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Abstract 

Current-Potential Characteristics of Electrochemical Systems 

by 

Vincent Santo Battaglia 

Doctor of Philosophy in Chemical Engineering 

University of California, Berkeley 

Professor John ·S. Newman, Chair 

This dissertation contains investigations in three distinct 

areas. Chapters 1 and 2 provide an analysis of the effects of elec

tromagnetic phenomena during the initial stages of cell discharge. 

Chapter 1 includes the solution to Maxwlell' s equations for the pene

tration of the axial component of an electric field into an infin

itely long cylindrical conductor. This work investigates two time 

regimes: the "short time" and tha "diffusive time". During the short 

time the current. increases at a rate proportional to the time, and 

during the diffusive time it increases at a rate proportional to the 

square root of time. Also included in this chapter are mathematical 

expressions that describe the manner in which the electric field 

penetrates; a conductive medium during the two time regimes. Chapter 

2 contain~; the analysis of the conductor included in a radial cir

cuit. The time constant for the discharge of the circuit is depicted 

as a function of the size of the system and the important physical 

parameters. Also included are analytic approximations of the time 

constant cilnd a comparison to the lumped parameter approximation of 



inductance. 

Chapter 3 provides a complete description of the equations that 

describe the growth of an oxide film. A finite difference program 

'was written to solve the equations. The system investigated is the 

iron/irol1, oxide in a basic, aqueous solution. Figures are presented 

which provide a comparison of the simulations to the experimental 

data provided in the literature. Discussion of the quality of the 

fit is also provided. Ultimately, we found that at low voltages iron 

dissolves preferentially to form ferrous ions and at higher voltages 

reacts to form ferrous oxide. 

Chapters 4 and 5 include the experimental attempts of replacing 

formaldehyde with an innocuous reducing agent for electroless deposi

tion. In chapter 4, current-versus-voltage curves are provided for a 

sodium thiosulfate bath in the presence of a copper disk electrode. 

Also provided are the cathodic polarization curves of a copper/EDTA 

bath in the presence of a copper electrode. Explanations for the 

poor performance of thiosulfate as a reduc ing agent for copper are 

included. Chapter 5 contains the experimental results of work done 

with sodium hypophosphite as a reducing agent. Mixed-potential-

versus - time curves for solutions containing various combinations of 

copper sulfate, nickel cloride, and hypophosphite in the presence of 

a palladium disk electrode provide an indication of the reducing 

power of the solutions. It appears that the hypophosphite is pre

ferentially oxidized on nickel and its oxidation is inhibited on 

copper. 
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vi 
Preface 

This dissertation consists of three distinct subj ects covered 

over five chapters. The first investigation is on the effect the 

magnetic field, or inductance, has on the charging of a system. 

Chapter one illustrates the manner in which an electric field 

penetrates an infinite cylind~ical conductor that short circuits two 

perfect plates. That analysis provides part of the solution to find

ing the time constant of a complete circuit that is instantaneously 

subject to a constant potential source. In chapter 2, a cylindrical 

conductor is included in a radial circuit. Solution to a 

transmission-line equation provides the time constant of the system 

as a function of the various physical parameters. The second subject 

considered is the modeling of a growing oxide film. Chapter 3 pro

vides a physical description of the system and the equations govern

ing the transport in the oxide. This analysis is then applied to the 

iron/iron oxide system. Results generated from a computer program 

are compared with experimental evidence reported in the literature. 

The third area of research is electroless deposition of copper. This 

work was exploratory. The goal was to find a workable yet less 

hazardous replacement for the widely used reducing agent formal

dehyde. The end result maintains that under the p~esent conditions 

neither sodium thiosulphate nor sodium hypophosphate is the answer. 

A significant and sustained amount of copper deposition was never 

achieved. Chapter 4 contains the polarization curves of the copper 

deposition and thiosulphate oxidation. Chapter 5 contains the 
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results of using hypophosphite with various amounts of nickel. 

This thesis can also be considered a monograph of the three pri

mary techniques that are available to the engineer for systems 

analysis: an analytical approach, used in the magnetic field work; a 

computational approach, applied in the oxide film work; and an exper

imental approach, undertaken in the electroless deposition work. To 

perform a complete analysis of the magnetic field effects we solved 

Maxwell's equations of. electromagnetism using a perturbation 

analysis. This method divided the problem into a short time and long 

time analysis. To obtain the time constant of the circuit configura

tion, concepts in Laplace transforms, Duhamel's superposition, and 

residue theory were applied. Upon developing the equations for 

describing oxide film growth, a computer program was prepared. The 

program was written in a general manner such that any number of 

species, phases, and homogeneous and heterogeneous reactions could be 

considered. Preparing such a model required a general algorithm for 

combining mole balance equations such that any reactions that were 

considered to be at equilibrium were eliminated from all but one mole 

balance equation. That equation was then replaced by an equilibrium 

expression. The substitution of Poisson's equation for the elec

troneutrality equation introduced the complexities associated with 

rapid variations in concentration and potential distributions near 

interfaces. These variations, which can severely hinder convergence, 

were minimized by a number of programming techniques. The explora

tory work in electroless deposition has not only allowed an enhance-
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men't of my experimental skills, but has exposed me to the methodology 

involved in starting any project from ground zero. 

This work has, accordingly, provided a vehicle for exploring a 

wide breath of physi~al phenomena and has been a valuable learning 

experience in the methods of problem solving. I am appreciative of 

the experience. 

v. S. Battaglia 
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Chapter :.. 

Magnetic Field Effects in High-Power Batteries 

I: The Penetration of an Electric Field 

into a Cylindrical Conductor 

Foreword 

The penetration of the axial component of an electric field into 

a cylindrical conductor is described by an asymptotic solution method 

for long and short times. The development of the respective current 

distributions allows for a mathematical comparison of the solution 

schemes and indicates that the current initially increases at a rate 

proportional to time until a time of order f/U, subsequently at a 

rate proportional to the square root of time, and finally levels off 

exponentially to the steady- state value. Cri teria for th\.o proper 

omission of the displacement current are also given. 

Introduction 

In the 70 years since Kapitzal used an electrochemical system (a 

lead-acid bipolar battery) for delivering short pulses of high-power, 

the design of batteries for this purpose has drawn little attention. 

However, the ever increasing reliance of the business sector on com

puter and telecommunication systems has enticed a renewed effort in 

research of rapid-discharge, high, back-up power batteries. E. Wil

lihnganz 2 studied the effect of high rates of discharge on the nega

tive plate of a lead-acid battery. Gibbard3 has designed and tested 
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a number of high-power lithi.um batteries and has presented an overall 

design criterion. 4 And LaFollette and Bennion discuss the design 

fundamentals of hirh-power, pulse-discharged lead acid batteries in 

terms of experiments~ a~d modeling. 6 Researchers are now also asking 

what is the minim~ time required to bring a battery to maximum 

power. 

Inductance, used to denote the effect of a rapidly varying elec

tric field which produces a varying magnetic field which counters 

with an ~pposing electric field, governs the rise time of the 

current. This phenomenon falls under the heading of electrodynamics. 

LaFollette and BennionS mention that the rigorous way to incorporate 

magnetic field effects in a battery model is to solve Maxwell's equa

tions of electromagnetism simultaneously with the equations that 

govern the battery performance. Due to the complicated nature of the 

equations of electrodynamics and the associated boundary conditions, 

this is something most modelers would like to avoid. LaFollette 

et a1. did not include the inductance in their model after demon-

strating that their system was small enough that the inductance 

effect occurred within the first microsecond and that they were more 

interested in the 10 to 1000 JJS range. Methods of simplifying the 

equations for handling the inductance while not neglecting it 

entirely do exist. McKinney et a1. 7 include a magnetic field effect 

of the circuit when analyzing the current from a power source by 

including a lumped inductance term in their circuit-theory model. 

Cahan et a1. 8 performed a parametric study of the impedance of a gen-



3 

eric power source as a function of the frequency of the signal. The 

power source was approximated as a modified, semi-infinite, strip

line. Inductance was included by means of askin-effect. The skin

depth is a measure of the depth of penetration of a sinusoidal signal 

and is a function of the frequency and conductivity. (For a 

sinusoidal signal, 95 percent of the signal is limited to 3 skin

depths from the surface.) The skin-depth analysis is applicable for 

a sinusoidal signal; however, an analogous treatment for a stepped 

current has not yet been presented. Moreover, these techniques only 

provide for an adjustment of the total current as a function of time, 

they do not. provide a description of the instantaneous current dis

tribution. The current distribution can play an important role in 

battery design if a large battery is required for high currents and 

only a fraction is utili .ed. 

In part I of our study, we shall demonstrate the manner in which 

an electric field penetrates a cylindrical conductor when the conduc

tor is instantaneously subjected to a constant electric field at its 

surface. This work provides a first approximation to the instantane

ous current distribution in a bipolar battery, the typical battery 

design chosen for delivering high power. In part II, the cylindrical 

conductor is included in a radial circuit. A transmission-line 

analysis is used in conjunction with the above treatment to determine 

the time constant of the complete system. The importance of address

ing the complete circuit lies in the fact that the electromagnetic 

field distribution is not a localized entity but is a function of the 
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entire circuit geometry. 

The Electromagnetic System 

The transition of an electrical signal from one amplitude and 

frequency to another begins at the source of the disturbance and pro-

pagates to the rest of the electrical configuration. The new form of 

the signal travels at the speed of light between the electrical con-

ductors used to direct the electrical power from the source to the 

intended load. During the initial stages of the transition, the 

charge on the conductors distributes itself such that the potential 

around the circuit is consistent with Ohm's law. (Further comments 

9 
on the initial stages of current start-up are provided by Rosser and 

Heald.
lO

) 

For conductors of finite conductivity, the electric field 

penetrates the conductors to within a few skin depths, for an alter-

nating signal, and throughout the conductors, for a direct signal. 

The rate at which the new signal can penetrate the conductors deter-

mines the rate to a periodic or steady state. Using Maxwell's equa-

tions, it is the purpose of this paper to describe the penetration of 

the axial electric field into an electrically conducting medium. 

It is well-known that Maxwell's four coupled equations of elec-

tromagnetism reduce to two, noncoupled modified wave equations in a 

linear, homogeneous, conducting medium: 
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V2E _ 3
2

E ... aE 
I-'E-- 1-'0 at' 

at
2 

(1) 

V2B _ a
2

B ... aB 
I-'E-- 1-'C1 at. 

flt
2 

(2) 

The solution to these equations for the transient electric field dis-

tribution in the conductors and surrounding medium for a finite 

geometry with a load and source is difficult to obtain. Since we are 

interested here in the time it takes for the penetration of the 

electrical signal into the power source, we shall address the 

specific problem of a step in an electrical signal propagating down 

an infinitely long coaxial cable. The radial component of the 

electrical signal propagates between the two conductors at the speed 

of light while the axial component propagates radially into the inner 

and outer conductors. With this configuration, the problem of deter-

mining the penetration of the electric field into the transmission 

line is virtually reduced to the mathematically one-dimensional prob-

lem of the penetration of an axial electric field component into an 

infinitely long cylindrical conductor. 

From this analysis we shall assume that the bipolar battery con-

figuration can be approximated by the properties of the central wire 

of the coaxial cable, the return current of the circuit being located 

in an outer cylindrical can. In a bipolar battery, a circular 

cathode and anode are separated by a circular ionically conducting 

separator to form a cell. A number of these cells are then stacked 

together and separated by cylindrical electronic conductors, such as 
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steel plates, to form the battery, which resembles the Volta pile. 

Al though a cylindrical wire is a reasonable approximation of the 

bipolar battery geometry, it does not account for the details of the 

battery. The solid wire obviously lacks the .multiple regions of 

various conductivities, surfaces of capacitance, electromotive force, 

and chemical reactions, and possible concentration variations found 

in a battery. However, as a first approximation, the infinite-wire 

analysis will allow us to predict the rate and the manner in which an 

electric field penetrates a conductor. And although this falls well 

short of a complete analYSiS, a considerable amount of information 

can still be inferred about the magnetic field effects. 

Solutions have been derived for the electric field distribution 

inside and outside of an infinite wire maintained at a fixed current. 

A. Marcus ll provided the field distribution of the infinite wire sur-

rounded by an axially symmetric, perfectly conducting, outer 

cylinder. sommerfe1dl2 described the field distribution of a steady 

current in an infinite wire in free space. 13 And D. Marcuse gave the 

general solution to the electric field distribution of an infini te 

wire carrying a steady current; the particular solution being a func-

tion of the rest of the circuit configuration. 

Solutions to the steady-periodic electric field distributions in 

media of high but finite conductivity also exist. 14 Maxwell solved 

for the self inductance of a periodic electric field in a cylindrical 

conductor. Jackson15 showed the electric field distribution of a 

periodic electric field penetrating a slab. 
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The problem that has been solved that closest resembles the 

problem we address here is that of a linearly increasing current in 

an infinite conductor. This problem was addressed by Shakur16 and 

furthered by Chervenak. 17 However, these analyses assume that the 

current is uniform through the conductor; Heald2 raised some further 

questions of the results. 

Typically, when solving the Maxwell equations in electrically 

conducting media, the first term on the right of equations 1 and 2, 

referred to as the "displacement current," is omitted. 6 , 7,18,19,20 

In this analysis, this term is retained in what we shall call the 

"full solution" and in the "inner solution" and neglected in the 

"diffusion solution." The development of these solutions will eluci

date the effect the displacement current plays in the initial stages 

of the field penetration and provide criteria for cases when its 

omission is justified, greatly simplifying the equations. 

The full solution maintains all the physics and is applicable 

for all times; however its open form requires a large number of terms 

to investigate the short time regime. To probe the short time 

effects the problem is divided into the three regimes depicted in 

figure 1. Region I is the inner regime. The solution obtained for 

this regime highlights the effects of the initial penetration of the 

electric field traveling ~.t the speed of light into the conductor. 

Region II is the diffusion regime. After a time of (0 flu) the field 

penetrates parabolically into the conductor. Region III is the outer 

regime. This is a long time regime in which the field penetrates to 
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the center of the conductor at the speed of light, but with an essen-

tially negligible magnitude. We shall not refer to this regime 

again. 

Full Solution 

For the geometry described above, the characteristic length is 

the radius of the inner conductor, r. Defining the electric dif
o 

fusivity of the propagating electric field as the reciprocal of the 

electric conductivity times the permea ~lity, l/~a, a characteristic 

time is developed as the radius of the wire squared divided by the 

electric diffusivity. Thus, substitution of the dimensionless param-

eters 

2 e - r/r and r - t/r po, o 0 

into equation 1 gives it the form 

(3) 

where 0 - l/~ar j~E. 0 can be interpreted as the ratio of the diso 

placement current to the conduction current. To simplify matters, we 

assume that initially the electric field is zero in the wire; then, 

at time 0, a step change in the electric field with axial component 

of magnitude E at a certain position z and r is imposed. This sig-o 0 

nal, as it proceeds along the coaxial line, will be felt initially 

only on the inner wall of the outer conductor and outer wall of the 

inner conductor. If the outer conductor is a perfect conductor, as 
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in this example, the rate of propagation of the electric field 

throughout the inner conductor will be the limiting effect to steady 

state. Thus, in this investigation we shall treat only the propaga-

tion of the field into the inner conductor. 

described in mathematical terms as: 

boun.lary conditions 

E is well-behaved 

E-E 
o 

at e - 1; 

initial conditions 

E - 0 

aE _ 0 
a". 

at ". - 0; 

at ". - O. 

at e - 0; 

The Laplace transforme:d solution of equation 3 is 

§Jll 
E 

o 

The condi tions are 

(4) 

where I (x) is the mc)dified Bessel function of the first kind, of 
p 

order p. This solution can then be inverted by the method of resi-

dues. 

Regardless of the solution scheme used, the radial penetration 

* of the axial electric field component is given by 

When 2Ak O > l, c".'k becomes a pure imaginary number. Equation 5 
continues to apply. 

1'. I 



E 
E o 

where 

first 

this 

wk - [1-(2~k6)2]~/262, J (x) is the 
p 

kind of order p, and ~k is the kth 

solution is mathematically correct, it 

11 

(5) 

Bessel function of the 

zero of J (x). Although 
0 

is not of a beneficial 

form for investigating short-time results. We say this, because more 

and more terms of the summation are required for an accurate numeri-

cal solution at shorter and shorter times. With 'this in mind, we 

shall reapproach the problem using an asymptotic solution scheme to 

develop a long-time and a short-time solution. As will be shown, the 

long-time or diffusion solution is that which is felt throughout the 

conductor for times proportional to r2~u (for a lO-cm-thick lead wire 
o 

this is ~ 60 ms), whereas, the short-time or inner solution is that 

which is felt just at the outer edge of the conductor at a time scale 

proportional to flu (for the same lead wire this is ~ lxlO-18 s). 

This approach will allow us to describe the development of the elec-

tric field for all time regimes. Since the first term on the right 

of equation 3 is usually neglected, 6 was chosen as the stretching 

parameter. 

Diffusion Solution 

The variables in equation 3 have been made dimensionless such 

that they are of 0(1) in the diffusion region. It follows that, as a 

first approximation, the first term on the right of equation 3 can be 

2 neglected for 6 «1. The equation reduces to the fonn of the 
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transient diffusion equation in cylindrical coordinates found in the 

mass-transfer literature, 

aE 
are (6) 

This is a major simplification; the highest derivative with respect 

to time is omitted. However, the e~uation takes a more manageable 

form, and one that we are familiar solving. We shall address the 

implications of this mathematical simplification, shortly. 

Equation 6 is solved by separation of variables with the boun-

dary and first of the initial conditions listed above equation 4 to 

yield 

E 
E o 

(7) 

Equation 7 is plotted as a function of e for different fractions 

of the time constant in figure 2. The current distribution is 

directly related to the electric field distribution through Ohm's 

law, i - aE. Other than the absence of the hyperbolic cosines and 

sines and w's of the full solution, this solution does not appear to 

be much of an improvement over the "full solution", equation 5, since 

it too is of open form. Nevertheless, from this solution it is 

apparent that the time constant for the exponential decay of the 

long-time solution is 

r 
o 

(8) 
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t = t/to = 1 
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0.0 0.2 0.4 0.6 0.8 1.0 

Figure 2. Axial electric field distibution divided by the magni-

tude of the electric field at the surface versus the dimensionless 

distance from the center of a cylindrical conductor. 
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This is the same time regime that is approximated by a the lumped-

inductance analysis where the current approaches the steady-state 

current exponentially as the time over the inductive time constant 

L/R. Thus, L/R is equal to r . 
o 

We now solve for the short-time solution of the diffusion region 

to determine how the field increases with time for relatively short 

times (and for future comparison with the long-time solution of the 

inner region.) Solving equation 6 by Laplace transforms, 

~ 
E -

o 
(9) 

expanding this solution for large $, and then inverting it, we obtain 

the short-time solution of the diffusion region, 

(10) 

where r «1. One should note that fewer terms of this solution are 

needed as ~ ~ land r ~ O. Thus, at short times the electric field 

penetrates as the erfc of distance from the. edge of the conductor 

divided by the square root of time. tJe thus define a penetration 

depth, which is analogous to the skin-depth of a sinusoidal signal, 

as 

d 
P 

jt/~(1. (11) 

The solutions developed in this, the diffusion regime, contain 

all the physics of equation 1 that occur on the time frame of r. We 
o 

• 
~.'. 
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should now like to investigate the consequences of dropping the 

second order time derivative that provided these results and to elu-

cidate the physics that occur immediately following the application 

of the electric field. 

Inner Solution 

To obtain the short-time or inner solution, we shall first 

define ~he variable e' - 1 - e, a dimensionless distance from the 

edge of the conductor, and then define new independent variables by 

stretching e' and l' by powers of o. That is, let 

and l' 
l' -

Setting m - 2 and n - 1, substituting them into equation 3, and keep-

ing terms multiplied b
J

- the smallest powers of 0, we obtain the equa-

tion 

with boundary conditions, 

E-E 
o at e - 0 

E is well behaved, 

and initial conditions, 

E - 0 , 

aE .. 0 , 
81' 

at l' 0 

at r ... O. 

a2E aE 
+ -' 

a1' -2 
a1' 

as e ---to c:o 

(12) 

(Note the absence of the lie term on the left of equation 12, imply-

ing that the curvature of the ~7ire has little effect in this time 
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regime.) These equations were solved by the Laplace-transform tech-

nique to give 

E(s) - E 
o 

exp[-<s2 + s)~ fl 
s 

(13) 

Applying the complex inversion formula to this solution while 

integrating around the branch cut between 0 a~d -1, we get the solu-

tion 

(14) 

wh ( ~)' h H " d f . 21 ere u r-~ 1S t e eaV1S1 e unct1on. We extract more informa-

tion from this time regime by expanding equation 13 for large and 

small values of s to obtain the short and long time solutions, 

respectively. Expanding 13 for 1 'irge values of s and taking the 

inverse Laplace transform to get the short-time solution of the inner 

region gives 

(15) 

This solution indicates that the electric field initially penetrates 

the conductor essentially as a front, traveling at the speed of 

light, with a magnitude that is exponentially damped with distance 

from the surface. The characteristic length of penetration is 2r 5. 
o 
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Beyond the distance of r - e the field is zero. 

Allowing s to approach 0 in equation 13 and inverting to obtain 

the long-time solution of the inner region gives 

E ( e ] ~ - erfc _ ~ . 
o (4r) 

(16) 

Thus after an initial period of flu the field penetrates as the erfc 

of the distance divided by the square root of time. This is of the 

same form as the solution obtained as the short-time solution in the 

diffusion region, equation 11. 

To summarize, when an electric field with an axial component of 

magnitude E is applied to the surface of a conductor at time 0, the 
o 

field penetrates the conductor at the speed of light with a magnitude 

that is dr:amatical1y damped within in a distance of Sr. This occurs 
o 

within t;he time 0+ and &2r2~C1 - flu. This is a very short time 
o 

frame. For comparison, the time it takes light to reach the center 

of the conductor is &r2~u. After this initial period, the field 
o 

penetrates the conductor as the erfc of the distance from the surface 

divided by th«= square root of four times the time divided by r2 ~u . 
o 

2 Finally, as t approaches r ~C1, the field approaches the uniform I 
o 

steady-state field distribution. 

From this analysis, we shall develop the solutions of the total 

current as a function of time. 
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Current 

From the expressions given for the electric field, one can 

determine the instantaneous total current. This value is derived 

from Ohm's law and integration of i over the cross-sectional area, 

(17) 

Solving for the instantaneous current allows us to compare the 

results of the above cases more readily by eliminating the indepen-

dent variable e. The instantaneous current for the full solution and 

diffusion solution are, accordingly, 

Full ~r~Eo - 1 -Jl ~1 [COSh(wkr) + Si:~::r) 1 exp [ 2:2]. 

Diffusion 
_ .... 1;;;....-__ 1 _ 

wr2uE o 0 

(18) 

(19) 

Another approach to the full solution is first to integrate the 

Laplace transform of the electric field, equation 4, with respect to 

e from 0 to 1. Using the method of residues, we obtain the above 

solution; but expanding this equation for large s and inverting gives 

a solution useful at short times, 

I 

2 2 -r/26 
r e 

6& 
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(20) 

2 
5 3 -,,/26 

" e 
486 

for r «1. Allowing s to get very large provides the very-short-

time solution, 

__ 1 __ 2r/6. 

ffr
2
uE o 0 

(21) 

In the diffusion region, if we start with the transformed solu-

tion of the electric field, equation 10, integrate over the cross-

sectional area of the conductor, take the limit as s gets very large, 

and invert it, we get the short-time solution to the diffusion 

region, 

1 
(22) 

For the inner region, we shall first integrate equation 13 with 

respect to e from 0 to ~ and then take the inverse Laplace transform. 

Here, the current is given as 

Inner I (23) 

Since 2 
r - r/6 , we see that the first term of the expanded full solu-

tion, equation 20, is equivalent to the short - time solution given 

here. The rest of the terms of equation 20 are corrective terms for 

large r which tend to bend the solution down to the long-time 
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solution. If we take the limit of the Laplace transformed solution 

of the inner region, equation 13, for very small s, and again 

integrate with respect to e from 0 to ~, we get the long-time solu-

tion of the inner region, 

___ I~ _ _ 6 

1rr2qE 
o 0 

(24) 

and for very large s, we get the short-time solution of the inner 

region, 

-2_1- - 261'. 
1rr uE 

o 0 

(25) 

From this analysis of the current distribution, we see that at 

short times (t<E/U) the current is proportional to time to the first 

power and at long times (t>E/U) is proportional to time 'to the one 

half power until t is of order r2pu where it approaches the steady
o 

state value (see figure 3). In the former case, the short-time solu-

tion of the inner region overlaps the very-short-time solution of the 

full solution. In the latter case, the 10ng- time solution of the 

inne~ region overlaps the short-time solution of the diffusion 

region. We can conclude that the "displacement current," which is 

responsible for this difference in solutions, is important only for 

l' - 1'/62 ~ 0(1) where 62 « 1. One further note, figure 2 shows that 

the current approaches the final steady-state asymptotically with an 

exponential 2 time constant of r JJU. 
o 

This is as predic ted by the 

lumped-inductance analysis the only thing in this work predicted 
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Figure 3. Dimensionless current versus dimensionless time 

~ -9 
for" = 1xl0 . 
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by the lumped-inductance analysis. 

Summary 

This analysis describes the penetration of a steadily applied 

electric field into a cylindrical conductor from the initial time to 

steady state. This is recognized as a crude first approximation to 

the current distribution in a bipolar battery. The solution scheme 

used introduced two distinct time regimes referred to as the inner 

and diffusion solutions. A long-time and short-time solution of the 

electric field distribution were determined in each regime and then 

confirmed as consistent by direct comparison and comparison of the 

instantaneous current distributions. The current initially 

penetrates the wire at a rate proportional to time up to a time of 

the order of £/u and then at a rate proportional to the square root 

of time. It is this same order of time after which the omission of 

the displacement current is justified. The lumped inductance 

analysis is appropriate for times on the order of r2~u. 
o 

It part II we shall include the cylindrical wire in a radial 

circuit. That analysis will describe the interactions of the fields 

in the conductor with the rest of the circuit in terms of the time 

constant of the complete system. 

(It should be noted that all calculations in this paper have 

been performed assuming that u, £, and JJ are independent of time; 

i.e., the conductor is nondispersive.) 



List of Symbols 

Roman 

d penetration depth, m p 

E axial electric field component, Vim 

E magnitude of axial electric field component at the o 

outer edge of conductor, Vim 

I total current, A 

i current density, A/m2 

L inductance, V-s/A 

r distance from center of wire, m 

r radius of wire, m 
o 

R resistance, 0 

s Laplace transform variable, s -1 

e time, s 

x variable of integration 

Greek 

s dimensionless stretching parameter 

permittivity, C2/N_m2 

r 

r 
o 

eh 
k zero of Bessel function J (x) 

o 

permeability, N/A2 

3.14159265358979 

electric conductivity, S/m 

dimensionless time 

dimensionless time constant 

23 
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.,. stretched dimensionless time 

e dimension1esl; distance from center 

e stretched dimensionless distance from edge 
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Chapter 2 

Magnetic Field Effects in High-Power Batteries 

Part II: Time Constant of a Radial Circuit Terminated by a Cylindrical 

Cell with Inductance 

Foreword 

The time constant to steady-state of an electric signal applied 

to the outer boundary of a radial circuit that propagates to a cen

trally located cylindrical conductor is determined rigorously by a 

transmission-line analysis. Two cases are reported: the perfect 

radial conductor and a radial conductor with a finite resistance. 

The time constant is featured as a function of the ratio of the 

radius of the radial conductive leads to the radius of the inner con

ductor. As the ratio is increased, the time constant departs from 

'that of an electric field penetrating a cylindrical conductor and 

approaches the inductive time constant of the leads. An analytic 

approximation of the time constant of the system is also provided. 

This analysis should assist in the development of high-power circui

try design when the discharge time is on the order of the inductive 

time constant. 

Introduction 

The intent of this research is to determine the inductive time 

constant of a circui t that contains a battery. As discus sed by 
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Rosser,l the rate at which the current rises in one portion of a cir
, . ..1 

cuit is a function of the configuration and properties of the rest of 

the circuit. Therefore, thi.s problem cannot be solved in parts. The 

rigorous method for handling the inductance effects is to solve 

Maxwell's equ.ations of electromagnetism throughout the entire circuit 

and surrounding medium, simultaneously with the equations that govern 

battery performance. This would require an enormous effort. As 

such, we direct our investigation to the simpler case of determining 

rigorously the rate of discharge of a radial circuit with an induc-

tive, coaxial, cylindrical core. Applying the same arguments as 

found in part I, the cylindrical core is assumed to approximate the 

behavior of a bipolar battery. Furthermore, the electromotive force 

is assumed rooted at some radial distance, r , away. 
o 

In part I we developed the solution to the rate at whi,ch an 

electric field penetrates a cylindrical conductor. As discussed, a 

solid conductor is a poor approximation of the inner workings of a 

battery. However, that analysis provided an adequate first approxi-

mation of the inductive behavior of the battery. In this section, we 

shall use a transmission-line analysis in conjunction with the 

preceding work to determine the time constant of the total circuit 

configuration. The solution to this full problem may suggest where 

the limitation to instantaneous discharge resides and may then be 

used for design criteria for systems intended to be discharged at 

high rates. 
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Analytic Approach 

An analytic approach is possible if a simplified circuit 

geometry is proposed. The following configuration is considered: a 

cylindrical conductor of finite length d, conductivity a., and radius 
~ 

r. sandwiched between two circular plates of radius r , where r > r. 
~ 0 0 ~ 

(see figure 1.) The system is initially at open-circuit, and the 

potential is zero everywhere. A constant voltage source is then 

applied at time zero at r == r . 
o 

We wish to determine the time it 

takes the system to reach steady-state. A transmission-line analysis 

shall be used to characterize the propagation of the signal along the 

radial conductors to the inner cylindrical conductor. The solution 

derived in part I section for the penetration of an electric field 

into a conductor shall be converted into a boundary condition at 

r - r.. The problem is solved using Laplace transforms. Two cases 
~ 

are considered: the first is wher~ the outer radial conductors are 

assumed to have an infinite conductivity; and the second is where 

they have a finite conductivity. Before proceeding to the solution, 

we shall first develop, through the elementary laws of statics and 

electrodynamics, the transmission-line equations. 

Transmission-Line Analysis 

A measure of the ease by which charge q migrates through a 

medium is characterized by its resistivity, p. This parameter is 

lowest for conductors, of moderate value for semiconductors, and 

highest for insulators. The total resistance of a bar of a conduct-

ing material of length 1 and area A is 



Figure 1. Radiul circuit of radius r containing a 
o 

cylindrical conductor of radius r .. 
~ 
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(1) 

Thus the resistance is defined by two parameters: the physical 

geometry and resistivity. 

According to Gauss's law, an electric field outside of a conduc-

tor acting perpendicular to the conductor is given by 

E·n - ~. (2) 

The potential is defined as 

-v~ - E. (3) 

For two parallel plates of equal and opposite charge and distance d 

apart we ob tain 

~ _ !1!! 
EA' 

(4) 

or 

q - C~, (5) 

where C is the capacitance. The capacitance, like the resistance, is 

a function of the physical geometry and a parameter, E, that 

describes the medium separating the conductive material. For the 

parallel 'plates, capacitance per unit area is defined as 

c 
C • A - E/d. (6) 

Current is defined as the amount of charge that passes a particular 

point per unit of time. In differential form 

I .. £9.. _ c a~ 
at at (7) 

for a capacitive current. 
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Ampere's law shows that with the passing of any current there is 

an associated magnetic field, 

VxB - jJi. (8) 

For a current flowing in a wire, the magnetic field is proportional 

to the amount of current and inversely proportional to the square of 

the distance from the center of the wire, 

(9) 

The magnetic flux, ~, is the sum of the magnetic fields of current-

carrying elements from different positions in the conductor. The 

magnetic linkage, >., is the sum of the total magnetic flux in the 

system. The magnetic linkage is proportional to the current, 

(10) 

L, the self-inductance, is a proportionality constant between the 

flux linkage and the current and again is a function of the physical 

geometry and jJ, a parameter describing the surrounding medium. For a 

parallel-plate configuration, it can be shown that the self-

inductance is 

L - p.d. (11) 

To relate the flux linkage back to a potential, we turn to Faraday's 

law, 

VxE (12) 

which mathematically states that a magnetic field that is varying in 

time has associated with it an electric field. These defini tions 
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ultimately lead to the expression 

(13) 

We can now discuss the transmission of a signal in the radial 

direction between two conducting plates. If the conductors are "per-

fect," i. e. have a resistivity of zero, charge travels between the 

plates on the surfaces and is referred to as the skin current. If 

the plates have a finite resistance, the current penetrates within 

the plates and it can be integrated over the thickness 1. In either 

case, the current density will have units of A/cm. Charge flowing in 

the radial direction behaves as a purely inductive current, i
L

, if 

the plates are perfect, and will contain an ohmic term if they are 

not. Some of the charge goes to charging the plates and is referred 

to as the capacitive current, i , with units of A/cm
2 . A shell bal

e 

ance of the current traveling in the radial direction along a plate 

with no resistance entering the shell at r and leaving at r+~r 

appears as 

2~riLI - 2~riLI A + 2~r~ri . (14) r r+~r e 

Dividing through by r~r and taking the limit as llr approaches zero 

gives the differential form 

-i 
e 

(15) 

Differentiation of equation 15 with respect to time and the subse-

quent substitution of the previously derived current-potential rela-

tionships, 
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8~ 

8r 

i 
c 

8i
L -Lot 
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(16) 

(17) 

gives the transmission-line equation for a radial circuit of infinite 

conductivity, 

1 8 ( 8<1» 82~ 
;8r lar - Lc--2 · 

at 
(18) 

If the conductor maintains a finite resistivity, the equation 

a~ aiL iL 
- ar -= Lac + (71' 

(19) 

(a, the conductivity, is equal to lip.) which contains an additional 

term for the ohmic drop, is substituted into equation 15 in the place 

of equation 16. This substitution gives the transmission-line equa-

tion for a radial circuit with finite conductivity, 

l.l...(r 8~] .... 
rar ar 

2 
Lc a ~ + c a~ 

at2 (71 at· 
(20) 

Case 1: 

Outer Conductors of Infinite Conductivity. 

As shown above, the following transmission-line equation for the 

potential applies to radial conductors of infinite conductivity: 

(21) 

Substitution of the dimensionless variables, 



e-r/r., 
~ 

leads to the equation 

- 2 
where 6 - r.jLc/r.p..o .. o ~ ~ ~ ~ 

2 
1" - t/r.J.!..o., 

~ ~ ~ 
and ¢ .... ~/q, , 

o 
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(22) 

(23) 

We shall solve this equation by means of a Laplace transforma-

tion. The Laplace transform of equation 23 is 

(24) 

The following is a list of the initial and boundary conditions. 

Initial Conditions 

¢ == 0 at 1" "'" 0, (25) 

at 1" .... O. (26) 

The first condition mathematically states that the potential is zero 

everywhere at time zero. The second condition states that the change 

of the potential with respect to time at time zero is also zero. 

This implies that some type of "inertia" or inductance must be over-

come before the potential will change at time zero. 

Boundary Conditions 

¢ -= 1 at ~ =- r /r., 
o ~ 

27r J i . rdr = 21rr. i 
~ ~ 0 

at ~ == 1. 

The first boundary condition states that at ,,~ 

(27) 

(28) 

r the potential is 
o 
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instantaneously set to 4\. The second condition is interpreted as 
o 

the integral of the current density over the area in the inner con-

ductor is equal to the line integral of the skin-current density that 

enters the inner conductor at r - r .. 
~ 

We shall now derive the Laplace transformation of the boundary 

conditions. The Laplace transformation of equation 27 gives 

4> = l/s at ~ ... r /r .. 
o 1 

(29) 

On the right side of equation 28, i I the skin-current density, 
o 

defined in equation 16, is 

i 
o 

The Laplace transformation of this equation is 

i 
o 

r.p..a.Cb 
~ ~ 1 0 

L 

(30) 

(31) 

Ohm's law gives the relation for current density in the central con-

ductor in terms of a component of electric field 

i . ... a.E. 
1 1 

(32) 

We have shown in part I that inside a cylindrical conductor the 

Laplace transform of the axial component of the electric field dis-

tribution due to a steady field of unit magnitude applied at the sur-

face is 
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~ ~ I [(6~s2 + s)~e] 
E

o 0 _...;;~~ ___ _ 

- -(1 - 2 2 ~' 
sl [(6.s +s)] 

o ~ 

(33) 

2 
I is the modified Bessel function of the first kind, of order O. 

o 

Duhamel's superposition formula,2 an integration of the solution to 

the linear equations applicable to the system, is used to describe 

the current in the conductor 

. frE(t! ,)aE(r')d' 
~. ... (j. 'i , r-r a r . 

.1 ~O r 
(34) 

The Laplace transform of this equation is equal to the product of the 

2 Laplace transform of its parts. The Laplace transform of E(e,r-r') 

is given in-equation 33. The Laplace transform of the derivative of 

E with respect to r is 

aE == sE. 
ar 

(35) 

Taking the Laplace transform of equation 34 and substituting into it 

equations 33 and 35 gives 

After integrating and some rearrangement, we get the boundary condi-

tion, 

at e 1. (37) 
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Solution 

Solution of equation 24 with the conditions of 25, 26, 29, and 

37 is 

and 

¢ -= A I (S s€) + BK (6 s€). 
o 0 0 0 

A .... 

r 
1 - BK 6s-E. 
s 0 r. 

~ 

I (6 sro] o 0 r. 
~ 

I (a)Y(s) - cI.(a) 

(38) 

(39) 

B .... s [K (b)I (a) -K (a)1 (b)]Y(s) -c [K (b)I
1

(a) -K
1
(a)I (b)]' (40) 

o 0 0 0 0 0 

o ~ 

where 

a - 6 s, b = 6 sr /r., c - 6 H./Ld, o 0 0 ~ o~~ 
(41) 

and 

Y(s) == (42) 2 2 ~ 2 2 ~. 
(6.s + s) I (6.s + s) 2 

~ 0 ~ 

Inversion of this solution to position and time coordinates is 

formidable. The transformation may be performed by the method of 

residues, application of which requires the poles of the equation. 

The poles are also equal to the negative of the time constants. 

Time Constants 

Since our primary concern in this investigation is the rate at 

which a conductor in a circui t can be brought to full current, we 
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shall focus our efforts on deriving the time constant of the above 

solution. The poles of the solution are the roots of the denominator 

of B. To emphasize the effect of circuit size on the time constant, 

we rearrange ·the denominator of B to 

o 0 0 0 

{

X (b) I (a) -K (a)I (b) 1 } 

The term on the left within the brackets, from here on referred to as 

X, is a function of s, the properties of the radial part of the cir-

cuit, and r /r .. 
o ~ 

The term on the right within the brackets is a 

function of s and the properties of the inner conductor. A plot of 

both terms wi thin the brackets is provided in figure 2, where the 

ratio of r Jr. is a parameter. K appears as a straight line with a 
o ~ 

slope which becomes more negative as r /r. is increased. 
o ~ 

Y(s) is 

unaltered by changes in the radius ratio. The root of equation 43 is 

the value of s where the two terms in the brackets are equal (the 

point of intersection in figure 2). As the size ratio approaches 

infinity, one sees in figure 2 that the point of intersection 

approaches zero, and, thus, the time constant approaches infinity. 

Figure 2 further shows that l/Y(s) intersects the abscissa at the 

value of s = s where 0:s2 - s - ~ 2 . .:\ is the first zero of J , 
o ~o 0 0 0 0 

the Bessel function of the first kind, of order O . .:\2 - 5.783186. 3 
o 

K intersects the abscissa at S :0= O. The time constant, 

r' = -l/root E -l/s
r

, is therefore bound between -l/s
o 

and infinity, 

and is a function of the size ratio r /r .. 
o ~ 
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-5 
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s 

Figure 2. l/Y and K versus s for three values of ro/rl. 
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We now wish to develop an approximate analytic expression of the 

time constant as a function of the size ratio. The limit of K as s 

approaches zero is 

limK 
5--+0 

(44) 

(c is defined in equation 41.) An approximation of 1/Y(s) for small 

s is 

1
. 1 
1.m Y(s) 

s--'O 

Combination of the above equations leads to 

l' ' 

l' 
o 

s Is 16 r 
o ... 1 + 0 0 In-.£ 

5 2c r.· 
r ~ 

(45) 

(46) 

This approximation of the time constant as a function of the size 

ratio is plotted in figure 3 along with the roots of equation 43. 

This figure shows that the time constant increases without bound as 

the ratio of the radius of the perfectly conducting outer leads to 

the radius of the inner conductor is increased. 

Case 2: 

Outer Conductors of Finite Conductivity. 

The radial circuit geometry is again used here; however, this 

time the circuit maintains a finite conductivity. The transmission-

line equation for a radial conductor with a finite conductivity is 

(47) 

as derived earlier. Substituting into the above equation the 
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14 

12 

Analytic approximation 

10 

~o 8 
............ 

- roots 
~ 

6 

4 

2 

o 1 2 3 4 

Figure 3. The time constant, and an analytic approximation, 

of the circuit of infinite conductivity versus the logarithm 

of the size ratio. 
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previously defined dimensionless parameters from equation 22 gives 

(48) 

where 

(49) 

The self-inductance of the inner conductor is proportional to its 

permeability, ~ .. The resistance of the inner conductor is inversely 
~ 

proportional to the radius squc.:..red and the conductivity, 2 
l/r u .. 

o ~ 

Likewise, the resistance of the outer conductor is inversely propor-

tional to the conductivity and the thickness of the plates, l/lu . 
o 

Thus, f) can be thought of as the ratio of the inductive time con-

stants, L/R, of the inner conductor and outer radial leads. 

The Laplace transform of equation 23 is 

2- -
~ + l~ = 62 

[s2¢ - s¢(+O) - ¢' (+0) + f)(s¢ - ¢(+O») . (50) ae 2 e ae 0 

The same initial and boundary conditions apply as in case 1; however, 

i obeys the equation from the transmission-line analysis for a con
o 

ductor of finite conductivity equation 19, which is rewritten here as 

ai 
_ r a~ == Lr----.£ + r . ar aT (Jl~o' 

The dimensionless Laplace transform form of this equation is 

_ ~oii 
r. ae 
~ [

LS 1]-. 2 + u 1 ~o' 
r.jJ..u.' 0 
~ ~ ~ 

(51) 

(52) 
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Combination of equations 28, 36, and 52 and some rearrangement pro-

vides the boundary condition 

2 2 ~ 
~i ~ Il(oi s + s) 

( /3) Ld a ~ - 2 2 L 2 2 ~ tP ate - 1. ( 53 ) 
s + ~ s(6.s +s)'2r (6.5 +s) 

~ 0 ~ 

Solution 

Solution of equation 48 with the derived initial and boundary 

conditions in equations 25, 26, 29, and 53 gives the Laplace 

transform solution 

a -

1 _ B K (b) 
A ., 5 0 

I (b) 
o 

-6 a Y(s) I (a) - Il(a) 
cs 0 

o 

2 ~ o (s + (3s) I 

o 
2 ~ 

b - 6 (s + (3s) r /r., o 0 ~ 

and Y(s) is the same as in case 1, equation 42. 

(54) 

(55) 

·(56 ) 

c - (57) 

As in the first case, inversion of this solution to time coordi-

nates is difficult; we shall again focus on obtaining the time con-

stant of the problem. 

Time Constants 

We show in figure 4, as we did in figure 2, a plot of the two 

terms within the large brackets of equation 58 for several values of 
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~ and a r Jr. ratio of 10/1. When P is set to zero, we recover the 
o ~ 

analysis in Case 1. As P is increased, the K line from the original 

analysis is offset to the left by p. Again, the poles of the solu-

tion are those values of s where the two curves intersect. The shift 

of K by variations in p precludes the time constant from approaching 

infinity even as the size of the circuit approaches this limit. We 

see that as P is increased, the time constant, which is the inverse 

of the absolute value of the roots, decreases. The dimensionless 

time constant of a circuit of finite conductivity is constrained 

between the two limits -l/~ and -lis . 
o 

Again we search for an analytic expression of the time constant. 

Taking the limit of the left term in the large brackets of equation 

58 as s--+O gives 

2 r 
lim K - _8- ln ..-£ 

6 cs r. s--,O 0 ~ 

(s + fJ) 6 r 
_____ 0 In --2 

c r. 
(58) 

~ 

The approximation of l/Y(s) for small s was derived in case 1, equa-

tion 45. Combination of the two limiting forms provides an analytic 

approximation of the time constant 

s 6 r 
1 - o 0 0 --In--

r' 
s 2c r. 

0 ~ 
(59) r s fJ6 r' 

0 r 1 + ---E.1n --2 
2c r. 

~ 

The time constants derived from the roots of equation 58 and those 

satisfying the above approximation are plotted versus the size of the 

system in figure 5 for two values of f3: one> s and the other < s . 
o 0 
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s 

Figure 4. l/Y and K's versus s for different values of ~ . 

• 
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Figure 5. Time constants verses size for two values of ~. 

The dashed curves are analytic approximations. 
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Discussion 

6 and 6, are both typically much less than 1 and were set equal 
o 1 

to each other and to 1x10-S in all of the figures. Only for very 

2 short times, s on the order of 1/6 , does the exact value of 6 playa 

Significant role. In t~e time frame of interest, which is the long 

time referred to in chapter 1, s is 0(1). The above equations can, 

therefore, all be simplified by setting the 6' s to zero. This 

approximation has little effect on the present ulong - time" results 

and explains why values of the 6's are implicitly eliminated from the 

analytic approximations of the time constant derived in cases 1 and 

2. 

As mentioned, ~ is the ratio of the inductive time constants of 

the inner conductor to the outer radial leads. In case 1, where the 

leads are of infinite conductivity or zero resistance, the inductive 

time constant of the leads is infinite, and ~ is zero. Setting p to 

zero in case 2 reduces the solutions to those of case 1. 

For the system with infinitely conductive leads, the time con-

stant is proportional to the logarithm of the ratio of the size of 

the leads to the size of the inner conductor. On the other hand, the 

system with leads of finite conductivity has a time constant that is 

bound between the time constant of the inner conductor and that of 

the leads. In general, the time constant of the system may either 

increase or decrease wi th the size ratio of the sys tern, but it 

becomes independent of the size of the system as the size ratio 

approaches infinity. 
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The problem we have just addressed is analogous to the problem 

of determining the time constant of a circuit with two inductors in 

series. In that situation, the inductances are added, and the resis

tances are added. The time constant for the circuit is then
4 

L + L. 
T' 

0 ~ 
= R + R. 

(60) 
0 ~ 

Some rearrangement gives 

T' 
1 + L IL. o 1 

LilRi 1 + R IR.' o 1 

(61) 

which is analogous to the analytic approximation provided in equation 

61. This investigation demonstrates that the present method of 

adding inductances to determine the overall time constant is an 

approximation (see figures 3 and 5) and that the approximation is 

less accurate for the smaller size ratios (lnr Ir. - 0(1». o ~ 

Conclusions 

A rigorous investigation has been undertaken to determine the 

time constant of a radial circuit with and without resistance. The 

circuit with an infinite conductivity has a time constant that is 

proportional to the logarithm of the size of the system: as the size 

approaches infinity, so does the time constant. For a circuit with 

finite conductivity, the time constant is bound between two limits 

and is independent of size ratio for large systems. An analytic 

approximation to the time constant is provided for comparison with 

the rigorous evaluation and shows that the approximation, which is 

used in most texts of circuit analysis, is less accurate for smaller 
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systems -- circuits where the leads are approximately as wide as the 

cell of interest. This analysis is a first approximation to the time 

constant of a circuit containing an electrochemical power source and 

is an applicable design tool for rapidly discharging systems. 

Roman 
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Chapter 3 

The Modeling of a Growing Oxide Film 

Foreword 

The full set of equations necessary for describing the growth of 

an oxide film is presented. The analysis includes methods of combin

ing equations for systems with rapid kinetics and a derivation of the 

high-field equation. The boundary conditions on the flux equations, 

Poisson's equation, and the velocity of the interface are also dis

cussed. The methodology is then applied to the iron/iron oxide sys

tem, and includes the reactions of electrons and iron interstitials 

at the metal/oxide and oxide/solution interfaces. Simulations, using 

the low-field equation, are compared to experimental results. It is 

found, in agreement with experiments, that passivation does not occur 

until 200 mV above the potential where the formation of an oxide is 

thermodynamically possible. This results because the oxide formation 

reaction is overwhelmed by the fast kinetics of the iron dissolution 

to ferrous ions. 

Introduction 

Oxide films are present on nearly all metal surfaces subjected 

to oxidative environments. Those films that are compact and poor 

current conductors are referred to as passivating films. Experimen

tally it has been shown that passive films on metals, subject to an 

anodic current or potential, grow with a thickness that is roughly 
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proportional to the logarithm of time. For over. fifty years, many 

theories have been proposed that predict such a growth rate; and 

still, the most prominent theories today are but subtle improvements 

of some of the earliest work. (Reviews of the experiments and 

. . 1 2 3 4 theor1es can be found 1n Young, ' Vetter, and Choa et al. ) 

In 1935 verwey5 proposed that the anodic growth of oxides is· 

limited by the rate of transport of cationic interstitials. The driv-

ing force for migration is described by a high-field mechanism, which 

is exponentially dependent on the local electric field. Cabrera and 

Mott6 agreed that ionic transport is dominated by cation migration by 

a high-field mechanism, but argued that the rate of film growth is 

limited by the reaction rate at the metal/oxide interface. Fehlner 

and Mott7 stated that ionic transport is dominated by the conduction 

of anions and that the limitation to growth is the reaction rate at 

the oxide/solution interface. Maurer8 suggested that the electric-

field-dependent production of Frenkel defects -- interstitials formed 

within the oxide by a field assisted jump of an ion from a lattice 

site -- is the rate limiting step to forming mobile cationic species. 

These theories have since been used as they stand, or combined 

to describe multiple phenomena, or slightly modified to fit particu

lar system data. Vermilyea
9 

modified the high-field theory to 

describe the transport in Ta
2
0

5 
films to include two consecutive 

energy barriers to ionic transport. Burnstein and 
10 

Davenport 

adjusted the high-field model by developing an improved integration 

of the high-field equation. Cahan et a1.ll argued that the passive 
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f 1 f 2+ 3+ F 4+ , h i m on iron consists 0 Fe , Fe , and e cat~ons, t e concentra-

tions of which vary across the film due to the presence of a strong 

electric field, This description'is then used to characterize pro

perties of the film and its growth, Bean at al. 12 
relied on a combi-

nation of cation interstitials formed through Frenkel defects and a 

high- field mechanism to describe the growth kinetics of tantalum 

oxide whereas Odynets
13 

claimed that the creation of defects at the 

interface and subsequent transport across the film are equally 

responsible for the limited rate of film growth. Many researchers, 

h ld 14,15 D· 16 d G I' 1 17 'b d h suc as Dewa, ~gnam t an rey ~ng et a . t ascr~ e t e 

differences between experimental data and the high- field transport 

model to neglect of the space charge in the oxide, while othersl8 ,19 

have suggested that the data can be explained by a place-exchange 

model. 

More recent work relies on a defect model, originally developed 

by Frenkel. 20 This model emphasizes that current is conducted by 

mobile charged defects. Macdonald's point- defect models 4 ,21,22 do 

not include a high-field mechanism of migrction, and only the most 

recent paper attempts to include finite interfacial kinetics. 

, . 23 24 
MacDougall' s po~nt-defect models' are concerned mostly with the 

structure of the oxide and suggest that transient changes of currents 

at a given potential are due to a reduction of the number of oxide 

imperfections. The models of Macdonald and MacDougall were recently 

compared by Dagan and Tomkiewicz25 for the growth of films on permal-

loy. They found that Macdonald's model did not fit the data as well 
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as MacDougall's (although, MacDougall's paper is based solely on 

qualitative arguments). 

In each of the above theories, only one mechanism at a time is 

considered such that an analytic expression for film growth is 

derived. These equations usually take one of the following forms: a 

logarithmic growth law, an inverse logarithmic growth law, or a modi

fied inverse logarithmic growth law. Lukac et al. 26 
have gone on to 

show that these three laws can equally describe the growth kinetics 

and that none of the models is completely consistent with the experi

mentally observed temperature and potential dependences. 

We believe that any or all of the above mentioned phenomena may 

play a significant role in oxide growth, where the predominant 

mechanism is a function of the system being examined and the stage to 

which growth has transpired. Therefore, in order to follow the pro

gress of the growth of any oxide film through all of its stages, a 

model is developed that contains all of the physics. The equations 

of this model are then solved simultaneously with a computer. Start

ing with the framework of Macdonald's point defect model, we shall 

present a general model that includes any number of species that mav 

react homogeneously and heterogeneously. The model will also include 

effects due to variations in the adj acent solution phase and track 

film growth or dissolution. 

In the model development we shall consider only those species 

that are typically present. We shall then provide the equations 

necessary to describe the system and touch on electric-field effects 
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and thermodynamic consistency. The method used to increase the com-

putational efficiency shall also be discussed. Upon completion of 

the general model development, we present results specific to the 

iron/iron oxide system. The first thing to be considered, however, 

is a description of the system. 

General System Description 

Figure 1 provides a schematic of the system. (This figure is 

3 similar to that introduced by Vetter, figure 328.) A metal substrate 

interacts with a solution through an oxide. The interaction is 

described by reactions at both interfaces, the properties of the 

oxide, and the properties of the solution. The concern here is with 

variations occurring in a direction perpendicular to the metal inter~ 

face while neglecting all parallel interactions. In other words, a 

one-dimensional model is developed. Furthermore, we assume that an 

oxide is present from the start, completely ignoring initial oxide 

formation (which I rigorously, occurs through nucleati')n si tes and is 

inherently two-dimensional). A mathematically one-dimensional 

description of a film formed on a bare metal surface has been 

27 developed by Russell and Newman. 

Transport in an oxide can be interpreted in terms of mobile 

vacancies and defects; 27 
see Wagner. A general model of an oxide 

must have the flexibility to accept various types of defects and 

associated reactions. Moreover, oxides may also be semiconductors; 

thus, electrons and holes as well as any dopant species must also be 

easily incorporated into the model. An account of the dominant modes 
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metal metal oxide solution 

+ 
m MO rn (aq) 

e 
2 OR 

Figure 1. System. 
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of conduction in oxides can be found in Shewmon28 and s~rensen.29 

To simplify the description while still providing a general 

framework, we shall consider only the following charge carriers: 

anion and cation vacancies, anion and cation interstitials, and elec-

trons and holes. Again, we assume that the lattice itself has no 

charge: only the defects possess charge. More specifically, the. 

oxide shall be viewed as an MO background (a schematic of which 

appears in figure 2), where cations and anions assume their respec-

tive lattice sites, are absent from their sites, or take up intersti-

tial locations. Kroger-Vink notation is adopted for distinguishing 

the species. As Choa et a1. 4 
explain, Xy denotes an X site occupied 

by a Y species. Hence, x-V
M 

describes a metal vacancy carrying X 

negative charges. Following this criterion, a cation of plus two 

charge in a cation site, a cation vacancy, and a cation interstitial 

2- 2+ 
are denoted as MM, V

M 
' and 1M ,respectively. Analogous notation is 

used for the anionic species. Electrons and holes appear as e and 

h+, respectively. For our simplified description, this leads to the 

following types of species: 

e 

We shall now consider the equations necessary to describe a system 

consistent with this construct. 



60 

Metal oxide 

Figure 2. Schematic of an MO oxide. 
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Equations 

Mole Flux Balance. 

A mole flux balance for each of tpe species listed above may be 

written as 

and read as the accumulation of a species in a differential volume 

plus the divergence of its flux through the faces of that volume is 

equal to its net generation per unit volume. The reaction rate can 

normally be written as the difference of forward and backward reac-

tion terms which are a function of the activities of the species (see 

30 Newman, chapter 23). For example, a reaction that can be described 

by the mechanisM 

2+ 2-
V 0 + 10 --+ 00 

would typically react at a rate 

where the activity coefficients of the vacancies and interstitials 

and the activity of the lattice species are considered constant and 

are contained in the rate constants, kl and k_l' Thermodynamic con

sistency re~uires kl/k_l to be equal to the equilibrium constant, Kl , 

which is the ratio of the secondary-reference states of the species 

involved in the reaction. This particular reaction is an example of 

the formation of a Frenkel defect and may also be a function of the 
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magnitude of the electric field. (Further discussion is deferred to 

the Reactions section.) 

For a dilute species (which excludes ~ and 00)' the flux can be 

written as the sum of fluxes created by separate driving forces, plus 

a convective term. 

Nk • ckvk - diffusior. + migration + convection 

The convective term is defined as the concentration of the species 

times a reference velocity, chosen for convenience. 

The diffusion and migration terms can be interpreted as a reac-

tion. For example, the mechanism of the transport of a cation inter-

stitial may be qepicted as an interstitial at position a combining 

with open interstitial site at position 6 to form an interstitial at 

position 6 and an interstitial site at position a, 

Such a mechanism can be described by an Arrhenius type rate expres-

sion 31 (Newman, chapter 23), Assuming constant activity of the 

interstitial sites, the rate of transport appears as 

a [z kFUl~' - ~6 )j 6 [-z kF(i!J/~' - ~o )j 
Rcrans - kc I~+ exp 2RT - kc I~+ exp 2RT . 

The difference in the electrochemical potential at a and 6 is defined 

as 

a 6 
J.l.k - Ji.k 

where VO is the potential difference when the net rate of transport 
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equals zero. In this case, VO equals 

VO - RT In[C!]. 
zkF Q c

k 

Substitution of these definitions into the rate expression gives the 

high-field rate expression 

The difference in the electrochemical potential can be approximated 

as 

a 

where a is some short distance. Substitution of this equation into 

the rate expression and assuming a small gradient in the electrochem-

ical potential simplifies the rate expression to the linear form used 

in solution electrochemistry 

where ka is thus recognized as the diffusion coefficient, D
k

, in 

31 dilute solutions (Newman , chapter 11). Upon defining an electro-

chemical activity Ak according to 

[
JJk - J"~l exp RT 

and substituting into the rate expression, we obtain the simplified 

expression 
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Finally, combination of the flux terms provides the high-field flux 

expression 

The mole flux balance equation for the dilute species can now be 

expressed in terms of the dependent variables: concentration, poten-

tial, and reference velocity. Before addressing the potential, we 

shall first describe the method of handling homogeneous reactions 

that occur at such rapidity as to be considered at equilibrium. 

Summing Equations 

In many instances, homogeneous reactions occur at such a fast 

rate that it is a good approximation to assume that the reaction is 

at equilibrium. When this is the case, the mole flux equations are 

combined to eliminate the presumed equilibrium reaction from all but 

one of the mole balance equations. Then this one equation is 

replaced with the equilibrium expression, 

where S k, 1. are the stoichiometric coefficients of reaction 1.. We 

have designed a subroutine called Ifeqnprod" that sums the mole flux 

equations in such a way that each reaction, starting with the fastest 

reaction, is eliminated from every mole balance but one (if the 
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specified reactions are not independent, multiple reactions may 

appear in the final form of the combined equations). This translates 

our set of i mole balance equations to i-j equations of the form 

and j equilibrium equations. (v and ~ are combinations of the. 

stoichiometric coefficients derived through the elimination of the 

equilibrium reactions.) For those mole balance equations containing 

reactions that are fast but not considered at equilibrium, the equa-

tion can be divided through by the backward rate of the fast reac-

tion. The logarithm of this equation appears as 

In K 1 + I skI In C k - In 1 -
max k ' max 

kb 1 
, max 

L 
l~l 

max 

The departure from equilibrium now appears as the logarithm of 1 

minus a small number. 

Poisson's Equation 

Many oxide films, especially those that exist as compact crystal 

structures, possess a small number of defects, suggesting a small 

number of charge carriers and a large space-charge region. For a 

thin oxide .film~ the space-charge layer may extend across a signifi-

14 cant portion of the oxide. As Dewald and others have shown, space 

charge in the oxide can have an appreciable effect on the growth rate 

of films. We shall therefore incorporate Poisson's equation into our 
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This electrostatically derived formula is thermodynamically con-

sistent for infinitely dilute solutions. 

Because a double layer also exists in the solution phase near. 

the oxide/solution interface, Poisson's equation is also invoked in 

this phase, replacing the electroneutrality equation, 

(which is often substituted, as a first approximation, for Poisson's 

equation in electrolytic solutions). 

Velocity 

We have yet to develop an expression for the mole flux of 

MM or 00 in terms of concentration and potential, nor have we defined 

the reference velocity. We shall show how these two subj ects are 

interrelated. 

The diffusion of anion and cation vacancies occurs through the 

mechanisms 

and 

respectively. The mechanism for anion transport can be described 

mathematically as, 
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2+ The flux of Vo relative to the convective flux is equal and opposite 

to the flux of 00 relative to its convective flux. An analogous 

relationship applies to the transport of the cation. Rearrangement 

of these equations leads to the definition of the lattice velocity 

0 sites M sites all sites 

L Nk I Nk 
i i 

~ Nk 
v .. 

L cOO cMO 

000 
where cO' cM' and c

MO 
are the concentrations of 0, M, and MO sites, 

respectively, and are constants. Summation of the mole flux balance 

equations over the species occupying 0, M, or both sites leads to the 

single equation 

This is a continuity equation consistent with the notion that the 

site density is constant. 

In the solution, the equations that describe the velocity are 

the momentum-balance equations. We would prefer not to solve these 

equations, and instead enter velocity profiles that have been deter-

mined analytically. We shall assume that the oxide is growing on a 

rotating disk electrode and use the high Sc number approximation to 

the normal component of the velocity relative to a disk surface with 

no axial velocity (Newman,31 chapter 15), 

v == - O. 51023r
2 In,,,, 

x 

where r equals xJn/", and x is the distance normal to the disk 

I I III I 
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surface. 

Summarizing, we have a mole balance for each minor species, 

Poisson's equation, and a continuity equation for the velocity. This 

completes the mathematical description of the transport in the bulk 

of the film. Completion of the problem, however, consists of a 

description of the boundary conditions. 

Boundary Conditions 

We shall now discuss the boundary conditions for a multi-phase, 

one-dimensional problem. For any physically realizable system there 

exists a certain number of degrees of freedom, 

f - c + 2 - ~ - r, 

at equilibrium (c is the number of species, 11' is the number of 

phases, and r is the number of independent reactions). Two of these 

are covered by specifying the temperature and pressure of the system. 

Since we typically are not at equilibrium, this equation does not 

necessarily apply; however it does suggest that some of the boundary 

conditions in one phase can not be arbitrarily set with indifference 

to the adjoining phases. 

One method for setting boundary condi tions is to mimic the 

experimentalist. This procedure usually leads to the correct number 

of constraints. For example, when a metal surface is placed in a 

solution with intent to form an oxide, the composition of the solu

tion and either the potential difference across the cell or the total 

cell current are at the experimentalist's control. The same 
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conditions are applied here. The number of degrees of freedom sug

gests that the boundary conditions for the oxide phase, the phase 

sandwiched between the metal and solution phases, are flux relation

ships that relate the concentration of the species in the oxide to 

the concentration of the species just outside the oxide. For those 

species that do not react at either interface nor homogeneously,. 

there exists an additional degree of freedom. In this instance, only 

the initial condition is necessary for a transient problem, but for a 

steady-state problem one should set either the concentration of that 

species at one of the interfaces or an average concentration of that 

species. We shall proceed through the boundary conditions from one 

end of the system to the other for the mole flux balance, Poisson, 

and continuity equations. 

Hole Balance 

A mole flux balance equation is written for every solute species 

in the solution and every minor species in the oxide. This equation 

is second-order with respect to the concentration and therefore 

requires a boundary condition involving concentrations at each side 

of each phase. We shall start with the solution phase and go from 

right to left as in figure 1 with positive flux going from left to 

right. 

Experimentally, the solution composition is typically set. We 

too choose to fix the concentrations in this phase. Far from the 

electrode we assume that the species are at equilibrium and that the 

fluxes of the species are constant. Combining the mole balance 
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equations, as was shown above, to eliminate each reaction from all 

but one equation reveals the number of independent equilibrium reac-

tions and the form of the mole balance equations. If the solvent is 

a dissociative species, that is, it reduces to one or more minor 

species, such as 

H
2

0 --.. H+ + OH-, 

then there are two ways of handling the boundary conditions: the 

total amount of added components is specified and the pH is solved 

for; or the pH is specified and the amount of added acid or base is 

solved for. If the pH is specified, the electroneutrality equation 

is used to determine the amount of base or acid that is required. If 

the amounts of each species that is added to the solution is known, 

then the electroneutrality equation may have to be included to deter

mine the amount of H+ or OH- present. 

We provide a simple example. Ammonium hydroxide is added to 1 N 

aqueous solution of completely dissociated ferrous sulfate such that 

the final pH is 10. We assume that the solution consists of the fol-

lowing six solute species, 

We require six equations. There are two equilibrium equations, one 

relating NH
4

0H, oNH:, and OH-

and one relating H+ and OH-
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K - c c 
W H+ OH-

(the water equilibrium reaction.) Combining the mole balances to 

eliminate these reactions from all but two equations leads to the 

four total mole balances, 

0 
C 

Fe2+ 
c 2+' 

Fe 

0 c 
S02-

e 
S02-' 

4 4 

0 0 
eNH OH + e cNH40H2 + c 

NH+' 4 NH+ 
4 4 

and 

o 0 
c NH OH + e _ + e + - c NH OH + c 

4 OH H 4 OH-

Since the original amount of ammonium hydroxide added is not known 

o 
and neither is c ,we replace the last two equations with 

OH-

-Inc - pH, 
H+ 

and the electroneutrality equation, 

This gives us our six equations. 

We now move to the oxide/solution interface, focusing on the 

species on the' solution side. Since the concentrations of each of 

these species has been set "far away," and since we intend to set the 

total potential across the system, we use flux expressions at this 

interface to relate the concentrations in the adj olning phase (an 
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alternative would be to use flux expressions for all but one of the 

species and to set the concentration of that one; this would impli-

citly determine the total current and preclude setting the total 

potential). The following general mole balance equation applies for 

the right side of the interface: 

where vI is the velocity of the interface. In words this equation 

reads: the accumulation of moles ~f k at the the solution side of the 

surface plus the flux of k from the surface relative to the convec-

tive flux of k at the surface is equal to the rate of generation of k 

at the surface. fk is the surface concentration of adsorbed species 

at the interface and is related to the concentration just outside the 

interface through the rat:e expression 

If the reaction rate is fast enough to assume equilibrium, the rela-

tionship is, 

rk - Ksckexp(~(~Q_~S»). 
where Ks - kflkb has units of length. The surface reaction, RA,l is 

written in terms of th.e potent }ll and concentrations through the 

Butler-Volmer equation (see Newman,3l chapter 8, for details) 

R - k n k, 1 D·-,8)nF(~ ~ ) P [ 0 s) 
A, 1 a k C k exp RT 

qk,l [,8nF(~O~] 
- k n c k exp - RT . 

C k' 
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Those interfacial reactions that are so fast as to be considered 

at equilibrium are replaced by an equilibrium expression J and the 

rest of the equations are combined to eliminate that reaction from 

all but one equation. 

On the oxide side of the oxide/solution interface (the left side 

of the oxide/solution interface according to figure 1), the following 

equation holds for all those species which react, 

where fk is the concentration per unit area of adsorbed species on 

the oxide side (left side) of the interface. For those species which 

do not react at either interface, heterogeneously or homogeneously, 

the boundary condition takes on one of the following forms: the con-

centration of that species at the interface is fixed; the average 

concentration of the species ·across the film is fixed, 

c . 
k,avg' 

or the mole flux balance equation is used and one of the other two 

options is applied at the metal/oxide interface. If one of the first 

two options is used here, then the mole flux balance can be applied 

at the metal/oxide interface. 

The boundary conditions of the oxide phase at the metal/oxice 

interface have implicitly been covered: the same equations developed 

for the right side of the oxide/solution interface are used here 

along with the conditions considered above for those species which do 
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not react. 

In the metal phase, we assume that the activities of the metal 

atoms and electrons are constant, 

Potential 

Poisson's equation is solved from one end of the system to the, 

other, This second-order equation requires a specification of the 

potential at some position, the absolute value of which is arbitrary, 

and is chosen for convenience. For our system, the potential at the 

end of the solution phase farthest from the oxide is set to zero, 

Gauss's law is required at the interfaces. On the solution side 

of the oxide/solution interface, Gauss's law takes the form 

F - --2: zkrk' 
e s k 

In the oxide, on the left side of the oxide/solution interface, 

Gauss's law appears as 

S 0 

~ 5 - 4> - 'V~ 0 
== - :0 Lk Z kr k ' 

o/s 

On the right side of the metal/oxide interface, we apply Gauss's law 

as on the right side of the oxide/solution interface, and, finally, 

on the metal side we specify the potential, V. 

At one of ,the interfaces we are required either to fix the 

potential or set the current. During a potentiostatic experiment, 

the potential of the metal relative to a reference electrode in the 

solution is fixed. We too set the potential of the metal for simu-
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lating a potentiostatic experiment. To simulate a galvanostatic 

experiment, either the current is set and the potential is determined 

from the equation 

i - F I zk(Nk - ckv1 ) - -F I Zk[aaf't
k 

+ L sk IRA 1) 
k k I" 

or the potential is set and iterated upon until the desired current. 

density is obtained. 

Velocity 

The equation for the velocity of the lattice was derived by sum-

ming the mole flux equations of the species occupying lattice sites. 

The boundary condition is analogously developed. Depending on 

whether the mole flux balance equations are on the right side or the 

left side of the interface, summation gives 

all sites 
I L Sk lRj, 
k 1 ' 

o 
cMO 

(the plus sign applies to the right side of the interface). The 

right side of the above equation can also be written as 

all sites 

I 
k 
o 

chO 

This indicates that film growth is realized only at interfaces where 

the sum.of the stoichiometric coefficients of species occupying lat-

tice sites is not equal to zero. 
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Velocity is a relative quantity, which allows us to set its 

value arbitrarily at any position. In other words, we can set the 

velocity of anyone interface or set v
L 

(since 'V.v
L 

.... 0) to a con

venient constant. We set the velocity of the metal/oxide interface 

to zero. 

At the metal/oxide interface, where the velocity of the inter-

face is set to zero, the above equation yields t?e lattice velocity, 

V
L

. At the oxide/solution interface it yields the velocity of the 

interface, since v
L 

is known by integration of the continuity equa-

tion across the oxide. This v I can then be added directly to the 

velocity distribution specified in the solution phase (as shown by 

A . 31) 
cr~vos . 

Initial Conditions 

In a transient case, an initial concentration of each species is 

required. One way to proceed is to set the potential of the metal to 

the value where the film, metal, and solution exist in mutual equili-

brium. (If no such potential exists, an alternative would be to 

solve for a quasi-steady state at a given potential.) The steady-

state concentration and potential distributions are solved for at 

this potential. The potential is stepped to a n~w value, and growth 

of the film is followed from this initial condition. To march through 

time, one can either use a Crank-Nicholson time stepping algorithm or 

assume quasi-steady state. The first method is a better approxima-

tion, especially for rapid film growth. 
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Reactions 

Electric Fields on Homogeneous Reactions 

As we have mentioned, the grad.ient of the potential may enhance 

the forward or backward rate of certain homogeneous reactions. Why 

does this appear in oxides, and not in aqueous solutions? Because in· 

oxides we are speaking of the formation or depletion of vacancies and 

interstitials in a lattice structure: a structure where the molecules 

maintain some fixed position, Thus the occupied sites and intersti-

tials are distinguishable. A similar means of transport in a solu-

tion is described by the high-field equation. 

A typical homogeneous reaction which is susceptible to influence 

by the electric field is the formation of Frenkel defects. This, 

again, is defined as interstitial species created by ions leaving the 

ionic sites. Oxides consist of some equilibriwn concentration of 

interstitials and vacancies related through the relations, 

and 

K =o 

K .... 
M 

In a nonequilibrium situation, there is reason ~o believe that these 

relationships should be independent of the potential distribution. 

However, if there is an alignment of the product species wit.h the 
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gradient of t~e potential there does exist a potential dependence. 

31 
Following the procedures of chapter 23 of Newman , we write the 

reaction 

in two ways: 

1. 

and 

where Q is at one position and 5 is at another position to the righr. 

The rate of the first reaction is 

and the rate of the second reaction is 

_ a 5 [- (l-{3)nF a _ 5 ] 5 [{3nF a 5 ] 
R2 - kf, 2 c 1 2- c V2+ exp R:r (4) 4» - kb, 1 cOO exp RI (C!> - 4> ) 

o 0 

The activity coefficients of the minor species and the activity of 0
0 

are considered constant. The summation of the two rates gives the 

overall rate of reaction. Substituting in the relationships 

gives the overall rate of reaction 

k 
b,s 



At steady-state, R s 
o and the rate equation gives 

cosh (1- (3)naF' V7~ 
RT 1 
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This equation shows that the product of the concentration of species 

in a system at steady-state in the presence of an applied field is 

greater than or equal to the equilibrium constant. Furtherramifica-

tions of this result are left to the reader. 

Thermodynamic Consistency of Heterogeneous Reactions 

Values from thermodynamic tables indicate the potential and pH 

at which a metal, in C(Jntact with an aqueous solution, will coexist 

simultaneously as a metal, metal oxide, and aqueous metal ions. For 

the system we are considering, a compact oxide covers the entire 

metal surface, and although the oxide is in contact with the other 

two phases, the other two phases are not in contact with each other. 

Nevertheless, if the system is at equilibrium, the same potential 

should be read as when there is mutual contact. This potential is, 

however, distributed over two interfaces, and we shall now give an 

example of how thermodynamic consistency is assured. 

The standard-state '?otential versus the standard hydrogen refer-

ence e1ectrod~, SHE, of the reactir~ 

Hg + 20H- HgO + H
2

0 + 2 e - , 

is 
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U = O. 926 - O. 0591 pH 

for red oxide. We shall exclude the possibility of a predominance of 

interstitials, vacancies, electrons, and holes in the oxide, and sub-

mit that the aqueous solution is at a certain pH and contains a non-

obtrusive supporting electrolyte. The following reactions are con-

sidered: 

at the metal/oxide interface, 

1. ) Hg 

and 

, 
2 . ) Hg + V Hg' ~ HgHg + 2 e - ; 

at the oxide/solution interface, 

3. ) 20H- + V·· ---.. 00 + H2O, 0 +--

and 

- , 
4. ) 20H ;:= 00 + VHg 

, + H2O. 

The individual reaction rates take the form 

At equilibrium, the forward rate is equal to the backward rate; rear-

rangement gives 

Summing reactions land 3 and 2 and 4 to eliminate the vacancies 

leads to the overall reaction listed at the start. For a film at 

equilibrium, thermodynamic consistency requires 



~m _ ~o + ~o _ ~s _ U = UB _ 0.059lpH 

RT -lnc 
F OH-

RT k_2k_4 RT 
-In - -FPH. 
2F k k K2 

2 4 w 
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B where U is equal to 0.926 for Hg/HgO and 2.303 RT/F equals 0.0591 at 

25 0 C. More simply, 

K1K3~ - K2K4<; - exp(~u9). 
Knowledge of the equilibrium concentrations of the defects in the 

oxide and of the cavity potentials across the interfaces provides a 

quantitative assessment of the individual K's. The corresponding K 

at the other interface is set such that the total potential drop is 

consistent with the' overall standard-state potential drop and the 

local interfacial concentrations at that interface. 

Solving Computationally 

The equations above are linearized and differentiated with 

Newman's Autoband subroutine (Newman
3l

, Appendix C). They are then 

solved simultaneously with Newman's Band subroutine. However, before 

the equations are entered, a coordinate transformation is performed. 

Coordinate Transformation 

To avoid extrapolation or interpolation of the concentration and 

potential profiles as the oxide grows or shrinks, we shall invoke a 

coordinate transformation. This transformation, used in each phase, 

is applied before assuming a quasi-steady-state condition. 



where 

y =-

x, t --I> y, t, 

x - x' 
x" - x' 

+ m' - m . 
o 
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x' is the position of the interface to the left of x. x" is the 

position of the interface to the right of x. m' is the mth interface 

from the left end of the system and is the interface to the left of 

th 
x. m is the m interface from the left where y is set to zero. 

o 

Equations in Finite Difference 

The equations are solved using finite differences. A giant 3-

width banded matrix is created of nxn matrices, where n is equal to 

the total number of species in each phase, plus the number of phases 

where the potential is solved for, plus the number of phases where 

the velocity is solved for. These equations a~. linearized and then 

solved simultaneously using Newman' s3l Autoband, Band, and Matinv 

subroutines. Iteration is required because the equations are non-

linear. The giant matrix maintains a width of three through the bulk 

32 
and interfaces by following the work of RUf¥ll. Here, as there, 

the equations are applied over a mesh spacing that is half a space 

wide on ei ther side of each Tiode. After the coordinate transforma-

tion, the mole flux balance takes the form, 

8ck (y - m' + mo)(vI " - vI') + vI' 8c
k 

8t L' 8y 

which in finite difference form appears as 
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(J/NJ(m»(vI " - vI') + vI' ck(J+l) - ck(J-l) 

L' 2h 

1 Nk(J+~) Nk(J-~) 

+ L' h 

The flux expression is written in terms of concentrations, poten-

tials, and velocities (as described earlier), and put into finite 

difference form. To handle the time derivative, the equation can 

then be put into a Crank-Nicholson form, or the time derivative can 

be dropped (the quasi steady-state approximation alluded to earlier). 

This analysis applies through the interfaces with the half mesh 

points that surround each interface. Poisson's equation and the con-

tinuity equation are handled likewise. 

This concludes the general formalism for describing oxide film 

growth. We shall now apply this methodology to the specific system 

of iron/iron oxide in a basic solution. 

The Iron/Iron Oxide System 

The iron/iron oxide system has received a considerable amount of 

attention, dating back over 100 years. Vetter, Bonhoeffer, Weil, 

Franck, and Sato are just a few of the researchers who have performed 

numerous studies to try to elucidate the mechanism of its passiva-

tion. However, the system remains poorly understood. More recent 

research is centered on determining the structure of the oxide with 

t . t h' 33 ,34 ,35 ,36 spec roscop~c ec n~ques. 

Vetter
3 

provides an excellent review of much of the early work. 

In the rest of this chapter we shall outline the information provided 
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in his investigation. We shall then provide a physical model that is 

consistent with those findings and with the defect model proposed by 

Wagner. 37 Finally, we shall compare results from our computer simula-

h 1 d . db" 1 38 tions with t e experimenta ata prov~de y Jovanc~cev~c et a . 

and Lukac et al.
25 

Summary of Earlier Work as Provided by Vetter 

The Flade potential (an experimentally measured, typically none-

quilibrium, potential that marks the onset of passivation) of iron is 

approximately 200 mV more positive than the potent! al at which the 

39 
oxide Fe

3
0

4 
is stable in a basic solution at pH - 8.4. Vetter 

argues that the passive film is made up of a conductive layer of 

Fe
3

0
4 

that faces the metal and a nonconducting layer of Fe
2

0
3 

that 

faces the electrolyte. As the potential of the metal in contact with 

the solution (no oxide present) is increased, the metal preferen-

tially dissolves as a ferrous species. The electronically conducting 

Fe 30
4 

oxide, the first thermodynamically stable oxide (-600 mV versus 

the NHE), does not appear due to its rapid rate of dissolution. As 

the potential is further increased, the Fe
3

0
4 

is oxidized to Fe
2

0
3

. 

This oxide is a poor conductor and features slow dissolution kinet-

ics. It':> presence leads to passivation. The Flade potential thus 

falls between the potentials defined by the overall reactions 37 

3 Fe + 80H-

and 
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2 Fe
3

0
4 

+ 20H- ~ 3 Fe
2

0
3 

+ H
2

0 + 2e-. 

The second reaction is approximately 200 mV more positive than the 

first. 

Another thought provided on the 200 mV discrepancy is that Fe 304 

and Fe
2

0
3 

form mixed phases with each other. (If-y-Fe ° lacks each 2 3 

ninth Fe ion compared to Fe
3

0
4

. The 0 2- ions have the same crystal 

lattice. ,,3) If Fe
3

0
4 

is preferentially formed near the metal and 

Fe
2

0
3 

near the electrolyte, a concentration gradient of iron ions and 

electrons must exist. A concentration gradient of iron ions is 

attended by a diffusion potential variation across the oxide. It is 

this potential variation that constitutes the difference between the 

predicted thermodynamic formation of oxide and the experimentally 

measured onset of passivation. 

Vetter further notes that thin steddy-state films « 100 run) 

form on metals when dissolution occurs simultaneously with film for-

m:3.tion. His. investigation revealed that the films on iron are 

between 2 and 10 nm and that 100 ±2 % of the dissolution results as 

3+ Fe (aq) . 

Model 

Starting with the assumption that Fe
3
0

4 
and Fe

2
0

3 
maintain the 

same lattice structure but differ by the presence of either cation or 

anion intersti tials or cation or anion vacancies leads to che four 

possible descriptions of the oxide presented i~ figure 3. a. and b. 

are schematics of Fe ions in a fixed lattice of 12 ° ions. c. and d. 



Fe 

a. Fe 

Fe 

Fe 

b. 

Fe 

o 

c. o 

o 

0 

d. 

0 

Figure 3. 

-e 

Fe 

e 

0 

Fe 0 
3 4 

Fe 

Fe 

Fe 

Fe 

I 3+ 
Fe 

-
Fe 

e 

v 
o 

o 

0 

0 

e 

Schematic 

Fe Fe 

Fe Fe 

h+ 
Fe Fe 

Fe Fe 
-e 

Fe 0 
2 3 

Fe 
h+ 

V 3-
Fe 

h+ 
Fe 

Fe 

Fe 

Fe 

Fe 

Fe 

Fe Fe Fe 

Fe Fe Fe Fe 

o o o o 

o o o o 

o o o o 

0 0 0 0 

h+ 
0 0 0 

I 2' h+ 0 

0 0 0 0 

configurations of iron oxide. 

86 



85 

2 Fe
3
0

4 
+ 2 OH- ~ 3 Fe

2
0 3 + H20 + 2 e-. 

The second reaction is approximately 200 mV more positive than the 

first. 

Another thought provided on the 200 mV discrepancy is that Fe 304 

and Fe
2

0
3 

form mixed phases with each other. ("-y-Fe
2
0 3 lacks each 

ninth Fe ion compared to Fe
3

0
4

. The 0 2- ions have the same crystal 

3 lattice." ) If Fe 3°4 is preferentially formed near the metal and 

Fe
2

0
3 

near the electrolyte, a concentration gradient of iron ions and 

electrons must exist. A concentration gradient of iron ions is 

attended by a diffusion potential variation across the oxide. It is 

this potential variation that constitutes the difference between the 

predicted thermodynamic formation of oxide and the experimentally 

measured onset of passivation. 

Vetter further notes that thin steady-state films « 100 run) 

form on metals when diss .. ution occurs simultaneously with film for-

mation. His investigation revealed that the films on iron are 

between 2 and 10 nm and that 100 ±2 , of the dissolution resul ts as 

3+ Fe (aq) . 

Hodel 

Starting with the assumption that Fe
3
04 and Fe

2
0 3 maintain the 

same lattice structure but differ by the presence of either cation or 

anion interstitials or cation or anion vacancies leads to the four 

possible descriptions of the oxide presented in figure 3. a. and h. 

are schematics of Fe ions in a fixed lattice of 12 ° ions. c. and d. 
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are schematics of 0 ions in a fixed lattice of 6 Fe ions. Because 

the Fe
3

0
4 

is considered the more conductive phase, a. and d. are 

eliminated as possible choices: these models lack mobile species in 

the Fe
3

0
4 

phase. X-ray diffraction experiments indicate that the 

oxygen lattice is fixed and that the Fe
2

0
3 

structure appears to be 

missing every ninth iron ion compared with the Fe
3

04 structure, and 

work by Franck et al.
40 

indicates that cation migration is the 

predominate mode of ionic transfer in the oxide. Thus, b. is chosen 

as the best description of the oxide. In words, we are assuming that 

the oxide takes on the structural form of Fe
2

0
3 

and contains mobile 

Fe 3+ interstitials and electrons. 

The following reactions are used to describe the interactions of 

the oxide with the adjoining metal and electrolyte phases. This is 

in agreement with the above model description and the information 

provided by Vetter. 

At the metal/oxide interface: 

1. ) Fe(m) 

2. ) e (ox) --to 
+--

At the oxide/solution interface: 

3.) 213+ + 60H - (aq) ~ 2 FeFe + 3 00 + Fe 

4. ) I~: +20H- --to + 
+-- Fe(OH)2(aq.); 

5. ) 1 3+ - (ox) --+ 2+ 
Fe 

+ e +-- Fe (aq.); 

3H
2

O; 
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The reactions are considered to be the elementary reactions with 

rates of the form: 

Rl - k1eXp [(1t>3F(41
m 

- 41°>] - k_1CI3+eXp[-~(41m - 41°>] 

Fe 

[
(1-6)2F 0 S ] [ {32F 0 S ] RS - kS c 3+ c _ exp RT (~ - ~) - k c exp - (~- ~ ) 

1
Fe 

e -s Fe2+ RT . 

Equilibrium requires: 

c 
13+ 

(3F m ° ] 1. ) 
Fe --- exp RT(~ - ~ ) 

K1 

2. ) 1 (F m ° ] K
2

c _ exp RT(~ - ~ ) 
e 

3.) 1 (F os] 
K 1/3 - exp RT(~ - ~ ) 

c c 
3 13+ OH-

Fe 

c 
+ 

4. ) 
Fe(OH)2 (3F os] 

2 - exp RT(~ - ~ ) 
K c c 

4 13+ OH-
Fe 

and 
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C 2+ 
Fe _ exp(RT2F(~O _ ~s») 

Ksc 3+c _ 
I

Fe 
e 

5.) 

Combinations of these reactions lead to the overall reactions: 

and 

2+ -Fe(m) --+ Fe (aq) + 2e (m). 

It is these overall reactions for which thermodynamic constants can 

be found in the literature. 

We shall now present the system parameters: how they were chosen 

or determined. 

System Parameters 

Table I provides a list of the mobile species and properties of 

the 29 41 phases.' The electronic conductivity of Fe
3

0
4 

is high; 

therefore, an arbitrarily high diffusion coefficient for the elec

trons is chosen (100 cm2/s, the same order of magnitude as found in 

some semiconductors). In the aqueous phase, we could not find the 

diffusion coefficient for the two boric species or the ferric 

species; however, since the current density through passive films is 

2 
low (= 5 IJA/cm ) and limited by transport of ions in the film, an 

estimate in the solution phase should be sufficient. The diffusion 

coefficient of interstitials for an oxide is typically small and in 
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Table 1 

Phase 1: ~-Fe203 

density (g/cm3) mol. wt. (g/mol) dielectric coeff. 

5.24 55.847 9. 

Mobile Species Conc. (M) Diff. coeff. 2 (cm Is) 
IFe3+ 8.2 2.XlO-l6 

- 24.6 1.xl02 e 

Phase 2: H2O 

density 3 (g/cm ) mol. wt. (g/mol) dielectric coeff. 

1. 18.0 78. 

Mobile Species Conc. (M) Diff. coeff. 2 
(em Is) 

Na+ 0.20 l.334xlO -5 

Fe2+ 3.9XlO-6 O.72xlO -5 

+ 1.3xlO-18 -5 Fe(OH)2 l.xlO 
2- 0.0500039 I.XlO-5 

B407 
-5 

HB40~ 0.1 l.xlO 

this model is the ma.ss-transfer limitation to oxide growth. Thus, 

the current density is limited by the rate of transport of intersti-

tials and is directly related to the diffusion coefficient of the 

iron interstitials. As we shall demonstrate, this value is on the 

-16 2 order of 10 cm Is. 

Although the equilibrium constants of the overall reactions can 

be found in the literature,37 the values of equilibrium constants for 

each reaction at each interface remain to be determined. 
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As demonstrated earlier, the equilibrium constants of the indi-

vidual reactions must be consistent with the equilibrium constants of 

the overall reactions. The three overall reactions can be in equili-

2+ -6 brium simultaneously if we set the Fe concentration at 3.9xlO M, 

+ -18 the Fe (OH) 2 concentration to 1.3xlO M, the pH to 8.4 and the 

potential versus a hydrogen reference electrode in the same solution 

to -103 mV (- 600 mV versus the NHE). How does the potential vary 

from the metal to the reference electrode to account for this 103 mV? 

This is an important question because we are solving Poisson's equa-

tion throughout the system and Gauss's law at the interfaces simul-

taneously with equilibrium relationships. Thus, knowledge of the 

exact potential distribution across all phases is critical. This 

variation in potential is an ~quilibrium situation and is not the 

result of a passage of current as is the potential gradient associ-

ated with ohmic effects. 

We shall now demonstrate how the potential varies from the metal 

to the reference electrode using our best judgement and the little 

data we have. We expect a potential drop between the reference elec-

trode and the solution phase. Since we are not interested in the 

physics in this region, we simply require an estimate of its value to 

subtract from the total of -103 mV. From potential-of-zero-charge 

data of the hydrogen/mercury reference electrode, it is estimated 

that the potential difference between the electrode and the solution 

is -248.2 mV. Adding this potential to the potential difference from 

the metal to the reference electrode gives a potential difference 
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from the metal to solution of -351.2 mV. This potential difference 

can occur as a drop across the metal/oxide interface, a drop across 

the double layers of the oxide at both interfaces, a further drop 

across the oxide/solution interface, and one last drop through the 

solution double layer to the bulk of the solution. 

The iron phase adjacent to the oxide can be thought to consist 

of iron ions and electrons. Since these two species are the only 

mobile species in both the oxide and metal phases, we shall assume 

h h ·1· b . . 1 d h·· f· 42 t at t e equ1 1 r1um potent1a rop across t 1S 1nter ace 1S zero. 

We are left with distributing the -351.2 mV between the oxide and the 

solution. We do not have information on the absorption equilibrium 

constants of the electrons, interstitials, sodium ions, ferrous ions, 

etc. at the oxide/solution interface; therefore, we shall assume that 

there is no specifi.c absorption of any of the species on either side. 

of this interface. We shall also assume that the interfacial region 

has a finite thickness of 0.35 nm and a dielectric constant that is 

equal to the average of the dielectric constant of the two adjacent 

bulk phases. With the absence of absorbed species, Gauss's law is 

reduced to a form that states that the gradient of the potential 

times the dielectric constant in the oxide just outside of the inter-

facial region is equal to the gradient of the potential times the 

dielectric constant through the interfacial region, which is also 

equal to the gradient of the potential times the dielectric constant 

in the solution double layer. Even though we do not account for 

specific adsorption, an equal and opposite amount of diffuse charge 
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accumulates on each side of the interface to account for the poten-

tial variation and satisfy Poisson's equation. 

To arrive at a first approximation of the potential and concen-

tration distributions, which will lead to a reasonable guess of the 

equilibrium constants at the interface, the following iterative pro-

cedure is followed. The net accumulation of charge near an interface 

is related to the potential distribution near the interface by the 

. 29 equatl.on 

[ 
zkF(~2 -~l) ]~ 

q - ± 2RT € ~ C k ,co exp RT - 1 , 

where ~2 is the potential at the interface and ~1 is the potential 

far away in the bulk. The potential difference across the 0.35 nm 

'interfacial region is related to the charge by the equation 
~ 

~3 - ~2 

0.35 run 
--L 
€ avg 

Thus, we pick a value for the charge, q, determine the potential 

drops across the oxide, interface, and solution regions, sum them to 

see if the total is equal to the total potential drop that is 

required (-351.2 V), and then pick another q until the difference is 

satisfactory. Once the proper q is found, we determine the concen

trations at the interfaces through the equation29 

Ck = ck.",exp[~(~2-~1)]· 
This calculation gives us an initial guess at the potentials and con-

centrations at near the interfaces, and thus an ini tia1 guess in a 

computer program. 
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The equilibrium constants of the five reactions must be cons is-

tant with the equilibrium constants of the three overall reactions. 

This leaves us with two degrees of freedom. The assumption that the 

equilibrium potential potential drop across the metal/oxide interface 

is zero eliminates one degree of freedom, and the assumption that the 

concentration of iron interstitials is equal to the bulk concentra-

tion of iron intrestitials required to make the Fe
2
03 lattice struc

ture into Fe
3

0
4 

(which is 8.2 M ) eliminates the second degree of 

freedom. These values are substituted into the first equilibrium 

relation to obtain KI . The concentration of electrons is related to 

the concentration of interstitials through electroneutrality, thus, 

K2 is determinable. Substituting into the lastthree equilibrium 

relations the bulk concentrationc and potentials provides the remain-

ing three equilibrium constants. The equilibrium constants of reac-

tions 1, 2, 3, 4, and 5 are accordingly 

Kl - 0.04065 llmol, K2 - 8.2 mol/I, K3 - 8.57272 xl05 (1/mol)1/3, 

K4 - 4.07739xlO-1 l/mol, 4 
and K5 - 1.44466xlO l/mol. 

We shall now present the results of our simulations and discuss 

the attributes and inadequacies of the model as compared to experi-

mental findings. 

Results and Discussion 

The growth of an oxide on iron in a basic medium of boric acid 

and sodium borate, pH of 8.4 is predicted by coml,uter simulation. 
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Generated curves are compared to experimental data. It is not our 

intention to present a parametric study of the diffusion coefficients 

and the rates of the interfacial reactions. For this reason we shall 

present only our best fits to the experimental data and simply 

describe the results of varying certain parameters. For easy com-

parison to experimental data, our simulations are corrected by 248.8 

mV such that the potential of the metal is consistent with the poten

tial one would read versus the NHE. 

Equilibrium 

The first result is the potential distribution for the equili

brium conditions. The system cons is ts of a 0.1 nm thick oxide 

sandwiched between an iron surface on the left and a borate buffer 

solution to the right. The metal phase is set to the equilibrium 

potential of -600 mV (with the correction as discussed above) versus 

the potenti~l of the solution of -248.8 mV at a point just outside 

the mass-transfer boundary layer, 12.6 ~m thick. The potential dis

tribution across the oxide and solution phases is plotted against the 

position from the metal surface divided by the width of the particu

lar phase, figure 4. The potential varies by approximately 47 mV in 

the double layer of the oxide at the oxide solution/interface and 

varies by approximately 104 mV through the double layer of the solu

tion phase near this same interface. The rest of the 351 mV is 

across the oxide/solution interface. 
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Figure 4. Potential distribution across the oxide anQ 

solution phases at the equilibrium potential, V = -600 mV 

vs. the NHE. 
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The potential dis~ribution in the solution appears to drop 

straight down at the interface. This is an illusion created by the 

thinness of the solution double layer (0.61 nm) compared to the width 

of the mass-transfer layer (12.6 ~m). The potential distribution in 

the oxide also reveals the thinness of the oxide double layer: about 

0.015 nm. This is considered small for most oxide semiconductors but 

agrees with the notion of Wagner35 for this oxide. The corresponding 

concentt:ation profiles of the electrons and interstitials in the 

oxide are provided in figure 5. The concentration of the electrons 

increases by a factor of 10 near the interface, and the concentration 

of the interstitials drops by nearly two orders of magnitude. This 

is a function of the potential dependence of the concentrations as 

given above. Figu~e 6 provides the concentration and potential pro

files in the solution phase versus the dimensionless coordinate y. 

This blown up view shows the curvature of the potential through the 

double layer near the interface and the corresponding concentration 

profiles. The concentrations in this region similarly obey the 

potential dependence given above. 

the next results describe the growth of the oxide during a posi

tive sweep of the potential. 

Comparison with Experimental Data 

In this part of our investigation, we introduce curves of 

current and length versus potential. The curves presented are those 

that best fit the experimental data in the literature with emphasis 



100 

e 

10 

I Fe 
+3 

g 
~ 1 U 

0.1 

• ___________________ • _________ •• ______________________ ---------------- ______ 1 

, , , , , , , , , , . , , , 
I' 

-540 

-560 

-580 

-600 

0.01~--------~------------------~--------~--------~ 0.0 0.2 0.4 0.6 0.8 1.0 

y 

Figure 5. Potential and concentration distributions of 

interstitials and electrons versus the dimensionless co-

ordinate, y, at the equilibrium potential, V = -600 mV 

vs. the NHE. 

98 

-
=e -



99 

101 ~--------~--------~---------r--------~--------~-240 

10° 

10-1 

.......... --........ --.. -.... --.. ~~--... -.--.. 
............ -260 

? 
~II#" 

...... __ ---------------1 .•. , .... -

10-2 

~ 
-280 

- 10-3 :E -
B 40 7= -

-300 >e -..... 
C) 10-4 e 

10-5 -320 

10-6 

-340 

10-7 

10-8 

0 1 
~--------~--------~--------~--------~--------~-360 

5 2 3 4 

X/A 

Figure 6. Concentration and potential distributions in the 

solution phase at the equilibrium potential versus the 

number of debye lengths from the oxide surface. V = -600 rnV 

vs. NHE. 



100 

on emphasize important aspects of the effects of varying certain 

parameters. Also shown are results of simulations that include addi-

tional physics, performed to augment the comparison with the data. 

Before proceeding we must state that we were unable to implement 

the high-field rate equation. The severe nonlinearity of this equa-

tion, combined with the high degree of coupling of Poisson's equation 

and the flux equations provided too difficult a challenge for Auto

band29 (the numerical differentiation subroutine we chose for solving 

our equations). Despi te the months of effort to get around this 

problem, no satisfactory solution was obta.ined. This is clearly a 

disappointment, for preliminary results indicate that the field is 

initially growing in the high-field regime. It is felt that a proper 

linearization of the equations and perhaps techniques used for decou-

pIing such problems would be effective. However, cons idering the 

amount of time that has already been soent, we decided to provide the 

low-field results. Moreover, it is felt that many of the trends seen 

in the low-field regime should hold for the high-field regime. 

Again, the results presented are the best fit achievable with the 

low-field equation. 

Figure 7 contains experimental data reproduced from Jovancicevic 

et al.
36 

The current versus potential is featured for a sweep rate 

of 0.3 mV/s. Also shown in the figure is a computer generate'd simu-

lation for the same sweep rate assuming a quasi-steady state. 

A d - J - - 1 36 -d f 0 03 ccor 1ng to ovanc~ceV1C et a., an ox~ eo. nm is not seen 

until the potential equals -500 mV (this is 100 mV above the equili-
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brium potential). Since we have not included nucleation in our 

model, we can not simulate the results of a zero thick oxide. The 

simulations therefore start at -500 mV. The 0.03 nm measured at this 

potential is thinner than an atom, and probably means that roughly 

30% of the film is covered by a 1 nm thick film. Our model does not 

include nucleation or a means of hanaling the kinetics of partial 

coverage. The simulation will therefore provide a poor fit at the 

lower potentials. 

To fit a curve to the data, we have at our disposal five rate 

constants and the diffusion coefficients of the species in the oxide. 

The diffusion coefficient of the interstitials is much smaller than 

that of any other species, and the interstitials are involved in all 

of the proposed reactions. It is therefore the only diffusion coef

ficient that we shall adjust. 

The electrons move relatively easily through the oxide and, we 

assume, pass easily into the metal phase. Reaction 2 is therefore 

assumed to progress at a high enough rate to be considered at equili

brium. A variation of the rate of interstitials from the metal into 

the oxide should equally affect the flux of interstitials to the 

opposite interface. Thus, to avoid needless complications, we assume 

that the rate of reaction 1 progresses fast enough to be considered 

at equilibrium. Simulations show that the equilibrium constant for 

the ferric reaction, reaction 4, is too low to have an effect, 

independent of its rate. For this reason the reaction is assumed to 

be at equilibrium (hence, maximum rate). This reduces our flexibil-
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ity to varying two rate constants, of reactions which occur at the 

o~ide/solution interface, and the diffusion coefficient of the inter

stitials. 

Simulations showed that as the rate constant of the ferrous 

reaction, reaction 5, is increased, the initial peak in the current 

in figure 7 moves up and to the right with respect to potential. An 

increase in the oxide-forming reaction, reaction 3, has the opposite 

effect. The diffusion coefficient of the interstitials moves the 

entire curve vertically up or down in a manner that is proportional 

to the change in the diffusion coefficient. What is going on? 

Initially, as the current increases with potential, the current 

is limited by the rate of the ferrous reaction. The oxide - forming 

reaction also increases with potential, although it is not the dom

inant reaction, and the oxide thickens. When the current reaches a 

peak, the system is switching from a reaction-limited regime to a 

diffusion-limited regime, which defines the onset of passivation. In 

this regime, the current density decreases as the oxide thickens. In 

the diffusion-limited regime, the interstitials reach the surface at 

some finite rate. The interstitials are then consumed by one of the 

three reactions at the oxide/solution interface. As the potential is 

increased, the reaction that consumes the majority of interstitials 

will shift from a reaction of lower charge transfer to one of higher 

charge transfer. The charge transfer number in reaction 5 is equal 

to two, and the charge transfer number of reactions 3 and 4 is equal 

to three. Between reactions of the same order, the reaction with the 
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combination of equilibrium constant and rate of reaction that allows 

it to appear first as the dominant means of interstitial consumption 

shall continue to prevail at higher potentials. For these reasons we 

see in figure 8 that the dominant rate of interstitial consumption 

switches from reaction 5 to reaction 3. The equilibrium constant of 

reaction 4 is too small to allow it to compete with reaction 3, 

although at the higher potentials reaction 4 carries more current 

than reaction 5. 

If the oxide were electrically neutral and the flux of electrons 

were equal to zero, the limiting current would obey the equation 

iI' ~m [

4D c 1 13+ I 3+ 
_ 3FN - 3F __ FEL.l:! 

3+ L' 
I Fe 

where the concentration of interstitials is that at the metal/oxide 

interface. The diffusion-limited current of interstitials that are 

initially consumed primarily by the ferrous reaction is accompanied 

by a flux of electrons of the same direction and magnitude. The 

current carried by the electrons, however, is of the opposite sign 

and one third of the interstitial current. Thus, the limiting 

current appears as two thirds of that expected from the diffusive 

flux of interstitials alone. Figure 9 presents the current from the 

simulation and the theoretical limiting current and two-thirds of the 

theoretical limiting current when electroneutrality holds. This 

transition from a limiting current of interstitials accompanied by 

electron transport to the limiting current with no electron transport 
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should follow the transition of the current from the ferrous reaction 

to the oxide-forming reaction. We therefore expect the two-thirds 

limiting current to lie on top of the simulation current at the 

potential where the peak starts to turn down and the full limiting 

current line to coincide with the simulation current at higher poten-

tia1s. The lack of agreement at the low-potential end is a result of 

the nonelectroneutrality. This provides further justification for 

not making this assumption and using Poisson's equation instead. 

In the end, the values that provide the best fit to the data are 

-13 2 -1.1 -16 2 
k_3 - lx10 mol/cm -s, kS - 1xlO cm/s, and D

I3
+ - 2x10 cm Is. 

Fe 

Further inspection of the data provided by Jovancicevic et al. 

reveals a second peak in the current at a potential of around 100 mV. 

Our first inclination was that this is the result of another reac-

tion, perhaps the ferric reaction, reaction 4, becoming the dominant 

means of interstitial utilization. The simulations above were 

obtained assuming that reaction 4 is at equilibrium. It is therefore 

impossible to increase the rate of this reaction. But perhaps the 

equilibrium constant reported for this reaction was incorrect, and 

maybe there is room for adjusting its value. However, this reaction 

has the same reaction order as that of the oxide-film reaction. 

Therefore, the equilibrium constant must be increased to the point 

where the rate of reaction 4 overcomes the rate of reaction 3, the 

oxide-forming reaction. If this is done, the oxide-film reaction is 

diminished, and the current continues to increase with potential, 
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switching from the ferrous reaction to the ferric reaction. Eventu-

ally, enough oxide would be formed at the slow reaction rate to limit

the rate of transport of interstitials, and the current would slowly

decrease. The final result would still be one large peak in the

current.

Underporenrial Deposirion

The thickness of the oxide measured versus the potential during

a sweep rate of 5 mV/s is provided in figure 7. A plateau in the

oxide thickness at around 7.5 nm appears between -375 and -175 mV.

This leads us to believe that there may be underpotential deposition.

Underpotential deposition (UPD) is the deposition of any solid on a

substrate made of a different material than the deposit where the

substrate is thermodynamically more stable for deposition than the

deposit. Deposition of this type is analogous to the BET isotherm

where the surface coverage of gas molecules is a function of the

pressure of the surrounding gas. We would like to take advantage of

this similarity and use the equations previously derived in the

literature for the BET isotherm. A driving force for deposition that

is a function of the thickness of the oxide is subsequently

developed.

The BET isotherm A3 is characterized by the equation

v cP
m

v -

[ ]'(Po- P) 1 + _e-l) PP
O
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where v is the volume of the adsorbed layer, v is the volume of a 
m 

monolayer of the absorbed layer, c is a constant related to the heat 

of adsorption, and P is the saturation pressure. In relation to our 
o 

analysis, the volume of the absorbed layer is analogous to the thick-

ness of the oxide, L, and the pressure is analogous to the applied 

potential, U: 

P nFU 
v ~ L and In p ~ RI. 

o 

We require an equation tl,at gives the potential as a function of the 

length. Rearrangement of the above equation and substitution of L 

and U give 

2P o 

+ 4 (c -

c is related to the width of the potential plateau, U , through the 
o 

equation 

From the data of Jovancicevic 36 
et al., we estima.te that U 

o 
is 

approximately 200 mV. 

The BET isotherm relates the volume of coverage to the gas pres-

sure. The surface coverage is not strictly associated with either 

interface. In this analysis, a relationship between the potential of 

oxide deposition and the amount of coverage is also not strictly 

associated with either interface. However, we felt that the best way 
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to incorporate the UPO was to attribute it to the oxide-forming reac~ 

tion, reaction 3, at the oxide/solution interface. Thus, the U 

defined above was subtracted from the potential difference of the 

oxide/solution interface in both the forward and reverse reac tion 

rates of reaction 3, 

The result of the above adjustment to reaction rate 3 on the 

current and the length of the oxide when the potential is swept at a 

rate of 0.3 mV/s is provided in figure 10. One sees a peak in the 

current at the same potential ~here the length of the film briefly 

levels off. The peak in the current appears becaus~ the oxide stops 

growing, and thus, the diffusion-limited current stops decreasing. 

The current tends to level off. A few millivol ts further to the 

right in figure 11 the oxide film reaction begin to increase again, 

while the current drops off again. 

The reason we included UPD in our analysis was not only to make 

our length versus potential curve agree with the experimental data 

but also to get the second peak in the current to agree as well. The 

peak we get is nO'i\7here near the potential of the second peak in the 

experimental data. In our simulations, the leveling off of the oxide 

is going to appear at the same potential where the peak in the 

current appears. In the experiments, these two phenomena are 

separated by 200 mV. Figure 10 demonstrates that if we try to match 

the experimentally measured leveling off of the film thickness with 
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our simulations, the peak in the simulated current appears at too low 

a potential as compared to the peak in the current in the experimen

tal data. If we-attempted to match the peak in the current with our 

simulations at the correct potentials, we would have to delay the UPO 

200 mV and allow the length to reach 6 nm before leveling off. This 

would allow sufficient film growth to occur to bring the mass-

transfer-limited current down to the proper magnitude at the first 

minimum. A growing oxide that briefly levels off at 6 nm before con-

tinuing to grow again can not be explained by UPo. We conclude that 

the two events in the data are mutually exclusive. Wi~h the present 

amount of physics included in our analysis, it is impossible for us 

to match all of the data provided by Jovancicevic et a1. 

A final comparison to experimental data is provided. Included 

in figure 12 are the data from J ovancicevic et a1., our original 

simulation (without UPD) , and the current versus potential curve 

25 reproduced from Lukac et a1. Our work appears to be in far better 

agreement with the work of Lukac et a1. than that performed by Jovan-

cicevic et a1. After exhausting all physically reasonable avenues 

for creating simulations that could duplicate the results of Jovanci-

cevic et a1., we come to the conclusion that perhaps the work done by 

Lukac et a1. was done under better controlled conditions. 

Summary 

In this chapter we have presented the equations that describe 

the growth of a film. Methods of combining the equations to elim-
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inate rapid reactions are provided, as well as the boundary condi-

tions and a means for solving the equations. Equations that find 

specific application to oxide films were developed as were variables 

that make the computation simpler. A model was developed specifi-

cally for the iron/iron oxide system. The method by which certain 

parameters are determined was given. A program was then written and 

results of a low-field mole-flux equation were displayed. A com-

parison to existing experimental data and the effects of ceL'tain 

parameters on the final simulations were also discussed. A final 

comparison to experimental data showed good agreement with the work 

of Lukac et al. From this analysis we conclude that as the potential 

of iron in a borate buffer solution is swept in an increasing manner, 

iron initially reacts to form dissolved ferrous species. Eventually, 

at approximately 200 mV above equilibrium, an oxide is formed that is 

thick enough to cause a switch to the mass-transfer-limited regime 

and the onset of passivation. At higher potentials, the oxide-film-

forming reaction becomes the dominant reaction. 

Roman 

a 

List of Symbols 

jump distance, cm 

activity of species k 

3 concentration of species k, mol/cm 

2 diffusion coefficient of species k, cm /s 



e 

F 

i 

m 

m o 

n 

v 

v 

x 

symbol for the electron 

Faraday's constant, 96485 C/equiv 

symbol for the hole 

current density, A/cm2 

forward and backward rate constants of rxn. ~ 

equilibrium constant of reaction ~ 

length of phase, cm 

h th. f f h 1 f t e m Lnter ace rom tee t 

the chosen stationary interface 

number of charges transferred in a reaction 

2 mole flux of k, mol/em -s 

reaction order for forward reactants 

reaction order for backward reactants 

universal gas constant, 8.3143 J/mol-K 

3 reaction rate of ~, mol/em -s 

2 reaction rate at surface of ~, mol/em -s 

stoichiometric coefficient of species k 

time, s 

temperature, K 

standard electrode potential, V 

velocity, cm/s 

electrode potential, V 

coordinate, em 

X sits occupied by Y 

dimensionless coordinate 
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Greek 

JJk 

v 

charge number of species k 

symmetry factor 

distance between charges in different phases, cm 

surface concentration of species k, mol/cm2 

permeability, F/m 

dimensionless distance 

electrochemical potential of k, J/mol 

viscosity, g/cm-s 

electric potential, V 

-1 angular velocity, s 

subscripts 

i,k species i and k 

I interface 

1 reaction 1 

L lattice 

migr migration 

ref reference 

trans transport 

superscripts 

m metal 

superscripts 

m metal 
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oxide 

solution 

position to the left of x 

position to the right of x 
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Appendix 

Program 

This section contains the computer program that was used to 

create the graphs and analysis of the iron/iron oxide system of the 

main text. We shall briefly describe the tasks performed by the main 

program, its subroutines, and functions; further information is pro

vided within the program. 

Main program iren: initializes the variables and parameters. 

Subroutine autoband: puts the equations in computational dif

ferentiation form. 
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Subroutine eqn: decides which equations shall be used to 

describe the phenomena that occur at the particular mesh point. 

Subroutine eqnlnj: contains the equations that describe the con

ditions at the first and last mesh points. 

Subroutine eqni: contains the equations that describe the condi

tions at the interfaces. 

Subroutine eqnj: contains the equations that describe the condi

tions within a given phase. 

Subroutine eqnprod: combines mass balance equations such that 

each of the reactions is present in only one equation. 

Subroutine band: puts the parameters of equations into a banded 

matrix and also solves the inverted matrix returning the solution in 

matrix "c." 

Subroutine matinv: inverts matrices. 

Subroutine matmul: matrix multiplier. 

Subroutine eqlbr: adds the logarithm of the equilibrium constant 

to the sum of the logarithm of the concentrations of an equilibrium 

reaction. 

Subroutine smslnc: sums the stoichiometric coefficient times the 

logarithm of the concentrations of a reaction. 

Subroutine rfb: calculates the forward and backward parts of the 

rate constants that include the k's and the product of the concentra

tions raised to their stoichiometric coefficients. 
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Function fnrt: calculates the charge transfer number of a reac

tion and mUltiplies it by F/RT. 

Function flxhfpt: calculates the diffusive and migrative flux of 

a species at a half mesh point. 

Function accum: calculates the stretching term added to fluxes. 

Following this program is a data file, "iren. dat," which was 

read by the main program and used to generate some of the data pro

duced for the iron/iron oxide system. 



c 
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Main Program 

iren 

program iren 
implicit real*8(a-h,o-z) 
dimension ref(s,ls),cre(s,ls),ampd(s),mode(s),vlr(s),vi(6),db(s) 
common /ablk/a(2s,2s),b(2s,2s),c(2s,40l),d(2s,sl),g(2s), 

& x(25,2s),y(25,25),neqt,njt 
common fbblk/ nj(s),nmb(S),ipu(s) ,ivu(s) ,cc(2s,40l) 

& ,pot(s,40l),z(s,2s) 
common /cblk/ nph,nsp(s),mb(5,15),ivar(s,2s) 
common /dblk/ kontrol,crO,mcro,lrcro,idlr(s),den(s),zmw(s), 

& blen(6),ltcs(s,ls) 
common /eblk/ nhtr(s,2),pt(s,2,15,ls),qt(s,2,ls,ls), 

& st(s,2,ls,ls),inft(6,ls),rkba(6,ls),equi!t(6,ls), 
& be(6,15),zks(s,2,2s),curl(6),curr(6) 

common /fblk/ vtot,mvset,moset,lrvset,lroset,pm(s,ls,ls), 
& qm(s,15,ls),sm(s,ls,15),infm(s,ls) 

common /gb1k/ zlen(s),ninfm(5),rkbv(s,ls),h(s,40l),perm(s),f 
& ,ccsav(2s,401),csav(25,40l),yy(5,401) 
common/rate/ve1sav,ve1,vell,rrxn(25),cur(40l),cursav(40l),jtime 

& ,f1xs(401,15),f1xsav(401,lS),chd(401),chdsav(401),currsav(6) 
common /hb1k/ mvi,nhmr(s),cin(s,ls),equilm(s,15), 

& v(5,401),v1(5,401) 
common /ib1k/ aj,u(s,15),dif(S,lS),frt,co 
common /nblk/ ratel,rate2,rate3,time,ji(6) 
common /test/ err(5,2),jcount,jco,jcosav 
open (2,fi1e-'iren.dat' ,status-'old') 
open (4,file-'iren.len' ,status-'unknown') 
open (3,fi1e-'iren.con' ,status-'unknown') 
open (S,file-'restart.dat' ,status-'old') 
rewind 4 
rewind 3 
do 999 i-1,25 

do 999 j-1,401 
999 c(i,j)-O. 

c Program for effect of migration on current with homogeneous 
c and heterogeneous reactions and multiple phases. 
c 

802 format (il,lx,il,lx.ell.4,lx,el1.4,lx,f5.1,lx,a6) 
803 format (32h Nernst stagnant diffusion layer) 
804 format (32h Growing drop or pla~e electrode) 
805 format (28h Rotating disk, Sc**(-1/3)-,e12.S, 

&18h; (Omega/Nu)**.S-,e12.5) 
806 format (19h Species for Sc is ,a6) 

c 67 10 20 30 40 50 
807 format (/4h nj-~I4://f species U dif' 

60 7072 

&' z lat. site mat. bal.'/(lx,a6,2x,e9.2,lx,e9.2,lx,fS.l, 

~ .. 



& 6x,il,9x,il» 
808 format (/8x,31h s(i,l) Heterogeneous Reactions) 
809 format (lx,a6,5(f5.1» 
810 format (/8x,29h s(i,l) Homogeneous Reactions) 
812 format (/38h The next run did not converge, jkon3-,i4) 
813 format (/31h species left right) 
814 format (lx,a6,2x,2el2.5) 
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820 format (/3x,a6,12h cur. den. -,e12.5,17h (mA/cm**2) amp -,e12.5) 
821 format (/16h cur. den. set -,e12.5,6h it is,eI2.5,8hin phase 

c 

&,11,7h to the,11,16h(1-left,2-right» 
822 format (/22h The total potential -,e12.5,3h mv) 
823 format (/19h Potential is set -,eI2.5,15h mv cur. den. -, 

&e12.5,11h (mA/cm**2» 
824 format (/13h The conc. of,a6,28h is set. Potential is set -

&,e12.5,24h mv, and the cur. den. -,eI2.5,9h mA/cm**2) 
830 format (/43h Time Velocity of Interfaces) 
831 format (lx,ell.4,2x,6(el1.4,2x» 
832 format (/35h Time Length o~ Each Phase) 

c f : Faraday's constant. 
c frt : Faraday's constant divided by the gas constant and the 
c absolute temperature with units of l/mV. 
c aa, bb : constants describing flow to a rotating disk. 
c 

c 

pi-3.14159265358979 
f-96487. 
frt-f/8.3l43/298.15/1000. 
aa-0.5l023262 
bb--0.61592201 

c Read in or define the following values. 
c 
c area : area of disk. 
c crO : concentration of the limiting reactant. 
c ctot: total current through cell. 
c kontrol : indicates whether the program is to solve for 
c the current for a species at a set concentration at 
c the electrode s\lrface, 1; the current for a set potential 
c at the electrode surface, 2; for the potential for a set 
c total current, 3. 
c mcro, lrcro : phase and side of phase of limiting reactant. 
c mvi : interface where velocity is set to zero. 
c moset, lroset : phase and side where potential is set to O. 
c mvset, lrvset : phase and side where potential is set to vtot. 
c neqt : will count the total number of equations to be solved. 
c njt : will count the total number of mesh points. 
c nph : number of phases. 
c ro : radius of disk. 
c vtot : total potential across cell. 
c 

read (2:*) nph.kon~rol,crO,ro 



c 

area-pi*ro**2 
read (2,*) vtot,ctot 
if(kontrol.eq.l) read (2,*) mcro,lrcro 
read (2,*) mvi 
do 100 m-l,nph+l 

100 vi(m)-O. 
read (2,*) mvset,lrvset 
read (2,*) moset,lroset 

c Read in or define for each phase the following values. 
c 
c aj: jump distance in each phase. 
c be : transfer coefficient. 
c blen : length of interface (1.e-8 cm - 1 angstrom.) 
c cin initial concentrations. 
c ere concentrations c in reference electrode. 
c den density of phase. 
c dif diffusion coefficient times 1.eS. 
c equilm : equilibrium constant of homogeneous reaction. 
c equilt : equilibrium constant of heterogeneous reaction. 
c idlr identity of the limiting reactant. 
c inft : indicates if the reaction is at equilibrium. 
c infm : indicates if it is an equilibrium reaction. 
c ipu : indicates if the potential is to be solved for. 
cItes: indicates if it is a lattice conservative species. 
c ivu : indicates if the velocity is to be solved for. 
c mb : indicates if a matterial balance is to be done. 
c mode indicates type of velocity profile. 
c nhmr : number of homogeneous reactions. 
c nhtr : number of heterogeneous reactions on both sides. 
c ninfm : number of equilibrium homogeneous reactions. 
c nj: number of mesh points. 
c nsp : number of species. 
c perm: permitivity of phase (C/V-cm). 
c pm forward homogeneous stoichiometric coefficient. 
c pt forward heterogeneous stoichiometric coefficient. 
c qm backward homogeneous rate stoichiometric coefficient. 
c qt backward heterogeneous stoichiometric coefficient. 
c sm difference of coefficients. 
c ref: name of species. 
c rkba : backward rate of heterogeneous reaction. 
c rkbv : backward rate of homogeneous reaction. 
c vIr: indicates if the given velocity goes right or left. 
c u/f/1000 : z(i)u(i)F in units of inverse millivolts. 
c z: charge of species. 
c zks : equilibrium constants of surface adsorption. 
c zlen : length of phase. 
c zmw : molecular weight of phase. 
c 

aj-3.Sd-10 
neqt-nph 
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c 

njt-l 
j i(l)-nj t 
do 19 m-l,nph 

read (2,*) nsp(m),nhmr(m),idlr(m),nj(m) 
read (2,*) zlen(m),den(m),zmw(m),perm(m) 
perm(m)-perm(m)*S.S54d-14 
blen(m+l)-3.5d-S 
read (2,802) (ltcs(m,i),mb(m,i),u(m,i), 

& dif(m,i),z(m,i),ref(m,i),i-l,nsp(m» 
nmb(m)-O 
do 1 i-l,nsp(m) 

read (2,*) cin(m,i),cre(m,i) 
nmb(m)-nmb(m)+mb(m,i) 
u(m,i)-u(m,i)/f/1000. 

1 dif(m,i)-dif(m,i)/l.d5 
ninfm(m)-O 
if(nhmr(m).eq.O) goto 45 
do 2 i-l,nsp(m) 

read (2,*) (pm(m,i,l),qm(m,i,l), l-l,nhmr(m» 
do 2 l-l,nhmr(m) 

2 sm (m, i , 1) -pm (m, i , 1.) - qm (m , i , l) 
do 3 l-l,nhmr(m) 

read (2,*) infm(m,l),rkbv(m,l),equilm(m,l) 
ninfm(m)-ninfm(m)+infm(m,l) 

3 continue 
45 continue 

do 44 lr-l,2 
read (2,*) nhtr(m,lr) 
if(nhtr(m,lr).eq.O) goto 44 
do 4 i-l,nsp(m) 
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read (2,*) (pt(m,lr,i,l),qt(m,lr,i,l), l-l,nhtr(m,lr» 
do 4 l-l,nhtr(m,lr) 

st(m,lr,i,l)-pt(m,lr,i,l)-qt(m,lr,i,l) 
~ continue 

44 continue 
do 5 l-1,nhtr(m,2) 

read (2,*) inft(m+l,l),rkba(m+l,l),equilt(m+l,l),be(m+l,l) 
5 continue 

do 6 i-l,nsp(m) 
read (2,*) (zks(m,lr,i), lr-l,2) 

6 continue 
read (2,*)ipu(m),ivu(m) 
ir-idlr(m) 
if(ivu(m).eq.l) goto 13 
read (2,*) mode(m),vlr(m) 
print *, m, mode(m),vlr(m) 

c All data for phase m has been read in at this time. 
c We shall now set up the constants for initial guess 
c of the velocity. 
c 



c Define the following values. 
c ampd : limiting current with excess supporting electrolyte. 
c anu : kinematic viscosity. 
c delta: order of boundary layer thickness. 
c difmax : maximum diffusion coefficient. 
c difz : diffusion coefficient of limiting reactant. 
c h : mesh spacing. 
c ir : limiting reactant. 
c om : rotation speed. 
c omnu om/anu 
c scm3 : Sc number for limiting reactant to the -1/3. 
c time : time. 
c ximax : dimensionless thickness of boundary layer. 
c 
c Find maximum diffusion coefficient and use for Sc number. 
c 

difmax-O.O 
do 7 i-l,nsp(m) 

if(mb(m,i).eq.O) goto 7 
if(dif(m,i).gt.difmax) then 

difmax-dif(m,i) 
idz-i 

endif 
7 continue 

difz-dif(m,ir) 
if(mode(m).ne.l) goto 9 

const-O.O 
print 803 
ampd(m)-l.O 
ximax-l.O 
delta-zlen(m) 

9 if(mode(m).ne.2) goto 10 
const-2.0 
print 804 
ampd(m)-1.128379l67 
ximax-3.3*(difmax/difz)**0.s 
read (2,*)time 
delta-(12.*difz*time/7.)**0.5 

10 if(mode(m).ne.3) goto 11 
const-2.0 
print 804 
ampd(m)-1.128379l67 
ximax-3.3*(difmax/difz)**0.s 
read (2,*)time 
delta-(4.*difz*time)**0.s 

11 if(mode(m).ne.4) goto 12 
const-3.0 
read (2,*) anu,om 
omnu-om/anu 
scm3-(anu/difz)**(-1./3.) 
print 805, scm3,omnu**.5 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ampd(m)-1.119846522 
ximax-2.0*(difmax/difz)**(1.0/3.0) 
delta-(3./aa)**(1./3.)*scm3*omnu**(-.5) 
print 806,ref(m,ir) 
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12 zlen(m)-ximax*delta 
13 print 807, nj(m), 

14 

& (ref(m,i),u(m,i)*f*lOOO.,dif(m,i),z(m,i),ltcs(m,i), 
& mb(m,i), i-l,nsp(m» 

print 810 
do 14 i-l,nsp(m) 
print 809, ref(m,i),(sm(m,i,l), l-l,nhmr(m» 

We now make initial guesses of concentrations by assuming 
the species involved in homogeneous reactions divide into 
proportions according to their stoichiometry, of 
velocities of zero except for the mode of transport we, 
selected, and of potential by setting it equal to zero 
except for that phase which is set to vtot. 

Define the following parameters. 
c : the variables to be solved for are stored here. 
ct : total of the concentration. 
i : counts the number of equations. 
ivar : identifies the equation to which species in each phase 

corresponds. 
pot : the given potential. 
v : the given velocity. 
vl : is the given velocity plus the velocity of the interface. 
stt : total of the soichiometric coefficients. 
y : the dimensionless distance xi. 
ze : the zeta in the von Karman transformation for the 

rotating disk. 

i-neqt 
db(m)-O. 
do 15 ii-l,nsp(m) 

if(mb(m,ii).ne.l) goto 15 
i-i+l 
ivar(m,ii)-i 
c(i,njt)-cin(m,ii) 
db(m)-db(m)+cin(m,ii)*z(m,ii)**2 

15 continue 
if(db(m).ne.O.) db(m)-perm(m)**.5/(f*frt*db(m»**.5 
if(ipu(m).eq.1) ivar(m,nmb(m)+l)-i+l 
if(ivu(m).eq.1) ivar(m,nmb(m)+ipu(m)+l)-i+ipu(m)+l 
if(ipu(m).eq.l) then 

i-ivar(m,nmb(m)+ipu(m» 
if(m.eq.mvset) then 

if(lrvset.eq.-l) then 
c(i,njt)-vtot 
c(i,njt+nj(m)-l)-O. 



endif 
if(lrvset.eq.l) then 

c ( i , nj t) ==0 . 
c(i,njt+nj(m)-l)-vtot 

endif 
else 

c(i,njt)-O. 
c(i,njt+nj(m)-l)-O. 
if(m.eq.2) c(i,njt+nj(m)-1)-pot(m-l,njt)+47. 
if(m.gt.l) then 

if(ipu(m-1).eq.0) then 
c(i,njt)-pot(m-l,njt) 

else 
im-ivar(m-l,nmb(m-l)+ipu(m-l)+ivu(m-l» 
c(i,njt)-c(im,njt) 
if(m.eq.3) c(i,njt)-O.-104. 

endif 
endif 
if(m.lt.nph) then 

if(m+l.eq.mvset) then 
if(ipu(m+l).eq.O) then 

c(i,njt+nj(m)-l)-vtot 
else 

if(lrvset.eq.-1) c(i,njt+nj(m)-l)-vtot 
endif 

endif 
endif 

endif 
else 

if(m.eq.mvset) then 
pot(m, nj t)-vtot 

else 
pot(m,njt)-O. 

endif 
endif 
if(ivu(m).eq.l) c(ivar(m,nmb(m)+ipu(m)+ivu(m»,njt)-O. 
if(kontro1.eq.l) then 

if(m.eq.mcro) then 
if(lrcro.eq.-1) c(ivar(m,ir),njt+nj(m)-l)-

& c(ivar(m,ir),njt) 
endif 

endif 
c Make an initial guess for each j. 

do 18 j-njt,njt+nj(m)-l 
if(j .eq.njt) yy(m,j)-O. 
if(j.gt.njt) h(m,j)-l./dfloat(nj(m)-l) 
if(j.gt.njt) yy(m,j)-yy(m,j-l)+h(m,j) 
if(m.eq.2) then 

ff .... 0.0605 
zjmid-dfloat(nj(m)-1)/2.+njt 
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if(j.gt.njt) yy(m,j)-1./(1.+exp(-(df1oat(j)-zjmid) 



& 

& 

& 
& 

& 

*ff» 
if(j.gt.njt) h(m,j)-yy(m,j)-yy(m,j-1) 

endif 
if(m.eq.3) then 

ff-O.12S 
if(j.gt.njt) yy(m,j)-dexp(df1oat(j-njt-1)*ff) 

/dexp (df1oat (nj (m)-2)*ff) 
if(j.gt.njt) h(m,j)-yy(m,j)-yy(m,j-1) 

endif 
if(j.eq.njt+nj(m)-l) yy(m,j)-l. 
if(j.eq.njt+nj(m)-l) h(m,j)-yy(m,j)-yy(m,j-1) 
if(ivu(m).eq.O) then 

if(v1r(m).gt.O) yd-(1.-yy(m,j»*zlen(m)/de1ta 
if(v1r(m).lt.O) yd-yy(m,j)*zlen(m)/de1ta 
v(m,j)-v1r(m)*const*yd*difz/de1ta 
if(mode(m).eq.4) then 

ze-yd*(3./aa)**(1./3.)*scm3 
v(m,j)-v(m,j)*yd 
*(1.0-ze/aa*(1./3.+bb/6.*ze+(bb*ze)**2/30. 
+aa*ze**3/180.-(1.-4.*aa*bb)*ze**4/1260.» 

endif 
v1(m,j)-v(m,j) 

else 
i-ivar(m,nmb(m)+ipu(m)+ivu(m» 
c(i ,j )-c(i, nj t) 

endif 
if(ipu(m).eq.1) then 

i-ivar(m,nmb(m)+ipu(m» 
if(m.eq.2) then 

fctr-(l.-yy(m,j»*zlen(m)/db(m) 
if(fctr.gt.9.2) then 

c (i ,j ) -c (i , nj t) 
else 

c (i, j )-c (i, nj t)+( c (i, nj t+nj (m) -1) -
c(i,njt»*dexp(-fctr) 

endif 
endif 
if(m.eq.3) then 

c(i,njt+nj(m)-l)-O. 
fctr-yy(m,j)*zlen(m)/db(m) 
if(fctr.gt.9.2) then 

c (i, j )-c (i, nj t+nj (m) -1) 
else 

c(i,j)-c(i,njt)*dexp(-fctr) 
endif 

endif 
else 

pot(m,j)=pot(m,njt) 
endif 
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if(ivar(m,ir).ne.O) c(ivar(m,ir),j)-c(ivar(m,ir),njt) 
if(kontro1.eq.l) then 



if(m.eq.mcro) then 
if(lrcro.eq.-l) then 
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c(ivar(m,ir),j)- crO+(c(ivar(m,ir),njt+nj(m)-l) 

c 

& -crO)*df1oat(j-njt)/dfloat(nj(m)-1) 
else 

c(ivar(m,ir),j)- crO+(c(ivar(m,ir),njt)-crO) 
& *df1oat(njt+nj(m)-1-j)/df1oat(nj(m)-l) 

endif 
endif 

endif 
do 18 ii-l,nsp(m) 

if(i.eq.ir) goto 18 
if(mb(m,ii).eq.O) goto 18 
i-ivar(m,ii) 
c ( i , j ) -c ( i , nj t) 

18 continue 
nj t-nj t+nj (m)-1 
j i(m+l)-nj t 
neqt-neqt+nmb(m)+ipu(m)+ivu(m) 

19 continue 
njsum-3 

do 51 m-2,nph 
do SO j-njsum,njsum+nj(m)-1 

if(m.eq.2) then 
read (5,*) (yyy,c(l,j) 

& ,c(2,j) ,c(3,j), (c(ivar(m,i) ,j), 
& i-l,nmb(m»,c(6,j» 

& 
& 

else 
read (5,*) (yyy,c(1,j) 
,c(2,j),c(3,j),(c(ivar(m,i),j), 

i-1,nmb(m»,c(l3,j» 
endif 

50 continue 
njsum-njsum+nj(m)-l 

51 continue 
velsav--c(2,4) 

c jtime : the time stepping loop. 
c jkon3: the loop when converging on a particular total 
c total current (kontrol-3.) 
c 

time-O. 
timetot-l.Od05 
itcount-O 
potset-+600.0 
potprint-O.O 
swr-+1.0 
dt-O. 
nf1ag-0 
if1g-0 
j time-O 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

20 jtime-jtime+l 
if(jtime.gt.400) goto 36 
if(time.ge.timetot) then 

print *,'time is greater than 1.3e07.' 
goto 36 

endif 
itcount-itcount+l 
if(time.eq.O.) itcount-O 
if(itcount.ge.lO) then 

itcount-O 
goto 36 

endif 
if(pot(l,3).ge.potset) goto 36 
if(pot(l,3).ge.potprint) then 

potprint-potprint+500. 
goto 36 

endif 
if(pot(l,3).lt.potset) then 

if(dif(2,1).gt.2.0e-l6) then 
dif(2,l)-dif(2,1)/(lO.)**(l./3.) 
if(dif(2,l).lt.2.0e-l6) dif(2,l)-2.0e-l6 
dt-O. 

else 
if(c(9,ji(4».gt.l.e-ll) then 

c(9,ji(4»-1.e-ll 
c(ll,ji(4»-0.05+l.e-ll 
cin(3,2)-1.e-ll 
cin(3,4)-0.05+l.e-ll 
dt-O. 

else 
if(inft(3 p l).eq.l) then 

inft(3,l)-O 
dt-O. 

else 
if(inft(3,3).eq.l) then 

inft(3,3)-0 
dt-O. 

else 
if(inft(3,2).eq.l) then 

inft(3,2)-0 
dt-O. 

else 
if(iflg.eq.O) then 

iflg-l 
goto 36 

endif 
if(aj.lt.3.5d-8) then 

aj-aj*(lO.)**(l./3.) 
if(aj.gt.3.5d-8) aj-3.5d-8 
dt-O. 

else 
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if(pot(1,3).lt.-251.2) then 
swr-1. 
dt-1. 

endif 
if(dt.gt.70) dt-70. 

c endif 
endif 

c endif 
endif 

endif 
endif 
if(pot(1,3).ge.-251.2) swr-O.3 
pot(1,3)-pot(1,3)+swr*dt 
vtot-vtot+swr*dt 
if(pot(1,3).1e.-251.2) dt-O. 

endif 
print *,vtot,dif(2,1),jtime,'aj-' ,aj 

c if(dt.gt.O .. and. time.eq.O.) then 
c if(nf1ag.eq.O) then 
c nf1ag-1 
c goto 36 
c endif 
c endif 

c 

print *, , dt - ',dt 
z1eno-z1en(2) 
do 21 m-1,nph 

z1en(m)-zlen(m)+(vi(m+1)-vi(m»*dt 
if(z1en(m).le.O.) then 

zlen(m)-O. 
print *, time,'length of phase' ,m,'-O' 
goto 36 

endif 
21 continue 

c Add a mesh point at jmid of phase two. 
c 

if(zlen(2).le.zleno) goto 43 
nj (2)-nj (2)+1 
njt-njt+1 
if(njt.gt.401) then 

print *,'Too many time steps - too many js' 
stop 

endif 
jmid-(nj(2)-1)/2+ji(2) 
do 46 m-nph,2,-1 

j i (m+l)-j i (m+1)+1 
j f-j i(m) 
if(m.eq.2) jf-jmid+1 
do 46 j-ji(m+1)-1,jf,-1 

yy(m,j+l)-yy(m,j) 
h(m,j+1)-h(m, j) 
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c 

v(m,j+1)-v(m,j) 
v1(m,j+l)-v1(m,j) 
if(ipu(m).eq.O) pot(m,j+1)-pot(m,j) 
do 48 i-l,neqt 

c ( i , j + 1) -c ( i , j ) 
cc(i,j+l)-cc(i,j) 

48 continue 
if(j.eq.jmid+1) then 

v(m,j)-(v(m,j+l)+v(m,j-l»/2. 
vl(m,j)-(vl(m,j+l)+vl(m,j-l»/2. 

do 49 i-l,neqt 
c(i,j)-(c(i,j+l)+c(i,j-l»)/2. 
cc(i,j+l)-(cc(i,j+l)+cc(i,j-l»/2. 

49 continue 
endif 

46 continue 
zloln-zleno/zlen(2) 
yy ( 2 , j i ( 2) ) -0 . 
do 47 j - j i ( 2) , j i ( 3 ) 

if(j.le.jmid) yy(2,j)-yy(2,j)*zloln 
if(j.eq.jmid+l) yy(2,j)-yy(2,j-l)+(l.-zloln) 
if(j.gt.jmid+l) yy(2,j)-I.-(l.-yy(2,j»*zI01n 
if(j.eq.ji(3» yy(2,j)-1. 
if(j.gt.ji(2» h(2,j)-yy(2,j)-yy(2,j-l) 

47 continue 
43 time-time+dt 

mf-O 
nf-O 
jkon3-0 

22 jkon3-jkon3+l 
if(jkon3.gt.100) go to 36 

c autoband sets up the the program to fill the variables 
c necessary for band. 
c 

call autoband 
c 
c Now check to see if the current has converged and change 
c potential if it has not. 
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c When the program comes back from autoband so does the converged 
c solution. 
c 

njswn-l 
do 40 m-l,nph 

if(m.ge.mvi) then 
vi(m+l)-c(m,njsum+nj(m)-l) 

else 
vi (m)-c (m, nj sum) 

endif 
40 njsum-njsum+nj(m)-l 

curmax-O 



mmax-O 
1max-0 
do 23 m-l,nph 

if(dabs(curmax).lt.dabs(currsav(m+l») then 
curmax-currsav(m+l) 
mmax-m+l 
endif 

23 continue 
if(kontro1.eq.3) then 

dfrn-curmax-ctot 
if(ctot.eq.O.) then 

if(dabs(dfrn).1e.1.d-12) goto 34 
else 

if(dabs(dfrn).1e.1.d-6*ctot) goto 34 
endif 
if(nf.ne.O) goto 31 
if(mf) 27,24,28 

24 if(dfrn) 25,34,26 
25 potdfo-vtot 

vtot .... vtot+20. 
mf--1 

go to 22 
26 potdfo-vtot 

vtot-vtot-20. 
mf-1 

go to 22 
27 if(dfrn) 25,34,29 
28 if(dfrn) 29,34,26 
29 potdfo2-potdfo 

potdfo-vtot 
30 vtot-(potdfo+potdfo2)/2. 

nf-1 
go to 22 

31 if(dfrn) 32,34,33 
32 potdfo2-max(potdfo,potdfo2) 

potdfo-vtot 
go to 30 

33 potdfo2-min(potdfo,potdfo2) 
potdfo-vtot 

go to 30 
endif 

34 continue 
print 832 
print 831, time, (z1en(m), m-1,nph) 
print 830 
print 831, time,(vi(m),m-1,nph+1) 
c if e-c ( 4 , j i ( 3 ) ) 
ce-c(5,ji(3» 
c f e 2 -c ( 9 , j i ( 3 ) ) 
cfeoh-c(lO,ji(3» 
coh-c(11,ji(3»/c(12,ji(3»*1.d-S 
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c 

cdp-c(6,ji(3»-c(13,ji(3» 
cpa-c(6,j i(3» 
cp b-c ( 13 , j i ( 3) ) 
write (4,890), time,vtot,zlen(2),currsav(3),cursav(ji(4)-S) 

&,rate1,rate2,rate3,vi(3),cife,ce,cfe2,cfeoh,coh,cpa,cpb 
890 format (16(e15.8,', '» 

dt-3600.*240, 
do 35 m-1,nph 

if(dabs(vi(m+1)-vi(m».eq.0.) goto 35 
dxv-z1en(m)/dabs(vi(m+1)-vi(m»/10. 
if(dt.gt.dxv) dt-dxv 

35 continue 
goto 20 

36 continue 

c Print the concentrations at the two ends of each phase. 
c 

j-1 
do 38 m-1,nph 

if(nmb(m).eq.O) goto 38 
print 813 
do 37 ii-1,nsp(m) 

if(mb(m,ii).eq.O) then 
print 814, ref(m,ii),cin(m,ii),cin(m,ii) 

else 
i-ivar(m, ii) 
print 814, ref(m,ii),c(i,j),c(i,j+nj(m)-l) 

endif 
37 continue 

print 814, 'phi' ,c(ivar(m,nmb(m)+ipu(m»,j),c(ivar 
& (m,nmb(m)+ipu(m»,j+nj(m)-l) 

print 840, m,currsav(m) 
38 j-j+nj (m)-l 

840 format (30h The current density in phase ,i2,4h is ,e12.5, 
&9h mA/cm**2) 
write (3, *) , time-' ) time, , V-' , vtot, , !.,-' , zlen(2) , 

&' j count-' , j cosav 

I. " "'L 

njsum-l ' 
do 41 m-1,nph 

do 42 j-njsum,njsum+nj(m)-l 
if(m.eq.2) then 

write (3,893) (yy(m,j)+m-mvi,c(l,j) 
& ,c(2,j),c(3,j),(c(lvar(m,i),j), 
& i-1,nmb(m»,c(6,j) 

& 
& 

else 
write (3,891) (yy(m,j)+m-mvi,c(l,j) 
,c(2,j),c(3,j),(c(ivar(m,i),j), 

i-1,nmb(m»,c(13,j» 
endif 
continue 

njsum-njsum+nj(m)-l 
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c 

41 continue 
893 format (7(elS.8,lx» 
891 format (lO(elS.8,lx» 

c Continue to next time step or not? 
c 

if(jtime.lt.400) then 
if(vtot.lt.potset) goto 20 

c· if(time.lt.timetot) goto 20 
endif 

39 if(jkon3.gt.100) print 812, jkon3 
if(jkon3.le.100) print *,'jkon3 -' ,jkon3 
if(kontrol.eq.3) print 821, ctot,curmax,mmax,lmax 
if(kontrol.eq.3) print 822, vtot 
if(kontrol.eq.2) p=int 823, vtot,curmax 
if(kontrol.eq.l) print 824, ref(mcro,idlr(mcro»,vtot,curmax 

102 format (i2,S(2x,elS.7» 
stop 
end 

c --------------------------------------------------------
Subroutine autoband 
implicit real*8 (a-h,o-z) 
dimension dc(25),eq(2S),vi(6),small(2S) 
common /ablk/a(2S,2S),b(2S,2S),c(2S,401),d(2S,Sl),g(2S), 

& x ( 2 S , 2 S) , y ( 2!i , 2 S) , n, nj 
common fbblk/ njm(S),nmb(S),ipu(S),ivu(S),cc(2S,401) 

& ,pot(S,401),z(S,2S) 
common /cblk/ nph,nsp(S),mb(S,lS),ivar(S,2S) 
common /eblk/ nhtr(S,2),pt(S,2,lS,15),qt(S,2,lS,lS), 

& st(S,2,lS,lS),inft(6,lS),rkba(6,lS),equilt(6,lS), 
& be(6,lS),zks(S,2,2S),curl(6),curr(6) 

common /gblk/ zlen(S),ninfm(S),rkbv(S,15),h(S,40l),perm(S),f 
& ,ccsav(2S,40l),csav(2S,40l),yy(S,40l) 

common /iblk/ aj,u(S,lS),dif(S,lS),frt,co 
common /hblk/ mvi,nhmr(S),cin(S,lS),equilm(S,lS), 

& v(S,401),vl(S,40l) 
common /mblk/ zmn(2S,2S),zmv(2S,2S),ie(2S),p(25,2S), 

&q(2S,2S),s(2S,2S),dum(S,2,2S) 
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common /test/ err(S,2),jcount,jco,jcosav 
common/rate/velsav,vel,vell,rrxn(2S),cur(40l),cursav(40l),jtime 

& ,flxs(40l,lS),flxsav(40l,lS),chd(401),chdsav(40l) ,currsav(6) 
common /nblk/ ratel,rate2,rate3,time,ji(6) 

c 
c Define the following parameters. 
c a,b,d,g,x, and yare the matrices to be filled for 
c Newman's band subroutine. 
c cc : stores the last values of c. 
c dc: a chosen difference from the last solution to be 
c used to determine the slope to the next guess. 
c ifrt first equation number in the phase. 
c ilst : last equation number in the phase. 



c jcount : loops through the equations due to their 
c non-linearity. 
c njmsum : sums the number of mesh points in each phase. 
c· noconvg: indicates if the solution has converged (-0.) 
c 
c co-c(S,3)*dexp(z(2,2)*frt*pot(1,3»+212.6S078dO 

co-c(S,3)*dexp(z(2,2)*frt *pot(1,3» 
c co-c(S,3)*dexp(z(2,2)*frt*c(6,3» 
c ve1sav-O.dO 

jcount-O 
jco-O 
ve11ow-O.dO 
ve1hi-O.dO 

1 jcount-jcount+l 
jco-jco+l 
noconvg-O 
do 26 m-l,nph+l 

if(m.lt.mvi) vi(m)-c(m,1) 
if(m.eq.mvi) vi(m)-O. 
if(m.gt.mvi) vi(m)-c(m-1,1) 

26 continue 
nj1-1 
nj2-1 
do 2 m-1,nph 

nj2-nj2+njm(m)-1 
do 24 j-nj1,nj2 

if(ivu(m).eq.O) then 
if(~.1t.mvi) v1(m,j)-v(m,j)+vi(m+1) 
if(m.ge.mvi) v1(m,j)-v(m,j)+vi(m) 

endif 
do 21 i-l,n 
if(ipu(m).eq.O) po-pot(m,j) 
if(ipu(m).eq.1) po-c(ivar(m,nmb(m)+1),j) 
do 22 ii-1,nsp(m) 

if(mb(m,ii).eq.O) goto 22 
if(i.eq.ivar(m,ii» then 
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if(jcount.eq.l) tllen 
cc(i,j)-c(i,j)*dexp(z(m,ii)*frt*po) 
if(m.eq.2 . and. i.eq.S) cC(i,j)-cc(i,j)-co 

endif 

22 

if(jco.eq.1) ccsav(i,j)-cc(i,j) 
if(jco.eq.1) csav{i,j)-c(i,j) 
goto 21 

endif 
continue 

if(j.eq.nj) goto 25 
if(j . ne. nj 2) goto 25 
if(ipu(m+l).eq.O) po-pot(m+l,j) 
if(ipu(m+l).eq.l) po-c(ivar(m+l,nmb(m+l)+l),j) 
if(ivu(m+l).eq.O) then 

if(m+l.1t.mvi) v1(m+1,j)-v(m+1,j)+vi(m+2) 



1f(m+l.ge.mv1) v1(m+l,j)-v(m+l,j)+v1(m+1) 
end1f 
do 23 11-l,nsp(m+l) 

1f(mb(m+l,1i).eq.O) goto 23 
1f(1.eq.1var(m+l,i1» then 

1f(jcount.eq.l) then 
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cc(i,j)-c(i,j)*dexp(z(m+l,i1)*frt*po) 
if(m+l.eq.2 .and. i.eq.5) cc(i,j)-cc(i,j)-co 

endif 
if(jco.eq.l) ccsav(i,j)-cc(i,j) 
if(jco.eq.l) csav(i,j)-c(i,j) 
goto 21 

endif 
23 continue 
25 continue 

cc (1, j )-c (1, j ) 
if(jco.eq.l) csav(i,j)-c(i,j) 

21 cont1nue 
24 continue 

njl-nj2+l 
2 continue 

do 3 i-l,n 
do 3 k-l,n 

y(i,k)-O.dO 
3 x(i,k)-O.dO 

m-l 
ifrt-nph+l 
ilst-nph+nmb(m)+1pu(m)+1vu(m) 
njmsum-njm(m) 
j-O 
print *, , jcount-' ,jcount,' vell' ,vell 

4 j-j+l 
if(j.eq.nj) goto 5 
if(j.eq.njmsum) then 

ilst-ilst+nmb(m+l)+ipu(m+l)+ivu(m+1) 
endif 
if(j.gt.njmsum) then 

ifrt-ifrt+nmb(m)+1pu(m)+ivu(m) 
m-m+l 
njmsum-njmsum+njm(m)-l 

endif 
5 do 6 1-l,n 

g(i)-O.OdO 
if(i.lt.ifrt) g(i)-c(i,j) 
if(i.gt.ilst) g(1)-c(1,j) 
1f( 1.le. nph) g( i)-O'. dO 
do 6 k-l,n 

a(i,k)-O.OdO 
d(i,k)-O.OdO 
b(i,k)-O.OdO 
if(i.lt.ifrt) b(i,i)--l. 



6 

44 

if(i.gt.i1st) b(i,i)--l. 
if(i.le.nph) b(i,i)-O. 
continue 

call eqn(j,eq,l,l,O.OdO,m,njmsum} 
if(j.eq.ji(3» ratel-96487.0*rrxn(l) 
if(j.eq.ji(3» rate2-3.0*96487.0*rrxn(2) 
if(j.eq.ji(3» rate3-2.0*96487.0*rrxn(3) 
if(j.eq.ji(3» veIl-vel 
cursav(j )-cur(j) 
chdsav(j )-chd(j) 
if(j.eq.ji(2» currsav(2)-curr(2) 
if(j.eq.ji(3» currsav(3)-curr(3) 
do 44 ii-1,nsp(m) 

n1-1 
n2-nph 

f1xsav(j,ii)-f1xs(j,ii) 

50 do 7 i-nl,n2 
dc(i)-1.d-3*cc(i,j) 

7 

if(i.eq.6 . and. dc(i).eq.O) dc(i)-1.d-1 
if(i.eq.13 . and. dc(i).eq.O) dc(i)-1.d-1 
if(i.eq.4 .and. dc(i).eq.O) dc(i)-1.d-6 
if(i.eq.5 . and. dc(i).eq.O) dc(i)-1.d2 
if(dabs(dc(i».eq.O.) dc(i)-l.d-3 
g(i)-eq(i) 

if(n1.eq.1) then 
n1-ifrt 
n2-i1st 
goto 50 

endif 
n1-1 
n2-nph 

51 do 12 k-n1,n2 

52 
8 

53 
9 

call eqn(j,eq,j,k,dc(k),m,njmsum) 
m1-1 
m2-nph 
do 8 i-m1,m2 

b(i,k)--(eq(i)-g(i»/dc(k) 
if(ml.eq.1) then 

m1-ifrt 
m2-i1st 
goto 52 

endif 
if(j.eq.1) goto 10 
call eqn(j,eq,j-l,k,dc(k),m,njmsum) 
m1-1 
m2-nph 
do 9 i-m1,m2 

a(i,k)--(eq(i)-g(i»/dc(k) 
if(ml.eq.1) then 

m1-ifrt 
m2-ilsl: 
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goto 53 
endif 

10 m1-1 
m2-nph 
if(j.eq.nj) goto 12 
call eqn(j,eq,j+1,k,dc(k),m,njmsum) 

54 do 11 i-m1,m2 
11 d(i,k)--(eq(i)-g(i»/dc(k) 

if(m1.eq.1) then 
m1-ifrt 
m2-i1st 
goto 54 

endif 
12 continue 

if(n1.eq.1) then 
n1-ifrt 
n2-i1st 
goto 51 

endif 
call band(j) 
if(j.1t.nj) goto 4 
m-1 
njsum-njm(m) 
sma11(5)-1.d3 
sma11(4)-1.d-16 
sma11(8)-cin(3,1) 
sma11(9)-cin(3,2) 
sma11(10)-cin(3,3) 
sma11(11)-cin(3,4) 
sma11(12)-cin(3,S) 
do 18 j-1,nj 

17 if(ipu(m).eq.1) then 
i-ivar(m,nmb(m)+ipu(m» 
if(dabs(c(i,j».gt.1.d-8) then 

noconvg-noconvg+1 
endif 

if(cc(i,j).ne.O.) then 
if(dabs(c(i,j».gt.dabs(1.d-10*cc(i,j») then 

noconvg-noconvg+1 
endif 

endif 
if(jcount.1t.10 .or. jtime.1e.1) then 
if(c(i,j).gt.20.) c(i,j)-20. 
if(c(i,j).lt.-20.) c(i,j)--20. 
endif 
c(i,j)-cc(i,j)+c(i,j) 

endif 
if(ipu(m).eq.O) po-pot(m,j) 
if(ipu(m).eq.1) po-c(ivar(m,nmb(m)+l),j) 
do 14 ii-1,nsp(m) 

if(mb(m,ii).eq.O) goto 14 
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& 

& 

i-ivar(m, Ii) 
if(cc(i,j).eq.O.) then 

if(i.eq.5) then 
if(c(i,j).lt.-co) c(i,j)--1.e-3*co 

else 
if(c(i,j).lt.O.) c(i,j)-dabs(O.OOl*c(i,j» 

endif 
if(dabs(c(i,j».gt.l.e-8) noconvg-noconvg+l 

else 
if(jcount.lt.10 .or. jtime.1e.1) then 
if(i.eq.5) then 

if(c(i,j).lt.-O.9*(co+cc(i,j») c(i,j)--.9 
*(co+cc(i,j» 

if(c(i,j).gt.9.*(co+cc(i,j») c(i,j)-9. 
*(co+cc(i,j» 

else 

14S 

if(c(i,j).lt.-O.9*cc(i,j» c(i,j)--.9*cc(i,j) 
if(c(i,j).gt.9.*cc(i,j» c(i,j)-9.*cc(i,j) 

endif 
endif 

if(i.ne.S) then 
if(dabs(c(~,j».gt.dabs(l.e-lO*cc(i,j») then 
noconvg-noconvg+l 
endif 
else 

& 
if(dabs(c(i,j».gt.dabs(l.e-lO*cc(i,j» 
. and. dabs(c(i,j».gt.1.e-8) then 

endif 
endif 

no convg-noc onvg+l 

endif 
ccc-cc(i,j) 
cc(i,j)-cc(i,j)+c(i,j) 
c(i,j)-cc(i,j)*dexp(-z(m,ii)*frt*po) 
if(m.eq.2 . and. i.eq.5) c(i,j)-(cc(i,j)+co) 

& *dexp(-z(m,ii)*frt*po) 
14 continue 

endif 

if(ivu(m).eq.l) then 
i-ivar(m,nmb(m)+ipu(m)+ivu(m» 
if(cc(i,j).eq.O.) then 

if(dabs(c(i,j».gt.l.e-S) then 
if(c(i,j).lt.O.) c(i,j)--l.e-S 
if(c(i,j).gt.O.) c(i,j)-l.e-S 

endif 
if(dabs(c(i,j».gt.1.d-10) then 
noconvg-noconvg+l 

else 
if(jcount.1t.lO .or. jtime.1e.l) then 
if(c(i,j).lt.-l.e-5) c(i,j)--1.e-5 
if(c(i,j).gt.l.e-5) c(i,j)-1.e-5 



16 

endif 

endif 
if(dabs(c(i,j».gt.dabs(1.d-10*cc(i,j») then 

noconvg-noconvg+1 
endif 

endif 
c(i,j)-cc(i,j)+c(i,j) 

endif 
if(j.eq.nj) goto 16 
if(j.ne.njsum) goto 16 

m-m+1 
njsum-njsum+njm(m)-1 
goto 17 

do 18 mm-1,nph 
if(cc(mm,j).eq.O.) then 

if(dabs(c(mm,j».gt.1.d-S) then 
if(c(mm,j).lt.O.) c(mm,j)--1.d-S 
if(c(mm,j).gt.O.) c(mm,j)-1.d-S 

endif 
if(dabs(c(mm,j».gt.1.d-8) then 
noconvg-noconvg+1 

else 
if(jcount.1t.10 .or. jtime.le.1) then 
if(c(mm,j).lt.-1.d-S) c(mm,j)--1.d-S 
if(c(mm,j).gt.1.d-S) c(mm,j)-1.d-S 
endif 
if(dabs(c(mm,j».gt.dabs(1.d-10*cc(mm,j») then 

noconvg-noconvg+l 
endif 

endif 
c(mm,j)-cc(mm,j)+c(mm,j) 

18 continue 
104 format (4e1S.8) 
103 format (3i4,' vell-' ,elS.7,' ve1sav-' ,elS.7) 

if(noconvg.eq.O) gota 20 
893 format (7(e1S.8,1x» 
891 format (10(elS.8,1x» 

if(jcount.lt.400) goto 1 
print *,'Did not converge' 

20 print *, ' j count-' ,j count 
jcosav-jcount 
if(dabs(ve11-ve1sav).gt.l.d-lO*dabs(ve11» then 

jco-O 
if(jcount.gt.399) return 
if(ve1hi.eq.0.dO) then 

velhi-velsav 
velhi1-ve11 
velsav-ve11 

else 
ve1low-ve1hi 
ve1lo1-ve1hil 
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velhi-velsav 
velhil-vell 
velsav-(velhil*vellow-vellol*velhi) 

& /(vellow-velhi-vellol+velhi1) 
endif 
go to 1 

endif 
31 return 

end 
c ---------------------------------------------------------------

Subroutine eqn(j,eq,jp,k,dc,m,njmsum) 
implicit real*8 (a-h,o-z) 
dimension eq(2S) 
common /ab1k/a(2S,25),b(2S,2S),c(2S,401),d(2S,S1),g(2S), 

& x(2S,25),y(25,2S),n,nj 
common jbb1k/ njm(S),nmb(S),ipu(S),ivu(S),cc(2S,401) 

& ,pot(S,401),z(S,2S) 
common /cb1k/ nph,nsp(S),mb(S,lS),ivar(S,25) 
common /fblk/ vtot,mvset,moset,lrvset,lroset,pm(S,1S,15), 

& qm(S,lS,1S),sm(S,lS,15),infm(S,15) 
common /iblk/ aj,u(S,1S),dif(S,1S),frt,co 
common /nblk/ rate1,rate2,rate3,time,ji(6) 
common /test/ err(S,2),jcount,jco,jcosav 
csave-c (k, j p) 
c(k,jp)-c(k,jp)+dc 
mm-m 

5 do 6 ii-l,nsp(mm) 
if(mb(mm,ii).eq.O) goto 6 
if(k.ne.ivar(mm,ii» goto 6 
csave-cc (k, j p) 
cc(k,jp)-cc(k,jp)+dc 
goto 7 

6 continue 
7 if(ipu(mm).eq.O) po-pot(mm,jp) 

if(ipu(mm).eq.l) po-c(ivar(mm,nmb(mm)+l),jp) 
do 8 ii-l,nsp(mm) 

if(mb(mm,ii).eq.O) goto 8 
i-ivar(mm,ii) 
c(i,jp)-cc(i,jp)*dexp(-z(mm,ii)*frt*po) 
if(mm.eq.2 . and. i.eq.S) c(i,jp)-(cc(i,jp)+co) 

& *dexp( -z(mm, ii)*frt*po) 
8 continue 

if(j.ne.njmsum) goto 9 
if(mm.eq.m+l) goto 9 
mm-m+1 
goto 5 

9 if(j.ne.l) goto 1 
call eqnlnj(j,eq,m,njmsum) 
goto 4 

1 if(j.ne.nj) goto 2 
call eqnlnj(j,eq,m,njmsum) 
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goto 4 
2 if(j.ne.njmsum) goto 3 

call eqni(j,eq,m,njmsum) 
goto 4 

3 call eqnj(j,eq,m,njmsum) 
4 continue 

c (k, j P )-csave 
mm-m 

10 do 11 ii-l,nsp(mm) 
if(mb(mm,ii).eq.O) goto 11 
if(k.ne.ivar(mm,ii» goto 11 
c c (k , j P ) -c save 
goto 12 

11 continue 
12 if(ipu(mm).eq.O) po-pot(mm,jp) 

if(ipu(mm).eq.1) po-c(ivar(mm,nmb(mm)+I),jp) 
do 13 ii-l,nsp(mm) 

if(mb(mm,ii).eq.O) goto 13 
i-ivar(mm,ii) 
c(i,jp)-cc(i,jp)*dexp(-z(mm,ii)*frt*po) 
if(mm.eq.2 . and. i.eq.S) c(i,jp)=(cc(i,jp)+co) 

& *dexp(-z(mm,ii)*frt*po) 
13 continue 

if(j.ne.njmsum) goto 14 
if(mm.eq.m+1) goto 14 
mm-m+1 
goto 10 

14 return 
end 

c --------------------------------------------------------------

c 

Subroutine eqn1nj(j,eq,m,njmsum) 
implicit real*8(a-h,o-z) 
dimension eq(2S),ic(2S),ih(2S) 
common /ablk/a(2S,2S),b(2S,2S),c(2S,401),d(2S,Sl),g(2S), 

& x(2S,2S),y(2S,2S),n,njt 
common /bblk/ nj(S),nmb(5),ipu(S),ivu(5),cc(25,40l) 

& ,pot(5,401),z(S,2S) 
common /cblk/ nph,nsp(S),mb(S,lS),ivar(S,2S) 
common /fblk/ vtot,mvset,moset,lrvset,lroset,pm(S,lS,lS), 

& qm(S,lS,IS),sm(S,lS,lS),infm(S,IS) 
common /hblk/ mvi,nhmr(S),cin(S,lS),equilm(S,lS), 

& v(S,40l),vl(S,40l) 
common /mb1k/ zmn(2S,2S),zmv(2S,2S),ie(2S),p(2S,2S), 

& q(2S,2S),s(2S,2S),dum(S,2,2S) 

c Boundary condition at the far left and right. 
c 

do 1 ml-1,nph 
do 1 i-1,n 

dum(ml,l,i)-l. 
ih( i)-O 
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c 

ic(i)-O 
do 1 k-1,n 

p(i,k)-O. 
q(i,k).O. 
s(i,k)-O. 
zmn(i,k)-O. 

1 zmv(i,k)-O. 
do 2 ii-l,nsp(m) 

if(mb(m,ii).eq.O) goto 2 
i-ivar(m,ii) 
zmn(i,i)-l. 
ic(i)-O 
do 20 l-l,nhmr(m) 

p(i,l)-pm(m,ii,l) 
q(i,l)-qm(m,ii,l) 
s(i,l)-p(i,l)-q(i,l) 
zmv(i,l)-s(i,l) 

20 continue 
2 continue 

do 3 l-l,nhmr(m) 
3 ih(l)-infm(m,l) 

call eqnprod(zmv,zmn,ih,ie,n,nhmr(m» 

c Equilibrium conditions 
c 

c 

do 4 ll-l,nhmr(m) 
l-ie(ll) 
call eqlbr(eq,ic,zlDV,m,s,1,dum,l,j,j,equi1m,1) 

4 continue 

c Electroneutrality 
c 

do 8 iii-l,nsp(m) 
if(mb(m,iii).ne.O) goto 8 
do 7 l-l,nhmr(m) 

if(sm(m,iii,l).eq.O.) goto 7 
do 6 ii-l,nsp(m) 

if(mb(m,ii}.eq.O} goto 6 
if(sm(m,ii,l).eq.O.) goto 6 
i-ivar(m,ii) 
if(ic(i).eq.1) goto 6 
if(z(m,ii).eq.O.) goto 6 
eq(i)-O. 
do 5 kk-1,nsp(m) 

k-ivar(m,kk) 
if(mb(m,kk).eq.1) then 

eq(i)-eq(i)+z(m,kk)*c(k,j) 
else 

eq(i)-eq(i)+z(m,kk)*cin(m,kk) 
endif 

5 continue 
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c 

ic(i)-l 
goto 9 

6 continue 
7 continue 
8 continue 
9 continue 

c Mole conservation 
c 

c 

do 11 ii-l,nsp(m) 
if(mb(m,ii).eq.O) goto 11 
i-ivar(m, ii) 
if(ic(i).eq.l) goto 11 
eq(i)-O. 
do 10 kk-l,nsp(m) 

if(mb(m,kk).eq.O) goto 10 
k-ivar(m,kk) 
eq(i)-eq(i)+zmn(i,k)*(c(k,j)-cin(m,kk» 

10 continue 
ic(i)-l 

11 continue 

c Set potential 
c 

c 

if(ipu(m).eq.O) then 
if(m.eq.mvset) then 

pot(m,j )-vtot 
else 

pot(m, j )-0. 
endif 

else 
i-ivar(m,nmb(m)+ipu(m» 
if(m.eq.mvset) then 

eq(i)-c(i,j)-vtot 
else 

eq(i)-c(i,j) 
endif 

endif 

c Set velocity 
c 

if(j.eq.l) then 
if(mvi.eq.l) then 

if(ivu(m).eq.1) then 
i-ivar(m,nmb(m)+ipu(m)+l) 
eq ( i) -c ( i , j ) 

endif 
do 15 mm-1,nph 

15 eq(mm)-c(mm,j)-c(mm,j+l) 
else 

if(ivu(m).eq.1) then 
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i-ivar(m,nmb(m)+ipu(m)+l) 
eq(i)-c(i,j)-c(i,j+l) 

endif 
if(mvi.eq.2) then 

eq(m)-c(m,j) 
else 

eq(m)-c(m,j)-c(m+l,j) 
endif 
do 16 mm-2,nph 

16 eq(mm)-c(mm,j)-c(mm,j+l) 
endif 

else 
if(mvi.eq.nph+l) then 

if(ivu(m).eq.l) then 
i-ivar(m,nmb(m)+ipu(m)+l) 
eq(i)-c(i,j) 

endif 
do 17 mm-l,nph 

17 eq(mm)-c(mm,j)-c(mm,j-l) 
else 

if(ivu(m).eq.l) then 
i-ivar(m,nmb(m)+ipu(m)+l) 
eq(i)-c(i,j)-c(i,j-l) 

endif 
if(mvi.eq.nph) then 

eq(m)-c(m,j) 
else 

eq(m)-c(m,j)-c(m-l,j) 
endif 
do 18 mm-l,nph-l 

18 eq(mm)-c(mm,j)-c(mm,j-l) 
endif 

endif 
return 
end 

c --------------------------------------------------------------
Subroutine eqni(j,eq,m,njmsum) 
implicit real*8(a-h,o-z) . 
dimension eq(2S),ic(2S),pi(2S,2s),qi(25,2S),si(2S,2s), 

& zmvi(2S,2S),zmni(2S,2S), 
& ih(2S),rflx(2S), 
& ihi(2s),iei(2S),pti(s,ls,15),qti(S,ls,ls), 
& sti(S,ls,lS),ptii(S,ls,ls),qtii(s,ls,ls),stii(s,lS,ls),vi(6) 

common /ablk/a(2s,25),b(2s,2s),c(2S,401),d(2S,sl),g(2s), 
& x(2S,2S),y(2S,2S),n,njt 

common jbblk/ nj(S),nmb(S),ipu(S),ivu(S),cc(2S,40l) 
& ,pot(S,40l),z(s,2S) 

common /cblk/ nph,nsp(s),mb(s,ls),ivar(s,2S) 
common /dblk/ kontrol,crO,mcro,lrcro,idlr(S),den(S),zmw(s), 

& blen(6),ltcs(S,lS) 
common /eblk/ nhtr(S,2),pt(s,2,ls,lS),qt(S,2,ls,ls), 
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c 

& st(S,2,1S,15),inft(6,1S),rkba(6,15),equi1t(6,lS), 
& be(6,1S),zks(S,2,2S),cur1(6),curr(6) 

common /fb1k/ vtot,mvset,moset,lrvset,1roset,pm(S,1S,15), 
& qm(S,1S,1S),sm(S,1S,1S),infm(S,1S) 

common /gb1k/ z1en(S),ninfm(S),rkbv(S,1S),h(S,401),perm(S),f 
& ,ccsav(25,401) ~sav(25,401),yy(5,401) 

common /hb1k/ m'Ti, nhmr( 5) ,cin( 5,15) ,equilm( 5,15) , 
& v(S,401),vl(5,401) 

common /ib1k/ aj,u(5,15),dif(5,15),frt,co 
common /mblk/ zmn(25,25),zmv(25,25),ie(2S),p(2S,25), 

& q(25,25),s(25,25),dum(5,2,25) 
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common /test/ err(5,2),jcount,jco,jcosav 
common/rate!ve1sav,ve1,ve11,rrxn(25),cur(401),cursav(401),jtime 

& ,f1xs(401,15),f1xsav(401,1S),chd(401),chdsav(401),currsav(6) 

c Equations at an interior boundary. 
c 

mp1-m+l 
if(m.gt.mvi) vi(m)-c(m-1,j) 
if(m.1t.mvi) vi(m)-c(m,j) 
if(m.eq.mvi) vi(m)-O. 
if(m+1.gt.mvi) vi(m+l)-c(m,j) 
if(m+1.1t.mvi) vi(m+1)-c(m+1,j) 
if(m+1.eq.mvi) vi(m+l)-O. 
if(m+2.gt.mvi) vi(m+2)-c(m+1,j) 
if(m+2.1t.mvi) vi(m+2)-c(m+2,j) 
if(m+2.eq.mvi) vi(m+2)-O. 
do 1 i-1,n 

ihi(i)-O 
iei(i)-O 
do 1 k-1,n 

pi(i,k)-O. 
qi(i,k)-O. 
si(i,k)-O. 
zmvi(i,k)-O. 
zmni(i,k)-O. 
zmv(i,k)-O. 

1 zmn(i,k)-O. 
do 3 ii-1,nsp(m) 

do 2 1-1,nhtr(m,2) 
pti(m,ii,1)-pt(m,2,ii,1) 
qti(m,ii,1)-qt(m,2,ii,1) 

2 sti(m,ii,l)-st(m,2,ii,1) 
if(mb(m,ii).eq.O) goto 3 
i-ivar(m,ii) 
zmni(i,i)-l. 
ic(i)-O 
do 31 1-1,nhtr(m,2) 

pi(i,1)-pt(m,2,ii,l) 
qi(i,1)-qt(m,2,ii,l) 
si(i,1)-pi(i,1)-qi(i,1) 



c 

zmvi(i,l)-si(i,l) 
31 continue 

3 continue 
do 6 ii-l,nsp(mpl) 

do 5 1-1,nhtr(m,2) 
ptii(mpl,ii,1)-pt(mp1,1,ii,1) 
qtii(mpl,ii,l)-qt(mpl,l,ii,l) 

5 stii(mpl,ii,I)-s~(mpl,l,ii,l) 

32 
6 

7 

8 

do 7 

call 
do 9 

if(mb(mpl,ii).eq.O) goto 6 
i-ivar(mpl,ii) 
zmni(i,i)-l. 
ic(i)-O 
do 32 l-l,nhtr(m,2) 

pi(i,l)-pt(mpl,l,ii,l) 
qi(i,l)-qt(mpl,l,ii,l) 
si(i,I)-pi(i,l)-qi(i,l) 
zmvi(i,l)-si(i,l) 
continue 

continue 
1-1,nhtr(m,2) 
ihi(l)-inft(mpl,l) 
eqnprod(zmvi,zmni,ihi,iei,n,nhtr(m,2» 
ii-l,nsp(mpl) 
if(mb(mpl,ii).eq.O) goto 9 
i-ivar(mpl,ii) 
zmn(i,i)-I. 
do 8 l-l,nhmr(mpl) 

p(i,l)-pm(mpl,ii,l) 
q(i,I)-qm(mpl,ii,l) 
s(i,I)-p(i r l)-q(i,l) 
zmv(i,l)-s(i,l) 

9 continue 
do 10 l-l,nhmr(mpl} 

10' ih(l)-infm(mpl, 1) 
call eqnprod(zmv,zmn,ih,ie,n,nhmr(mpl» 

c Limiting reaction boundary condition. 
c 

if(kontrol.eq.l) then 
if(m.eq.mcro) then 

if(lrcro.eq.l) then 
i-ivar(m,idlr(m» 
eq(i)-c(i,j)-crO 
ic(i)-l 

endif 
endif 
if(mpl.eq.mcro) then 

if(lrcro.eq.-l) then 
i-ivar(mpl~idlr(mpl» 
eq(i)-c(i,j)-crO 
ic(i)-l 
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c 

endif 
endif 

endif 

c Equilibrium of interfacial reactions. 
c 

if(ipu(m).eq.O) then 
pom-pot(m,j) 
pmn-pot(m,j-l) 
pO-pom 
pb-pmn 

else 
i-ivar(m,nmb(m)+ipu(m» 
pom-c(i,j) 
pmn-c(i,j-l) 
pO-csav(i,j) 
pb-csav(i,j-l) 

endif 
if(ivu(m).eq.O) then 

vlom-vl(m,j) 
vlm-vl(m,j-l) 

else 
i-ivar(m,nmb(m)+ipu(m)+ivu(m» 
vlom-c(i,j) 
vlm-c(i,j-l) 

endif 
if(ipu(mpl).eq.O) then 

pp-pot(mpl,j+l) 
poml-pot(mpl,j) 
pf-pp 
pOO-poml 

else 
i-ivar(mp1,nmb(mp1)+ipu(mp1» 
pp-c(i ,j+1) 
pom1-c(i,j) 
pf-csav(i ,j+1) 
pOO-csav( i, j ) 

endif 
if(ivu(mp1).eq.O) then 

vlp-vl(mpl,j+l) 
vlom1-vl(mp1,j) 

else 
i-ivar(mp1,nmb(mpl)+ipu(mp1)+ivu(mp1» 
vlp-c(i ,j+1) 
v1om1-c(i,j) 

endif 
zh-zlen(m)*h(m,j) 
zh1-z1en(mpl)*h(mpl,j+l) 
fae-l.dO . 
do 11 ii-1,nsp(m) 

if(mb(m,ii).eq.O) goto 11 
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i-ivar(m,ii) 
ccf-cc(i,j) 
ccb-cc(i.,j -1) 
cf-c(i,j) 
cb-c(i,j-l) 
rflx(i)--(yy(m,j)*(vi(m+l)-vi(m»+vi(m»*cf 
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& +«yy(m,j)+yy(m,j-l»/2.*(vi(m+l)-vi(m»+vi(m»*(cf+cb)/2. 
& +(3.*cf+cb)/4.*(vi(m+l)-vi(m»*h(m,j)/2. 
& -flxhfpt(cc(i ,j) , cc(i ,j -1) , pom, pmn,m, ii, zh, z(m, ii» 
& -(vlom+vlm)/2.*(cf+cb)/2.-(3.*cf+cb)/4.*(vlom-vlm)/2. 
& +cf*vi(m+l) 

11 continue 
do 12 ii-l,nsp(mpl) 

if(mb(mpl,ii).eq.O) goto 12 
i-ivar(mpl,ii) 
ccf-cc(i,j+l) 
ccb-cc(i,j) 
cf-c(i, j+1) 
cb-c(i,j) 
rflx(i)--(h(m+l,j+1)/2.*(vi(m+2)-vi(m+l»+vi(m+l»*(cf 

& +cb)/2.+vi(m+l)*cb+(3.*cb+cf)/4.*(vi(m+2)-vi(m+l»/2. 
& *h(m+l,j+l)/2.' 
& +flxhfpt(cc(i,j+l),cc(i,j),pp,pom1,mpl,ii,zhl,z(mpl,ii» 
& +(vlp+vloml)/2.*(cf+cb)/2.-(3.*cb+cf)/4.*(vlp-v1oml)/2. 
& -cb*vi(m+l) 

12 continue 
do 13 1-I,nhtr(m,2) 

rrxn(I)-O. 
if(inft(mpl,1).eq.1) goto 13 
uo-O. 
cpd-2400. 
if(m.eq.2 . and. l.eq.l) uo-dlog(2./«(cpd*(7.5d-8 

& /zlen(m)-I.)+2.)**2+4*(cpd-l»**.5+cpd 
& *(7.5d-8/z1en(m) 
& -1.)+2»/frt 

rlb-l. 
rlf-l. 
call rfb(rlb,rlf,m,l,j ,j,zks,2,pi,qi,si,pti,qti,sti,cin) 
call rfb(rlb,rlf,mp1,1,j,j,zks,1,pi,qi,si,ptii,qtii,stii 

& , cin) 
ft-fnrt(nsp(mpl),mpl,st,1,1,z) 
rrxn(1)-rkba(mp1,1)*(rlf*equi1t(mpl,1) 

& *dexp«l.-be(mpl,l»*ft*(pom-poml-uo» 
& -rlb*dexp(-be(mpl,I)*ft*(pom-pom1-uo») 

13 continue 
do 17 ii-1,nsp(m) 

if(mb(m,ii).eq.O) goto 17 
i-ivar(m,ii) 
if(ic(i).eq.1) goto 17 
ic(i)-l 
eq(i)-O. 



infrxn-O 
do 14 l-l,nhtr(m,2) 

if(zmvi(i,l).eq.O) goto 14 
if(inft(mpl,l).eq.1) then 

infrxn-l 
goto 15 

else 
eq(i)-eq(i)+zmvi(i,l)*rrxn(l) 

endif 
14 continue 
15 do 16 kk-1,nsp(m) 

if(mb(m,kk).eq.O) goto 16 
k-ivar(m,kk) 
if(zmni(i,k).eq.O) goto 16 
if(infrxn.eq.l) then 

rrxn(l)-rrxn(l)-zmni(i,k)/zmvi(i,l)*rf1x(k) 
else 

eq(i)-eq(i)+zmni(i,k)*rflx(k) 
endif 

16 continue 
do 40 kk-l,nsp(mpl) 

if(mb(mpl,kk).eq.O) goto 40 
k-ivar(mpl,kk) 
if(zmni{i,k).eq.O) goto 40 
if(infrxn.eq.l) then 

rrxn(1)-rrxn(l)-zmni(i,k)/zmvi(i,1)*rf1x(k) 
else 

eq(i)-eq(i)+zmni(i,k)*rflx(k) 
endif 

40 continue 
if(infrxn.eq.O) goto 17 
eq(i)-O. 
call smslnc(eq(i),m,si,1,zks,2,j,j) 
call smslnc(eq(i),mp1,si,1,zks,l,j,j) 
ft-fnrt(nsp(m),m,st,2,1,z) 
uo-O. 
cpd-2400. 
if(m.eq.2 .and. l.eq.l) uO-dlog(2./«(cpd*(7.5d-B 

& /zlen(m)-1.)+2.)**2+4*(cpd-1»**.5+cpd 
& *(7.5d-B/z1en(m) 
& -1.)+2»/frt 

eq(i)-eq(i)+dlog(equilt(mpl,l»+ft*(pom-poml-uo) 
17 continue 

do 23 ii-1,nsp(mp1) 
if(mb(mp1,ii).eq.0) goto 23 
i-ivar(mp1,ii) 
if(ic(i).eq.l) goto 23 
ic(i)-l 
eq(i)-O. 
infrxn-O 
do 20 1-1,nhtr(m,2) 
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if(zmvi(i,l).eq.O) goto 20 
if(inft(mpl,l).eq.l) then 

infrxn-l 
goto 21 

else 
eq(i)-eq(i)+zmvi(i,l)*rrxn(l) 

endif 
20 continue 
21 do 41 kk-l,nsp(m) 

if(mb(m,kk).eq.O) goto 41 
k-ivar(m,kk) 
if(zmni(i,k).eq.O) goto 41 
if(infrxn.eq.l) then 

rrxn(1)-rrxn(1)-zmni(i,k)/zmvi(i,1)*rf1x(k) 
else 

eq(i)-eq(i)+zmni(i,k)*rflx(k) 
endif 

41 continue 
do 22 kk-l,nsp(mpl) 

if(mb(mpl,kk).eq.O) goto 22 
k-ivar(mpl,kk) 
if(zmni(i,k).eq.O) goto 22 
if(infrxn.eq.l) then 

rrxn(1)-rrxn(1)-zmni(i,k)/zmvi(i,I)*rf1x(k) 
else 

eq(i)-eq(i)+zmni(i,k)*rflx(k) 
endif 

22 continue 
if(infrxn.eq.O) goto 23 
eq(i)-O. 
call smslnc(eq(i),m,si,l,zks,2,j,j) 
call smslnc(eq(i),mp1,si,1,zks,l,j,j) 
ft-fnrt(nsp(mpl),mpl,st,1,1,z) 
uo-O. 
cpd-2400. 
if(m.eq.2 . and. 1.eq.l) uo-dlog(2./«(cpd*(7.Sd-8 

& /zlen(m)-1.)+2.)**2+4*(cpd-1»**.S+cpd 
& *(7.Sd-8/z1en(m) 
& -1.)+2»/frt 

eq(i)-eq(i)+dlog(equilt(mpl,l»+ft*(pom-poml-uo) 
23 continue 

rtfml .... O. 
curl(mpl)-O. 
do 19 1-l,nhtr(m,2) 

si1-0. 
zisi1-0. 
do 18 ii-1,nsp(m) 

if(sti(m,ii,l).eq.O.) goto 18 
zisil-zisil+z(m,ii)*sti(m,ii,l) 
if(1tcs(m,ii).eq.0) goto 18 
sil-sil+sti(m,ii,l) 
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c 

18 continue 
curl(mpl)-curl(mpl)+f*zisil*rrxn(l) 
rtfm1-rtfml+si1*rrxn(1) 

19 continue 
rtfmr-O. 
curr(mpl)-O. 
do 25 1-1,nhtr(m,2) 

sil-O. 
zisi1-0 
do 24 ii-l,nsp(mpl) 

if(stii(mpl,ii,1).eq.O.) goto 24 
zisil-zisil+z(mpl,ii)*stii(mpl,ii,l) 
if(ltcs(mpl,ii).eq.O) goto 24 
si1-sil+stii(mp1,ii,l) 

24 continue 
rtfmr-rtfmr+si1*rrxn(1) 
curr(mpl)-curr(mpl)-f*zisil*rrxn(l) 

25 continue 

c Gauss's equation. 
c 

if(ipu(m).eq.O) goto 27 
i-ivar(m,nmb(m)+ipu(m» 
if(m.eq.mvset) then 

if(lrvset.eq.l) then 
eq(i)-c(i,j)-vtot 
goto 27 

endif 
endif 
if(m.eq.moset) then 

if(lroset.eq.l) then 
eq(i)-c(i,j) 
goto 27 

endif 
endif 
smc-O. 
smkc-O. 
smce-O. 
do 26 kk-l,nsp(m) 

if(z(m,kk).eq.O.) goto 26 
if(mb(m,kk).eq.O) then 

smc-smc+z(m,kk)*cin(m,kk) 
smkc-smkc+z(m,kk)*zks(m,2,kk)*cin(m,kk) 
smce-smce+z(m,kk)*cin(m,kk) 

else 
k-ivar(m,kk) 
smc-smc+z(m,kk)*(3.*c(k,j)+c(k,j-l»/4. 
smkc-smkc+z(m,kk)*zks(m,2,kk)*c(k,j) 
smce-smce+z(m,kk)*c(k,j) 

endif 
26 continue 
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smkc-O. " 
permo-(perm(m)+perm(m+l»/2./perm(m) 
eq(i)-zh/2.*smc+smkc+perm(m)/f*(permo*(poml-pom)jblen(mpI) 

& -(pom-pmn)/zh) 
c eq(i)-(poml-pom)jblen(mpl)*permo 
c & -(pom-pmn)/zh 
c eq(i)-=smce 

27 if(ipu(mpl).eq.O) goto 29 
i=ivar(mpl,nmb(mpl)+ipu(mpl» 
if(mpl.eq.mvset) then 

if(lrvset.eq.-l) then 
eq(i)-c(i,j)-vtot 
goto 29 

endif 
endif 
if(mpl.eq.moset) then 

if(lroset.eq.-l) then 
eq(i)-c(i,j) 
goto 29 

endif 
endif 
smc=O. 
smkc==O. 
smce-O. 
do 28 kk-l, nsp (mpl) 

if(z(mpl,kk).eq.O.) goto 28 
if(mb(mpl,kk).eq.O) then 

smc-smc+z(mpl,kk)*cin(mpl,kk) 
smkc-smkc+z(mpl,kk)*zks(mpl,l,kk)*cin(mpl,kk) 
smce-smce+z(mpl,kk)*cin(mpl,kk) 

else 
k-ivar(mpl,kk) 
smc-smc+z(mpl,kk)*(3.*c(k,j)+c(k,j+l»/4. 
smkc-smkc+z(mpl,kk)*zks(mpl,l,kk)*c(k,j) 
smce-smce+z(mpl,kk)*c(k,j) 

endif 
28 continue 

smkc-O. 
perml-(perm(m)+perm(m+l»/2./perm(mpl) 
eq(i)-zhl/2.*smc+smkc+perm(mpl)/f*«pp-poml)/zhl 

& -(poml-pom)*permljblen(mpl» 
c eq(i)-(pp-poml)/zhl*2. 
c & -(poml-pom)*permljblen(mpl) 
c eq(i)-smce 

29 continue 
c 
c Velocity 
c 

rtfml-rtfml/lOOO./den(m)*zmw(m) 
rtfmr=rtfmr/lOOO./den(mpl)*zmw(mpl) 
vel-rtfml 
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c velsav-rtfml 
rtfml==velsav 
if(ivu(m).eq.O) then 

if(m.ge.mvi) then 
eq(m)-c(m,j)-vi(m)+rtfml 

c eq(m)-c(m,j)-vl(m,j)+rtfml 
else 

eq(m)-c(m,j)-c(m,j-l) 
endif 

else 
i-ivar(m,nmb(m)+ipu(m)+ivu(m» 
if(m.ge.mvi) then 

eq(m)-c(m,j)-c(i,j)+rtfml 
eq(i)=c(i,j)-c(i,j-l) 

else 
eq(m)=c(m,j)-c(m,j-l) 
eq(i)=vi(mpl)-c(i,j)+rtfml 

endif 
endif 
if(ivu(mpl).eq.O) then 

if(mpl.ge.mvi) then 
eq(mpl)-c(mpl,j)-c(rnpl,j+l) 

else 
eq(mpl)-c(mpl,j)-vi(m+2)-rtfmr 

endif 
else 

i-ivar(mpl,nmb(mpl)+ipu(mpl)+ivu(mpl» 
if(mpl.ge.mvi) then 

eq(mpl)-c(mpl,j)-c(mpl,j+l) 
eq(i)=c(i,j)-vi(mpl)+rtfmr 

else 
eq(mpl)==c(mpl,j)-c(i,j)-rtfmr 
eq(i)-c(i,j)-c(i,j+l) 

endif 
endif 
do 30 ml-l,nph 

if(ml.lt.m) eq(ml)-c(ml,j)-c(ml,j-l) 
if(ml.gt.mpl) eq(ml)-c(ml,j)-c(ml,j+l) 

30 continue 
if(m.eq.l) then 

c eq(4)=cc(4,j)-8.2*dexp(3.*frt*(-35l.2» 
c eq(S)-cc(S,j)-3.*8.2*dexp(-frt*(-3Sl.2» 
c eq(4)-cc(4,j)-8.2*dexp(3.*frt*(-3Sl.2» 
c eq(S)-cc(S,j) 
c &&&&&&&& 
c eq(6)=c(6,j)+3Sl.2 

endif 
if(m.eq.2) then 

c eq(4)=cc(4,j)-.3937*dexp(-3.*frt*32S) 
c eq(S)-cc(S,j)-67.684*dexp(frt*32S.) 
c eq(6)==c(6:j)+2l7. 
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c eq(8)-cc(8,j)-.S4366 
c eq(9)-cc(9,j)-O.0067667 
c eq(10)-cc(10,j)-O.036790 
c eq(ll)-cc(ll,j)+O.O 

endif 
return 
end 

c --------------------------------------------- •.. --------------
Subroutine eqnj(j,eq,m,njrnsum) 
implicit real*8(a-h,o-z) 
dimension eq(2S),ic(2S),vi(6) 
common /ablk/a(2S,25) ,b(2,5,25) ,c(25,401) ,d(2S,Sl) ,g(25), 

& x(25,2S),y(25,25),n,njt 
common fbb1k/ nj(5),nmb(5),ipu(S),ivu(5),cc(2S,40l) 

& ,pot(S,40l),z(5,2S) 
common /cb1k/ nph,nsp(S),mb(S,15),ivar(S,2S) 
common /fb1k/ vtot,mvset,moset,lrvset,lroset,pm(S,lS,15), 

& ~m(5,15,15),sm(S,lS,15),infm(5,lS) 
common /gblk/ zlen(S),ninfm(5),rkbv(5,lS),h(S,401),perm(S),f 

& ,ccsav(2S,40l),csav(25,401),yy(5,401) 
common jhblk/ mvi,nhmr(5),cin(S,15),equilm(5,15), 

& v(S,401),vl(S,401) 
common /iblk/ aj,u(5,15),dif(S,lS),frt,co 
common /mb1k/ zmn(2S,25),zIDv(2S,25),ie(2S),p(2S,2S), 
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& q(2S,25),s(2S,25),dumi(S,2,25) 
common/rate/velsav,vel,vell,rrxn(25),cur(40l),cursav(401) ,jtime 

& ,flxs(401,15),flxsav(401,15),chd(40l),chdsav(401),currsav(6) 
common /test/ err(S,2),jcount,jco,jcosav 

c 
c Material balance at an interior point 
c 
c Equilibrium condition:s 
c 

c 

if(m.gt.mvi) vi(m)-c(m-1,j) 
if(m.lt.mvi) vi(m)=c(m,j) 
if(m.eq.mvi) vi(m)-O. 
if(m+l.gt.mvi) vi(m+l)-c(m,j) 
if(m+l.1t.mvi) vi(m+l)-c(m+1,j) 
if(m+l.eq.mvi) vi(m+l)=O. 
do 1 ii-l,nsp(m) 

if(mb(m,ii).eq.O) goto 1 
i==ivar(m, ii) 
ic(i)-O 

1 continue 
do 2 ll-l,ninfm(m) 

l-ie(ll) 
call eqlbr(eq'l ic, zmv ,m, S, 1, dum, l,j ,j , equilm, 1) 

2 continue 

c Mole flux balance 
c 



if(ipu(m).eq.O) then 
pp-pot(m,j+1) 
po-pot(m,j) 
pmn-pot(m,j -1) 
pf-pp 
pO-po 
pb-pmn 

else 
i-ivar(m,nmb(m)+ipu(m» 
pp-c ( i , j + 1) 
po-c(i ,j) 
pmn-c(i,j-1) 
pf-csav( i, j+1) 
pO-csav( i ,j ) 
pb-csav( i, j -1) 

endif 
if(ivu(m).eq.O) then 

v 1 p-v 1 (m , j +-1 ) 
vlo-v1(m,j) 
vlm-vl(m,j-l) 

else 
i-ivar(m,nmb(m)+ipu(m)+ivu(m» 
vlp-c( i, j+l) 
vlo-c(i,j) 
v1m-c(i,j-l) 

endif 
njsum-njmsum-nj(m)+l 
yd-yy(m,j) 
hlf-.5/df1oat(nj(m)-1) 
zh1-z1en(m)*h(m,j) 
zh2-z1en(m)*h(m,j+1) 
fac-l.dO 
do 10 ii-1,nsp(m) 

if(mb(m,ii).eq.O) goto 10 
i-ivar(m,ii) 
if(ic(i).eq.1) goto 10 
eq(i)-O. 
do 4 kk-l,nsp(m) 

if(mb(m,kk).cq.O) goto 4 
k-ivar(m,kk) 
if(zmn(i,k).eq.O.) go to 4 
zk-z(m,kk) 
ccf-cc(k,j+l) 
cco-cc (k, j ) 
ccb-cc(k,j-l) 
cf-c(k,j+l) 
cO-c(k, j) 
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cb"'c(k,j-1) 
eq(i)-eq(i)+zmn(i,k)*(-«yy(m,j+1)+yy(m,j»/2.*(vi(m+l) 

& -vi(m»+vi(m»*(cf+cO)/2.+«yy(m,j)+yy(m,j-1»/2. 
& *(vi(m+l)-vi(m»+vi(m»*(cO+cb)/2. 

'If! • 



c 

c 

& 
& 
& 
& 

& 

4 
Find 
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+(3./8.*cO*(h(m,j+1)+h(m,j»+1./8.*(cf*h(m,j+l)+cb 
*h(m,j»)*(vi(m+1)-vi(m» 
+f1xhfpt(cc(k,j+1),cc(k,j),pp,po,m,kk,zh2,zk) 
-f1xhfpt(cc(k,j),cc(k,j-1),po,pmn,m,kk,zhl,zk» 
conv-(v1p+v1o)/2.*(cf+cO)/2.-(vlo+vlm)/2.*(cO+cb)/2. 
-(3.*cO+cf)/4.*(v1p-vlo)/2.-(3.*cO+cb)/4.*(v1o-vlm)/2. 
eq(i)-eq(i)+zmn(i,k)*conv 
continue 

the maximum rkbv. 
rkbmax-O. 
le-O 
do 7 l-1,nhmr(m) 

if(zmv(i,l).eq.O.) goto 7 
if(rkbmax.lt.rkbv(m,l» then 

rkbmax .... rkbv(m,l) 
1max-1 

endif 
7 continue 

if(rkbmax.eq.O.) goto 10 
if(rkbmax.ge.l.d6) le-1max 
do 8 l-l,nhmr(m) 

if(l.eq.le) goto 8 
if(zmv(i,l).eq.O.) go to 8 
rIb-1. 
rlf-l. 
call rfb(rlb,rlf,m,l,j,j,dum,l,p,q,s,pm,qm,sm,cin) 
eq(i)-eq(i)+zmv(i,l)*rkbv(m,l)*(rlf*equilm(m,l)-rlb) 

8 continue 
if(le.eq.O) goto 10 
zkbmax-1. 
sumlnc-O. 
do 9 kk-l,nsp(m) 

if(mb(m,kk).eq.O) goto 9 
k-ivar(m,kk) 
if(s(k,le).eq.O.) goto 9 
zkbmax-zkbmax*c(k,j)**q(k,le) 
sumlnc-sumlnc+s(k,le)*d1og(c(k,j» 

9 continue 
zkbmax-zkbmax*zmv(i,le)*rkbv(m,le) 
eq(i)-dlog(equilm(m,le»+sumlnc-dlog(l.-eq(i)/zkbmax) 

10 continue 

c Poisson's equation. 
c 

if(ipu(m).eq.O) goto 12 
i=ivar(m,nmb(m)+ipu(m» 
eq(i)=O. 
do 11 kk-l,nsp(m) 

k=ivar(m,kk) 
if(mb(m,kk).eq.O) then 

eq(i)-eq(i)+z(m,kk)*cin(m,kk)*(zhl+zh2)/2. 



else 
eq(i)=eq(i)+z(m,kk)*(3./8.*c(k,j)*(zh2+zh1)+ 

& +l./8.*(c(k,j+l)*zh2+c(k,j-1)*zh1» 
endif 

11 continue 
eq(i)=eq(i)+perm(m)/f*«pp-po)/zh2-(po-pmn)/zh1) 

12 if(ivu(m).eq.1) then 
i-ivar(m,nmb(m)+ipu(m)+ivu(m» 
if(m.ge.mvi) then 

eq(i)=c(i,j)-c(i,j-l) 
else 

eq(i)=c(i,j+l)-c(i,j) 
endif 

endif 
do 13 ml-1,nph 

if(ml.ne.m) then 
if(ml.gt.m) eq(m1)-c(ml,j)-c(m1,j+l) 
if(ml.1t.m) eq(ml)-c(ml,j)-c(ml,j-l) 

else 
if(m1.ge.mvi) eq(ml)=c(m1,j)-c(ml,j+1) 
if(ml.1t.mvi) eq(m1)-c(ml,j)-c(ml,j-1) 

endif 
13 continue 

cur(j)-O. 
chd(j)=O. 
do 14 ii-1,nsp(m) 

if(z(m,ii).eq.O.) goto 14 
if(mb(m,ii).eq.O) goto 14 
i=ivar(m,ii) 

c cur(j)=(flxhfpt(cc(i,j+1),cc(i,j-1), 
c & pp,pmn,m,ii,2.*zhl,z(m,ii» 
c & +vlo*c(i,j»*z(m,ii)+cur(j) 

zi-z(m,ii) 
flxs(j,ii)-f1xhfpt(cc(i,j+1),cc(i,j),pp,po,m,ii,zh2,zi) 

&+vlo*(c(i,j)+c(i,j+l»/2.dO 
cur(j)=cur(j)+zi*flxhfpt(cc(i,j+l),cc(i,j),pp,po,m,ii,zh2,zi) 

&+vlo*(c(i,j)+c(i,j+1»/2.dO*zi 
chd(j)-chd(j)+zi*c(i,j) 

14 continue 
cur(j)-cur(j)*f 
chd(j)-chd(j)*f 
return 
end 

c --------------------------------------------------------------

c 

Subroutine eqnprod(zmv,zmn,ih,ie,n,nrs) 
implicit rea1*8(a-h,o-z) 
integer ih(25),ic(25),ie(25) 
dimension ns(25),id(25),zmv(25,25),zmn(25,25) 

c Determine which equations are at finite rates and 
c which are infinite, putting those that are infinite 
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c at the front of an identifying vector, ie, and the 
c others at the back. 
c This will allow me to set up the equations such that 
c the equilibrium equations are defined first. 
c 

do 1 l-l,nrs 
1 ie(1)-0 

j==O 
k==-1 
do 3 l-l,nrs 

if(ih(l).ne.l) goto 2 
j .... j+l 
ie (j )-1 

goto 3 
2 k-k+1 

ie(nrs-k)-l 
3 continue 

c Define an identifying vector, ic, so that I know which equations 
c have been used as the pivot and that they are not repeated. 

do 4 i-l,n 
4 ic(i)-O 

do 19 l-1,nrs 
ie(l)-l 
m-ie(l) 

c Define a vector, ns, which tells me how many different reactions 
c each species is involved in. 

do 7 i-l,n 
ns(i)-O 
do 7 1l==1,nrs 

if(zmv(i,l1).ne.0.) ns(i)-ns(i)+l 
7 continue 

c Determine the pivot point by picking a species which hasn't 
c been chosen before (ic(*)-O), and is involved in the fewest 
c reactions (but greater than zero.) 

j=O 
do 10 i-l,n 

if(ic(i» 8,8,10 
8 if(zmv(i,m» 9,10,9 
9 j-j+l 

id(j )-i 
10 continue 

if (j.eq.O) goto 19 
nsmin-ns(id(l» 
iz-id(l) 
do 11 k-2,j 

if(nsmin.gt.ns(id(k») then 
nsmin-ns(id(k» 
iz-id(k) 

endif 
11 continue 

c (iz,m) is the pivot point. 



c Don't want to pivot around this point again so we set 
c ic(iz)-l. 

ic(iz) .... l 
do 18 k-1,n 

if(k-iz) 12,15,12 
12 fctr-zmv(k,m)/zmv(iz,m) 

do 13 11==1,nrs 
13 zmv(k,11)-zmv(k,11)-fctr*zmv(iz,11) 

do 14 11-1,n 
14 zmn(k,11)-zmn(k,11)-fctr*zmn(iz,11) 

15 

16 

17 

goto 18 
dvsr=zmv(k,m) 
do 16 11-1,nrs 

zmv(k, 11)-zmv(k, 11)/dvsr 
do 17 11-1,n 

zmn(k,11)-zmn(k,11)/dvsr 
18 continue 
19 continue 

return 
end 

c --------------------------------------------------------------
Subroutine band(j) 
implicit rea1*8(a-h,o-z) 
dimension e(25,26,401) 
common /ablk/a(25,25),b(25,2S),c(25,401),d(2S,SI),g(2S), 

1 x(2S,25),y(25,25),n,nj 
save e,np1 

101 format (ISh determ-O at j-,i4) 
if (j-2) 1,6,8 

1 np1-n+1 
do 2 i==l,n 

d(i,2*n+1)- g(i) 
do 2 1-1,n 

1pn-l+n 
2 d(i,lpn)-x(i,l) 

call matinv(n,2*n+1,determ) 
if (determ) 4,3,4 

3 print 101, j 
stop 

4 do 5 k-1,n 
e(k,npl,I)=d(k,2*n+1) 

do 5 l=l,n 
e(k,l,l)= -d(k,l) 
1pn-1+n 

5 x(k,l)- -d(k,1pn) 
return 

6 do 7 i-1,n 
do 7 k=1,n 
do 7 l==l,n 

7 d(i,k)- d(i,k)+a(i,1)*x(1,k) 
8 if (j -nj ) 11,9,9 
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9 do 10 i-1,n 
do 10 l-l,n 

g(i)- g(i) - y(i,l)*e(l,np1,j-2) 
do 10 m-I, n 

10 a(i,l)- a(i,l) + y(i,m)*e(m,l,j-2) 
11 do 12 i-l,n 

d(i,np1)- - g(i) 
do 12 1-l,n 

d(i,npl)- d(i,npl) + a(i,l)*e(I,np1,j-1) 
do 12 k-1,n 

12 b(i,k)- b(i,k) + a(i,1)*e(l,k,j-1) 
call matinv(n,np1,determ) 
if (determ) ·14,13,14 

13 print 101, j 
stop 

14 do 15 k-l,n 
do 15 m-1, np1 

15 e(k,m,j)- - d(k,m) 
if (j-nj) 20,16,16 

16 do 17 k=l,n 
17 c(k,j)- e(k,npl,j) 

18 

do 18 jj-2, nj 
m- nj - jj + 1 

do 18 k ... 1,n 
c(k,m)- e(k,np1,m) 

do 18 l-l,n 

do 19 l-l,n 
do 19 k-1, ' .. '1 

c(k,m)- c(k,m) + e(k,1,m)*c(1,m+1) 

19 c(k,l)- c(k,l) + x(k,1)*c(1,3) 
20 return 

end 

c -------------------------------------------------------------
subroutine matinv (n,m,determ) 
implicit rea1*8(a-h,o-z) 
common /ab1k/a(25,25),b(25,25),c(25,401),d(25,51),g(25), 

1 x(25,25),y(25,25),neqt,njt 
dimension id(26) 
determ-l.O 
do 1 i-1,n 

1 id(i)-O 
do 18 nn-l,n 

bmax-l.1 
do 6 i-1,n 

if(id(i).ne.O) go to 6 
bnext-O.O 
btry-O.O 
do 5 j .... l,n 

if(id(j).ne.O) go to 5 
if(dabs(b(i,j».le.bnext) go to 5 
bnext-dabs(b(i,j» 
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if(bnext.le.btry) go to 5 
bnext-btry 
btry-dabs(b(i,j» 
jc .... j 

continue 
if(bnext.ge.bmax*btry) go to 6 
bmax-bnextjbtry 
irow=i 
jco1-jc 

6 continue 

return 

if(id(jc).eq.O) go to 8 
determ-O.O 

8 id(jco1)-1 
if(jcol.eq.irow) go to 12 
do 10 j-1,n 

save-b(irow,j) 
b(irow,j) .... b(jco1,j) 

10 b(jcol,j)-save 
do 11 k-1,m 

save-d(irow,k) 
d(irow,k)-d(jco1,k) 

11 d(jco1,k)-save 
12 f-1.0jb(jco1,jco1) 

do 13 j-1,n 
13 b(jcol,j)-b(jcol,j)*f 

do 14 k-1,m 
14 d(jcol,k)-d(jcol,k)*f 

do 18 i-1,n 

16 

17 

if(i.eq.jcol) go to 18 
f-b(i ,jcol) 
do 16 j-l,n 

b (i , j ) =b (i , j ) - f*b (j col, j ) 
do 17 k=l,m 

d(i,k)-d(i,k)-f*d(jco1,k) 
18 continue 

return 
end 

c --------------------------------------------------------
Subroutine matmu1~a,m,1,b,n,c) 
implicit rea1*8(a-h,o-z) 
dimension a(2S,2S),b(2S,2S),c(2S,2S) 
do 10 i-1,m 

do 10 j-1,n 
10 c(i,j)-O. 

do 20 i-1,m 
do 20 j=l,n 

return 
end 

do 20 k-1,1 
c(i,j)-c(i,j)+a(i,k)*b(k,j) 
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c -------------------------------------------------------
Subroutine eqlbr(eq,ic,zmv,m,s,l,zks,lr,j,jp,equilm,ll) 
implicit real*8(a-h,o-z) 
dimension eq(2s),ic(2s),zmv(2s,2s),s(2s,2S),zks(S,2,2s), 

& equilm(s,2S) 
common /ablk/a(2s,2S),b(2S,2s),c(2S,40l),d(2s,Sl),g(2s), 

& x(2s,2s),y(2s,2s),n,njt 
common /cblk/ nph,nsp(s),mb(s,1S),ivar(5,2s) 
do 1 ii .... 1,nsp(m) 

if(mb(m,ii).eq.O) goto 1 
i-ivar(m, ii) 
if(ic(i).eq.1) goto 1 
if(zmv(i,l).eq.O.) goto 1 
eq(i)-O. 
call smslnc(eq(i),m,s,l,zks,lr,j,jp) 
eq(i)-eq(i)+d1og(equilm(m,11» 
ic(i)-l 
goto 2 

1 continue 
2 return 

end 
c ------------------------------------------------------~--------

Subroutine smslnc(sum,m,s,1,zks,lr,j,jp) 
implicit real*8(a-h,o-z) 
dimension s(2s,2S),zks(s,2,ls) 
common /ablk/a(2s,2s),b(2S,2s),c(2s,40l),d(2s,sl),g(2s), 

& x(25,2s),y(2s,2s),n,nj 
common fbblk/ njm(s),nmb(S),ipu(s),ivu(S),cc(2s,401) 

& ,pot(s,40l),z(s,2s) 
common /iblk/ aj, u(s, 15) , dif( 5,15) ,frt.;, co 
common /cblk/ nph,nsp(S) ,mb(S,lS), iVB.r(S,2S) 
if(ipu(m).eq.O) pl-pot(m,j) 
if(ipu(m).eq.O) p2-pot(m,jp) 
if(ipu(m).eq.l) p1-c(ivar(m,nmb(m)+l),j) 
if(ipu(m).eq.l) p2-c(ivar(m,nmb(m)+1),jp) 
do 1 kk-l,nsp(m) 

if(mb(m,kk).eq.O) goto 1 
k-ivar(m,kk) 
if(c(k,j).le.O.) goto 1 
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c sum-sum+s(k,l)*dlog(zks(m,lr,kk)*(3.*c(k,j)+c(k,jp»/4.) 
if(k.eq.s) then 

if(3.*cc(k,j)+cc(k,jp)+4.*co.le.O.) goto 1 
sum-sum+s(k,l)*(dlog(zks(m,lr,kk)* 

& (3.*cc(k,j)+cc(k,jp»/4.+co) 
& -z(m,kk)*frt*(3.*p1+p2)/4.) 

else 
if(3.*cc(k,j)+cc(k,jp).le.O.) goto 1 
sum-sum+s(k,1)*(d1og(zks(m,lr,kk)* 

& (3.*cc(k,j)+cc(k,jp»/4.) 
& -z(m,kk)*frt*(3.*pl+p2)/4.) 

endif 
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1 continue 
return 
end 

c -------------------------------------------------------------------
Subroutine rfb(r1b,rlf,m,l,j,jp,zks,lr,p,q,s,pr,qr,sr,cin) 
implicit real*8(a-h,o-z) 
dimension zks(5,2,15),p(25,25),q(25,25),s(25,2S), 

& pr(S,IS,lS),qr(S,lS,lS),sr(S,lS,lS),cin(S,lS) 
common /ablk/a(25,2S),b(2S,2S),c(2S,401),d(2S,51),g(2S), 

& x(2S,2S),y(2S,2S),neqt,njt 
common /cblk/ nph,nsp(S),mb(S,lS),ivar(5,2S) 
do 9 kk-l,nsp(m) 

if(mb(m,kk).eq.l) then 
k .... ivar(m,kk) 
if(s(k,l» 1,9,3 

1 if(c(k,j).gt.O.O) goto 2 
rlb-O.O 

go to 9 
2 rlb-rlb*(zks(m,lr,kk)*(3.*c(k,j)+c(k,jp»/4.) 
& **(q(k,I» 

go to 9 
3 if(c(k,j).gt.O.O) go to 4 

rlf-O.O 
go to 9 

4 rlf-rlf*(zks(m,lr,kk)*(3.*c(k,j)+c(k,jp»/4.) 
& **p(k,l) 

else 
if(sr(m,kk,l» 5,9,7 

5 if(cin(m,kk).gt.O.O) goto 6 
rlb-O.O 

go to 9 
6 rlb-rlb*(zks(m,lr,kk)*cin(m,kk»**qr(m,kk,l) 

go to 9 
7 if(cin(m,kk).gt.O.O) go to 8 

rlf-O.O 
go to 9 

8 rlf-rlf*(zks(m,lr,kk)*cin(m,kk»**pr(m,kk,l) 
endif 

9 continue 
return 
end 

c ------------------------ .. ------------------~-------------------
Function fnrt(nsp,m,st,lr,l,z) 
implicit real*8(a-h,o-z) 
dimension st(S,2,IS,IS),z(S,lS) 
common /iblk/ aj,u(S,lS),dif(S,lS),frt,co 
fnrt==O. 
do 1 k==l,nsp 

1 fnrt-fnrt+(2.*lr-3.)*st(m,lr,k,1)*z(rn,k) 
fnrt=frt*fnrt 

800 format (i2,lx,i2,lx,i2,lx,i2,lx,f4.1,lx,f4.1) 



return 
end 

c -----------------------------------------------------------------
Function flxhfpt(cp,cm,pp,pm,m,k,h,z) 
implicit real*8(a-h,o-z) 
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common /iblk/ aj,u(S,lS),dlf(S,lS),frt,co 
common/rate/velsav,ve1,vell,rrxn(25),cur(40l),cursav(40l),jtime 

& ,flxs(40l,lS) ,flxsav(40l,lS) ,chd(401) ,chdsav(401) ,curr sav(6) 
common /test/ err(5,2),jcount,jco,jcosav 
d-dif(m,k) 
zuf-2 . *d/ aj 
if(jtime.lt.l .or. m.eq.3 .or. m.eq.2) then 

flxhfpt--d*(cp-cm)/h*dexp(-z*frt*(pp+pm)/2.) 
else 

if(k.eq.2) then 
flxhfpt-zuf*(cp+cm+2.*co)/2.*dexp(-z*frt*(pp+pm)/2.) 

& *dsinh(-aj/2./h*dlog«cp+co)/(cm+co») 
c flxhfpt--d*(cp-cm)/h*dexp(-z*frt*(pp+pm)/2.) 
c flxhfpt=zuf*(cp+cm+2.*co)/2.*dexp(-z*frt*(pp+pm)/2.) 
c & *«(cp+co)/(cm+co»**(-aj/2.jh)-«cp+co)/(cm+co» 
c & **(aj/2 ./h» 

else 
flxhfpt-zuf*(cp+cm)/2.*dexp(-z*frt*(pp+pm)/2.) 

& *dsinh(-aj/2./h*dlog(cp/cm» 
c flxhfpt--d*(cp-cm)/h*dexp(-z*frt*(pp+pm)/2.) 
c flxhfpt-zuf*(cp+cm)/2.*dexp(-z*frt*(pp+pm)/2.) 
c & *«cp/cm)**(-aj/(2.*h»-(cp/cm)**(aj/2./h» 

endif 
endif 
return 
end 

c --------------------------------------------------------
Function accum(c,x,vip,vim) 
impli~it real*8(a-h,o-z) 
accum-c*(x*(vip-vim)+vim) 
return 
end 



3 2 0.0 .382 
-253.20 10.0 
2 
1 -1 
3 1 
2 0 1 3 

Data File 

iren.dat 

1 0 +O.OOOOe+OO +1.0000e-05 +00.0 Fe 
o 0 -9.6800e+06 +2.5500e+05 -01.0 e-
1.0 0.0 
1.0 1.0 
o 
2 
O. O. 1. O. 
O. 1. O. 3. 
1 1.eO 4.065e-2 .5 
1 1.eO 8.20 .5 
1. 1. 
1. 1. 
o 0 
1 O. 
4 0 1 121 
3.0e-09 5.24 159.69 9. 
o 1 +4.5064e-09 +4.0000e-ll +03.0 Ife3+ 
o 1 -3.7554e+08 +1.0000e+07 -01.0 e-
1 0 +O.OOOOe+OO +O.OOOOe+OO +00.0 Fe 
1 0 +O.OOOOe+OO +O.OOOOe+OO +00.0 0 
8.20 O. 
24.6 O. 
1. O. 
1. O. 
2 
O. O. O. 1. 
1. O. O. O. 
O. O. O. O. 
O. O. O. O. 
3 
0.3333333 O. 1. O. 1. O. 
O. O. O. O. 1. O. 
O. 0.3333333 O. O. O. O. 
O. 0.5 O. O. O. O. 
1 I.Oe-11 8.57272e+05 .5 
1 1.Oe-10 4.0773ge-01 .5 
1 1.Oe-ll 1.44466e+04 .5 
1. 1. , , 
..... L. 

1. 1. 
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1. 1. 
1 1 
6 0 4 181 
3. 1. 18.0 78. 
o 1 +5.0110e+01 +1.3340e+00 +01.0 Na+ 
o 1 +5.4000e+01 +O.7200e+00 +02.0 Fe2+ 
o 1 +3.7554e+01 +1.0000e+00 +01.0 FeOH2 
o 1 -7.5108e+01 +1.0000e+00 -02.0 B407 
o 1 -3.7554e+01 +1.0000e+00 -01.0 HB407 
o 0 +O.OOOOe+OO +4.0000e+00 +00.0 H20 
0.20 O. 
1.0e-I1 O. 
1.3e-18 O. 
0.05000000001 O. 
0.10 O. 
1.0 1.0 
3 
O. O. O. O. O. O. 
O. O. O. O. O. 1. 
O. O. O. 1. O. O. 
1. O. 2. O. O. O. 
O. 1. O. 2. O. O. 
0.5 O. 2. O. O. O. 
o 
1. 1. 
1. 1. 
1. 1. 
1. 1. 
1. 1. 
1. 1. 
1 0 
4 -1. 
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Chapter 4 

The Oxidation of Thiosulfate on Copper for Electroless Deposition 

Foreword 

An investigation of sodium thiosulfate as a possible redu~ing 

agent for electroless copper deposition at 25°C using a copper rotat

ing disk electrode was carried out. The polarization curves of solu

tions containing copper sulfate and EDTA were obtained, as were the 

polarization curves of solutions of thiosulfate and EDTA. It was 

determined that the optimum potential range for copper deposition in 

the presence of EDTA is -1.3 t,) -1.1 V relative to a Hg/HgO/l M NaOH 

reference electrode. It was also found that the oxidation currents 

of solutions of thiosulfate with EDTA are roughly linearly dependent 

on the amount of thiosulfate present and are dependent on the concen

tration of EDTA to the one-fifth power. Ultimately, it appears that 

thiosulfate form~; a stable intermediate with cuprous ions, thereby 

precluding electroless deposition of cupric ions. 

In iroduc t 10';' 

Thiosulfate is investigated as a pos~ible reducing agent for the 

electroless deposition of copper by means of polarization data 

derived with a copper rotating disk electrode. This work involves 

the experimental determination of the oxidation kinetics of sodium 

thiosulfate on a copper surface and the reduction kinetics of 

cupricjEDTA solutions as functions of various chemical environments 
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and additive concentrations. No chemical analyses of the solutions 

or surface analyses of the electrodes were performed. All results 

a~a based strictly on the polarization data and knowledge of possible 

reactions and their theoretical open-circuit potentials. Following 

the presentation of the results will be a discussion of why we think 

electroless deposition did not occur. First off, a summary of elec-

troless deposition and some reasons for trying thiosulfate are pro-

vided. 

Electroless deposition (from the words electrodeless deposition
l 

and previously described by paunovic2 ) is a process for plating 

metals without the application of an outside agency (potential or 

cu;.rent) . In this process the reduction of a plating cationic 

species occurs simultaneously with the oxidation of a redox species. 

These reactions are to occur only through a catalytic surface and not 

homogeneously. An example is depicted by the following system which 

is currently used in industry. 

2+ -Cu + 2 e -.. Cu, 

HCHO + 20H- -? HCOOH + H
2

0 + 2 e -. 

A further understanding can be derived from the hypothetic~l polari-

zation curves presented in figure 1. 

Polarization curves are a measure of the kinetics of a particu-

lar system in terms of the current produced as a function of the 

potential applied to an electrode. Curves that rise sharply imply 

faster rates of reaction than those that rise more slowly. The solid 
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-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

Potential (V) 

Figure 1. Solid curves are hypothetical polarization 

curves. The dashed curve is the sum of the two curves. 
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curve on the right of figure 1 exhibits faster kinetic properties 

than the solid curve on the left. Positive currents are considered 

anodic, while negative currents are considered cathodic. The points 

where the solid curves cross the abscissa are the open-circuit vol

tages of the respective reactions. 

The solid curve on the right can be thought of as the polariza

tion curve of copper in the absence of a reducing agent. A positive 

current suggests copper dissolution while a negative current suggests 

copper deposition. The solid curve on the left can be viewed as the 

polarization of formaldehyde in the absence of copper ions. The 

positive current suggests oxidation to formic acid while the negative 

current suggests the reverse reaction. The dashed line is the summa

tion of the two curves. It is inherently steeper than both curves 

and approaches one or the other for potentials between the \,f'en cir

cuit potentials depending upon whether the current is positive or 

negative. This feature is due to the typically exponential depen

dence of the current on potential at currents higher than the 

3 
exchange current but less than the limiting current (see Newman 

chapter 8 for details on these concepts). The point at which the 

dashed curve crosses the abscissa is aptly named the mixed potential, 

and by its nature it must fall between the open-circuit potentials of 

the two reacting species. It is at this poten~ial that electroless 

deposition would take place. That is the potentL:l at which the oxi-

dative current exactly balances the reductive cur rent. Deviations 

from this potential may be due to the presence of another reactive 
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species or to an interaction of the kinetics of the two primary 

reacting species. 

The objectives of this research are to replace the formaldehyde 

with a more innocuous substance and then to characterize completely 

the kinetics of the system to determine the optimum plating condi-

tions. 

When choosing a reducing agent, it is a proviso that the species 

is oxidized at a lower potential than that at which the cation is 

reduced. The larger the difference between these two potentials, the 

larger the driving force for each reaction when the species are com-

bined. But keep in mind, the driving force may be too large. 

Specifically, if the oxidation potential of the reducing agent is 

below the reduction potential of hydrogen ions, hydrogen gas is 

evolved. Not only does this result in poor reducing-agent utiliza-

tion, it can lead to bubbles and nonuniform plating. Consequently, 

there is a window of oxidation potentials to which one is limited. 

The reducing agent and the oxidized products must also be soluble. 

These criteria eliminate a number of elements. Inspection of 

Pourbaix's table of electrochemical potentials4 reveals that only the 

sulfur, phosphorous, and carbon containing compounds meet these cri

teria. As has been stated, it is our intention to remove formal

dehyde from the system; the focus of this research is on the sulfur 

compounds. 

Because sulfate and sulfite are oxidized at relativel} high 

potentials compared to copper reduction, they are eliminated as 
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possibilities. Sulfide reacts readily with cuprous ions to form 

copper sulfide which precipitates from the solution. Thiosulfate, 

with its fairly low oxidation potential, is investigated. 

Thiosulfate oxidizes to sulfite by the reactionS 

with an open-circuit potential of 

versus a SHE (standard hydrogen electrode). It is unstable at lo'~' 

pH, decomposing to form sulfur and sulfite,6 

This demands that the solution be maintained at a moderate to high 

pH. + Thiosulfate also forms a stable compound with eu. As we shall 

show, this reaction plays a pivotal role in the explanation of our 

experimental results. 

To reduce cupric ions to copper at a catalytic surface with 

thiosulfate and yet prevent cupric ions from reacting homogeneously 

at high pH to form cupric oxide, a chelating agent must be adde~ to 

the solution. A chelating agent forms soluble ligands with copper 

ions and eliminates the reaction to an oxide. A number of chelating 

. 7 8 9 10 aE!ents have been investigated in the l~terature; , " the m0st per-

vasive and the one used in this research is ethylenediamine 

tetraacetic acid (EDTA). This homogeneous reaction can be portrayed 

by the mechanism 
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Cu2+ + [EDTA]4- ~ Cu[EDTA]2-

and has an equilibrium constant of 6.3lxl0
18 

kg/mol.
ll 

Such a large 

equilibrium constant suggests interpretine the copper species as 

e~isting exclusively as Cu[EDTA]2- in solution. 

Polarization curves for the oxidation of thiosulfate and the 

reduction of Cu[ EDTA] 2- on a copper rotating disk electrode were 

obtained as described by the following experimental section. 

Experimental 

To obtain the polarization data for this system, a copper rotat

ing disk, serial number 5144 of the Pine Instruments Company, with an 

active area of 0.382 cm
2 

is used as the working electrode for both 

the copper reduction and the thiosulfate oxidation. Before each 

experiment, the electrode is polished with emery paper, then 6 J.1.m 

diamond paste, 1 J.1.m diamond paste, and finally 1/4 ~m diamond paste. 

The disk is then rinsed with deionized water. The paste is Metaldi 

Diamond Compound by Buehler Ltd. catalog No.s 40-6162, 40-6122, and 

40- 6102, respectively, and is spread on Microcloth with adhesive 

backing by Buehler Ltd~ ~~~talog No. 40-7218 attached to an Ecomet III 

by Buehler Ltd. polishing wheel. The electrode is screwed into a 

Pine Instruments Analytical Rotator model ASR2 before being immersed 

i!lto the solution. All expe::iments are performed at 1000 rpm. 

Solutions are made to 100 ml and poured into the main body of an 

H-ce11 and one its arms, which is to hold the counterelectrode. The 

counterelectrode is a coiled piece of 0.2 cm diameter copper wire 
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with an exposed surface area greater than twenty times that of the 

working electrode. The reference-electrode compartment of the H-cell 

is filled with 1 M NaOH. pH measurements are made with a Beckman ~ 

32 pH Meter. 

The reference electrode is a Hg/HgO/l M NaOH electrode con

structed with a piece of platinum wire encased in a glass tube with 

one end of the wire sticking out of the tube for electrical connec

tion and the other end of the wire is fixed two centimeters from the 

other end of the tube. This end of the wire is encased in one cen

timeter of liquid mercury, which is then covered with 0.5 cm of red 

mercuric oxide. The remaining end of the tube is plugged with glass 

wool. 

The H-cel1 is set in a stainless steel tub of water and thermos

tated to the desired temperature to within 0.1 degrees by a Thermomix 

1441 heater by B. Braun Me1sungen AG. 

Most of the experiments are performed potentiostatically. The 

reference electrode is set at a potential relative to the grounded. 

working electrode, and current is supplied through the countere1ec

trode to maintain that potential. The device used for setting the 

potential is a Potentiostat BC1200 by Stonehart Associates Inc. The 

potential of the reference electrode versus the working electrode is 

read from a digital display. The current in the system is also 

displayed as a potential and is interpreted as a current by dividing 

the potential by a set resistance. These data are also fed through a 

bus into a Macinto'~h II through a LabVIEW NB-MIO-16X-Mul tifunction 
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l6-Bit AID Board and displayed as graphs of potentials versus time 

with LabVIEW 2 software by National !nstruments. After the potential 

is set to the desired potential and the system reaches steady state, 

the potential and current are recorded; the potential is then stepped 

to a new value. This technique was followed throughout the next sec-

tion in deriving the polarization curves. 

Results 

Reduction of Copper Sulfate in the Presence of EDTA 

Figure 2 presents five curves of the polarization data· for 

copper deposition at 25°C for various concentrations of copper sul-

fate. The composition of the base-case solution is provided in table 

1. The concentration of EDTA used in each experiment was equal to 

twice the concentration of the copper sulfate except for the experi-

mental data listed as the first two curves in figure 2 where the 

copper concentration is zero and the EDTA is three times the copper 

concentration, respectively. The open-circuit potentials of the five 

species 

CUS0
4 

EDTA 

NaOH* 

Na2S04 

* (adjusted to pH - 11 to 12) 

Table 1 

3 cone. (mol/dro ) 

0.005 

0.015 

0.075 

0.1 
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curves are recorded in table 2 in the same order as listed in the 

figure. 

No trend was established between the open-circuit potential and 

the quantity of copper sulfate in solution. The average value of the 

open-circuit potenti~l is approximately -0.16 V. Inspection of the 

curves from the open-circuit potential to a potential of -1.1 V 

reveals that the current remains very low «2 mA) and is independent 

of the concentration of the copper sulfate species. This leads us to 

believe that there is a film on the electrode at these higher poten-

tials - possibly an oxide. This is significant, for it indicates 

that in order to deposit copper electrolessly at 25°C, the redox cou-

pIe must have an open-circuit potential much less than the open-

circuit potential of -0.16 V (at least as low as -1.1 V.) 

From -1.1 V to -1.3 V, the current is roughly linearly dependent 

on the amount of copper in the solution: as the amount of copper dou-

bles, so does the current. This behavior is expected for the deposi-

* (not recorded) 

curve 

1 
2* 
3 
4 
5 

Table 2 

open-circuit potential (V) 

-0.150 

-0.216 
-0.115 
-0.150 
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Figure 2. Cathodic current verses potential curves for solutions 

at a pH between 11 and 12 with 0.1 M Na2S04 and the concentrations 

listed on the figure. 
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tion of copper. At potentials lower than -1.3 V, the curves once 

again move toward each other losing their dependence on copper con-

centration and suggesting the formation of another type of film or 

changes in the surface morphology. The deposits at these low poten-

tials are also powdery, a property that is normally undesirable. 

This information leads us to believe that the optimum potential for 

electroless copper plating at 25°C is between -1.1 and -1.3 V. 

The second and third curves of figure 2 are representative of 

two experiments with the same amount of copper sulfate but different 

amounts of EDTA. The lines virtually fallon top of each other, 

12 9 which agrees with experiments by Molenaar et al. and Kondo et al., 

who found that the rate of e1ectro1ess deposition of copper is 

independent of the ratio of EDTA to copper in the solution as long as 

it is greater than one. 

Oxidation of Sodium Thiosulfate 

Polarization curves for the oxidation of thiosulfate for dif-

ferent concentrations of thiosulfate, supporting electrolyte 

(Na2S04 ), and OH- ions are presented in figure 3. The base-case con-

centrations are provided in table 3. The curves were derived by 

stepping the potential in 10 mV intervals from the open-circuit 

potential to a potential beyond which the current drops si.gnifi-

cant1y. This drop in current is indicative of the formation of an 

oxide film on the electrode surface which maintains poor catalytic 

properties for thiosulfate oxidation. The potential at which this 

drop off occurred was between -0.18 and -0.16 V. 
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Figure 3. Anodic current-versus-potential curves of thiosulphate 

solutions containing species concentrations as given in table 3 

with the differences listed on the figure. 



species 

Na
2

S
2

0
3 

NaOH 

Na
2

S0
4 

Table 3 

3 cone. (mol/dm ) 

0.010 

0.001 

0.1 
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The open-circuit potential, for solutions with 0.010 M Na2S203 , 

was measured at approximately -0.335 V versus the Hg/HgO/l M NaOH 

reference electrode, varying by ±0.004 V in any given experiment. 

Without prior knowledge of the copper deposition kinetics, this low 

open-circuit potential suggests that electroless deposition of copper 

is plausible. 

The data in figure 3 for various concentrations of 

Na2S04 and OH- ions fallon top of each other. The current at a 

given potential for the solution with half as mut!h thiosulfate is 

approximately half. Thus, the oxidation of thiosulfate is indepen-

dent of the amount of supporting electrolyte and the pH and is 

directly proportional to the amount of thiosulfate in the solution. 

The next step was the determination of the effect of EDTA on the 

oxidation of thiosulfate. Ini tial speculation suggested that the 

addi tion of EDTA should lower the current for a given potential by 

occupying surface sites for thiosulfate oxidation. In these experi-

ments a solution of 0.005 M Na2S203 , 0.1 M Na2S04 , 0.005 M EDTA, and 
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enough NaOH to achieve a pH of 10 was prepared. The polarization 

data were obtained. In the following experiments the same concentra

tions of the species were maintained except for the EDTA, which was 

doubled (the pH was maintained at 10 by the addition of NaOH). The 

doubling of the amount of EDTA continued until a concentration of 

0.08 M EDTA was realized. These curves are provided in figure 4. 

Contrary to our hypothesis, the current increased with the addition 

of EDTA. The rate of increase was proportional to the concentration 

of EDTA to the one-fifth power. Also, subsequent inspection of the 

disk revealed a slight amount of etching. The surface took on a more 

crystalline than polished appearance. 

Now that we had the polarization curves for both the copper and 

the thiosulfate and their dependence on all the other species present 

in the solution, we combined the components into a single vessel. 

Results of Combining Thiosulfate and Copper Ions in the Presence of 

Copper 

In order to increase the likelihood of electrolessly plating 

copper, the concentrations of the active species were increased by at 

least an order of magnitude, see table 4. 100 ml of this solution 

were poured into the H-cell and placed in the water bath, which was 

maintained at a temperature of 25°C. The copper electrode was 

lowered into the solution, and the open-circuit potential versus the 

Hg/HgO/l M NaOH reference electrode was monitored for the next three 

hours. The potential remained at approximately -0.34 V. Upon remo

val of the electrode, no electrolessly plated copper was found. On 
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Figure 4. Anodic current vs. potential of solutions containing 

concentrations of EDTA as listed on the figure. 
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Table 4 

species 3 conc. (mol/dm ) 

CUS04 0.040 

EDTA 0.080 

Na2S20 3 0.5 

NaOH* 0.370 

Na
2

S04 0.1 

pH 11.92 

* (pH - 11.92) 

the contrary, the electrode had partially dissolved. This led to the 

2-following investigation of possible reactions of Cu(s) with S203 . 

According to Kimura and Ishibashi,l3 the reaction 

+ 2- -Cu (aq) + S203 (aq) ~ [Cu(S203)] (aq) 

takes place with an equilibrium constant of 2.24xl010 kg/mol. In an 

aqueous phase, in the absence of comp1exing species, where the reac

tive species possibly present are Cu, Cu+, and Cu2+, only Cu or Cu2+, 

depending on the concentration and potential, is present at equili

brium. eu + is unstable. This is evident from the values of the 

standard potentials of the following reactions: 

+ Cu ~ eu (aq) + e 

(J r RT + 
U - 0, J 21 V + 'F 1 n [ Cu ]. 
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2+ Cu ~ Cu (aq) + e 

9 RT 2+ 
U - 0.337 V + 2Fln[Cu ]. 

+ 2+ -Cu (aq) ~ Cu (aq) + e ; 

9 RT [Cu2+] 
U - 0.153 V + FIn +. 

[Cu ] 

(All potentials are vs. SHE.) Assuming concentrations of I M, Cu is 

the stable phase below 0.337 V, and Cu2+ (aq) is the stable phase 

above 0.337 V. 

In the presence of thiosulfate, the following additional reac-

tions with standard potentials must be considered. 

-+ e ; 

CU(S203)-(aq) + e ; 

(Both potentials are vs. SHE.) (Note: The potentials listed above are 

not applicable for solutions containing EDTA.) Again assuming concen

trations of 1 H, Cu is the stable phase below -0.091 V, cu2+(aq) is 

the stable phase above 0.765 V, and Cu(S203)-(aq) is the stable phase 

between these two voltages. Hence, the presence of thiosulfate sta-

bilizes ',-ne cuprous ion. The significance of this finding in rela-
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tion to the experiments is discussed. 

Discussion 

When a copper electrode is placed in a basic solution consisting 

solely of supporting electrolyte and an appropriate amount of sodium 

hydroxide to achieve a particular pH (no copper ions present), it is 

difficult to predict the open-circuit potential. However, if there 

is dissolved oxygen present, it is likely that a passive layer of 

Cu
2

0 will form on the surface. When we perform this experiment, an 

open-circuit potential of -0.056 V is measured, and little current is 

produced «5 ~A) when the potential is swept ±O.lOO V. This indi

cates that copper does not readily dissolve at potentials as high as 

0.05 V and is further evidence that an oxide film exists. 

Addition of sodium thiosulfate to the solution results in a drop 

of the open-circuit potential: a consequence of the thiosulfate to 

sulfite reaction. Furthermore, inspection of the electrode indicates 

that the copper surface does not retain its polished condition. This 

is perhaps due to the dissolution of the oxide layer and/or to the 

simultaneous dissolution of the Cu(s) to form Cu[S2031 This may 

then explain the effects of EDTA on the polarization data obtained 

for solutions with thiosulfate. The curves of figure 4 are most 

likely a combination of thiosulfate oxidation and copper. oxidation to 

cuprous thiosulfate. The EDTA may act as a catalyst in the latter 

reaction in removing the copper atoms from the surface or by promot

ing some stability of the copper ions. 
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When thiosulfate is added to a solution of copper sulfate and 

EDTA at a pH of 10 ~o 12 and a copper electrode is then immersed into 

the solution, the copper dissolves. The open-circuit potential 

(=-0.34V) is lower than the open-circuit potential of the copper in a 

copper sulfate/EDTA solution. This potential is not low enough for 

copper deposition (figure 2.) However, this potential is lower than 

that necessary to transform cupric ions to cuprous thiosulfate. 

From this information it appears that when copper sulfate is 

add~d to e solution of sodium thiosulfate in the presence of copper, 

cupric ions are reduced to cuprous thiosulfate at a rate that is 

equal to the sum of the rates of the thiosulfate oxidation and of the 

copper oxidation to cuprous thiosulfate. This makes the use of 

thiosulfate as a possible reducing agent in electro1ess copper depo

sition unlikely. 

Conclusions 

The open-circuit potential of a copper electrode in a copper 

sulfate solution with EDTA at 25°C versus a Hg/HgO/l M NaOH reference 

electrode is approximately -0.16 V. This value is independent of the 

amount of copper sulfate in the solution and, for the reasons dis

cussp.d, indicates that there is probably an oxide on the electrode. 

The cathodic current does not become dependent on the concentration 

of copper sulfate until the potential is reduced to -1.1 V. The 

dependence of the current on concentration of copper sulfate is 

roughly linear to a potential of -1.3 V, where the dependence is 

lost. This potential window is considered the optimum potential 
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range for plating copper at 25°C in an alkaline solution containing 

EDTA. 

The open-circuit potential of a copper electrode in a solution 

containing 0.010 M Na2S203 is -0.337 V. The application of an anodic 

potential produced polarization curves which were independent of the 

pH and dependent on the amount of EDTA to the one-fifth power and 

linearly dependent on the amount of thiosulfate present. These 

curves represent a combination of copper oxidation to cuprous 

thiosulfate and thiosulfate oxidation. 

+ Finally, thiosulfate forms a stable soluble complex wi th Cu . 

2+ + This complex allows for Cu to be reduced to Cu and copper to be 

+ oxidized to Cu and thus negates the possibility of electroless 

copper deposition. 
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Chapter 5 

Electroless Deposition of Copper by Hypophosphite 

and Nickel Solutions 

Foreword 

Mixed~potential-versus-time curves are presented for various 

solutions consisting of copper and nickel ions. The data reveal that 

the addition of small amounts of copper ions to nickel solutions 

reduces the rate of electroless nickel deposition; whereas, there is 

a maximum concentration of nickel ions that can be added to a pri-

marily copper sulfate solution to maximize e1ectroless copper deposi-

tion. 

Introduction 

Formaldehyde is the most widely used and investigated reducing 

agent for the electroless deposition of copper. 1 ,2,3,4,5 (A review of 

plating including electroless copper plating is provided by Yung, et 

al. 6 ) Formaldehyde is very volatile (normal boiling point is -40°C) 

and hazardous to one's health, but is used because it works. Hypo-

phosphite is a widely used reducing agent for electro1ess nickel 

d i · 7 , 8,9,10,11,12 d' iiI' epos t1.on, an 1.S an on n so ut1.on. It would be 

preferable to use hypophosphite for copper deposition as well; unfor

tunately, hypophosphite is not readily oxidized on copper surfaces. 13 

This research is an extension of previous attempts by other research

ersl4 ,15 to use bypophosphite as a possible reducing agent for elec-
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troless copper deposition while in the presence of nlckel ions. 

Dubin[16 has shown that hypophosphite can be used as a reducing agent 

for nickel in the presence of a small amount of copper; this was also 

reinvestigated. 

2+ 2+ -The combination of reactants -- Ni , Cu , and H2P02 -- in the 

presence of a palladium chloride activated surface initiates the 

deposition of nickel, which then promotes the simultaneous deposition 

of copper. This work presents the mixed potentials versus time for 

solutions of various concentrations of copper sulfate, hypophosphite, 

and nickel solutions. It was found that copper poisons the nickel 

deposition and that there is an optimum amount of nickel sulfate that 

can be added to a copper solution to maximize the duration of copper 

deposition. 

Experimental 

The equipment used in this research is identical to that used in 

the previous study of thiosulfate oxidation on copper (Chapter 4), 

and, hence, shall not be repeated here. The one maj or equipment 

difference is the electrode, which is a palladium ring-disk electrode 

of the Pine Instruments Company, serial number 297, having a total 

surface area of 0.382 cm2 . The electrode is prepared by polishing, 

as described in the previous chapter, and activating. Activation is 

achieved by dipping the electrode into an activating solution, as 

described in table 1, for two minutes, prior to each experiment. 



Table 1 

species 

PdC12 
Glacial acetic acid 

He! (37%) 

Deionized H20 

amount 

0.1 g 

50 ml 

O.S ml 

to 100 ml 
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The experimental technique differs substantially from the work 

in the previous chapter. Here, the circuit is left open, and the 

potential of the palladium disk versus a Hg/HgO/l M NaOH reference 

electrode is monitored as a function of time. These data are relayed 

from the potentiostat directly to a Macintosh II through coaxial 

cables and a LabVIEW NB-MIO-16X multifunction l6-bit A-D board. The 

data are stored on a disk and displayed on the terminal using LabVIEW 

2 software by National Instruments. 

Resu.lts and Discussion 

Nickel Chloride Solutions with Sparing Amounts of Copper Sulfate 

As mentioned, hypophosphite is used as a reducing agent for 

electroless nickel deposition (due primarily to its favorable kinetic 

properties on nickel surfaces), but is a poor agent for electroless 

copper (for the inverse reason). The purpose of these experiments is 

to determine the extent to which copper sulfate can be added to 

nickel/hypophosphite solutions to maximize copper deposition yet 
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still achieve a moderate rate of codeposition. Thus, solutions with 

relatively large amounts of nickel chloride and hypophosphite are 

prepared with various amounts of copper sulfate. The concentrations 

of the species used in each experiment -. are taken from the work of 

Dubinl6 and are either listed on figure 1 or are provided below. 

The experiment with no copper sulfate also contains 0.37 M 

citric acid. The experiments with copper sulfate also contain 0.33 M 

glycine and 0.037 M sodium acetate. Each of the solutions is 

adjusted to the pH listed on the figure with the appropriate amount 

of sodium hydroxide. 

In the experiment in which no copper sulfate is present, the 

open-circuit potential starts at -0.65 V and quickly decreases 

(within the next 200 seconds) to -0.97 V. Inspection of the elec-

trode after an hour of being immersed reveals a nickel covered sur

face with bubbles vigorously evolving from portions of the electrode 

still covered with solution. 

The mixed potential diagrams of solutions which contain increas

ing amounts of copper sulfate are also provided in figure 1. One 

sees that as the concentration of copper ions increases, so does the 

potential. Inspection of the electrodes after each experiment 

reveals less deposit as the copper content of the solution is 

increased. These data lead to the following discussion. 
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Figure 1. Mixed potential curves of nickel predominant sol-

utions. Concentrations of additives are listed in the text. 



202 

Discussion 

17 According to data found in Vetter, palladium is a slightly 

better catalyst for hydrogen evolution than is nickel, which is 

better still than copper. The hydrogen to hydrogen ion and hypophos-

phite to phosphite open-circuit potentials are functions of solution 

composition and are independent of the surface present. However, the 

surface does playa large role in the kinetic properties. The nickel 

deposition open-circuit potential is a strong function of the surface 

since this reaction consists of a dissolved species reduced to a 

solid species. This information leads to the following arguments. 

For the solution without copper ions, nickel is initially deposited 

on the electrode, which brings about the immediate decrease in poten-

tial (curve 1, figure 1.) This new surface must then be either more 

kinetically favorable foX' hypophosphite reduction, or less kineti-

cally favorable for nickel deposition or hydrogen evolution, or a 

combination of the three. Since hydrogen evolution on the nickel 

surface is prevalent, it is unlikely that reduction of the hydrogen 

reaction overpotential is responsible for the large change of poten-

tial (over 300 mV.) 

However, the drop in potential combined with the vigorous bubble 

evolution and the obvious presence of nickel does suggest a shift to 

a much more kinetically favorable state of hypophosphite oxidation. 

Therefore, we conclude that this change in potential is due mainly to 

an increase of the hypophosphite kinetics on nickel relative to pal-

ladium. 
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In discussing the data it is important to consider that the pal

ladium electrode was "activated; II that is it was dipped in the 

activating solution before each experiment. And that the electrode 

was relatively inactive without this step. It thus appears that the 

activator is creating a finite number of activation sites. These 

sites are probably utilized by all four components, hypophosphite, 

protons, and copper and nickel ions. For the solution with no copper 

present, it appears that the nickel and hypophosphite compete for 

these sites, but as the nickel is deposited, it creates more active 

sites for hypophosphite oxidation. The potential drops. 

For solutions with copper ions, it appears that the copper depo

sition also competes for these activation sites. However, the copper 

does not catalyze the hypophosphite; and, therefore, as the experi

ment proceeds, the copper ions consume the activation sites and lit

tle deposition is seen. In the case of the solution with the smal

lest copper composition (curve 2, figure 1), the nickel can compete 

with the copper in consuming sites; and once all the sites are occu

pied (after 3000 s, see figure 1), the nickel can still act as a 

catalytic site for both the nickel deposition and the hypophosphite 

oxidation. Thus the potential abruptly drops nearly 100 mV after 

3000 seconds, and nickel deposition and hydrogen evolution proceed 

simultaneously with an increased rate of hypophosphite oxidation. 

(This provides further support that nickel is an excellent catalyst 

for hypophosphite oxidation and that copper is a poor one). 



204 

Copper Sulfate Solutions with Sparing Amounts of Nickel Sulfate 

Solutions which primarily consist of copper sulfate, hypophos-

phite, and boric acid were prepared with various sparing amounts of 

nickel chloride. The purpose of these experiments is to deposit 

copper with hyp~phosphite and to elucidate the effect that nickel 

plays in the process. The base-case concentration of components, as 

14 duplicated from Hung et al., is provided in table 2. The open-

circuit-versus-time data for various solutions containing primarily 

copper ions and hypophosphite as a reducing agent are provided in 

figure 2. 

For the base-case solution composition, the open-circuit poten-

tia1 starts at a low potential, -0.7 V, which is conducive to high 

rates of deposition. However, the potential steadily rises I and 

after the first 900 seconds the potential has essentially reached a 

steady value of -0.1 V. Inspection of the electrode after approxi-

Table 2 

species 

CUS04 
NiS04 
H3B03 
Citric Acid 

NaH2P02 

3 cone. (mo1/dm ) 

0.024 

0.002 

0.5 

0.056 

0.27 

(solutions adjusted to a pH of 9.2 w/NaOH) 
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Figure 2. Mixed potential versus time for prodomiantly copper 
solutions. Base Case concentrations: 0.024 M CUS04; 0.002 M 
NiS04; 0.5 M H3B03; 0.056 M Citric Acid; 0.27 M NaH2P02; NaOH 
to a pH=9.2. Adjustments from these concentrations are listed 
on the figure. 
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mately one hour reveals a faint copper surface. 

For the solution with no nickel present, the potential again 

starts at a low potential, -0. 7 V, and rises quickly, wi thin 200 

seconds, to a steady potential of -0.07 V. 

The solution with twice as much nickel starts at a potential of 

-.8 V (observed but not stored or displayed in figure 2), but rose 

very rapidly (within 10 seconds) to a potential of -0.06 V. 

Lastly, the solution with no boric acid does very little, hover

ing around -0.06 V. 

Discussion 

Again it appears tha.t there is competition for the activation 

sites. For the base case, the copper competes for the sites with the 

nickel, and codeposition contL.ues for approximately 900 seconds. In 

the experiment where the nickel concentration has been doubled, 

nickel ions conswne most of the sites but there is not much nickel 

present in solution to create an appreciable amount of current. For 

the case where n() nickel is present, the copper consumes all the 

sites, and the current stops because the kinetics for hypophosphite 

oxidation on copper are poor. The last curve mentioned is the mixed 

potential of a solution of copper and nickel but with no boric acid 

present. According to Ohno et: al., 13 boric acid is needed for the 

nickel deposition and the hypophosphite oxidation. These data agree 

with his argument to the extent that nothing occurs without the pres

ence of boric acid. 
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Further Discussions 

The transient experiments presented here showed little rept'odu

cibility. This is most likely due to the problems faced in reproduc

ing the surface prior to each experiment. The surface was polished 

and dipped in 100 ml of activating solution, which was therefore 

depleted of some Pd ions each time it was used. The solution was 

never replenished. The number of activation sites was poorly con

trolled by this technique. The electrode was then exposed to air as 

it wa:6 transferred to the rotating-disk apparatus. Oxvgen in the 

atmosphere could have a significant effect on the activated palladium 

surface by chemical reaction or adsorption. This too would obviously 

affect the ability of reproducing the same surface of the electrode 

for e,lch run. 

Experir.ental results provided in this manuscript are those for 

which the lowest potential was observed iL2ediately after the elec

trode was immersed in the solution. For some experiments, the poten

tial started at a relatively high potential (-0.1 V) and remained 

there. In those cases, the electrode was removed from the electro

less solution and redipped in the activating solution. As a conse

quencs of this experimental artifact of poor reproducibility, we are 

not overly confident of the arguments that have been presented. 

Conclusions 

Open-circuit potentials versus time of various solutions con

taining copper and nickel are presented. It was demonstrated for 
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solutions consisting primarily of nickel ions, that as the copper 

concentration is increased, the mixed potential increases and is 

accompanied by a decrease in nickel deposition. This was attributed 

to the simultaneous deposition of copper, which is a poor catalytic 

surface for hypophosphite oxidation. 

For solutions consisting primarily of copper sulfate, a maximum 

in copper deposition is observed as nickel sulfate is added. This 

effect was attributed to nickel consumption of most the activation 

sites which prohibits further deposition of copper. Surface prepara

tion plays an important role in the system performance. 
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