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1. Introduction 

Order and disorder in oscillatory media are closely connected with the presence of topo

logical d<:fects. In a large class of two-dimensional chemical, optical and hydrodynamic 

systems, the dynamics is dominated by point defects (or vortices) and the extended spiral 

wave patterns they can generate. The goal in this paper is to present some of the phe

nomena seen in large-scale, parallel computer experiments. For this, a discrete form of '

the complex Ginzburg-Landau (CGL) equation based on a coupled-map lattice11 is used 

to explore the defect dynamics. This algorithm defines a new Ginzburg-Landau system, 

but one whose properties can be brought into arbitrarily close correspondence with those 

or' the c~mplex Ginzburg-Landati equation. Details .of this particular construction have 

appeared else~ here. 2 
•
3 

2. The CGL equation 

The prototype for modeling defect dynamics in oscillatory media is the complex Ginzburg

Landau equation, 

A(x, t) . A(x, t)- (1 + ia)IA(x, t)l 2 A(x, t) + (1 + i(3)V2 A(x, t), (1) 

which describes the behavior of a slowly-varying complex amplitude field A(x, t) in the 

. neighborhood of a Hopfbifurcation.9 •10 The parameters a and (3 are real numbers, and one 
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research goal is to map out the asymptotic solutions in an a-/3 phase diagram (Figure 1).1 '7 

The global, homogeneous solution A(t) = exp( -iat) is linearly stable when the condition 

a/3 + 1 > 0 is satisfied (the Benjamin-Feir condition). This result can be reproduced in 

the coupled-map formalism, but due to our choice of discrete time steps, the analogous 

stability condition is a/3 + 1 > 0, where 1 = 0.824. This, stability limit is labeled "BF" in 

Figure 1. 

3. Vortex phases 

Qualitatively different from the homogeneous state, are solutions that allow the field A 

to assume phase-less points. In the two-dimensional context, these defects are referred 

to as vortices, since the phase undergoes a complete rotation on a closed loop encircling 

one. If the loop direction and induced phase rotation have the same sense, then the defect 

is properly called a vortex; if opposite senses, then an antivortex. Viewed as topological 

excitations, the vortices and antivortices carry positive and negative topological charge, 

respectively. (Where the distinction between vortices and antivortices is irrelevant, we 

refer to them collectively as vortices.) At the phase singularity, IAI = 0. Amplitude 

portraits clearly show the vortices as amplitude minima; also, one-dimensional structures 

(domain walls) corresponding to amplitude maxima are founp separating the vortices. 

If the initial conditions are random (this and periodic boundary conditions apply to all 

the simulations described here), the subsequent evolution in some cases does resemble the 

relaxation of a thermodynamic system following a deep quench. 6 In general, however, the 

systerp. does not settle, even at very long times, into the homogeneous state; rather it finds 

a many-vortex state. This can be either a "frozen" (or "solid") state of stationary vortices, 

or a turbulent ("liquid") state5 characterized by a high density of vortices, and vortex

antivortex creation and annihilation. In the a-/3 diagram of Figure 1, the curve ao(/3) 

marking the transition from frozen to turbulent states (labeled "T") was found point by 

point, by fixing f3 and carefully charting the time history of the total vortex number at 

various a values. In a paper with Alstr(2Sm and Bohr7
, this transition was found to have 
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many properties of a first-order phase transition. Furthermore, plots of vortex density 

versus time provide a tool for directly tracing the different dynamical regimes. As an 

example representing the variety of dynamical changes, consider the log-log density trace 

in Figure 2. Four distinct dynamical behaviors can be identified: initial decay, transient 

turbulen~e, de~ay to frozen state ("Zamboni clean-up"), and frozen state. This is the 

generic dynamics in the parameter region lying between the curves T and, NUC (Figure 1), 

this latter curve marking the appearance of transient turbulence and subsequent nucleation 

phenomena. (By comparison, the boundary of the Eckhaus instability (ECK), that is 

associated with the observed spiral waves states, lies somewhat lower in the o:-/3 diagram. 

The gap between these curves is not completely understood.1 •7 ) 

4. Nucleation and growth 

We consider first the vicinity of the "knee". in Figure 2. It is helpful to see the system as 
it decays out of the turbulent transient, as in Figure 3 (a)- (c). (These are actually taken 

from three different runs, at threesuccessive times, using the same parameter values.) The 

phenomenon observed in these amplitude portraits is the nucleation and growth of spiral 

waves. (In fact, the spiral waves can only be seen in the corresponding phase portrait.) 

These. vortex droplets nucleate out of the turbulent sea, and grow until the entire space 

is covered by the frozen phase. Here the turbulent state is unstable with respect to the 

finite-sized ~roplets; in other words, the transient state can be viewed as a metastable 

state. It was found7 that the average lifetime T of the metastable state is dependent on 

the distance to the turbulence transition line .6.o: ( = o:0 (f3) - o:) according to the simple 

law, 

(2) 

The divergence of the lifetime is one means of locating the transition curve o:o(/3). 

The relatively rapid decay of the vortex density toward the frozen density is due to 

the steady growth of the vortex droplets at the expense of the turbulent fraction, labeled 
' \ 
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the "Zamboni clean-up" 12 in Figure 2. There is a general decay law lurking in that figure, 

but it is hidden by the log-log axes. Plotting the same regime for two different a values 

makes clear the parabolic nature of the decay in density (Figure 4). A model consisting of 

circular regions with radii growing linearly in time, together with a few other reasonable 

assumptions, leads to a density decreasing like -t2 , and accounts for the parabola law. 

5. Vortex solid: domain walls, polycrystals, edge vortices 

The amorphous frozen state seen in Figure 3 (c) is a fascinating structure, about which 

little is known. The subtle degrees of order and disorder evident here are a topic of on-going 

research. Note that some information on the vortex state is absent from the amplitude 

picture in Figure 3. The relative phase and direction of the spiral waves cannot easily 

be read off the picture. The vortex cells are typically evolving toward four or five-sided 

· polygons, distinctly different from the Voronoi polygons calculated from the vortex centers. 

For starters, the domain walls are not straight line segments, but show various curvatures. 

Their, numerical shape is well approximated by a hyperbola. This can be understood 

from a simple argument based on the nucleation picture. Let f:1t 0 be the interval of time 

between the nucleation of two neighboring vortex droplets. Then, considering the two 

frozen vortices as the sources of two annihilating, nearly-plane waves (the spiral waves), 

the interface between them can be described by the radial path difference from the two 

vortex cores r1 - r2 (figure 5). We have the usual relation, 

(3) 

Since l::t..to is fixed, and the vortices have the same values of q and w, the right-hand side of 

Eq. (3) is constant- this is just the equation for a hyperbola. Only when all the vortices 

nucleate at the same time (f:1t0 = 0), do we come back to the Voronoi picture of straight, 

bisecting domain walls. 

Although the positions of the vortex centers are disordered, the field A within a vortex 

cell can be thought of as perfect spiral wave, like a spatiotemporal crystal. In fact, the 
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array of polygonal vortex cells strongly resembles the microstructure of polycrystalline 

materials. We illustrate this point in Figure 6 with two diverse examples. Figure 6 (a) is 

a scanning-tunneling micrograph of the grain structure of hot-pressed alumina; Figure 6 

(b) a photograph of spherulites of low-density polyethylene grown from a thin-film melt, 

and viewed in polarized light (hence the Maltese-cross pattern). And these cellular arrays 
\ 

of metallic grains, or of polymer spherulites, are not isolated examples - polycrystals are 

a common .structural motif in nature. The analog of the. disorder in relative phase of the 

spirals is present as the random orientation of the crystal axes within a grain. 

Analogies to the formation and growth of polycrystalline patterns are likewise intrigu

ing. The spherulite example shows striking parallels. Nucleation and growth of spherulites 

is the characteristic mode of polymer crystallization from the melt, and the parabola law 

. is found there as well. 8 Moreover, it is interesting to note that the helically-varying orien

tation of the crystal creates a tightly-wound spiral pattern in polarized light. This makes 

photographs of nucleating spherulites eerily reminiscent of nucleating spiral waves.4 ,8' 

The existence of edge vortices, which do not generate extended spiral waves, is another 

suprise revealed by the simulations. In a sense, they control the dynamics of an otherwise 

frozen set of vortex cells. They move along the domain walls, braiding the walls roughly 

one wavelength around them, only coming to rest at the intersection of two domain walls. 

In doing so, they act somewhat like zippers, "unzipping" or changing the phase to new 

value along the domain wall. As they diffuse around the network of domain walls, their 

numbers decrease due to vortex-antivortex annihilations at the interstices. A number of 

long-lived edge-vortex arrangements have been observed in the simulations. A common 

configuration is a bound vortex-antivortex pair. Triplets, quadruplets and higher-order 

combinations are also seen. On~ beautiful configur<l:tion of same-sign edge vortices is the 

vortex braid. Figure 7 is a schematic of a vortex braid, really an antivortex braid, redrawn 

from an amplitude portrait. Positively-charged vortex braids resemble the mirror of this 

drawing. 
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6. Questions 

To conclude, we present some unanswered questions. The presumed glass-like order of the 

vortex positions motivates one to look for a bona fide glass transition. Is there a vortex solid 

with a density just slightly less than the high liquid density? And is there an associated 

second-order transition to the vortex-liquid phase? Since the metastability (NUC) and 

turbulent transition (T) lines seem to meet somewhere near the f3 = 0 axis, future work in 

this region of the phase diagram is called for. 

Are the vortex solids described here "frozen"; that is, truly asymptotic states, or are 

they metastable, finally relaxing to a single vortex-antivortex pair, independent of system 

size? The present simulations show no trend toward such a zero-density state, however the 

possibility of dynami~s on geological time scales cannot be eliminated. The addition of an 

explicit noise term to Eq. (1) would be step towards settling this iss:ue. 

Finally, the analogous vortex-line phases in three dimensions are completely unex

plored. We end with a teaser in the form of Figure 8. It shows two sets of amplitude 

isosurfaces, one corresponding to vortex filaments, the other to domain walls. At the top 

of the cube, a two-dimensional slice shaded by amplitude shows off some of the filaments 

threading through the volume. 
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FIGURE CAPTIONS 

Figure 1: Phase diagram for 0 ::; a ::; 2 and -2 ::; f3 ::; 0. Curves are labeled (BF) 

Benjamin-Feir, (T) turbulence transition, (NUC) nucleation limit, (EC~) Eckhaus insta

bility. 

Figure 2: Decay of vortex density in time, from random initial conditions, for a -

0.75,/3 = -1, lattice size 512 x 512. Four dynamical regimes are indicated. 

Figure 3: Nucleation sequence. Dark points are vortices (amplitude minima), dark lines 

are domain walls (amplitude maxima). a . 0.79,/3 = -1, 1024 x 1024lattice. (a) Early, 

, (b) intermediate and (c) late stages. 

Figure 4: Vortex density vs. time for the "Zamboni" clean-up, i.e. fast decay to the 

frozen state. Two parameter values, f3 = -1 for both. Curves are best'quadratic,fits. 

Figure 5: Domain walls are nearly hyperbolic, since the path difference r 1 - r2 between 

two frozen vortices is a constant, being proportional to the time interval between. their 

times of nucleation. 

Figure 6: Polyctystalline structures. (a) Grains of polycrystalline alumina (MgO doped 

and hot pressed). (Courtesy of A. M. Glaeser and J. Radel.) (b) Spherulites (5 cells) of 

polyethylene crystallized frorp the melt, as observed between crossed polarizers. Horizontal 

scale of the photograph is 130 pm. (Courtesy of P. H. Geil.) 

Figure 7: Schematic of a negatively-charged braid. Circles represent vortices, lines rep

resent domain walls. 

Figure 8: Amplitude isosurfaces in a three-dimensional CGL simulation. Tubes are low

amplitude surfaces around vortex filaments; sheets are high-amplitude surfaces bordering 

domain walls. A two-dimensional slice with amplitude shading is also shown. 
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Figure 3 (b) 
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Figure 3 (c) 
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