd the -
self-consistent solution to the derived Hartreé equations. In fig; 1l we
display the resulting matter density distribution p(x). Forvcompérison
we also show the corresponding density distribution as obtained in the
Thomas~Fexrmi approximation. The two densities are plotted such that
ﬁheir surface locations X coincide. The Hartree density exhibits two
new features relative to the Thomas-Fermi density. One is the tail outside
the system due to the fihite depth of the nuclear potential. The other
feature is the density ripples due to the phasé correlations imposed by
the presence of the surface.‘.

We observe that'thé Thomas-Fermi density represents the aQerage
trend of the Hartree density quite well, being most markedly off in the
tail region. The surface diffuseness, measured in terms of the 10 - 90%
distance, increases by around 11% from 3.17a to 3.5la. This increase is
almost entirely due to.the density tail which moves the 10% point outwards
by 0.46a. The 90% point is almost unaffected by the quantization because
it happens to be located right between two oscillations. |

The density ripples desegve some special attention and we may
il;uminate the situation by comparing with the extreme case of an infinitély'

high potential wall. 1In this case the density ripples are very pronounced,
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being given by the well-known expression

'p(x)/po = 1+ -2-2- cosX - -3—3 sinX , X= ZPF'x/B (5.2)
X X :

where po is the‘asymptotic bulk density. This fiction;l densitf is
indicated on the figure By the dashed curve; it is drawn to be in phase
Qith the calculated ripples in the bulk region. .We 9bserve that the
‘amplitudes of the calculated fipples are considerably smaller than those
correspondingAtb a sharp surface. This is due to the diffuse surface
which disturbs to some extent the perfect phase correlations of the wave
functions at the surface and ;hereby inhibits the undulations.

However, as one goes away from the surface region deeper into the
system the effect of the surface profile is felt to a decreasing extent
and the'wiggies become more and more similar to those pertaining to a
sharp wall.+ This phénomenon is illustrated in fig; 2 where we have
plotted the amplitude veisus the depth from the surface. Thus the
asymptotic behavior does not depend on the detailed profile of the
- surface but follows in general the infinite-wall expression (5.2). -

This fact has some impact on the\possibility‘of'describihg'the
density profile in terms §f surfa;e moments along the lines suggested

by Sussmann for finite nuclei.9 Sussmann has advocated the idea that

*In their study of nuclear density oscillations, Thorpe and Thouless8
show that asymptotically the density oscillations pertaining to a diffuse
semi-infinite potential are essentially only modified by an overall phase
shift relative to the infinite-wall oscillations. Furthermore they state
that for the diffuse potential the first density hump may drop from its
infinite-wall value of 8.6% to as little as 1.6% above the Thomas-Fermi
density. In our case the first hump exceeds the Thomas-Fermi density by
approximately 2,5%, : '
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the nuclear deﬁsity profile be described in terms of surféce moments of
the density distributions, the surface diffuseness being given in terms
‘of the second moment, the surface skewness (flare) in terms of the third
moment, and so on. Any two distributions may then be compared by comparing
their respective surface moments. However, as we have seen above,
asymptotically the density amblitudes are inversely proportional to the
square of the depth. Consequently all higher momgnts,vfrom‘thé second

and up, are not mathematically well defined. 1In fact, they all exhibit

an oscillatory behavior as function of the lower limit of the integral

(the cut-off depth x_), the corresponding amplitude being constant for

the second moment, increasing linearly for the third moment, and so on.
Hénce it is not possible to directly extract the sufface—moment information
about.a semi~infinite quantum density distribution. For real nuclei, of
course, the problem does not occur because of the finite size. But it is
of general interest to study semi-infinite systems. ‘And since this type
of density ripple is a quite general feature in a\Hartree description of
such systems, it would be desirable to generalize the concep; of surfaée
moments to cover this case as well. Such a generalization could cqnceiv—
ably'be brought about by defining some appropriate aveiaging procedure

by which the convergence would be ensured. In doing so one might benefit
from the general knowledge of the behavior of the ripéles in the
asymptotic limit,

A very rough attempt along such lines has been done for the surface

width by siﬁple graphical averaging of the integral as function of its
lower limit. Such a b:ocedure seems relatively reliable fof the width

and the result may be compared with the Thomas~-Fermi value (cfr. Téblé 1.
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But for the higher moments a more rigorous mathematical prescription is
required.

We see that the secqnd-moment width b increases from 1.39a to
approximately 1.47a which is only 6%. The main part‘of this increase
is due to the density tail while the phase of the wiggles ié such that
there is a relatively small contribution to the width iﬁtegral from the
interior region.

In fig. 3 we have made a similar plot of the kinetic;energy
densities obtained in the Hartree and Thomas-Fermi approximations. We
observe here in particular how the kinetic-energy density is negative
in the outer surface region. But apart from this region it follows
rather closely the oscillations of the matter distribution plotted in
fig. 1.

In ﬁhe quantum expression (4.5) for the Seyler-alanchard interaction-
energy density thevvelocity dependence is représented through thé kinetic
density vy (rather than the kinetic-energy density 1). The behavior of
Y is seen in fig. 4 whexeiwe have plotted T, Y and the "velocity—séuared"
density k. It should be noted that the oscillations of the two densities
T and K are just opposite.+ Consequently y, which is the averageléf T
and K, is a rather smooth density in the bulk. Furthermore we observe

that in the tail region y remains positive but tends rather rapidly to zero.:F

‘+Current stﬁdies performed by Gré{flo with the generaliZed Thomas-Fermi
approximation introduced by Swiateckill indicate that this tendency of
cancellation between T and k is a quite general. feature.

*This-is also in accordance with the general résuits obtained by Graf.lo
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We recall the fact mentioned before that in a forbidden region under a

constant potential, y would be strictly zero.

5.2 Surface Energy

For the self-consistent Hartree solution we have calculated the
surface-energy density distribution as(x). The suffage energy fepresents
the binding-énergy deficit due tb the presence of a surface for the system.
Hence 'as(x) is given by

e o :
as(x) = e(x) --Eg-p(x) . _ (5.12)
o
where e(x) ié the total energy density and p(x) the matter density.
The subscripts o ‘refer as usual to the bulk Qalueé. The sﬁrface-energy
coefficient a_ is the integral of this density, ﬁultiplied by the.

'‘nucleon' surface area,

a = 4wro .1; a_(x) dx - , (5.13)

In fig. 5 we show the calculated surface-energy density together
with the one peftaining to the Thomas-Fermi system, Figure 6 shows the
decomposition of these densities into their kinétic aﬁd interaction
parts. For the 3artree sYstem those latter pértiél densities exhibit
oscillations in the deeper part of the system, Théy are opposite to
each other so ;hat the combined density as(x) has considerably smaller
oscillations. The Thomas-Fermi densities all go to zero at end-
point xoiz 1.90a while the Hartree densities extend out in the tail region.

We notice that in this region the two parts tend to cancel each other
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resulting in a rather negligible, slightly negativé, value of the total
surface-energy density.

The kinetic-energy contribution to the surface-energy density is
negative (apart from the small bulk oscillations). Its behavior in the
tail region reflects the fact ;hat it is very advantageous for a particle
to be in this region as it has here very small or éven negative kinetic
~energy. Further inside the system the Hartree conﬁribution is less
negative than the Thomas-Fermi contribution. - This is due to the quantum
localization'effect whicﬁ prohibits low-momentum particles from getting
as close to a potential wali as high-momentum particies. This exclusion
of the low-momentum particles from the potential surface results in a
relative excess of high-momentum éarticleSvand a corresponding higher
;kinetic energy in that region. In the Thomas-Fermi approximaﬁion, with
.its phase averaging, this effect is not taken intovaccount. In the
extreme case of a sharp wall, the kinetic-energy contribution to the
surface energy would be positive; the fact that it remains negative in
the actual case is due to the diffuseness of the éurface.

The interaction-energy contribution to the surfage—engrgy densitf
follows more closély the.Thpmas—Eermi cﬁrve,with some wiggles reflecting
the matter—densify oscillations relative to the Thomaé-Fermi density.
For example,.ﬁhe fact that axint(x) is smaller than the Thomas-Fermi
curve.on the inside slopeA(around -3&) is a consequence of the first
‘density hump which brings the density closer to the ideal bulk value
and consequéntly lowers the énergy'deficit. In the’téii region there

is an appreciable contribution because the particles here are not very
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well bound., As we noticed, it so happens that thié contribution to a
large extent cancels the kinetic-energy gain in the tail.

The cﬁrve for the total surface-energy density then follows rather
well the Thomas-Fermi curve. The largest deviation occurs near the peak
and from the discussion above it follows that this increase should be
mainly ascribed to the lack of low-momentum particles‘néar a'quantum
surface;

The intégrated quantiﬁies corresponding to the Qarious densities
discussed ;bove are listed in Table 1. For the sufface-energy coefficient
as.we find a 10% increase from the Thomas-Fermi value 6f 18.56 MeV to
20,51 MeV.. In an earlier study by K&Shler12 of nuclear many-body cal-
culations it is stated that the surface-energy coefficient would increase
by 3.3 + 1 MeV. This trend'ié confirmed by the presénﬁ.mére accurate
finding that the increase is 1.95 % 0.0l MeV; because of the larée

error quoted by Kohler we do not attempt a detailed comparison.

5.3 Potentials

The single-particle motion in the system is governed by_the
effective mass function B and tﬁe effective static potential U.' We
have displayéd these two functions in fig.v7 together wifh Fhéir Thomas~
Fermi analogues. We see that the main differencé is a someﬁhat larger
10 - 90% diffuseness for the Hartree curvés. This increase is to a lérge
part due to the density tail which causeé the potentiai functions to

extend further out than in the Thomas-Fermi case.
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Let us terminate this presentation of the numerical results by
returning to the problem of the commutator terms discussed in detail
in Section 3. We saw then that the various alternative suggestions for
the algebraic form of the ﬁohentum dependence lead to different effective

. - S~
static potentials. In particular we have:

vB+ou = U = 0P -6 , (5.14)
where U? and Ub are the potentials pertaining to the two illustrative
choices a and b, The potential 6U arises from the commutator terms

when the effective Hamiltonians are rewritten in the same form; It_is

given by
> > 2
- -ille |2 H = 40 »
§U = 2[b ,[b , cx?]] =3 AR (5.15)

;n fig. 8 this potential is shown for the actual case considered
above. The coiresponding-potentials v? and Ub are also displayed. It
is clear that the effect of adding 6U is an increase in the surface
diffusenéss, as it turns out, of around 0.5a. The two potentials Ua
and Ub differ in diffuseness by more than one Yukawa fahée. This indicates
the importanée'of Séing cautious when'quantizing the momentum-dependent

interaction.

6. SUMMARY AND DISCUSSION
The principal purpose of the investigation reported here was to
formulate in the Hartree approximation the macroscopic nuclear model

based on the Seyier—Blanchard interaction. Let us now summarize.
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First we have described a general formalism with which that kind
of problem may be treated. It is particularly important that the
formalism employed contains in a consistent way the concept of densities;
in our formalism this is ensured by taking as the basic quantities the
quantum-mechanical density operators from which the Aensity distributions
are generated as expectation values, The formalism developed wili also
be useful when further developmeﬁts of the model are considered.

With ﬁhe'aid of this.formaiiem we have studied_invdetail how the
velocity-dependent Seyler-Blanchard interaction may be quentized;' It
was shown that”ihe additional criterion that the ensuing energy density
depend onlf on physical (i.e., Hermitean) quantities leads to a unique |
quantum represehtation of the interaction. It is important at this point '
to distinguish between the various types of kinetic aenSity.

Having settled this problem we proceeded to derive the general
formulae for ﬁhe interaction-energy density and the effective sinéle-
particle interection—energy dperator. This operator maf.be combined
with the free kinetic-energy eperator to form the effective single—particle
Hamiltonian governing the motion of the individual particies; Thé‘
Hamiltonian'contains a static potential and an effective mass, both
position-dependent; in addition, the momentum is modified locaily for
systems Qithvipternal gross flow. These quantities; enterihg into the
thradinger equation, are obtained by folding the various density
distributions with the two-body Yukawa interaction. This establishes
a conceptually simple iterative echeme for obtaining the self-consistent

solution to the many-body problem.
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The model developed was applied to semi-infinite symmetric nuclear
matter. The geometrical properties of the quantum density érofiles were
studied and it was demonstrated that the conventional description in
terms of surface moments cannot directly be applied because of the
persistence deep into the system of the density ripples caused by the
surface,

Next, we studied the nuclear surface energy. Its distribution
through the surface region was compared with the Tﬁomas—Fermi results
and the origin of the deviations identified. The 10 - 90% surface thickness
as well as the surface-energy coefficient were found to increase by around
11%, the thickness because of the extended density»téil and thé surface
energy mostly because of the relative lack of low-momentum particles near
the surface.

Finally, we presented the effective masé function and the effective
static potential governing the motion of the individual particles. They
are both more diffuse than in the Thomas-Fermi approximation; this is
mainly a consequence of the extended density tail of'tﬁe matter aistrif
bution. It was furthermore demons;rated that the commutator terms in
the quantized model ha§e anvappreciable influence on the surface
diffﬁseness of the single-particle potential. This indicates thé
importance of treating the quantum algebra consistently.

Oour study of the semi-infinite nuclear system may be concluded by
the following remarks. For the various density distributions, the
Thomas-Férmi approximation yields a good averége repréSeﬁtation of the
Hartree results, This supporﬁs the application of the Thomas-Fermi

approximation for studies of macroscopic nuclear properties. In this
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connection we recall the criterion derived in ref. 2 that the Thomas-Fermi
approximation &ields‘the correct density to within 16% proQided

|$pL/B“/3 < 10. 1In the nuclear case this relation holds good through
the surfacé region out to a point where the density.hasvdropped to one-
sixth of its central value.2 Our results, displayéd in figs, 1 and 3,
are seen to confirm this criterion which wﬁs obtained on the basis of a
study of linear potentials.11 Furthermore, we can state that the ?homas-
Fermi approximation underestimates thé surface diffuseness as well as

the surface energ§ by around 10%. This could be roughly compénsated for
by increasing the range parameter a by this relativevamount (keeping
the value of Ca3 constant).whén using the Thomas—Fermi»approximation.

In this paper we have not studiéd the curvature-energy coefficient
nor have we considefed asymmetric systems. The curvature energy‘is
probably more sensitive to the quantum effects ahd it_&ould be inferesting
to determine this quantity in the Hartree approximaﬁion. Such a dgtermi—
nation would involve the process of cur#ing the quantﬁm surface and still
lies a little ahead. The study of asymmetric systems is rather straigﬁt-
forward; it would provide us with the Hartree values for the nuclear |
surface-symmetry energy and thevneutrbn-skin thickness, This would give
us additional insight into the applicability of the Thqmas-Fermi
approximation. .

The Hartree approximation treats the éuantum mechanics in an exact
way, within the resériction that the total system be described byba
product wave function. The development of_the'Seylef-Blanchard modeL
in the Hartreé approximation may the:efére serve asAa useful reference

for testing and illuminating approximation_schemes aiming at improving
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the Thomas-Fermi approximation.

As mentioned in the introduction, the Seyler-Blanchard model in

the Thomas-Fermi approiimation has been used to estimate the thermostatic
‘properties of nuclear matter.3 It would be relatively easy te perform a
similar study within the Hartree approximation. In this way improved
results for the temperature dependence of the various surface properties
of nuclear matter might be obtained.

All of the aspects mentioned above pertain to isolated nuclear
systems. An exciting prospect,vbrought into focus by tﬁe present explosive
development in heavy—ion experimeets, is the study of the nucleus-nucleus
interaction. As will be shown elsewhere, the Seyler-Blanchard model gives
rise to a nucleus-nucleus interaction which is expreesible in terms of a

IStatic intereetion potential and a separation-dependent effective mase

for the relative motion of the two-nucleus system. For the ealcﬁlation

of these quantities the nuclear surface structure is vefy important, and
an inclusion of the qﬁantum features seems required for an accurate result.
With the presented quantum development of the Seyler-Blanchard model this
possibility now seems within reach and we are currently investigating

this aspect.: |

A prospect a little further ahead is the development of the model

for the treatment of dynamical aspects of a collision between the two

‘nuclear systems, It seems that tﬁe Seylef—Blanchard model, in a qualitatively
correct way, could produce many of the featuree characteristic of such a
process, and its conceptual simplicity should make it a very usefui tool

for the investigation of dynamical phenomena associated with a heavy-ion

collision process, In this context it should be pointed out that the
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Seyler?Blanchard quadratic velocity dependence accounts reasonably well

for low-ehergy phenoména; i.e., whén the relative ve1§city is of the

ordéf encountered within a éingle nucleus., For high—e#ergy nﬁcleus-nucleus
collisions, however, cohsiderably larger relatiQe-velocities occur and a

modification of the repulsive velocity term would be required.
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APPENDIX A. SOLUTION OF THE SEMI-INFINITE PROBLEM

In this Appendix we are concerned with the special case of a semi-
infinite syStem. For simplicity, we shall consider only a one-component
system; this corresponds to the neutron and proton distributions being

identical. The extension to more than one component is straightforward.

A.l, Formulae

We thus considef a semi-infinite system, i.e., a system with
translational symmetry in directioné parallel to the surface plane. We
shall assume that the éystem is static, i.e., the momentum density dis-
tribution is zero everywhere. For such a system the single-particle wave
funct;ons may be taken to have the form

i i
: .Y P,z
wi(;) = v 2 s(x, px, pl) . eg Y e;r'T z

. (A.1)

The invariance with respect to translations parallél'to the surface implies

that the corresponding momenta py and pz are cohsgrved. |
Thus we have chosen traveling plane waves in thé,tranéversal

directions (y and z) and standing waves s (which may be assumed real).

in the longitudinal direction (x). The normalizatidn is chosen as one

particle per unit volume in:the asymptotic 5ulk of the'system (x > =),

hence s"Vvsin in that region. The single-particle states are labeled by

the momentum quantum numbers in the bulk,vpx and p, , the lpngitudinalkand

2

transversal momenta, respectively, where plz = py -szz. For the semi-.

infinite system these momenta may take on any values between zero and the
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bulk Fermi momentum PF; hence the index i is a continuous variable and
the corresponding summations should be interpreted in terms of momentum=
space integrations.

The problem is effectively one-dimensional, and the SchrSdinger

equation (4.14) for the longitudinal wave functions .‘s_ now takes the form

. 2 _ ‘
2 P
d - d L : !
[dx B0 ax T B T U T ERy pl)] SO By B 2O
| - (A.2)
The effective mass B and the effective potential u are'given by:
-1 _ 1 2m
2B(x)  2m (l + 12 _CR(X)>
(A.3)
u(x). = -cK(x) + cTx)
Furthermore, the energy eigenvalue E is given by
: p_xz + P.Lz | _
Ep,p) = B + U o | (A.4)

where the sui:script o refers to the values in the asymptotic bulk region
(x > =),
The various densities of interest are -given by the following

expressions, with prime denoting differentiation,

P . .
F
p(x) = X 252(x) La-f 2s(x, ) pj_)2 d3§
) i h : -

P p2_. 2
= 217—13— Fd %‘ px a 2 2
3 Py : Pl s

(A.5)
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T(x) = 2 2(-ﬁzss" + ELZSZ%/%Z = ...
“(A.5)
l (1) ' 4 .
yi{x) = 2 2(-2-(-ss + s 2){12 + pl?'sz>/b2 = cea .

For the matter density p we have explicitly shown thé momentum—space
integration involQed. The spinFisospih degeneracy is denoted by t =4,

As discussed ih Subsecﬁion 4.3a, only p and T are required fot the iteration
.procedure, while knowledge of y is necessary for the final éstablishment

of the energy density distribution.

A.2. Numerical Methods

The numerical problems associated with the treatment of the seﬁi-
infinite'Sey;er—Blanchard system are common to a variety of physiéal
cohtexts. We shall briefly outliné here some of the numerical methods
employed. vAlthough developed for the present specific proﬁlem they can

be profited from in other contexts as well.

A.2.1. §§Bonentia1 Folding

The various poﬁential functions are genefated from the density
éistributions by foldipg wiﬁh the Yukawa function. For a semi-infihite
system thé transversal integration may be performed and leaves an exponentiai
as the foldiﬁg function in the longitudinal direction.

Some simplifying features are associated with the éne-dimensibnal
exponential folding._ In order to appreciate this, observe first that the

folded functions are of the following form
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f\?(f) 4na,3[ %_e'l"""l/a 9(5;) ai‘;'-

-00

_ (r.6).
= -78-(1;') + f+(§)
where
+oo
ﬁ+(§) I etx/af %._e-T-x'/a p(%'-) d x?'_ (a.7)
- o x/a '

(Similar rélations hold fér the other folded functiéns,,of course.) In
the numerical evaluation of ji?t one may benefit from the fact, due to the
occurring exponential, that the value of.ﬂet at a certain point is related
in a simple way tobits value at a neighboring point. This fact reduces
the folding f:oﬁ a two-dimensional process to only one dimension. -

Another important simplification, due to the exponentiﬁl, is that
closed expressions may be obtained for the first two derivatives of the

folded functions. Thus, it is elementary to prove the following relations

o RE) = -R(B R 2.8

g _
S RE) - RE) - @)

Hence these derivatives are available without additional computational effort.

Moreover, contrafy to what would be the case for a numerical differentiation,
no further error is introdqced. This feature will bg exploited in the
numerical solution of the.SchrSdinéer-equétion (Subsection A.2.2).

The densities multiplying the exponential in the integrand have the
property of being constant outside a certain region a:ound.the nuclear
surface (x=0, say). We wish to establish a simple integration_scheme
which must be accurate in the bulk region since a subtréction is involved

f
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in the calculation of the surface energy. To fulfill these two require-
ments we have constructed a modified Simpson scheme.

The usual Simpson rule is a three-point integration formula which
is exact when the integrand is a parabola. This scheme would yield a
constant error in a region with constant density and must be rejected.
Instead, we regquire that the rule yieid exact results when the funétion
multiplying the exponentiai is a parabola. 'This”sophistication leads to
a slight modification of tﬁe usual Simpson weight.coefficiénts. Thus

for an equidistant three-point grid we find the following weights,

o 4
3
w_ = 2dx e-dx/a(} + 25) - edx/a(} - 95) _(EE)
) a a a
L (a.10)
| = +dx ei2dx/a(l -1 .i‘.’f.)_ 1= 3 & _ (9.".)2 (.i“i)B
Ve 707 | +2 a +2 a a a

Here dx is the grid spacing and a is the (known) range of the exponential.
The weight L pertainsAto the mid point, w_ to the left/right endpoint

+
(if a is positive).

The expressions (A.10) for the integration weights may be

expanded:
2n 2 N
= 4. _“_‘liﬂ’_(é?‘_) - 4 ._1_(1"_) L dX>
Yo ° 3“2 (2n+3)1 \a = & l+1_o a) * 280(a Toee
n=0 _ : o
. n : : 2 3 '
_ 1 31(1~-n) (, d_x_) 1 _i(dx) -2 <dx) o
w; - 3de “m+3)! (—2 a N 3Xm 5\a/ ¥ 15 \a
nz0 o

(A.11)

The last relations exhibit the modification relative to the standard

[] ] . . ] ) 1] ) ) il\
Simpson rule, Notice that this latter rule emerges in the special case
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of a very wide folding function, a > .

In the region of constant density the relative error of the standard

v . 4 .
Simpson rule is given by 5%;-(w_ + wo +-w+) -1 k:é%-(%?) . Although

locally small, this error would for a large system integrate up to a

significant petturbation of the final results.

A.2.2 Differential Equation

The solution of the set of Schr5dinger equations constitutes the
heaviest numerical burden in solving the problem. The purpose of generating
the single-particle wave functions is to constrdct the various density
distributions‘fequired for the iteratioh scheme and fqr.thg extraction
of the energy density. The general sﬁructure of the Qave functiohs in
(x, px, pl)-space is illustrated in figs. 9 and 10. »Because, at a given
point x, the integrands in the momentum-space integrals exhibit rapid
oscillations it is neceséary to work with a rather dense grid in momen tum
space. Consequently the Schrodinger équation must be solved many.times
for each iteration cycle, And what is more, the occurfehce of tiny,but
numerically significant wiggles in the quantum density distributions
" demands a large accuracy of each individual wave function. To meet these

demands we have developed what appears to be a rather péwerful numerical
ﬁethod, based on the standaid Tayloréexpansionbmethod.-

~ We take advantage of the fact meﬁtioned above that the first‘few
| derivatives of the potential functions are‘well known numerically.
Moreover, they are commbn to all particles in the systém and therefore
need only be established once for each iterétion cyclé. The method

has the advantage that the limited number of derivatives available may
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be compensated by an appropriately shorter step size.

.. ) a _ :
The second order Schrodinger equation = é- éi-f = bf may be

cast into the form of two coupled first-order equations. This leads to

a system of the following form,

-E— £ = D £ ‘ D = <o a (A.lZ)
dx g g : b o ’ v o

£ .. By successive

W=

where the auxiliary function g is given by g = é%
differentiation of this couple of equations iﬁ is possible to express the
derivatives of f and g solely in terms of f and g_'themselves and
derivatives of the potential functions a and b which form the coefficient
matrix D. Knowing the derivatives of f and g at a certain point we may

obtain the functions at a neighboring point by employing the Taylor

expansion formula:

F(x + dx) = £(x) + £'(x)dx + % £ 0ax’ + ... (a.13)

The accuracy of the generated solution may be checked in a simple and
confident way byvshortening the step size adx.

Far outside the system, where the nuclear potential is zero, the
wave functions are decaying exponentials. This provides us with a set of
initial conditions for the ratio £f/g. With an arbitraryinormalization
factor the equations may then be integrated through the interesting region
until the bulk.region is reached. Here again the pofential is constantv

and the wave functions are trigonometric functions. This fact enables us

- to determine from a bulk set of f and g the true normalization factor.
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The Taylor—e#pansion method yields the wave functions'in a fixed
X grid. This is an important advantage relative to éossible vériable-grid
- methods because aftérwards we need to sum up all the solutions at a certaiﬁ
spatial point to obtain the valﬁe of the desired density distributioﬁs.
Thus any numerical interpolation is avoided in the employed method.
‘It may be noted tﬁat in the general case ofka non-static system,
the described method still applies. The effeétive mbmentum operator is
‘now a combihation of a differentiation and a multiplication operatorv(4-12)-
But this merely intréduces two diagonal terms in the coefficient‘matrix
D in addition to the two off-diagonal terms already present. Consequently
the whole procedure still carries through essentially unchanged.
Fiﬁally, it should be pointed out that the subseéuent calculation
of the various density distributions p, T, Y, ... does not involve any
numerical differentiation because we élready have available vety accurate
values from the solution process for the derivatives of the wave functions.

This advantage increases further the numerical precision of the results.

4.,2.3. Momentum-Space Integration

The momeﬁtum—space integratiop poses a delicate numerical problem
bécause of the rapid oscillation of the integrands. Away from the suxface
the wave functions vary approximately like Sin(px¥ + n(px,pu)) where n
' is some phase shift. Hence the infegrand varies more and more rapidly
the deeper inside the system we are. This is illustrated in fig. 9.
Furthermore, the endpoints px==0‘and px;=PF pose special-éroblems, the
first one becauée we cannot calculate for vanishing momentum, and the

second one because the transversal-momentum integration becomes relatively
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unreliable.

We shall not go into any details here, but a closer analysis reveals
that in these two situations a Simpson scheme tends to be exact. Furthermore,
the variation with plz is rather modérate,_as may be seen from fig. 10
hence a simple integration scheme is sufficient for the transversal-
momentum integration. We have therefore chosen to use the Simpson‘scheme
for the p, as weli as the ;12 inﬁegration. Although this may.seem crude’,
the fact that the fine density ripples deep inside the system are prodﬁced'
accurately constitutes a very thorough check ofvthe whole momentum-spacé

integration.

The various parameters governing the accuracy of the numerical
procedures were varied in order to ensure reliable results. This led to
the following conclusiohs.

For the Taylor~-integration of the Schdeinger equationAit was found
that a step size of 0.la was sufficient when potential derivatives up to
third order wefe included. For the subsequently momentum-space integration

/

it was found that around 8 grid points for the transverse-momentum
integration and around 8 grid points per hump for the P, integration
were satisfactory. Furthermore, it was determined that the surface integrals
could be cut off at a depth of around 20a. The iterative scheme showed a
good converéence‘and after five iterations no further significant
improvement could be obtained.

It should be pointed out that substantial increases (doubling) in

any of these requirements left the accepted results unchanged within the

allowed tolerance.
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Table 1, Various characteristic surface quantities as obtained within

the Thomas-Fermi and Hartree approximations. The quantities are: 10-90%
surfacé diffuseness of matter density, the similar diffuseness based on

the second surface moment, the kinetic part of the surface-energy coefficient,
the interaction part,_the total surfaceQénergy_coefficient, the 10-90%
diffuseness of the mass function, and the 10-90% diffuseness of the potential.
The last column shows the relative change (in percent) in going from the

. Thomas-Fermi to the Hartree approximation.

- - - C X

Quantity v Tg:?:i Hartree h?z?e
. . 3. . 10.7

£10-90l2] 3.17 .51
b [a] 1.39 1.47 ; 5.8
a*  [mev] -16.22 -16.88 | 4.1
a;“t [MeV] 34,79 37.38 7.4
a [Mev] 18,56 ' 20,51 , 10.5
B . .
€10-90l2] 4.30 4,95 , 15,1
t2  _ [a] | 4.55 | 5.10 . C12.1

10-90
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FIGURE CAPTIONS

Fig. 1.

Fig. 2,

Fig.

Fig.

Fig.

Matter density distributions in units of the bulk density P
The smooth curve is the Thomas-Fermi result and the oscillating

curve is the Hartree result. The dashed density corresponds to

.an infinite wall located such that the wiggles are in phase with

the Hartree wiggles deep inside the system. The scéle has been
enlarged by a factor of ten for x < =7a in order to exhibit the

density wiggles.

Doubly logarithmic plot of the relative amplitude of the Hartree
density wiggleé as fﬁnction of the depth. The straight lines"
correspond to the inverse square dependence.pgrtaining fo an
infinite wall while the curved line joins the actual.results,
from the third to the seventeenth undulation.  The verticalvscalé

extends from 0.01 to 0.0005.
. b2 -
Kinetic-energy density distributions in units of S Por The

full curve is the Hartree result and the dashed curve the Thomas-

5

Fermi result.

b2
Various kinetic density distributions in units of -—=—p . The

2m o
curve labeled T represents the standard kinetic energy displayed
in fig. 3 while K represents the "velocity squared" density.’

The average of these two densities is y, the density that enters

in the Seyler-Blanchard energy expression,

Surface-energy density distributions in units of MeV/a3. Full

line: Hartree, dashed line: Thomas-Fermi.
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Fig.

Fig.

Fiqg.

Fig.

9.

10.
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Kinetic and interaction parts of the surface-energy density

distributions displayed in fig. 5.

The effective mass. function B in units of the nucleon mass m,
. . . 2 '

and the effective static potential U in units of b /2m., Full

line: Hartree, dashed line: Thomas-Fermi. The position of the

10% and 90% points as well as the asymptotic values are indicated.

The potentials v (full line) and Ub (dashed line) corresponding
to the two illustrations in Section 3. The commutator contribution

8U is shown on a ten times enlarged scale.

Schématic structure of the 1on§itudinal wave function s as function
of x and Py for fixed transversal momentum pl==0. The center of
the figurg is an 3 diagram showing the nodal structure of S;

also the location of the turning points as given by thelcondition
U=E is indicated. To the left of this diagram is shown an end

viéw corresponding to a large depth; the wave fundtién-exhibits

a rapid oscillafion as function of Py To the right is a similar

end view from the tail region outside the system; the wave function
increases exponentially with P Above the nodal diagram is shown
the wave function for the ﬁost energetic particle px==PF and

below the wave function for a low-momentum particle P, << PF.

Absolute value of the wave function s as function of P, for

fixed x = -14.3a and two extreme values of p12< ;u? = 0 (full line)

2 _ 2 _ 2 .
and P = PF P, (dashed line).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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