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A Crystalline Quark-Hadron Mixed Phase in Neutron 
Stars 

Abstract 

Norman K. Glendenning 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

Berkeley, California 94720 

The mixed phase of a substance undergoing a first order phase transition has entirely 
different behavior according as the substance has more than one conserved charge or 
only one, as in the text book examples. In the latter case the pressure and nature of 
the phases are constants throughout the coexistence phase. For systems with more 
than one conserved charge (or independent component) we prove two theorems: (1) 
The pressure and the nature of the phases in equilibrium change continuously as 
the proportion of the phases varies from one pure phase to the other. (2) If one 
of the conserved charges is the Coulomb force, an intermediate-range order will be 
created by the competition between Coulomb and surface interface energy. Their 
sum is minimized when the coexistence phase assumes a Coulomb lattice of one phase 
immersed in the other. The geometry will vary continuously as the proportion of 
phases. We illustrate the theorems for a simple description of the hadron to quark· 
phase transition in neutron stars and find a crystalline phase many kilometers thick. 
However the theorems are general and pertain to chemical mixtures, nuclear systems, 
either static as in stars or dynamic as in collisions, and have possible application to 
phase transitions in the early universe. 

1 Outline 

. 
We shall prove the theorems spoken of in the abstract in the context of 

the hadron to quark phase transition in neutron stars. This is a pedagogical 
choice, albeit one with far reaching implications for pulsar observables, that 
will serve to emphasize the physics of first order phase transitions in what we 
refer to as 'complex' substances, - those with more than one conserved charge. 
The theorems are general and rigorous [1, 2]. 

The only natural place in the universe where quark matter may exist is 
in neutron stars. Ever since the pioneering work of Baym and Chin [3, 4] 
in the mid-seventies it has been debated whether the cores of neutron stars 
are composed of quark matter. But. curiously throughout the original paper 
and all succeeding ones the true nature of the phase transition was never put 
at question. It was always described in complete analogy with the text-book 
example of the water-vapor transition. This, as I will show, is a very special 
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example of a first order phase transition, and not at all general. 
In the traditional way of looking at it, the core of the star is purely a quark 

gas, and the exterior regions a neutron matter liquid, with the inevitable thin 
solid crust of rather ordinary metals at the surface. 

What I will show is that taking full account of the physics of a first order 
phase transition in a 'complex' substance, such as neutron star matter which 
has more than one conserved charge (baryon and electric), and the physical 
constraint of charge neutrality of stars in its unrestricted sense, that is to 
say, as a global and not a local constraint, the situation is much different 
and much richer [1, 2, 5, 6J. From a consideration of the bulk energy, there 
should exist in the star a broad region that is in the coexistence phase, and 
taking account of the forces at play, most especially the isospin restoring force 
in nuclear matter, the Coulomb force, and the surface interface energy, this 
region should be a Coulomb lattice of quark matter spheres of negative charge 
immersed in a background of positively charged hadronic matter with size and 
spacing of sites that minimize the Coulomb and surface interface energies. At 
greater depth within the star, the roles of quark and confined hadronic matter 
are interchanged. Between, the geometric structure will vary through other 
geometries, - rods and slabs. The thickness of the solid crystalline region of the 
mixed quark-hadron phase in compact stars of somewhat different mass should 
vary considerably, lending ~ndividuality to them. We estimate the thickness of 
the solid region to be a few kilometers, extending from the center to several 
kilometers from the edge of the lighter ones while in the heavier ones the central 
portion is expected to be pure quark matter with the solid mixed phase region 
outside it and somewhat thinner. 

Many observable properties of compact stars will be effected by this thick 
solid dense interior region, including transport properties, both thermal and 
electrical, and pulsar glitches are likely to be influenced by if not actually 
centered in this solid. Indeed, the phenomenology of a compact star is likely 
to be so strongly coupled to this broad solid region, that I venture to suggest 
that in time the most convincing evidence of the existence of the quark-hadron 
phase transition will come from observed phenomena of compact stars and not 
from laboratory experiments. 

2 Degree(s) of Freedom 

All research up until 1990, and some later, had made one or other of two 
idealizations which had the side-effect of freezing out a degree of freedom. Na­
ture on the other hand exploits every degree of fr~dom to find the lowest 
energy state. Therefore all work of the last quarter century on this phase tran­
sition in neutron stars described an excited, unrealizable state of the star. It 
is easy to state precisely what the degree of freedom is in the case of a neutron 
star, and as easy to see the generalization to arbitrary systems. Stars must 
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be electrically neutral. This is because they are bound by the gravitational 
force, and any net charge would reduce the binding. A charged star would 
simply acquire from the interstellar medium such charge as needed to bring it 
to its ground state. However charge neutrality is a global property. It does 
not at all imply that the charge density is identically zero. There are many 
examples. The neutron itself has finite charge distributions; - they simply 
integrate to zero. There is another more relevant example. At the surface of 
a star the pressure is zero. Therefore the iron on the surface of a neutron star 
is much like the atomic iron found here on earth at one atmosphere of pres­
sure. But a little way into the interior, the pressure rises, bringing the nuclei 
closer together. The atomic structure is destroyed. The atoms become fully 
ionized. Nevertheless the short-range nuclear force holds the nuclei together 
at sub-nuclear density, rather than allowing them to fill space uniformly at low 
density. So we have positively charged nuclei in an almost uniform background 
of electrons. The lowest energy state is a Coulomb crystal [7]. The matter is 
neutral, but not of vanishing charge density. The system finds it energetically 
favorable to maintain neutrality globally but not locally, in accord with the 
nature of the internal force(s). In earlier works, charge neutrality was imposed 
locally, either implicitly [3] (by assuming identically chargeless composition 
for the star) or explicitly [4] (by enforcing charge neutrality separately on each 
phase in equilibrium. This had the undesired feature of rendering the charge 
chemical potential discontinuous at the boundary between phases.) . 

The effect of freezing out the degree of freedom associated with a non­
uniform distribution of charge in a two component system is equivalent to 
reducing it to a one component system, such as water. We recall that giving 
the system access to a degree of freedom that has been frozen out, is either 
neutral or lowers the energy of the system! 

3 First Order Phase transition in Simple Systems 

So as to better understand the more interesting nature of the mixed phase 
in a 'complex' system, we recall briefly the characteristic features in a 'simple' 
system (which has only one conserved charge, or one independent component, 
the terminology depending on whether one is dealing in chemistry or physics). 
The water-vapor transition is a familiar example of a first order phase tran­
sition in a simple system. The single independent component is H20. The 
remarkable and well knoirn features of the mixed or coexistence phase are: 
(1) The pressure remains constant on an isotherm for all proportions of the 
two phases. (2) The nature of each phase in equil~brium is identical for all 
proportions. 

We illustrat~ the well known pressure relation of a one-component sub­
stance in Fig. 1. The coexistence region is H,Q. All points between these two 
simply represent different volume proportions of the two phases in the states 
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Figure 1: Behavior of the 
pressure vs. density in the 
vicinity of a first order phase 
transition in a simple sub­
stC;Lnce having one chemi-
cal potential corresponding <:t 

to conserved baryon num­ • 
E 

ber. Points labeled Hand Q :::::. 
mark the end of phase 1 and 
beginning of phase 2. 
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(their corresponding densities, and energies) denoted by Hand Q. The total 
energy is therefore a volume linear combination of two constants, and this is 
consistent with the constancy of the pressure since it is the negative of the 
volume derivative of the energy. 

If this were the correct description of the hadron-quark phase transition in 
a neutron star it would have quite peculiar consequences. The equations of 
hydrostatic equilibrium, either classical or general relativistic, assure that the 
pressure is a monotonic decreasing function of distance from the center of the 
star, just as the pressure in our atmosphere is monotonic. Consequently the 
end points of the mixed phase, Hand Q of Fig. 1, and all between, are mapped 
onto a single radial point in the star, as in Fig. 2. The densities of the two 
phases at Hand Q are however different. So the mass-energy profile of a star, 
in a constant pressure transition is discontinuous as in Fig. 2. 

This is completely analogous with water in equilibrium with its vapor in a 
heat bath in the presence of the earth's gravitational field, where we would plot 
h, the height above the bottom of the container inst~ad of r. This is rigorously 
the only possibility for a simple system, one with one component! This analogy 
of the quark-hadron phase transition with the water-vapor transition has gone 
unchallenged until very recently [1, 2r 
4 First Order Transition in 'Complex' Systellls 

There are profound differences between a first order phase transition with; 
(1) only one conserved charge. (simple system ego H20). 
(2) more than one. (complex system ego ethane-heptane, neutron star). 
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Figure 2: The mass-energy 
profile 'of a star showing the 
mapping of the points H,Q 
-of Fig. 1 in case the tran­
sition is treated as a sim­
ple one. The solid curve 
shows the profile when the 
transition is treated as the 
'complex' one it is. The 
point 'm' marks the tran­
sition from mixed to pure 
hadronic phase. 

(Conserved 'charge' means additive independent attribute like baryon number, 
electric charge, strangeness, number of H20, etc, etc.) 

By one idealization or the other in earlier work, the transition in stars was 
inadvertently rendered as that of a simple system by one of the restrictions 
listed below, with the physically unacceptable consequence listed in parenthe­
SIS: 

(1) Star is purely neutron, and converts to quark matter with the same types 
of quarks, nd = 2nu. (Both phases are ,a-unstable). 
(2) Star is in ,a-equilibrium but is required to be everywhere locally charge 
neutral. (This leads to a discontinuous electron chemical potential at the in­
terface of the phases and the constraint is inconsistent with Gibb's criteria!). 

Both idealizations freeze out a degree of freedom available to a complex 
system which allows, even demands, that the pressure vary as the proportion 
of phases! I will explain this -shortly. Moreover, both restrictions rigorously 
exclude the mixed phase from a star, as we have seen, whereas, with the re­
strictions lifted,the mixed phase is present and has a most intricate crystalline 
structure. 

By the circumstances of its birth a neutron star has a fixed baryon charge, 
which being conserved, it keeps. Because of beta-equilibrium it also has 
charged particles even though the net charge is zero, as explained earlier. 
Therefore a neutron star has two conserved charges and two chemical poten­
tials corresponding to them. We will now see what a difference this makes. 
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Consider a substance composed of two conserved 'charges', - Q of one kind, 
B of the other. In the case of a star, these could denote the net electric charge 
number (in units of e) and baryon charge number. Let the substance be closed 
and in a heat bath. (This corresponds to the the loss of any energy produced 
in reaching the ground state of the star by neutrino and photon radiation.) 
Define their ratio (concentration), 

r = QIB. (1) 

Is this ratio fixed? One would certainly think so since Q and B are fixed. But 
the ratio is fixed only as long as the system remains in one pure phase or the 
other! However, when in the mixed phase the ratio in each of the regions of 
one phase or the other may be different and they are restricted only by the 
conservation on the total numbers, 

r' = Q'I B', r" = Q" I B", (Q' + Q" = Q, Q' + Q" = Q) . (2) 

If the internal forces can lower the energy of the system by rearranging the 
ratio, it will be done. 

In fact it is not possible to insist on a prescribed ratio and at the same 
time satisfy Gibbs' criteria. There are too many conditions for the number of 
variables [2]. 

The above observations allow us to prove easily the first theorem stated 
in the abstract. Consider the system at the density or pressure where the 
neutron star matter has just begun to condense some quark matter. There 
is little scope for the internal forces to optimize the concentrations,r', r", in 
the two phases, since the small quantity of quark matter can neither receive 
nor donate much of either charge. However, at higher density or pressure, the 
proportion of the two phases will become more comparable, and the internal 
forces now have more scope to optimize the concentrations in the two phases, 
always consistent with overall conservation of the two charges. From this 
observation, we learn theorem (1) The nature of each phase in equilibrium 
changes with the proportion of the phases and since the total energy is now 
the volume proportion of the energy density of the two phases, each of which 
varies with the proportion, the derivative with respect to volume is no longer 
a constant. The pressure varies as the proportion of phases! 

In contrast to a simple system, the mixed phase of a complex one is not 
squeezed out by gravity. It can occupy a finite radial extent in a star corre­
sponding to the pressure spanned by the mixed phase! 

5 Role of an Internal Force 

We have spoken of the internal force( s) as driving the mixed phase to 
optimize the concentrations of the conserved charges in the two phases in 
equilibrium. We now discuss thi~ explicitly, again in terms of a neutron star. 
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In nuclear matter there is an isospin symmetry restoring force. It arises in 
part because of the Fermi energies, which if equal for a neutron-proton system 
minimizes the sum of eigen-energies, and in part because any 3-component of 
isospin couples to the rho meson, and costs the system the energy of the rho 
condensate (proportional to the square of the isospin 3-component of the mean 
rho field strength). From the valley of beta stability w~ know the preference 
for symmetry in N (neutron) and Z (proton) numbers. Suppose a system 
was prepared with N»Z or, as in a neutron star, is required to obey this 
condition so that the Coulomb force does not disrupt the star. Then the part 
of the star that is in the pure hadronic phase is sitting high above the minimum 
in energy as far as the nuclear force is concerned because of its high isospin. 
However at some depth within the star where quark matter first condenses, the 
isospin symmetric nuclear force will be able to rearrange charges to make the 
hadronic phase more symmetric to the extent permitted by the conditions of 
overall conservation of charges and the minimal energy. The hadronic matter 
will become electrically more positively charged, and the quark matter will 
become negatively charged by a rearrangement of the quark Fermi surfaces, so 
as to achieve overall electric charge neutrality. Electrons may also permeate 
the mixed phase region but since they do not contribute to the baryon charge 
that the star possess by the accident of its birth, and since they simply cost 
energy if the system can neutralize itself among the baryon carrying charged I 

fermions, they will tend to be quenched. 
We note here that the constraint of local charge neutrality, which goes 

beyond what is required for Coulomb stability of a star, freezes out this degree 
of freedom. 

6 Inevitability of a Coulomb Lattice in the Mixed Phase 

We saw above the role of the internal force( s) in rearranging charges be­
tween phases in the coexistence phase so as to minimize the energy consistent 
with overall conservation of the charges of the system. When one of these 
corresponds to the long-range Coulomb force, as it does in a neutron star, 
an intermediate-range ordering of regions of the two phases will minimize the 
energy as we show. 

Charged regions cannot become too extensive because of the repulsive 
Coulomb self-energy. So they will tend to divide into small regions. The 
surface interface energy will resist this. Hence we have theorem (2) At any 
proportion of the phases there is an optimum size and shape of the regions 
that will arrange themselves into a lattice so as to minimize the surface and 
Coulomb energies. 

We consider the geometrical arrangement of the two phases in equilibrium 
a little more formally. The surface energy per unit volume of a quark drop of 
radius r in a nuclear background of radius R, chosen so that there is zero net 
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charge in R (Wigner-Seitz cell) is 

Es/V = [471T2U]j[( 471'" /3).w] = (3ux)/r = S(x)/r, (3) 

where for droplets, X = (r / R)3 is the volume proportion of the quark phase. 
Likewise, while more involved to prove [7], the Coulomb energy per unit volume 
has the form, 

Ec /V = C(x)r2 
• (4) 

Their sum is a minimum when Es = 2Ec. These equations lead at once to 

r3 = S(X)/(2C(X)). (5) 

Thus at each proportion X a definite size of quark drops immersed in the 
nuclear matter is specified and through X(= (r/R)3 for droplets) a definite 
separation between sites. We note that the long-range of the Coulomb force is 
screened by the formation of the lattice. 

The functions C and S and the proportion X, expressed in terms of the 
geometry of the one phase immersed in the other, have quite definite forms for 
each geometry, for droplets, which merge to form rods, which merge to form 
slabs, in analogy with the sub-nuclear crystal structure of nuclei immersed in 
an electron gas, which is believed to form the crust of a neutron star [7]. 

7 Local vs Global Charge Neutrality 

Since a star is bound by gravity and any net charge would reduce its bind­
ing, a star is charge neutral. This is a global condition, not a local one. But 
one might imagine that it can be satisfied by either imposing the conservation 
of charge in the mixed phase in the local sense by demanding that both phases 
in equilibrium be separately charge neutral, 

(6) 

or in the global sense, 

(7) 

Since each of these procedures satisfies the constraint of charge neutrality of 
the star, one may consider the energetics to decide between them. As already 
explicit in our whole discussion, the second way of calculationally enforcing the 
physical constraint of charge neutrality allows the internal forces, - the isospin­
symmetric nuclear force in the case of a star, - to redistribute charge so as 
to lower the energy. A system on which stronger constraints are imposed lies 
higher in energy. So the second way of expressing charge neutrality, (7), is the 
physical one. One .can go further than this. We show that it is not consistent 
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with Gibbs' criteria for phase equilibrium to specify the concentrations r', r" for 
the two phases in equilibrium. Thermal, chemical and mechanical equilibrium 
demand that, 

(8) 

Let us see the problem with attempting to specify the charge densities sepa­
rately in each phase in equilibrium with the other. Baryon number conserva­
tion might be expressed in the proportional form (or any other individual form 
for each phase that conserves baryon number) 

(9) 

But now one has five conditions to satisfy, (6,8,9) with only three unknowns, 
Pb, Pe, V to do it with. Here PB, PQ are the baryon number densities in the 
two phases and V is the local volume, (not to be confused with the volume 
of the star. Rather it is the volume surrounding a sample spacetime point in 
the star within which the equivalence principle assures that spacetime is flat 
to arbitrary accuracy. We may imagine a sequence of volumes along a radial 
direction. The volumes V contain B baryons and zero net charge, and are 
smaller toward the center of the star. In this way we see the correspondence 
with the conventional discussion of a sample substance contained in a labo­
ratory vessel of volume V with a plunger that allows one to vary the volume 
and hence the pressure, and a surrounding heat bath to keep the substance 
at constant temperature and such local volumes in the star. The pressure in 
the case of a star is chosen according to the depth and the volume by the 
requirement that it contain B baryons.) 

Alternately, baryon number in the mixed phase can be conserved overall, 

(10) 

Now at any specified proportion of phases, X the alternative way of global 
conservation has the unknowns, Pb, J-Le, V in just that number of equations 
(7,8,10). So Gibbs' conditions can only be satisfied if the concentration of con­
served charges are not specified for both phases in equilibrium. The substance, 
with its internal forces will choose concentrations that are energetically most 
favorable at each proportion, x, of the phases since obviously the chemical 
potentials depend on the proportion. This shows that all properties including 
the common pressure (8) in the mixed phase varies as the proportion of the 
phases. This formally proves our verbal proof of theprem l. 

The variation of pressure, chemical potentials and energy density through 
the mixed phase is shown in a sample calculation, Fig. 3. The particle popu­
lations in the maximum mass star are shown in Fig. 4 as a function of radial 
coordinat~. In this case the pure quark phase is not achieved in the star. 
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Figure 3: Showing the vari­
ation of the pressure in 
the mixed phase of a com­
plex substance, in particular 
neutron star matter in the 
hadronic and quark matter 
phases. [2]. 

The central region of many kilometers of thickness is in the mixed phase and 
therefore is of varying crystalline structure. 

8 Calculational Expedient of Dividing Energy into Bulk and Surface 

Ideally one would like to compute the energy of a star allowing full freedom 
to find the lowest energy state of the Lagrangian or Hamiltonian used to de­
scribe its matter. Usually this is a very difficult problem especially when two 
phases may coexist and the internal force may rearrange the conserved charges' 
optimally in the coexistence phase with a resultant formation of geometrical 
structure. The approximation of treating large systems in the bulk approxima­
tion, in which surface effects are at first ignored, and then later incorporated 
though a consideration of the surface and COl~lomb energy of pieces of the bulk 
matter, perhaps in the Wigner-Seitz approximation, is well known and gener­
ally accurate. We are assured of this in the present case. The total energy is, 
ETotaJ. = EBulk + E Surf . + ECouJ .. The first term dominates and sets the radial 
scale of the mixed phase in the star. The Surface-Coulomb term alone is a fine 
variation about the first. The general equilibrium condition ESurf = 2EcouJ 

assures this. So for assessing the radial extension of the solid mixed phase in 
the star, the bulk properties dominate. The surface and Coulomb energies are 
important for studying the transport properties and strength of the solid. 

As a matter of principle, we note that the less constrained way of imposing 
charge neutrality discussed in this paper, as a global condition and not as a 
local one must in general either be neutral or lead to a lower energy. Therefore 
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there is no question as to what range of surface energies will give the ordered 
phase a lower energy and what range a higher energy, a question raised in 
ref. [5]. The surface energy ought to be computed consistently with the bulk 
energies of the phases, and ought never to lead to a higher energy for the 
ordered crystal phase. In this sense we disagree with Heiselberg at al. who 
otherwise made a start on the study of 0 the geometric structure [5] but use 
as arbitrary input, the surface interface energy coefficient, unrelated to the 
theories of the phases or the bulk energies of the phases and their difference. 

We note that three authors using the presently described theory of a first 
order phase transition in a compact stars all agree that the mixed hadronic­
quark phase begins to appear at densities between 2-3 of normal nuclear matter 
density [2, 5, 6]. The original estimates of Baym and Chin placed the transition 
around 10 nuclear matter density. As explained in ref. [2], this was because 
highly excited states of both phases were used in the estimate. 

9 Outstanding Problems and Prospects 

It would appear that the presence of the coexistence phase in neutron stars 
leads to a host of interesting physical problems as well as observable con- ° 

sequences for pulsar. observations, and should lead, to highly individualistic 
behavior as regards glitches as an example, where the thickness of the interior 
solid region depends on the pressure profile and hence sensitively on the mass. 
Physical problems that need to be solved and associated pulsar observables 
are: 
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(1) Surface interface energy between phases having a varying difference in en­
ergy density (0" =I const) (Needed for detailed calculation of lattice and lattice 
energy and relevant to pulsar glitches.) . 
(2) Detailed Coulomb lattice calculations (started by Heiselberg, Pethick and 
Staubo [5]. 
(3) Strength of the lattice, (sheer moduli), role of lattice defects. (Of great 
relevance to pulsar glitches, those irregularly-timed sudden changes in pulsar 
frequency. ) 
(4) Viscosity will be strongly modified, which impacts stability to fast rota­
tion. 
(5) Transport properties of a region of star interlaced by two media of dif­
ferent properties. (Electrical conductivity determines the decay constant of 
the magnetic field of pulsars and hence possibly controls their active lifetime.) 
(Cooling rate of neutron stars.) 

This work was supported by the Director, Office of Energy Research, Office of High 
Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department 
of Energy under Contract DE-AC03-76SF00098. 
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