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Introduction 

One of the features of the mechanical behavior of crustal rocks that differs from 

that of most other materials is that rocks are typically subjected to both external 

stresses and internal pore pressures that arise from the fluids that permeate the cracks 

and pores. These cracks and pores may be dispersed throughout the rock (as in the 

case of a san':istone), may be in the form of 'planar fractures of various sizes, or may 

exist in some combination of these porosity types. In any case, the various physical 

properties of crustal rocks typically depend on both the externally applied "confining" 

stresses, as well as the pore pressure. The implications of having a pore pressure act 

throughout a rock, in addition to the usual confining stresses, has been the subject of 

much study, particularly with regard to the manner in which the pore pressure com-

bines with the confining stresses in influencing, say, the volumetric strain or the per-

meability. 

For the special case where the external stress increments are hydrostatic, which is 

to say that the three principal stress increments are all equal, a formalism has been 

developed by Geensma [1] and others to predict the resulting changes in both bulk 

volume and pore volume. This theory, which is summarized and elaborated upon by 

Zimmerman et al. [2], is developed under the assumption that the solid rock-forming 

material is microscopically homogenous and isotropic. Despite the restriction of 

hydrostatic loading, this theory is nevertheless non-trivial, since macroscopic nonlinear-

ity is introduced through the closure of highly-compressible cracks and fissures: In 

terms of the notation used in [2], four compressibility coefficients are needed to 

describe the relations between bulk volume Vb' pore volume Vp ' confining pressure 

Pc, and pore pressure Pp (see Fig. 1). These compressibilities can be defined by 

(la) 
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(1b) 

(1c) 

(1d) 

Under the assumption of grain isotropy and micro-homogeneity, which is only an 

approximation for most rocks, the following relations can be derived between the 

porous rock compressibilities [1,2]: 

(2a) 

(2b) 

(2c) 

where Cr is the compressibility of the rock-·forming material, and cp is the porosity. 

Equations (2a-c) allow one to express any three of the porous rock compressibilities in . 

terms of the fourth compressibility, along with Cr and cpo Hence only one of the f~ur 

porous rocks compressibilities is independent, and it can conveniently be taken to be 

Cbc ' since this coefficient plays a role analogous to the standard compressibility of a 

solid body. The numerical value of Cbc,and therefore also the other compressibilities, 
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depends on Cr and cp, as well as on the micro-geometry of the void space. These 

values also depend on the Poisson ratio of the rock grains, v r' although this is not 

apparent from equations (1) and (2). From dimensional considerations, Cbc must 

depend on Cr linearly, which is to say Cbc=CrF(v"cp,poregeometry), where F is 

some dimensionless function. Since the derivation of equations (2) requires no 

assumption of macroscopic homogeneity, nor the existence of a statistically-meaningful 

number of pores, these equations apply equally well to a porous ~ock or, say, a rock 

sample containing a single fracture. Experimental data illustrating that equations (2a­

c) are reasonably accurate. when applied to the compression of consolidated sandstones 

can be found in [1,2]. 

If the assumption of microscopic homogeneity is relaxed, but the assumption of 

(incremental) linear elastic behavior is maintained, then equations (2a) and (2b) no 

longer hold. Equation (2c), on the other hand, follows from the reciprocal theorem of 

elasticity [3], and does not require an assumption of micro-homogeneity. In this more 

general development, Cr on the right-hand side of equations (2a,b) must be replaced 

with new parameters, Cs and C CP' respectively. For a rock that consists of various 

different mineral components, there are no definite relationships between 

Cr , Cs,andCcp' although some bounds are known [4]. 

Mean Stress in Rock Grains 

Equations (1) and (2), and further equations that can be derived from them, such 

as those governing the total (non-incremental) bulk and pore strains (see [2]), are use­

ful, for example, in petroleum reservoir calculations, in which the pore volume is an 

important parameter. Alternatively, we could develop equations in which Vr and cp 

were the basic kinematic variables, instead of Vb and Vp [3]. To derive the equations 

governing the changes in Vr and cp, under elastic, hydrostatic conditions, we start with 

the relations 
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(3a) 

(3b) 

Making use of the fact thatdq,/q, = dlnq, = dlnVp -dlnVb , along with relations 

between the compressibilities given by equation (2), we find after some straightforward 

algebraic manipulations that 

(4a) 

(4b) 

The above equations show that the volume change in the rock grains is governed by 

the effective stress, Pc - q,P p' whereas the change in porosity is governed by the 

. differential stress, P c ~ P p • 

An interesting implicatiori of equation (4a) ·can be . found by recognizing that 

dV, = -V,C,dP, (5) 

where ji is the volumetric average value of the mean normal stress (i.e.~ pressure)· in 

the rock grains. Equation (5) is obtained by integrating Hooke's law throughout the 

solid region of the rock, and contains no reference to the geometry of the pore· space. 

This equation merely states that the average volumetric strain dV,lV, is related to the 

average stress ji by the same Hooke's law that relates the local strain to the local 
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stress at each point [see 5, p. 395]. Comparison of equations (4a) and (5) shows that 

the average value of the pressure in the rock grains is given by 

p = _P_c ---cpP-=p,--
1-cp (6) 

Equation (6) can be partially "verified" by noting that, in the special case where 

Pp = f'c' it reduces to ji = Pc, as one would expect. Equation (6) 'also correctly 

predicts that ji reduces to Pc in the limit as the porosity goes to zero. We further 

note that, in the absence of a pore pressure (or an increment thereof), the presence of 

porosity has the effect of amplifying the confining pressure by a factor of 1/(1- cp). 

This effect is completely independent of the shape of the pores, and depends only on 

the value of cp. 

Although equation (6) was derived under the assumption of isotropic, micro­

homogeneous rock grains, it is in fact completely general. A rigorous derivation of 

this equation is given in the Appendix, based only on the' principle of conservation of 

linear momentum. The following non-rigorous derivation, which captures the fact that 

this result relies purely on considerations of static equilibrium, has been given by 

Greenwald [6], among others. Consider the idealized two-dimensional porous' body in 

Fig. 2a, containing one pore, subjected to an external confining pressure Pc' and a pore 

pressure Pp- Now imagine a slice taken through the pore, and a free-body diagram 

constructed for the upper portion, as is done in elementary statics (see Fig. 2b). This 

slicing operation exposes the internal stress P, which acts over the solid grain material. 

For an isotropic rock, the areal porosity of the exposed slice indicated by the dotted 

line in Fig. 2 must equal the volumetric porosity, on average; hence the ratio of the 

length of the exposed pore to the total length must equal cp. 
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For this body to be in static. equilibrium, the sum of the downward-acting forces 

must be balanced· by the sum of all upward-acting forces. For a unit depth into the 

page, the net downward acting force is Pc' whereas . the net upward force is 

(l-C\»P +C\>Pp- Here we use a theorem from elementary fluid statics which states that 

the resultant force in a given direction, due to a pressure acting over a curved surface, 

is equal to the magnitude of that pressure multiplied by the projection of the curved 

surface onto a plane perpendicular to the direction in question. Equating. the upward 

.and downward forces, and solving for the mean grain stress P, yields equation (6). 

If the rock is subjected to a state of pure shear on its outer boundary, a force­

balance argument similar to that given above shows that the average shear stress in the , 

. rock grains is equal to the externally applied shear stress divided by the factor (1- C\» • 

. This can easily be seen by replacing the normal stress Pc with a shear stress t in Fig. 

. 2, in which case a force balance shows that the average internal stress must be a shear 

of magnitude t/(1-C\» in order for the piece of rock to be in equilibriuII?-. Since the 

pore fluid cannot exert a shear stress along the walls of the pores, there is no "pore 

shear stress" analogous to the pore pressure. It· also follows that an externally applied 

shear stress gives rise to no average hydrostatic stress in the rock grains. These results 

are actually true regardless of the constitutive (stress-st:rafu.) behavior of the rock, as is 

shown rigorously in the Appendix. 

Compression of Rock Grains 

Equation (6) for the mean pressure in the rock grains does not depend in any way 

on the geometry of the voids, but. only on the relative ratio of grain volume to pore 

volume. This is perhaps unexpected, since the local stresses in the rock grains are 

highly dependent on the geometry. For example, singular stress concentrations will 

exist at any sharp corner of the grain!void interface, yet equation (6) implies that these 

singularities have no effect on the average stress in the rock. Another interesting 
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result pertaining to the compression of a porous or fractured rock. can be derived by 

considering equation (4a) under conditions of constant pore pressure. Since 

Vr/(1-q,) = Vb' we have 

(7) 

whenever P p is constant Equation (7) shows that if the confining stress is varied, the 

change in volume of the rock grains is not only independent of the geometry of the 

void space, but is also independent of the amount of void space. This is in sharp con­

trast to the changes in bulk volume or pore volume, which depend very· critically on 

both the geometry of the pore space and the total porosity [7, Part Two]. This result 

implies, for example, that if we consider a rock under fixed stress, and imagine that 

additional pores are cut out of this rock, the stresses and strains in the rock grains will 

redistribute themselves so as to maintain the same total vohimetric dilatation. This 

result will be of use in developing conceptual models for the deformation of rock frac­

tures, as discussed below. It may also be useful in analyzing processes such as stress 

dissolution, in which the porosity of a rock may change, while the stress it is subjected 

to remains fixed. 

Implications for Fracture Compressibility Models 

The fact that the volumetric change of the rock mineral phase. in an extemally­

compressed porous or fractured rock is independent of the porosity should. provide help 

in developing conceptual models of fracture deformation. If a rock specimen is 

compressed uniaxially, the existence of a single fracture lying perpendicular to the 

applied load will cause a drastic increase in the rock's apparent elastic modulus [8,9]. 

This effect is particularly pronounced at low stresses, at which the "excess" compres­

sibility due to the fracture may be very much larger than the compressibility that 
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would be measured in an intact rock. If the deformation that would exist in a 

similarly-shaped but unjractured specimen is subtracted from the measured deforma­

tion, the excess deformation can unambiguously be attributed to the presence of the 

fracture, and be used to'define the "fracture compressibility" [10]. 

Difficulties in interpreting and modeling fracture compressibility tests arise when 

one attempts to attribute some of the exCess compressibility to "void deformation", 

and some portion of it to deformation of the rock minerals,. often referred to in this 

context as "asperity defollDation". Consider an experimental set-up such as shown in 

Fig. 3, in which a fractured rock specimen of length L and cross-sectional area A is 

subjected to a longitudinal stress P. For the purposes of this analysis, we assume that 

the pore pressure is held constant throughout the experiment. -As a fracture will not 

"interact" with principal normal stresses that act parallel to its nominal plane [11,12], 

we can assume that the load P acts hydrostatically, not just uniaxially, so that the con­

clusions' presented above can be invoked. 

During a compression test of a fractured sample, one typically measures the 

overall bulk deformation, and then attempts to relate this bulk deformation to that of 

the void space. Since Vb = V, + Vp ' the measured bulk volumetric deformation is the 

sum of the volume change of the rock material and that of the void space. But 

according to equation (7), dV, has exactly the same value as it would have in the 

absence of the fracture. Hence, any measured bulk volume change over and above 

that which would occur in an intact rock must occur within the void space of the frac­

ture. An equivalent conclusion was reached by Cook [13] based on an analysis of a 

planar fracture in an otherwise infinite rock:· "Therefore, any apparent reduction in 

volume of material in each, half space as a result of asperity deformation must'be com­

pensated by corresponding expansion into the void space between the' surfaces" . 

The deformed boundary of the rock, after an increment of confining stress is 

applied, is indicated by the dotted line in Fig. 3. Two phenomena can be said to' 
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occur: the asperities compress, and the rock bulges into the void space [14, Fig. 4]. 

Some micromechanical analyses that attempt to predict the fracture compressibility 

focus on one, or the other, of these phenomena. For example, the "bed-of-nails" 

model [8] essentially assumes that all of the excess fracture deformation occurs in the 

asperities, whereas Tsang and Witherspoon [9] consider only the compression of the 

crack-like void spaces. The analysis which led to equation (7) shows that the defor­

mation of the crack-like voids does in fact exactly equal the excess bulk deformation 

of the fractured rock. It would seem to be problematic, however, to attempt to calcu­

late the excess bulk deformation due to the fracture by analyzing the deformation of ' 

the asperities. This is because the asperity deformation is compensated by expansion 

of the rock into the void space, so to speak, and the net "excess" deformation of the 

rock grains is zero. The deformation of the material in the asperities represents, by 

definition, only part of the total deformation of the rock material. Moreover, equation 

(7) shows that there is no. connection between the total volumetric dilatation of the 

rock grains, and the volumetric dilatation of the void space. In this regard we mention 

the work of Xu and King ,[14], who found that the asperity deformation calculated 

using a "bed-of-nails" model was typically two orders of magnitude.1ess than the void 

deformation calculated using an ellipsoidal crack model. The analysis given above 

implies that the asperity deformation, although negligibly small, should nevertheless 

not be added to the void compression term when calculating the overall bulk deforma­

tion of the rock. 

Summary and Conclusions 

Aside from a brief review of certain definitions and results concerning the defor­

mation of fluid-saturated porous rocks, this note contains two main results. The first is 

a rigorous proof of equation (6), which relates the volumetric average of the mean nor-

• mal stress (Le., the pressure) in the rock grains to the confining pressure, the pore 
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pressure, and the porosity. It is a general relation, in the sense that it applies to any 

porous material, regardless of the pore structure. This relation may be useful, for 

example, in studies of stress dissolution or other thermodynamic processes, since P 

plays the role of the thermodynamic pressure [15]. 

Our other main result is equation (7), which shows that the total volume change 

within the mineral grains, due to an increment of confining pressure, is completely 

independent of the pore structure or the amount of porosity. This perhaps surprising 

result can be verified, for example, for the classic problem of a hollow spherical shell. 

Consider a hollow sphere made of an elastic material of compressibility C = 11K, with 

inner radius a and outer radius b, subjected to external pressure P. Simple calcula­

tions based on the solution for the displacements [see 5, p. 344] show that the volume 

change in the material comprising the shell itself is equal to -47tb3p 13K, regardless of 

the value of the inner radius a. 
. 

The. implication of equation (7) is that any bulk volumetric strain that occurs in 

an externally pressurized porous rock, over and above that which would occur in a 

similarly-shaped non-porous rock composed of the same minerals, must exactly equal 

theto~ change in pore volume. This result can also be applied to tests in which a 

rock that contains a single fracture is loaded by' normal stress. In this case, the excess 

volUme change of the rock, due to the existence of the fracture, is exactly equal to the 

reduction in void volume within the fracture. This result should be useful in develop­

ing models for fracture compressibility and fracture permeability. 
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Appendix: Mean Hydrostatic Stress in Rock Grains. 

In this appendix we give a more rigorous and general derivation of equation (6), 

which will show that the result ji = (Pc - cpP p )/(1- cp) does not require the assumption 

of homogeneity, isotropy, or even elastic behavior. The result is therefore independent 

of the constitutive behavior of the rock grains. 

Imagine (see Fig. 1) a piece of a porous body V, with an outer boundary denoted 

by avb • If this body is a chunk of rock that we imagine to be "carved out" of a 

larger rock mass, its "outer" boundary may be its interface with neighbouring pieces 

of rock. The inner .boundaries of the body, consisting of the surfaces of the pores, are 

denoted by (aV 1, av 2, .... av n ). . Collectively these boundaries can be denoted by 

{aV k }, where k is ail index. Let the components of the local stress tensor in the grains 

be denoted by as 'tij' In ~e .following deriyation, we will use the notation F 'j to 

denote aF laxj' as well as the convention of implied summation over repeated indices, 

i.e., 'tii = 'tn +'t22+'t33' We will also make use of the Kronecker delta tensor, Oij, 

which is defined to be equal to 1 if i = j, and to be ·equal to 0 if i 'I: j . In the terminol­

ogy of matrix algebra, 0ij is the 3 x 3 iqentity matrix. The x 3 coordinate will be 

oriented in the vertical direction, parallel to the gravitational gradient. 

The law of conservation of linear momentum then states, independently of the 

stress-strain relationship of the grains, that 'tij,j +pgOi3=O, where p is the local den­

sity of the rock grain,and g is gravitational acceleration [5]. In this analysis we can 

neglect the gravitational body force, pg 0i3, since in general it will be negligible com­

pared to the local stress gradients. To see this, consider the case where the chunk of 

rock shown in Fig. 1 is at a depth D below the surface, in which case the stresses' in 

each grain will be on the order of pGD. If the mean grain size (or distance between 

pores) is d, the stress gradient terms appearing in 'tij,j will be on the order of pgD Id, 

and so the ratio of magnitudes of the stress gradient terms and the gravitatio~al body 

force will be pgD Ipgd =D Id > 1. 
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Using the product rule for derivatives, we can say that 

(t··x·) . = t·· ·x· + t··x· . 'J "J IJ.J' IJ '.J 
(AI) 

But x· . = dx·ldX· = a·· so t··x· . = t·,a,· =t.. Also,· t,'j'.J' = 0 in equation (AI) by '.J 'J 'J ' 'J '.J IJ 'J U • 

conservation of momentum, . so 

(A2) 

To find the average hydrostatic. stress in the grains, we use equation (A2) to aver­

age tii over the volume occupied by the grains (shaded area in Fig. 1), which will be 

denoted by Vr , and eventually make use of the definition P = -tiiI3. First, using 

equation (A2) and the definition of the averaging process, 

(A3) 

Using the divergence theorem, we can transform this integral into an integral over the 

surface of the region Vr , as follows: 

<t··>= _1_ f t .. x·n,dA 
U V 'J' 1 ' 

r oVr 

(A4) 

where ni is the outward unit normal vector to the surface, and dVr denotes the total 

surface of the region Vro which consists of the outer surface 'dVb , and the pore sur­

faces dV k. Hence 
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<'t oo>=- J 'tooxonodA + ~ J'tooxonodA 1 [ n ]. 
" V 'J I J ~ 'J' J • 

r av" k=1aVi 

(A5) 

Now imagine that the outer boundary aVb is subjected to a hydrostatic pressure Pc' 

while the inner boundaries are subjected to a pore pressure P p • (It may be convenient 

to suppose that the volume V is small, in the sense that, say, V 113 <e:: D, so that the 

confining pressure at the outer boundary is nearly uniform.) Since 'tijnj represents the 

traction vector on the surface, and a hydrostatic stress always acts normal to a surface, 

on the outer boundary we have 'tij nj = - Pc ni, while on the inner pore boundaries 

'tij nj = !...- P p ni' Hence equation (A5) can be written as 

<'t oo >= _1 [_p J xonodA - P ~ J xonodA] 
u V ell p~ " . 

r av" k=1aVi 

(A6) 

We now use the divergence theorem in the opposite direction, so to speak, to 

transform the surface integrals back to volume integrals. In this case, however, we 

note that the region interi~r to aVb is the entire volume V, not just the region occu­

pied by the grains. Similarly, the interior of each pore surface aVk is the region occu­

pied by the k th pore. However, the unit normal vectors on the pore surfaces' that were 

pointing outward with respect to the grain volume Vr are now pointing inward with 

respect to the ,pore volumes Vt> so a minus sign appears in the integrals over Vk' 

Hence, using xi.i = 0ii = 3, we have 

<'too> = _1 [_p Jxo odV + P ~ Jxo odV]· 
" V C I,' P ~ '.' 

r V" 1=1 Vi 

.t 
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(A7) 

We now divide through by 3, and use the facts that V,=(1-C\»Vb , and l:Vk=C\>Vb , to 

arrive at 

(AS) 

But -<'tii>/3 is simply the average pressure in the grains, fi, so after cancelling out 

Vb we arrive at 

(A9) '-

This completes the proof, which required no assumptions concerning elastic behavior, 

grain isotropy, etc. 

Although the above result was derived for the case where· the external stress was 

hydrostatic, it continues to hold if the external boundary of the rock is also subjected 

to a uniform shear (deviatoric) stress, as can be shown by a slight generalization of the 

proof given above. In other words, if a uniform shear stress is applied along the outer 

boundary of the rock, the incremental mean pressure in the mineral grains will be zero. 

(If the rock grains are also assumed to be microscopically homogeneous and elastic, 

equation (5) then shows that a uniform external shear stress will cause no change in 
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the mineral grain volume.) To prove that an external shear gives rise to no mean pres­

sure, we return to the step between equations (A5) and (A6), but let 'tijnj = 't{jnj on 

the outer boundary, where 'tij is any uniform, deviatoric stress tensor. The traction on 

the inner pore walls can be taken to be zero, since the pore fluid pressure will always 

cause normal tractions, not shear tractions. Hence the equation analogous to equation 

(A5) for the shear case will be 

<'t .. > = _1_ J 't~x·n·dA . n. V '1 , 1 
raVb 

(A 10) 

We now take the uniform tensor 't{J outside of the integral, and again use the diver­

gence theorem to transform the surface integral into a volume integral, which yields 

't~ 
'1 J <'t .. > = - x··dV u V '.1 . 
r Vb , . 

(All) 

But Xi.j=Oij' so the integral in equation (All) gives 0ij Vb, in which case we have 

Vb 'tU 
<'t .. > = 't~O··- = -- = 0 

" '1 '1 Vr 1- <P ' 
(AI2) 

where in the last step we use the fact that the trace 'tU of the d~viatoric tensor 'ttj is 

zero. 

• 
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Figure Captions 

Fig. 1. Schematic diagram of a porous rock. The shaded region denotes the solid 

mineral phase, whose total volume is Vr • The solid boundary encloses the 

bulk volume Vb' and the dotted lines enclose the pores, whose volume is Vp. 

Fig. 2. Diagram used in non-rigorous, but· essentially correct, derivation of the equa­

tion for the average pressure in the minenu. grains. A force balance on the 

upper portion of the rock, in the vertical direction, leads to 

ji = (Pc -cpPp)/(l-cp). 

Fig. 3. Schematic diagram of normal compression of a fractured rock. The curved 

solid line denotes the boundary of the rock material before deformation, and, 

the dotted, line denotes the boundary after an increase in the confining stress. 

If the bottom face of the rock specimen is taken as the datum, the fracture 

asperities (see point marked =» appear to be, compressed. If the nominal' 

fracture plane is' taken as the datum, the rock material appears to expand into 

the void space. 
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Fig. 1. Schematic diagram of a porous rock. The shaded region denotes the solid 

mineral ph'ase, whose total volume is Vr • The solid boundary encloses the 

bulk volume Vb' and the dotted lines enclose the pores, whose volume is Vp. 
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Fig. 2. Diagram used in non-rigorous, but essentially correct, derivation of the equa­

tion for the average pressure in the mineral grains. A force balance on the 

upper portion of the rock, in the vertical direction, leads to 
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Fig. 3. Schematic diagram of nonnal compression of a fractured rock. . The curved 

,solid 'line denotes the boundary of the rock material before defonnation, and 

the dotted line denotes the boundary after an increase in the confining stress. 

If the bottom face of the rock specimen is taken as the datum, the fracture 

asperities (see point marked =» appear to be compressed. If the· nominal 

fracture plane is taken as the datum, the rock material appears to expand into 

the void space. 



~. ~ 

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALlFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALlFORNIA 94720 

~'~" :,:" 

.~ . _~ en 
I Q) 
:C"') .~ 

'I'-~ ~ 
..;t .0 
'I~::i I len ...J :« co 
'-...J 

L ___ -.----'-


