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Abstract 

This review has two aims: i), to present the formalism, which describes the spin

polarization observables in terms of spin-state transition amplitudes, in a manner that reveals 

the required correspondence between the theoretical and experimental definitions of the 

observables; then ii), to emphasize that spin physics, the experimental and theoretical 

investigations of spin-polarization effects in scattering and reactions, has become a clear 

unifying element among the otherwise seemingly disparate fields of nuclear, particle, and 

electron-scattering physics. Illustrative examples of research results in these fields are used· 

to demonstrate this commonality. The important role of intrinsic spin in providing 

experimental investigations of parity conservation, charge symmetry, and lime-reversal 

invariance is discussed. 
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. 1. Introduction 

Spin polarization effects in nuclear reactions and scattering have been studied during the 

past forty-odd years in. order to provide quantitative descriptions of the various spin 

dependences of the nuclear interactions, i. e., spin-orbit, spin-spin, and spin-tensor. During 

this period, polarization' studies were fairly consistently pursued in nuclear physics 

experiments. The available polarized beams of (mainly) protons and deuterons, over the broad 

spectrum of nuclear targets ·and the regularly expanding accessible energy range, have provided 

ample reason and opportunity for a continuous program of polarization experiments in nuclear 

reactions and scattering. The basic intent of this research, that of yielding specific details of the 

spin-dependences of the various interactions involved or of the theoretical models invoked, has 

been, and continues to be, richly achieved. 

As particle physics diverged and then essentially separated from nuclear physics. 

polarization experiments in nucleon-nucleon (NN) scattering, which had been among the first 

such nuclear studies, continued to be pursued at the ever higher energy accelerators where 

beams of polarized protons could be achieved. NN scattering, however, became a smaller 

subfield of particle physics ·with the. ever expanding number of new mesons and baryons 

discovered. As a result, few were interested at that time in the spin dependence of a relevant 

strong interaction in the absence of any viable theory to test; and in this context the semi- . 

serious remark was made that spin was an inessential complication in particle physics, and 

even in NN scattering th~ theoretical expectation was that the spin effeCts would diminish with 

increasing energy, eventually to vanish. This point of view changed completely during the mid 

to late 1970s, when, for example, it was found that the A hyperon produced in the inclusive 

process pA ~ AX was polarized (Bunce et al 1976), and after the deep inelastic electron 

scattering experiments showed the parton substructure of the nucleon (Miller et a/ 1972, 

Sodek et al 1979). This validated the concept of the quark substructure of hadrons. and the 

development of the strong-interaction theory of quantum chromodynamics (QCD). with its 

spin';112 quarks and spin~1 gluons. clearly has moved lhe questions of spin-dependence to the 

forefront. More recently, determinations of the quark polarizations relative to that of the 

proton have been inferred from the measurements of the appropriate spin observable in the 

deep inelastic scattering of polarized muons from polarized protrons (Ashman et al.1988, 

1989). The result, contrary to intuition, that essentially none of the proton's spin was carried 

by the spins of the valence quarks, came as a complete surprise and stimulated an intense 

interest and activity in the subject. Thus, during the past 15 years or so, the realization and 

development of the essential role of spin in particle physics has been characterized by remarks 
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such as: "Among the most critical tests of any dynamical theory of hadronic phenomena is the 

correct description of spin effects." (Brodsky and Lepage 1981); and, concerning a proposed 

program to measure various spin observables in deep inelastic lepton scattering, "There is no 

other program which rivals it in precision or clarity of interpretation within the framework of 

QGD. The experiments to date only scratch the surface of this rich and challenging subject" 

(Jaffe 1992). 

Electron scattering, which has components in boih nuclear and particle physics, has really 

expanded to generate a broad investigation of spin effects only within the past decade. There 

was, of course, a fundamental reason working against an earlier such development. Due to the 

relativistic nature of the electron at the wavelengths, thus momenta, of interest even in nuclear 

physics, the electron transverse-spin observable, the analyzing power Ay. vanishes as 11y, 

with r the Lorentz factor (Scofield 1959). Since the longitudinal (helicity) analyzing power, 

Az• is a parity nonconserving (PNC) observable, there was little incentive to develop beams of 

polarized electrons for the sole pur:pose of looking for a nonzero value of Az as a test of parity 

conservation in the electromagnetic interacti<?n. This view changed quickly with the 

development of the unified electroweak theory, because then a measurement of Az (in inclusive 

inelastic electron-deuteron scattering) could, and did, provide a quantitative determination of 

the interference between the PC electromagnetic one-photon-exchange amplitude and the PNC 

weak ZO-exchange amplitude (Prescott et al 1978, 1979).· In nuclear physics, by contrast, 

where no such condition inhibited nonzero values of Ay. polarized beams of protons and 

deuterons were early developed for the express purpose of providing meas,urementsof Ay if') a 

very wide variety of nuclear scattering and reactions. The development of polarized targets and 

efficient polarimeters then made it possible to measure some of the other polarization 

observables that are required for any quantitative determination of the various components of 

spin-dependent interactions. It is this development that has opened the way for measurements· 

of spin observables in electron scattering, utilizing both polarized electrons and polarized 

targets or measu·ring the polarization of the recoil nuclear target (Donnelly and Raskin 1986). 

Thus, during the past decade, there has been developing a clear unifying element among the 

otherwise seemingly disparate fields of nuclear, particle, and electron-scattering physiCS. That 

element is "spin phYSiCS", a generiC term that includes all spin-polarization investigations. It 

has not been at all obvious that the· same spin physiCS applies universally here, .but this 

difficulty derives mainly frQm the different "languages" , i. e., treatments, terminology, and 

notations, that have been used. Also, the relativistic nature of electron scattering and particle 

reactions simplifies considerably the spin aspects as compared to those of nuclear physics. That 

is, the number of scattering or transition amplitudes is reduced· substantially, leading to a 

correspondingly large reduction in the number of spin-polarization observables. Thus, ---' 
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electron scattering and particle reactions can be viewed as special cases of the more general 
. . 

description of the spin observables and the spin formalism of nuclear reactions and scattering. 

My design, then, in this review is to emphasize this commomility of spin physics and to 

present the spin formalism in a manner that demonstrates the required correspondence between 

the theoretical and experimenta.1 descriptions of the observables. Also, this treatment is 

relatively self-contained, because it is addressed more to the broader community than to that of 

the spin-physics specialists. 

2. SPin-~ and spin-1 polarization observables 

It is possible, and useful, to describe the basic content of spin physics in terms of 

scattering or reactions with the simplest spin structures, i. e., 

1 1 
. - + 0 ~ -+ 0 

2 2 
(2. 1 ) 

and 

1 +. 0 ~ 1 + o. (2.2) 

The increased complexity 'associated with the more complicated spin structures can then be 

recognized as the natural extensions of the basic content. This point of view, in fact, is the only . 

. rationale for this nontraditional review, since comprehensive reviews and reports that develop 

the entire formal structure of spin physics are available (Ohlsen 1972, Simonius 1973, 

Bystricky et a/ 1978, Bourrely et a/ 1980). This development of the basic content of spin 

physics is made with an emphasis on the experimentally defined observables and on the 

requirement that their formal theoretical counterparts show an exact equivalence. 

2.1 Spin dependent cross-sections and spin observables, ~ + 0 ~ ~ + 0 

Experimentally, one measures particle yields; that is, decay rates or cross-sections, and 

this review will be concerned with the latter. With the spin structure (2.1), if there is no 

. selection made among the possible spin states (orientations) of the initial state particle, the 

unpolarized differential cross-section is simply the sum of the spin-dependent differential 

cross-sections, averaged over the two possible initial states, 

(2.3) 
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Here, Ijk(+-}, for example, is the cross-section for the transition from the positive spin 

state along the j-axis to the negative state along the k-axis, where. j,k = X, y, or z in a 

reference coordinate frame. Clearly, the spin-state cross-sections Ijk are the fundamental 

experimental quantities, but I(O} measures only the sum of these basic, cross-sections, which 

provides minimal information on their individual values, so the entire program of experimental 

spin physics is engaged in their determination. Although the initial-state spin polarization can 

be selected, e.g., with a polarized-ion source,' the final state polarization is determined by the' 

dynamics of the interactions involved. Thus, the individual Ijk are not directly measureable, 

but the various spin-polarization observables are, like I(O}, simply different linear 

combinations of them. So, if there should be, as in (2.3), four spin-state cross-sectionst, the 

determination of their values requires measurements of four different observables, only one of 

which is the unpolarized cross-section. Thus, even in this example with the simplest spin 

structure, one sees that the complete experimental determination of the basic cross-sections 

requires the measurement of three more spin observables. Since /(O) is always just one 

linear combination of the basic cross-sections, the required number of spin observables 

increases rapidly as one goes to more complicated spin structures, with the correspondingly 

increased number of basic cross-sections. There, then, the role of spin physics becomes 

increasingly important. 

Consider a polarized beam, with its polarization defined as 

with (2.4) 

where the nj are the fractional numbers of particles in the indicated spin states of quantization 

direction j. Then the polarized cross-section is 

IlO} = 1(0)[1 + Pj AlO)], (2.5) 

which defines the analyzing power Aj as the relative change in the cross-section in going from 

Pj = 0 to 1 and, also, satisfies the requirements that I/O} = I(O} for either Pj or Aj = 0, 

and that I(O} isthe average of' Ilpj} and Ij{-Pj}. The observable Aj is thus determined from 

the experimental asymmetry 

. ' 

t As will be' shown, ,parity conservation reduces (2.3) to two independent. terms. 
However; the inclusion of other polarization orientations results in the same number, four, of 
independent observables. 
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and, in terms of the pure spin states Pj = ±1, 

I;(+J' - I;(-r 
Aj = I i( + ~ + I j{ - ) , 

(2.6) 

(2.7) 

where Ij{+) is the spin-state cross-section for the designated initial spin state but with the 

final-state spin undetermined, thus summed over. Then with Ij{+) = Ijk(++) + Ijk(+-), etc., 

Aj = [Ijk(++) + Ijk(+-) - Ijk(-+) ~ Ijk(--)j121 (2.8) 

is the corresponding linear combination of the spin-state cross-sections. 

With an unpolarized beam, the final-state particle can be (and usually is) polarized, and 

this polarization, "the polarizing power of the scattering, again from (2.4), is 

(2.9) 

So; 

Pk = [Ijk(++) + Ijk(-+) - Ijld+-) - Ijk(--)j12I. (2. 10) 

Using (2.6), the polarization of this (scattered) beam of particles is determined in a second 

scattering, for which the analyzing power is known. 

There is one other type of spin observable available in this simple system, that 

corresponding to the determination of the final-state polarization when the beam itself is 

polarized. With Pj (Pk) designating the initial (final) polarization, the final polarization is 

so, suppressing for the moment the Ijk subscripts, 

n;(+)J(++) + n;(-)J(-+)] - n;(+)J(+-) - n;(~)J(--) 
Pk= n i( + ) 1(+ +) + n j( -) 1(- +)] + n i( + ) J ( + -) + n j( -) I( - -) , 

and noting from (2.4) that in the initial state 

(2.11) 

(2.12) 

8 . 



1(+ + ) + 1(- + ) - 1(+ - ) - 1(- -) + P if I ( + + ) - 1(- + ) - 1(+ - ) + 1(- - ) 1 
Pk= 1(+ + ) + 1(- + ) + 1(+ - ) + 1(- -) + P j{I ( + +) - I ( - + ) + 1(+ -) - I ( - -)} 

And, with (2.3), (2.8), and (2.10), 

Pk 

so the observable Kjk, the polarization-transfer coefficient, is 

Kjk = [Ijk(++) + Ijk(--) - Ijk(-+) - Ijk(+-)]121 . 

Also, 

Kjk = 1-2Sjk, 

with the spin-flip probability defined as 

S jk = f1jk(-+) + Ijk(+-)]II. 

Then, in terms of these four observables, the basic spin-state cross-sections are 

1 
Ijk(++) = 4 1(1 + Aj + Pk + Kjk), 

1 ' 
Ijk(+-) 41(1 + Aj - Pk - Kjk), 

1 
Ijk(-+) = 41(1 - Aj + Pk - Kjk), 

1 
Ijk(--) = 41(1 - Aj - Pk + Kjk), 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19a) 

(2.19b) 

(2.19c) 

(2.19d) 

and the straightforward connection to any dynamical theory is made, in principle, through the 

corresponding (calculated) spin-state amplitudes, for example 

(2.20) 

where the Mjk are the amplitudes (matrix elements) for transitions between the indicated 

spin states. However, .as is discussed in the next section, the formal theoretical structure of 

spin physics obscures this simplicity. 
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In arriving at eqns. (2.19), the restrictions imposed by parity conservation have not 

been invoked, but this treatment provides an illustrative example that is easily extended to 

more complicated spin structures. 

2.2 Spin formalism and spin obsrvables, 

Since a single sPin-~ particle is always completely polarized. in some (arbitrary) 

direction, the polarization of an ensemble of beam (or target) particles is defined, as in (2.4), 

as the ensemble average of the difference between the two spin-state populations. 

Correspondingly, the quantum mechanical spin-function, the Pauli spinor 

x = C1 (6) + C2 (~) = C1 Z(+) + C2 Z(-) , (2.21) 

is understood to be averaged over the ensemble, so that C1 and C2 are the amplitudes for the 

fractional populations of the Z(+) and Z(-) states, respectively, so 

The Pauli spin matrices, 

(
0 - i) 

O"y= i 0 

which operate on the base states Z(±), have the multiplication properties' 

O"j(Jk = iO"I j,k,/ cyclic in x, y, z; Tr (Jj(Jk = 20jk . 

In terms of the base states, the eigenstates of these operators are defined by 

o"x X(±) = ± X(±), 

0" Y Y(±) = ± Y(±), 

o"z Z(±) = ± Z(:t), 

so 

so 

X(±) = [Z(+) ± Z(-)]N2 

Y(±) = [Z(+) ± i Z(-)]m 

(2.22) 

(2.23) 

(2.24) 

(2.25a) 

(2.25b) 

(2.25c) 

and, just-as Z(±) represent states of spin quantized along the' z. direction, X(±) and Y(±) 

represent states quantized along the x and y directions. Then, the polarization components 

1 0 



., 

Pj, which are the expectation values of the aj, all have the same form when the spin function 

(2.21) is expressed in terms of the corresponding eigenstates J(±), 

Pj = <aj> == x/ aj Xj = xl [C1j J(+) - C2j J(-)] 

= /C1j/2 - /C2j/2 = nj{+) - nj{-), (2.26) 

in complete agreement with the experimental definition (2.4). 

generally uses only the base eigenstates Z(±), resulting in 

Px = xzt axxz = 2 Re C1*C2 

Py = xzt (JyXz = 21m C1*C2 

pz = xzt az X z = /C1/2 - /C2/2, 

However, formally, one 

(2.27a) 

(2.27b) 

(2.27c) 

where the subscript z has been dropped from the amplitudes C1, C2. Thus, the unphysical 

expressions for Px and Py simply result from this choice. 

The polarization (pseudo)vector, with the components (2.27), has the absolute value of 

unity since Pi! + pi + Pf = 1, so there must be some restriction on the amplitudes in order 

for (2.27) to represent an arbitrary polarization. For example, using 

(2.28) 

1 1 

the polarization in the transverse (x,y) plane, Pt = Px ± ipy, can be ,set to zero without C1 or . 

C2 = 0, but with C1*C2 or C1C2* = 0; that is Re Ct*C2 = ± i 1m C1C2*. Thus, arbitrary 

values of of the polarization components correspond to the conditions 

Px = 2 Re C1* C2 ; Py = pz = 0, so 1m C1*C2 = 0, /C1/ = /C2/ (2.29a) 

Py = 2 1m C1 * C2 ; Px= Pz= 0, so Re C1*C2 = 0, /C1/ = /C2/ (2.29b) 

pz = /C1/2 - /C2/2; Px ± ipy = 0, so Re C1*C2 = ± i 1m C1C2*. .(2.29c) 

It is convenient to replace the matrix operations of (2.27) and the conditions (2.29) on 

the spinor amplitudes C1 and C2 by the density matrix p. Since an observable is defined as the 

expectation value of the corresponding hermitian operator D, as in (2.27) 



(2.30) 

(2.31) 

<Q> = Tr PQ, with (2.32) 

Then, since p is a 2 x 2 matrix it can be expanded in terms of the set of (5j, j = o,x,y,z, as 

And, using. (2.24), 

so, 

1 1( 1+pz p= - I. Pj (5j = 
2 j 2 Px+ipy 

PX-iPY) 
1 - p z 

(2.33) 

(2.34) 

(2.35) 

Thus, comparison with with (2.32) shows that the density matrix, expressed simply in terms 

of the polarization components of the ensemble, automatically includes the conditions (2.29) on 

the spinor amplitudes C1 and C2,' which can then disappear from the further development of 

the formalism. 

So far, this discussion has described only the initial-state spinor and density matrix, 

which can be prepared for the experiment. All experimental observables are described iii 

terms of the amplitudes for transitions between individual initial and final spin states. That is, 

the final spinor is given in terms of the initial spinqr by Xf= M(O) Xi, so M(O) is the 2 x 2 

matrix of transition (or scattering) amplitudes M(if): 

(
M(++) 

M(9) = .M ( +':. ) 

M( - + ) ) 
M ( - - ) 

This 2 x 2 matrix can, also, be expressed in terms of the set of (5j, 

(2.36) 

(2.37) 
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and this is a convenient form in which to apply the conditions that are imposed by the 

fundamental symmetries of parity Gonservatiion (PC) and time-reversal invariance (TRI). 

Choosing now a coordinate frame for the generic reaction a + b ~ c + d, the center of mass 

helicityframe, Fig. 1, is used, since it is the one in which the conditions imposed by TRion the 

scattering/reaction amplitudes are most naturally expressed (Ohlsen et al 1972, Simoni us 

1974). Then, unit vectors along the coordinate axes are 

ZI (Zf) = kj (kf) y = k/ X kf Xj (Xt)= Y X ZI (Zf) , (2.38) 

where k; (kf) is the c.m. momentum of particle a (e), and the base states Z(±} are states 

of spin quantized along the direction of the particle's momentum; that is, helicity states, so the 

corresponding M-matrix amplitudes (2.36) are helicity amplitudes. The P and T 

transformations are ki,t -7 -kl,f , a -7 a and kj H -kf , a -7 -a, respectively. 

Here, a = (ax, ay, az), aj == a· j, so the transformations of aj under these P, T 

symmetry operations are: 

(2.39) 

Thus, in order that the M-matrix (2.37)be invariant under these operations, the amplitude 

aj changes sign wherever aj changes sign, and it can be classified according to its P and/or 

T symmetry. That is, an amplitude aj is 

P -odd (T -odd} 'if nx + nz· (nx) is odd, (2.40) 

where nx (nz) is the number of x (z) subscriptst. PC requires the P-odd (P-even) 

amplitudes to vanish when the product of the particles' intrinsic parities is even (odd), but TRI 

imposes no such condition on the T-odd amplitudes. Consider the MLmatrix for the time

reversed reaction, with amplitudes atj, as in Eq. (2.37). Then TRI requires that kfMt = kj M 

t For this simple spin structure the amplitudes carry only one subscript. With more complex 
spin structures, for which the amplitudes carry two or more subscripts, (2.42) is valid in 
general. 
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(k; = kf in elastic scattering), so the T -odd amplitudes satisfy the condition kf atx = - ki ax. 

Only in the case of elastic scattering, which is its own inverse reaction, does this condition 

force the amplitude to vanish. 

For a reaction, then, in which there is no net change of intrinsic parities between the 

initial and final states, the PC condition (2.40) requires ax and az to vanish, so (2.37) 

becomes 

(2.41) 

and the helicity amplitudes satisfy 

M(++) = M(--) , M(+-) = - M(-+}. (2.42) 

Correspondingly, the basic helicity cross-sections (2.20) are reduced in number to two. 

Since the experimental observables are formally defined as the final-state expectation 

values of the corresponding hemitian operators, the final density matrix is required in (2.32); 

and it, defined in the same way as the initial density matrix in (2.32), is 

Pf= XfX,t = M XjX/Mt = M p;Mt. (2.43) 

Thus, the final density matrix, which describes the polarization components of the final 

ensemble, is naturally given in terms of the initial polarization components followed by their 

transition probabilities to the final states. So, with (2.35)" and 

<ilt> = Tr M Pi Mt n , (2.44) 

the observables are the unpolarized differential cross-section, Pj = '0, 

. 1 
. f(O) = <ao = 1> = "2 Tr MMt, (2.45) 

and, with a beam polarization Pj, 

1 . [ Tr MajMt} 
flO} = <aD> = "2 Tr M(1 + Pj aj)Mt = f(O) 1 + Pj Tr MMt . (2.46) 

Thus, the analyzing power in (2.5) is 

(2.47) 
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In order to calculate the, final-state polarization, which has the limits ±1, the final density 

matrix is normalized to lunit trace by PI -7 PI/ Tr PI. Noting that Tr Pf = I (Ij) when the 

beam is unpolarized (polarized), the polarizing power (2.10) is 

Pk = <CYk> = Tr MMt CYk / 21, (2.48) 

and, with a polarized beam, the final polarization is 

(2.49) 

as in (2.16). Thus, 

(2.50) 

Consider, now, the experimental observables (2.45), (2.47), (2.48), .and (2.50), 

expressed in the general form 

j,k = o,x,y,z , (2.51 ) 

where j labels thepola~ization component of the initial-state particle, k labels the observed 

final-state polarization component, and j (k) = 0 for unpolarized incident particles 

(unobserved final polarization). For example, X(y,o) == Ay and X(x,z) = Kx•z. Again. just as 

the spinor amplitudes C1 and: C2 were replaced by the density matrix, now Pi does. not 

appear explicitly in (2.51), and an observable ,is calculated simply with. the specification of the 

initial and final polarizations, (5j and (5k, and the matrix of transition amplitudes. 

Since, by definition, the P transformation of the M-matrix is M -7 M, the combination 

M,Mt contributes no change of sign in the P transformation of an observable, so its P

symmetry is determined by the explicit spin-operators, CYj and CYk, in (2.51). Its T

symmetry is determined in the same manner. Thus, with (2.39), it follows from (2.51) that 

these observables can be classified according to their P and T symmetries, in exactly the same 

way as was found for the amplitudes in (2.40): 
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P: 

T: 

'X(j;k) = (_1jfnx+ nz) X(j,k) 

X(j,k) = (_1}nx xt(k,j) 

(2.S2a) 

(2.S2b) 

So, PC requires a P-odd observable to be zero, but the condition imposed by T-symmetry is 

that an observable is equal t9 (+/-) the corresponding observable in the inverse process 

(k,j); for example, Ay = pty. This holds, also, for elastic scattering, which is its own inverse 

process but with the initial and final (spin) states interchanged. 

In order to see the specific equivalence between the experimental observables, defined in 

terms of the basic cross-sections of section 2.1, and their formal counterparts, one must use in 

(2.S1) the M-matrix form (2.36) with the direct connection between its amplitudes and the 

basic cross-sections (2.20). Since the base spin states have been chosen to be the helicity 

states Z(±), the matrix of helicity amplitudes is designated Mz(9). Then, for example, the 

analyzing power components are 

1 
. lAx ="2 Tr MzaxM zt = Re[M(++)M(-+f + M(+-)M(--) ''j 

lAy = ~ Tr MzayM zt = fm[M(++)M(-+f + M(+-)M(--fJ 

IAz=~TrMzazMzt=~[fM(++)J2 + /M(+_)/2 - IM(-~)/2 - IM(--)/2J. 

(2.S3a) 

(2.S3b) 

(2.S3c) 

Thus: Az agrees, term by term, with its experimental definition (2.8) in terms of the basic 

cross-sections, whereas the expressions for Ax and Ay are again unphysical for the same 

reason as in (2.27), thatof describing all components Aj in terms of the helicityamplitudes. 

From PC; (2.S2a) and (2.42),. Ax and Az vanish, so one does not generally see the expression 

(2.S3c) for an analyzing power component, and 

lAy = 2 Im[M(++)M(-+fJ (2.54) 

is the standard expression for Ay. This, and similar expressions for other observables in 

terms of such bilinear combinations of different amplitudes, as opposed to sums of the absolute 

squares of amplitudes, (2.S3c), have led to assertions that polarization effects are interference 

phenomena.· It is clear, however, that these "interferenceterms" result simply from the 

disparity between the experimental quantizatio~ axes and the helicity quantization frame that is 

generally chosen for the formalism. Experimentally, the quantization axis for each initial

state particle is that of its prepared polarization direction, and the axis for each final-state 

particle is that of its measured polarization direction. If the· same choice of a separate 
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quantization direction for each particle is made in the formal description of the observables, the 

spin operator in (2.51) for each particle is (J' z. Then, since (J'z is a diagonal matrix, it does 

not change the positions of any of the M-matrix amplitudes in the multiplications indicated in 

(2.51); it simply introduces the appropriate minus signs. As an example, 

11' 
IKzz=-TrMazMtaz=-{fM(++)/2 + /M(-_)/2 - /M(-+)/2 - /M(+_)/2j, 2 2 

in agreement with (2.16). 

(2.55) 

Since , for good reason (Jacob and Wick 1959), the helicity frame was first chosen to be 

the standard reference frame for the description of polarization observables (Madison 

convention, Barschall and Haeberli 1971), most of the polarization observables allowed by PC 

are expressed in terms of the sums of bilinear combinations of amplitudes. It is now clear, 

however, that one should not try to interpret the "physics" of such expressions, knowing that 

the physics is contained in the the experimental definitions of the observables in terms of the 

basic cross-sections. That is, all of the observables of spin physics are simply different linear 

combinations of the basic cross-sections. This has been demonstrated here for a reaction with 

the simplest spin structure, but it should be clear that this holds true for any more complicated 

spin structure. The / only difference is that the number of basic cross-sections and 

corresponding amplitudes increases, so the number of observables increases in accord with the 

number of independent linear combinations of the basic cross-sections. 

One sees that the choice of the M-matrix expanded in terms of the (J'j, (2.37), is 

convenient for more reasons than that of the application of the P and T symmetries. That is, 

the calculation of any observable (2.51) is reduced to the trace of sums of products (J'j(J'k· 

Then, using the properties (2.24), there is no actual multiplication of matrices required. Also, 

the symmetry of M in terms of the (J'j results in a symmetry in the expressions for the 

different components of an observable. For example, to calculate IAj, with j,k,/ cyclic in 

x,y,z, 

M = aoao + apj + akak + alai (2.56) 

ajMt= ao'aj+ a/a 0 + iak"a/- ia/ak; 

but twelve of the ~ixteen terms of the product MajMt are traceless, so 

(2.57) 
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showing the equivalent expression for each component. Then with the P-odd amplitudes ax = az 

= 0; the surviving component is 

lAy = 2Re aoa/, (2.58) 

in agreement with. (2.54) from (2.36) and (2.37). 

2.3 Spin dependent cross-sections and spin observables, 1 + ° ~ 1 +- ° 
Altho~gh the differences between thespin-~ and spin-1 (and higher spin) polarization 

descriptions arid formalism are sometimes emphasized (e.g. Bourrely et al 1980), I choose to 

emphasize the similarities. . One has, now, the fractional populations, n/+) , n/a), n/-J of 

the three indicated spin states (±1,0) of quantization direction j. As before, the vector 

polarization is 

with (2.59) 

1 
Since an unpolarizedensemble has n/+) = nj{o) = n/-) = "3' consider the case with 

n j{+J = nj{-) but nj{a) # ~. Although Pj ~ 0, this is not an unpolariz~d, but an aligned or 

tensor polarized, ensemble; and this tensor polarization is defined quantitatively as· the 

difference of the population n/a) from its unpolarized value, 

Pjj.= 1 - 3nj{o) (2.60) 

Pjj = 1, 0, -2 far n/o) = 0, i, 1. 

_ It immediately follows from (2.59) that a purely vector-polarized ensemble, i.e. with the 

tensor polarization Pjj = 0, is limited to the range ~ ~.p j ~ ~. Now, the polarized cross-

section IS 

(2.61 ) 

which defines the tensor analyzing power Ajj as the relative change in. cross-section due to the 

tensor polarization. The numerical coefficients in (2.61) correspond to the noted limits on Pj 

. and Pjj and the requirement that I{O) be the average over the (pure) spin-state cross

sections 
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3 1 
Ij{+) = 1[1+ "2 Aj + "2 AjJ}, 

Ij{O) = I [1- Ajj}, 
3 1 

Ij{-) = I [1- "2 Aj + 2 Ajj}. 

There are now nine basic cross-sections 

Ijk (a, {3), a, {3 = +,0,- . 

Then, as for sPin-~ , the vector analyzing power is one linear combination of them, 

and the tensor analyzing power is another, 

Ajj = 1- Ij{O)/I = 1- L Ijk (0 ,{3)II. 
{3 

) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

The nine basic cross-sections can be expressed, as in (2.19), as different linear combinations 

of the required nine observables. In a straightforward extension of the treatment of section 2.1, 

these include the four observables I, Aj, Pj, Kjk and the five additional ones associated with the 

tensor polarization, Ajj. Pkk, Kj,kk, Kjj,k, and Kjj,kk. Pkk is the tensor polarizing pow.er and 

the polarization transfer coefficients are vector-to-tensor, tensor-to-vector, and tensor-to

tensor, respectively. 

2;4 Spin formalism and spin observables, 1 + 0 ~ 1 + 0 

Extending the procedure of section 2.2, the spin-1 spinor, 

(2.66) 

is averaged over the ensemble, and 
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The basic spin-1 matrix operators are Po = 1 and 

(
0 1 O} 

P x = _~ 1 0 1 
'12 0 1 0 

Py = _~ i 0 - i 
(

0 - i 0 } 

'12 O.i 0 

(2.67) 

Pz= (~ ~ ~ } 
o 0 - 1 

(2.68) 

As before; the base states Z(a) are eigenstates of Pz: Pz Z(a) = a Z(a), and these operators 

satisfy the commutation relations 

(2.69) 

with Cjkl = 1, -1, 0 for jkl cyclic, anticyclic, or neither, respectively. 

Since the expectation values of these hermitian Pj provide only the vector polarization 

components in the helicityframe of Fig. 1, additional' matrix operators are required to 

represent the tensor polarization components. These operators are chosen (Ohlsen 1972) to be 
\ 

the symmetric tensors formed from the Pj, 

j,k = x,y,z, (2.70) 

and, for example, Pxx (Pxz) represents an alignment, thus quantization, along the x (x = z) 

direction. Only five of the six possible tensors, P XXi P yy, P zz, P xy, .p yz, P zx, . are 

, independent, since 

E'xx + Pyy + Pzz = 3(P x2 + p y2 + p z2) - 6 = 3P2 - 6 = 3P(P+1) - 6 = O. (2.71) 

Then, the P O,x,y,z and the five independent P jk form a convenient set of nine independent 

matrix operators in terms of which any 3 x 3 matrix can be expanded. This set of operators, 

Qj, normalized so that 

Tr Qj = 30oj, (2.72) 

is 

_ rT . 1 
DF Po, -'12 (Px, Py, Pz), ...J6(Pxx - Pyy}, 

1 _12. 
{2 Pzz, -'I 3 (P xy. P yz, P zx). (2.73) 
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Just as before, after expanding the spin-1 density matrix (2.35) in terms of this set of Qj, 

and expanding the M matrix (2.37) as 

M(B) = L alB) P j , 
j 

(2.74) 

(2.75) 

the procedure from (2.43) to (2.51) yields the same expression for the general spin-1 

observable, with (Jj, (Jk replaced by Pj, Pk; 

X(j,k) = Tr MPjMtPk/ Tr MMt, 

but now with j,k = 0, x, y, z, xx, yy, ZZ, xy, yz, zx . 

The initial (final) polarizations Pj (Pk) , are now the expectation values of the operators 

Pj(Pk). 

(2.76) 

Since the P and T transformations of Pare P -7 P and P -7 -P, respectively, just as 

for (J, the transformations of the Pj are the same as ;those of the (Jj, (2.39). Then, noting 

(2.70), it follows that the symmetry conditions (2.40) and (2.52) apply, as well, to the spin-

1 amplitudes (2.75) and the observables (2.76). Thus, the P-symmetry condition (2.52a), 

with (2.71), reduces the number of nonvanishing spin-1 amplitudes to five. Thus, when 

there is no net change of intrinsic parities, the parity conserving M-matrix can be expressed as 

, M = ao + ay Py + axx(p,xx - Pyy) + azz P zz + azx Pzx . (2.77) 

Explicitly, 

+ 0 

+ ao+azz - ( i a y - ( }) a z x ) / "2 3axx 

M=o 3 ,,-( i a y + ( 2") a z x ) / 2 ao-2azz 
3 ,,-- ( i a y + ( 2") a z x } / 2 (2.78) 

3axx 3 ,,-(iaY-(2"}azx)/ 2 ao+azz 

which shows the helicity amplitudes M(a,f3) in terms of the invariant (with respect to the 

choice of coordinate frame) amplitudes aj. In this form it is easy to' see the helicity change that 
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is provided by a particular aj- For example, only the far off-diagonal tensor term axx provides 

the transitions in which the helicity changes by two units. 

Following the same procedure as for spin- -}- in (2.56) and (2.57), any spin- 1 

observable (2.76) can be expressed in terms of the amplitudes (2.77) by using the properties 

(2.69) and (2.70). 

Finally, in order to see again the specific equivalence between a spin-1 experimental 

observable, defined in ~erms of the basic cross-seEtions, and its formal counterpart, consider 

with M == [M(a, (3)) 

as the matrix of spin-1 helicity amplitudes analogous to (2.36). With 

IAzz";~ L [JM(+,{3)/2 + /M(-,{3)/2 -2/M(o,{3)/2j 
{3 

1 
IAzz="3 L l/M(a,{3}/2 - L /M(o,{3)/2 
'~{3 {3 

IAzz = I - L Ijk(O,{3), 
{3 

in agreement with (2.65). 

(2.79) 

(2.80) 

(2.81 ) 

(2.82) 

(2.83) 

(2.84) 

Thus, it is clear thatthe description of the spin-1 observables, in both the experimental 

and spin-formalism definitions, can indeed be the natural extension of the description of the 

spin- ~ observables that follows in goi~g from the two to three base spin states. 

2.5 Photons 

Although the photon is a (massless) spin-1 particle, the real photon with momentum in 

the z direction has only two states of linear polarization, corresponding to its transverse 

electric field being along either the x-axis or the y-axis of figure 1. Thus, the description of 

its polarization can follow exactly that of the SPin"~ particles, sectio!) 2.2. So with 
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X y = Cx X(+) + Cy Y(-), ICxl2 + ICyl2 = 1, (2.85) 

for pure "spin" states the linear polarizations are 

(2.86) 

and an' arbitrary linear polarization is given by 

c = Cx - Cy = nx(+} - ny(-). (2.87) 

Then, the circular polarizations (helicities) correspond to the states 

cz(±} = ~ (ex ± icy), (2.88) 

and, in the spin-1 framework nz(o} = 0, so a beam of real photons is tensor polarized, with 

pzz = 1. 

Virtual photons-have the additional longitudinal component of linear polarization, so the 

treatment of their polarization requires the full spin-1 three-state description, and the 

corresponding 3 X 3 density matrix has been given by Dombey (1969). 

3. More complex spin structures 

The entire foregoing discussion is easily extended to reactions/scattering of mOre complex 

spin-structures. Consider, for example, the case of particular interest in particle physics, 

a + b ~ c + d, with four spin- ~ particles. Now, with j,k,l,m referring to the polarization 

components of particles a,q,c,d, respectively, the polarized cross-section (2.5) becomes 

Ijk(8) = 1(8)[1 + Pj Ajo + Pk Aok + PjPk Ajkl, (3.1 ) 

. which defines, as before, the additional observables Aok, the target analyzing power, and Ajk, 

the initial-state spin-correlation coefficients. Similarly, additional observables are 

23 



experimentally defined in the extension of (2.15) to include determinations of the polarization 

components of particles c and d, both separately and in correlation. Experimentally, these 

observables are all expressed in terms of the basic spin-state cross-sections, Ijk,lm(a/3, YO), 

with a, /3, y, 8 = ± 

Now that it is clear that the formal expression for any observable, (2.51), will, with the 

appropriate choices M z and () z, yield the proper linear combination of the basic cross-

sections, this extension to more complex spin-structures will use the formally more 

convenient helicity-frame M-matrix (with its base helicity states Z(±)), expanded in terms of 

the (hermitian) spin operators ()j. The initial-state (final-state) spinor is now the two-

particle four component spinor formed as the direct product of the individual particle spinors 

Xab = Xa ® Xb (Xed = Xc ®Xd). The required 4 X 4 M-matrix can now be expanded in terms 

of direct products of the 2 X 2 (8, c) and (b,d) matrices OJ and Ok, respectively 

(MacGregor 9.,t al 1960), 

M(8) = I, 8jk(O) OJ ® Ok , 
j,k . 

j,k = o,x,y,z. (3.2) 

In a more compact form, with the 4 X 4 matrix (Jjk == (Jj ® (Jk , 

M = I, 8jk (Jjk, (3'.3) 
j, k 

and the 16 M~matrix amplitudes, 

800, !lox, aoy,!loz, i1xo, 8xx, i1xy, axz 

8yo, !lyx, ayy, !lyz, gzo, azx, gzy, 8zz, (3.4) 

can then' be classified, from (2.40)" according to their P and/or T symmetries. For example, 

the eight underlined amplitudes are P-odd (with 80x, axo, 8xy, 8yx also T-odd) and 8xz 

and 8zx are T -odd. Also, the experimental observables, in the now familiar form, 

X(jk,lm) = Tr M (Jjk Mt (JIm / Tr MMt, j,k,l,m = o,x,y,z , (3.5) 

have, in an obvious extension of (2.52), the symmetries 
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P: 

T: 

X(jk,/m) = (-1 )(n x+n z) X(jk,lm) 

X(jk,lm) = (.1)nx Xt(lm,jk). 

(3.6a) 

(3.6b) 

For the case in which lrtot, the product of the four particles' intrinsic parities, is even, so 

that the eight P-odd amplitudes of (3.4) vanish, the parity conserving M-matrix is 

M = aoo +ayo (jyo + aoy Goy +axx (jxx +ayy Gyy + azz (jzz + axz (jxz + azx Gzx· (3.7) 

r 

Nt It is useful to display in its matrix form, so with 

:z )=u 
0 1 

0
1 J axz~ ( 0 

0 0 

0 0 o ' etc., (3.8) 
(Jz 

- 1 0 0 

++ +- -+ 

++ [ Ooo+azz qZX-iaO y axz-iay 0 
axx-ay y 1 

M= 
+ - azx+~aOY aoo-azz axx+ay y -aXZ-~ay 0 , 

(3.9) 
- + axz+1ayo axx+ay y aoo-azz -azx-1ao y 

- - axx-ay y -axz+iay 0 -azx+iao y aoo+azz 

Where the column (row) labels are now the helicities ap (y8) of particles a,b (e,d). . Here, 

then, the helicity amplitudes Mjt= M(ap,y8) are explicitly displayed in terms of the invariant 

amplitudes ajk. Simonius (1974) has shown directly that the conditions imposed by P

symmetry on these helicity amplitudes are 

M(a{3,y8) = 1Ctot (_1)a+f3+r+~ M(-a -PrY -8), (3.10) 

and these conditions are automatically satisfied in (3.9), as, well as in (2.78) and (2:41). 

There is much more information available from (3.7) that is seen in (3.9). Since the 

off-diagonal operators (J x and (J y change the single-particle ti'elicity states, i.e., (J x Z(+) = 

Z(-), (Jy Z(+) = iZ(-), etc., the corresponding ax and ay are helicity-flip amplitudes while 

80 and az are non-flip amplitudes. Thus, 8.xx is a double helicity-flip amplitude; that is, both 

particles 8, b flip helicities in the transition to e, d,' and, e.g., ayo is an amplitude for the 

process in which helicity-flip occurs only in the a to e transition. These properties are 

conveniently displayed in (3.9). It is , also, very useful to make the connection between the 

invariant amplitudes ajk and the spin-dependent interactions, spin-orbit, spin-spin, and 
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spin-tensor. Since orbital angular momentum is along k; X kf (Fig. 1), 

(J . I = 0" y, so ayo (a oy) is the projectile (target) spin-orbit amplitude. 

a spin-orbit term 

A spin-spin term, 

aab oa . 0b = aab(O"xx + O"yy + °ZZ) , by itself would require that a xx = ayy = azz = aab in 

(3.7), so it is the spin-tensor term which removes these' equalities and, also, provides the 

amplitudesajk with j:;t k. Then one sees again in (3.9) that a change in total helicity of two 

units, provided by the far off-diagonal amplitudes, is possible only through the tensor 

int~raction. Thus, the amplitude subscripts describe their P and T symmetries, their explicit 

helicity transitions, and their corresponding spin-dependent interactions .. 

The calculation of an observable (3.5) in terms of the M -matrix amplitudes (3.7) 

proceeds· just as for the simpler example of (2.56) and (2.57) since the matrix operations 

factor, as they must, into the operations of OJ and Ok in the separate (a, c) and (b,d) spin-

spaces, respectively. For example, consider the spin correlation coefficient 

IAjk == IX(jk,oo) = ~ Tr M Gjk Mt Goo. 

With (3.3), a representative term of (3.11) has the matrix structure. 

Tr [(aj' ® Gk'){Gj ® Gk)(G/, ® Gm'){Go ® Go)l = Tr ((Gj'Gp/') ®(Gk'GkGm')] 

= [Tr Gj'GPI'l[Tr Gk'GkGm'], 

(3.11) 

(3.12) 

showing the reduction to the two separate trace factors. Then, writing the general expression 

IX(jk,lm) 
1 

= "4 Tr M Gjk Mt Glm (3.13) 

as the product of the two eight-term sums M Gjk and Mt Glm , only eight of the sixty-four 

product terms have nonvanishing traces and contribute to (3.13). These are selected by the 

trace properties 

Tr[Gjk Gj'k1 == Tr[(Gj ® Gk)(Gj' ® Gk')] = Tr[(Gj Gj')®(Gk Gk')j 

= (Tr Gj Gj')(Tr Gk Gk'). = 4 Djj' Dkk' . 

1 1 
3.2 2 + 1 ~ "2 + 1 

(3.14) 
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1 1 .. 
Exten~ing now to ~h,e -spin-structure "2 + 1 ~ 2 + 1, one can proceed in the same manner 

as in subsection 3.1. The polarized cross-section (2.61) now becomes 

which defines the target vector (tensor) analyzing power Aok (Akk) and the vector-vector 

(vector-tensor) spin correlation coefficient Aj,k (Aj,kk). Again, additional observables are 

defined experimentally in an extension of (2.15) that includes determinations· of the 

polarization components of particles c and d, both vector and tensor for d. These observables 

are all expressed in terms of the basic spin-state cross-sections Ijk,/m(a!3, roY, now with a,r 

= ± and {3,o = +,0,-. 

Eq. (3.2) now becomes the 6 x 6 M-matrix expanded in terms of direct products of the 

2 X 2 (a,e) matrices (Jj and the 3 X3 (b,d) matrices Pk. 

M(O) = L ajk (JI Pk , 
j,k 

j= 0, x, y, z; k= 0, x, y, z, xx/yy, zz, xy, xz, yz , 

and the observables are 

X(jk,lm) = Tr M (JjPk Mt(J/Pm / Tr MMt, . 

(3.16) 

(3.17) 

with I (m) having the same range of components as j (k). Just as before, the symmetry· 

conditions (3.6) apply to these observables. 

The calculation of an observable (3.17) in terms of the amplitudes (3.16) proceeds just 

f th f h .. 1 1 1 1 ( 1) (3 14) I dd' , h as or e case 0 t e sprn structure '2 + '2 ~ '2 + '2' 3.1 to . . n a Itlon to t e 

properties (2.24) and (2.69), useful relations of. thespin-1 matrices are 

(3.18) 

3.3 Arbitrary spin structure 

So far~ we have considered only those cases where the final-state spins are the same as the 

initial~state spins, and this is not generally the case in inelastic scattering and reactions. As a 

representative example, we consider the spin structure 1 + ~ ~ a + ~, which has been 
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treated in exhaustive detaU by! Keaton et a/ (1974). The six component initial-state spinor and 

two component final-state spinor require a 6 X 2 M-matrix with the helicity amplitudes 

M(a/3, 8), where a = ±1,O; /3,8= ± ~. This matrix can be expanded in terms of direct products 

of the 3 X 1 (particle a) row matrices xl and the 2 X 2 (b,d) matrices (Jk, 

M(8) = ~. 8jk xl O"k; j = x,y,z; k = 0, x,y,z . 
j,k 

The cartesian matrices xl are derived from the spherical forms 

with 

X(+)t = (1 ° 0), X(o)t = (0 1 0), X(-)t = (0 0 1) 

xxt = [-X(+)t + X(-)t jm= (-1 0 1)1'12 
xl = -if X(+)t + X(-)t jI{2= -i(1 0 1)1'1 2 

xzt = X(o)t;", (0 1 0). 

For example, then, the ax,z term in (3.19) is 

1 (-100010) 
axz xxt ® (Jz = axz (-(Jz 0 (Jz);{2 = ..J2 axz .·0 1 0 0 0 _ 1 .. 

(3.19) 

(3.20) 

(3.21 ) 

(3.22) 

Again, the P and T transformations of X are X ~ X and X ~ -X , respectively, as for (J, so 

the symmetry conditions (2.40) and (2.52) apply to the amplitudes in (3.19) and to the 

observables 

X(jk,/) = Tr M Pj(Jk.Mt (J,/ Tr MMt. (3.23) 

Thus, with the six P-odd amplitudes vanishing, the parity conserving M-malrix is 

(3.24) 

so ++ +- 0+ 0- -+ 

_1_+ ( -iayo-a, z -axx -ay y {2azz {2azx -iayo+axz axx-ayy J 
M={2 

{2azx -..J"2azz -iayo-ax z ' 
(3.25) 

. 2 
-iayo+axz axx+ayy - -axx+ayy 
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where the column (row) labels indicate the helicities af3(o) of the particles ab(d). Again, 

(3.25) satisfies the conditions (3.10) and explicitly shows the helicity amplitudes M(af3,o) in 

terms of the invariant amplitudes. The tensor term (axx - ayy) again provides a change of two 

in the total he licity , and there is no aoo amplitude because all of the transitions are helicity 

changing. 

Finally, the calculation of the observables (3.23) in terms of the amplitudes (3.24) 

proceeds in the same way as for all the previous examples, now with the additional relations 

(3.26 ) 

3.4 Inclusive reactions, a + b ~ c + X 

In view of the fact that many inclusive experiments are pursued, especially in particle 

physics, it is of interest to know whether or not there are P and/or T imposed symmetries on 

the available experimental observables in such reactions, a + b ~ c + X, where only particle 

c is detected in the final state of three or more particles. Goldstein et al (1976) have provided 

a formalism to describe the inclusive reaction spin observables. The constraints imposed by P

symmetry are included but those imposed by T-symmetry are not. From energy and momentum 

conservation, X can be treated as a composite "particle"· of known mass and momentum, with, 

however, unobservable spin. This latter fact has no effect on the observables involving 

particles a, b, and c, and it will be seen that these observables retain the same symmetries as 

in the 2 ~ 2 . exclusive reactions, namely (3.6a) and (3.6b). 

Consider a reaction in which a, b, arid care spin- 1-particles, i. e., fermions. Then 

from baryon and lepton conservation, "particle" X is also a "fermion" and, for the purpose of 

illustration, is taken to be sPin-~. Then the available observables a~e given as in (3.5) with 

m = 0, corresponding to the fact that· the "polarization" of X is not observed , 

X(jk,/o) = Tr M (fjk Mt (f/o / Tr MMt. (3.27) 

Then, just as before, these observables have the symmetries given in (3.6a) and (3.6b). In 

order to better understand the specific details of these results, we consider, for example, the 

expressions for the analyzing power A yo and the inverse-reaction polarizing . power ptyo , 

even though the latter cannot be determined experimentally. These are 
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lAyo == IX(yo,OO) = ~ Tr Mayo Mt, 

ltptyo == ilxt(oo,yo) = ~ Tr MtMtt ayo , 

and with (3.3), (3.28a) becomes 

1 
IAyo = "4 Tr [(I. ajk ajk) ayo (I. aj'k'· aj'k')] . 

j,k j'k' 

Then, using 

we have 

(3.28a) 

(3.28b) 

(3.29) 

(3.30) 

(3.31) 

showing the matrix operations factored into operations in the separate (a/c) and (b,X) spin

spaces. Then using the properties (2.24), one finds 

and (3.31) becomes 

and, similarly, 

Tr ajayaj' = 2; (-2;) for (j,j') = (x,z) ((z,x)), 

= 2 for (j,j') = (o,y) or (y,o), 

= 0 otherwise, 

lAyo == I. 2(Re aok ayk· + 1m azk axk), 
k 

. (3.32) 

(3.33) 

(3.34) 

for the inverse reaction. Then, for a" values ofk, the condition (2.42) imposed by T

symmetry on the amplitudes in (3.33) and (3.34) provides the result Ayo = ptyo, in 

agreement with (3.6b). Comparing (3.33) with the same observable (2.57) of Section 2.2, 

(3.35) 
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one sees that they have identical forms, with the additional summation over k coming from 

taking the trace over the (b,X) part of the spin-space, which performs the sums over the spin 

projections of particles b and X. One then recovers the symmetries (3.6), with the 

restriction m = 0, among these inclusive observables, and these are independent of the "spin" 

of "particle" X. 

4 Representative examples of spin physics results 

Expressions for the polarized cross-sections like (3.1) and (3.15) show that the spin 

observables represent the specific "response" of the system to the corresponding selected 
\ 

polarization component. Just as the basic spin-state cross-sections can be determined from 

linear combinations of the observables, as in (2.19), so can specific components of the spin

dependent interactions, as expressed via the amplitudes ajk, be isolated in the same manner. 

Then, such a combination of observables represents the response function corresponding to the 

selected component of the spin-dependent interaction that is represented by the· ajk. This 

represents, perhaps, the most powerful and useful technique of spin physics, in that 

combinations of observables can be chosen in order· to examine specific components of the 

interaction, i.e., spin-orbit, spin-spin, or spin-tensor. Thus, where available, I have selected 

examples illustrative of this procedure in the following discussion of examples of spin physics 

results in nuclear, electron-scattering, and particle physics. 

4. 1 Nuclear scattering/reactions 

Polarization experiments in nucleon-nucleon (NN) scattering were among the first such 

nuclear studies. and they have continued to the present as new ranges of energy have· become 

accessible. The basic motivation remains the same, that- of determining the M-matrix 

amplitudes ajk(E,6) of (3.7) from the measured observables via the ~xpression (3.5) Then 

. the comparison can be made with the calculated ajk, where the detailed results of the dynamical 

content of the theoretical model appear. In practice, usually, linear combinations of the ajk. 

such as the helicity amplitudes of (3.9), are determined in terms of the phase shifts in their 

partial wave expansions. Since NN elastic scattering is its own time-reversed process, the T

odd amplitudes axz and azx vanish in the M-matrix (3.7). Also, under identical particle 

exchange, including np from isospin symmetry, ayo = aoy, so (3.7) reduces to the five terms 

M = aoo + ayo(C1yo + -(Joy) + axx (Jxx + ayy (Jyy + azz C1ZZ· ( 4. 1 ) 
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In proton-nucleus inelastic scattering, (p,p'), and charge-exchange (p,n) reactions the 

intent has been to interpret, . where possible, the experimental results in terms of the 

underlying NN interactions. In the medium energy range of 200 to 500 MeV, and at forward 

angles where the NN single-scattering approximation in the nucleus is most valid, there has 

been developed a very interesting and useful application of spin physics (Moss 1982, . 
, ' 

. Bleszynski et al 1982) that is designed to determine the nuclear· response functions from an 

appropriate set of measured (p,p1 and (p,n) polarization-transfer coefficients. Here I 

describe their development from the point of view just noted, that of determining, in this case 

the individual /ajk/2 , from linear combinations of the unpolarized cross-section and 

polarization-transfer coefficients. 

The generally adopted notation designates the polarization-transfer coefficients as 

X(jo,om) == Kjm , X(jo,/o} = OJ!; , (4.2) 

that is, the OJ! (Kjm) correspond to polarization transfer from particle a, to c(d}. Then from 

(3.5) and (4.1) the NN observables of interest are 

1= /aoo/2 + /ayo/2 + /aoy/2 + /axx/2 + /ayy/2 + /azz/2, 

1Dxx =F /aoo/2 - /ayo/2 + /aoy/2 + /axx/2 - /ayy/2 ~ /azz/2, 

IDyy = /aoo/2 + /ayo/2 + /aoy/2 - /axx/2 + /ayy/2 - /azz/2, 

IDzz = /ao'0/2 - /ayo/2+ /aoy/2 - /axx/2 ~ /ayy/2 + lazz/2. 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

. Also, ayo = aoy, but it is useful here to keep both terms. Then, combinations of of these 

observables that isolate the /ajk/2 . are 

1 
1 Do =4 I (1 + Dxx + Dyy + Diz) = /aoo/2 + /aoy/2, 

1 
lOx ="41 (1 + Oxx - Dyy - Dzz) = /axx/2, 

lOy = ~ 1 (1 - Oxx + Dyy -. Dzz) = layo/2 + layy/2, . 

1 
1 Dz ="41 (1 - Oxx - Dyy + Dzz) = lazz/2, 

and the similarity to equations (2.19) is clear. Since the other OJ! available is 

IDzx =:.1 Oxz = 2 Im(aooayo" + ayoayy\ 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(4.5) 



it does not provide the means for any further isolation of /aoo/2, /ayo/2 = /aoy/2, or /ayy/2. 
Note in (4.4) that the combination I Dj has selected those amplitudes ajk that correspond to , 
the projectile spin ~perator (jj. 

Expressing the same combinations of observables (4.4) from nucleon-nucleus (p,p') 

and (n,P) reactions as (/ D)JI J = 0, x, Y. Z I the plane-wave single NN scattering 

approximation gives 

(/ D)J = I Dj RkNeff , (4.6) 

where Neff is the effective number of participating target nucleons. The spin response 

functions for the nuclear transitions I i) to I f) are 

(4.7) 

where q (E) is the momentum (energy) transfer, r is the target nucleon coordinate, and the 

(jk are the target nucleon spin operators. Thus, measurements of (I D)J and knowledge of the 

/ OJ or the /ajk/2 in (4.4) yields Neff Rk(q,E). Typically, then ratios of response functions 

are compared with those calculated, eliminating Neff. Experimental determinations of these 

spin response functions have now provided important Checks on the details of the spin

dependent effective NN. interactions that are employed in the calculations (McClelland et a/ 

1984, Carey et al 1984, McCleliandet al 1992, Green etal 1 993) .. 

4.2 Electron scattering 

Electron scattering has been used for a long time to probe the electromagnetic structure of . 

nucleons and nuclei. However, except ·for experiments designed to search for parity 

rionconserving effects, serious consideration of the use of polarized electrons in nuclear and 

particle physics (Arnold et al 1981, Cheung and Woloshyn 1983 and Donnelly and Raskin 

1986, for example) is a relatively recent development when compared with the use of polarized 

nucleons and deuterons. This' delayed application is easily understood, of course, when it is 

noted that (in the one-photon exchange approximation) the terms in the cross-section that 

depend on the transverse polarizations, Px and Py, vanish as 11y = inelE in the scattering of 

polarized electrons (Scofield 1959, Donnelly and Raskin 1986).. This relativistic behavior 

may be understood, heuristically, from the Lorentz transformation of the electron spin four-

;.. 
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vector defined in the rest frame, So = (0;5) = (O;Sx,Sy,Sz). Under a Lorentz boost of f3 in 

the z direction, 

S={Z(f3)So=[~ ~ ~ ~Yl[:xl=Y[::;Yl' o 0 1 0 5 y 5 y/Y 
py 0 0 Y 5 z Sz 

(4.8) 

and, relative to the helicity Sz, the transverse spin components vanish as 11r. Thus, at the 

electron energies of interest in nuclear and parficle physics, except for a measurement of the 

PNC longitudinal (helicity) analyzing power A z , nothing more is learned with polarized 

electrons (alone) than is available from the scattering of unpolarized electrons. 

As has become clear, however, during the past two decades of hadronic scattering; and as J 

have emphasized here, there are other (two-spin) observables such as polarization-transfer 

coefficients, Kjm == X(jo,of!1), and spin.!correlation coefficients, Ajk == X(jk,oo), which provide 

information concerning the spin dependence of the interactions that can never be gleaned from 

unpolarized cross-sections alone. These observables became experimentally accessible with 

useful precision during that period only through the development of efficient polarimeters and 
~ , 

of polarized targets. It is that development, then, that has really made it possible for electron 

scattering to join, experimentally, the field of spin physics. However, as has been indicated in 

section 1, the standard spin-physics notation and terminology of nuclear physics, which I 

su"mmarize in the appendix, has been little used .in electron-scattering papers. This, I feel, is 

detrimental to the important goal of fruitful communication and interaction with the broader 

spectrum of nuclear and particle spin-physics practitioners, in that it constitutes a "language" 

barrier. It may be both instructive and useful to "translate" an example from the most 

complete formulation of electron-scattering spin physics (Donnelly and Raskin 1986) to the 

notation and terminology of nuclear physics as follows. 

The cross-section for polarized electrons is 

f-Jith = :Eo + ht1 = :Eo(1 + h :j ---> lzo = 1(1 + pz Az}, (4.9) 

so there is no difficulty at this point. However, with a polarized target of arbitrary spin and 

arbitrary orientation with respect to the chosen z-axis, the final result is"· 

(4.10a) 

34 



~p = ~o[1 + L, PJO RJO + PJ1 RJ1 cos q/ + PJ2 RJ2 COS 2cfJ"] , 
even 

h'tlp = h~o[L PJO RJO + PJ1 RJ1 COS cfJ~l, 
odd 

(4.10b) 

(4.10c) 

where the sums are over J;c 0, J is the rank of the polarization tensor, the P JM are 

Legendre functions, and I have suppressed the functional dependences of all terms. Comparison 

with (3.15), for example, shows that ~p, which does not depend on the electron polarization, 

must contain terms which are products of the target polarizations and target analyzing powers, 

while hAp, which depends on both polarizations, must have the spin-correlation terms. The 

RJM are, indeed; products of the target polarization components and the corresponding nuclear 

form factors that make up the observables. 

For eN elastic scattering, equations (4.10) simplify to 

(4.11a) 

hAp = -h~ofd..J2 V'T F-r2 cos eO + 2..J2 v'n FTFL sin eO cos cfJ oJ / F2, (4.11b) 

with 

(4.11c) 

where f1 is the target (spherical tensor) polarization, eO and cfJ° are the, polar and azimuthal 

angles of the polarization with respect to the virtual photon momentum, i.e., the momentum 

transfer direction; V'T, v'n, VL, and vT are electron kinematical factors, and FT (FL) is the 

nucleon transverse (longitudinal) form factor. Equation (4.11a) reveal$ the interesting fact 

that the target analyzing power vanishes. Then, identifying the target polarization components 

as 

Px' =..J2 It sin eO cos cfJ' , Pz' = {211 cos e* , (4.12) 

where the primes signify that the (x',y', z? frame is not the helicity frame, (4.10a) becomes 

f:Jh,P = ~o( 1 + pzpz' Azz' + pzPx' Azx'J, (4.13) 

with 

Azz' = V'T F-,2/F2, (4.14) 
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for comparison with (3.1). Thus, in elastic eN scattering, there are only the three 

nonvanishing observables of equation (4.13). 

It is, also, most interesting to view elastic electron scattering from sPin-i nuclei within 

the framework of the general spin structure, notation, and terminology of section 3.1. Then, 

since elastic scattering is its own time~reversed process, the T-odd amplitudes axz 'and azx 

vanish in the M-matrix (3.7), reducing it to the six term 

M = aDO + ayo (jyo + aoy (joy + axx (jxx + ayy (Jyy + azz (jzz. (4.15) 

With six amplitudes there are 62 = 36 independent observables, of which the following, from 

(3.13) and (4.15) are listed for consideration in electron scattering: 

1== X(oo,oo) = /aoo/2 + layo/2 + /aoy/2 + /axx/2 + /ayy/2 + /azz/2, 

IAyo == IX(yo,oo) = 2Re(aooayo 0 + aoyayy 0), 

IAoy == IX(oy,oo) = 2Re(aooaoy 0 + ayoayy"), 

IAzx == IX(zx,oo) = 21m (aoyazz 0 - ayoaxx 0), 

IKzx == IX(zO,ox) = -21m (aoyazz .. + ayoaxx"), 

IAzz == IX(zz,oo) = 2Re(aooazz" - axxay/), 

IKzz == IX(zO,oz) == 2Re(aooazz" :,. axxayy). (4.16) 

Imposing, now, the relativistic condition (for 1Iy«1) that the amplitudes corresponding to 

the transverse components of the electron polarization vanish: ayo = axx = ayy = 0, so (4.15) 

reduces to 
", 

M = aoo + aoy (Joy + Elzz (jzz . (4.17) 

Thus, the relativistic nature of the electron results in a remarkable simplification of !he 

scattering process. With the number of amplitudes reduced to three, the independent 

observables are reduced to nine. In the process, all of the amplitudes that flip the electron 

helicity have vanished, so the electron helicity is conserved. This is conveniently seen in (3.9) 

where the amplitudes in the off-diagonal quadrants have vanished, leaving the M-matrix 

diagonal with respect to the electron helicity. The correlated result from (4.16) is that 

Ayo = 0, (4.18a) 
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Azx = -Kzx, Azz = Kzz . (4.18b) 

These results are all known (Donnelly and Raskin 1986), but the relativistic origin of the 

"turn around" 'relations (4.18b) had not been noted explicitly. These relations have important 

experimental consequences, since, with them, a double-scattering experiment to determine a 

polarization-transfer coefficient Kjk can, in principle, always be replaced by a single

scattering experiment to determine the equivalent spin-correlation coefficient Ajk. 
• - r 

Further simplification results from the dynamical description' of the electron scattering 

process in the one-photon exchange plane-wave Born approximation. One can associate the 

surviving amplitudes of (4.17) with components of the hadronic electromagnetic current. For 

the very interesting case, of electron-nucleon scattering (Dombey 1969), the nucleon 

electromagnetic current, in terms. of the two-component nucleon spinors for particles band d 

is 

with 

MO = 2imGE (Jo, 

M1 = iqGM (Jy, 

M2 = -iqGM (Jx, 

M3 = o. 

(4.19) 

(4.20) 

GE(q2) = ~ FL/(1+7:) and GM(q2) = -...[2;; FTI...)7:(1+7:) are the charge and magnetic form 

factors of the nucleon, m is the nucleon mass, q is the four-momentum transfer, and 'r = 

q2/4m2. The longitudinal, Z, coordinate direction is taken along the momentum transfer ", 

which is effectively the x coordinate (2.38) with respect to the transformation properties 

(2.39). Thus, the transformation from the helicity frame to this in-plane transversity frame 

(figure 1) is given by (Jz ~ (Jx' and (Jx ~ -(Jz',' where t~e primed coordinates refer to this 

final-state transversity frame, in which (4.17) becomes 

M = aoo +aoy (Joy + azx' (Jzx'· (4.21 ) 

By inspection, noting that the (J components in (4.20) are the (Jk of (3.2), the hadronic

current contributions to these amplitudes are shown explicitly in 

aoo = 2imGE Coo(O), . aoy = qGM Coy(O), azx' = -iqGM Czx'(O) , (4.22) 
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where the Cjk(B) are the electron kinematical factors. Thus, the independent amplitudes are 

reduced to the two that correspond to GE and GM, which has long been established. However, it 

is interesting to see these results emerge, as they must, from the general formalism of this spin 

structure, and to see that the one-photon exchange electron-scattering process is a particularly 

simple example. From (4.16) and (4,22), then, 

1= /80012 + 180y/2 + 18zx'12= Co024m2G~2 + (Coy2 + Czx2)q2GM2. 

lAoy = 2Re aoo80y" = 0 , 

IAzx' = 2Re aoo8zx'" = - CooCzx' 4mqGM GE. 

rAzz' = 21m aoy8zx'" ~ CoyCzx' 2q2Gif . (4.23) 

In this example of elastic electron scattering as a special case of the general formalism, 

some results emerge more transparently than from the detailed calculations themselves. Here, 

one readily sees that the projectile analyzing power Ayo = 0 from the relativistic electron 

helicity conservation, while the target analyzing power Aoy = 0 from the dynamics of the one

photon exchange process. One final consequence of the results shown in (4.22) is that only two 

of the three surviving observables are independent. In view of the recognized importance of 

providing a more accurate determination of the charge form factor of the neutron, (4.23) shows 

that Azx' is the observable' most sensitive to G En, depending linearly on it (Arnoldet al 1981, 

Cheung and Woloshyn 1983). 

4.3 Particle reactions 

In addition to the spin observables that can be determined when polarized beams and/or 

polarized targets are available, there are some unique' opportunities in selected particle 

reactions to determine final-state spin observables without any initial-state polarization. This 

is achieved in the production of unstable particles that decay via the PNC weak interaction, 

which results in an asymmetry in the yield of the decay particles with respect to the 

polarization of the parent particle. The. first observed (Bunce et 8/ 1976) and most prorpinent 

example is the A hyperon (str,angeness S = -1 baryon), whose LiS = 1 weak decay to pn-

provides an angular distribution of the form (1 + aP cos 8), where 8 is the, angle between the 

proton (or pion) momentum and the A polarization P. The "analyzing power" a having been 

" determined, a measurement of the proton asymmetry yields P, just as in (2.6). 

This self-analyzing feature of the A and its antiparticlE1 A has been used at the CERN low 

energy antiproton ring (LEAR) in a remarkable and important investigation of the reaction 

pp -? AA near the reaction threshold (Barneset a'i 1991). This reaction has the spin 
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structure of section 3.1. I Among the measured final-stateobservables were the three spin

correlation coefficients 

X(oo,lm) == C'm, with 1m = xx, yy, zz , (4.24) 

from which it is possible to determine the the fractions of AA pairs produced in the singlet and 

the triplet spin configurations .. The singlet and triplet fractions are the expectation values of 

the corresponding projection operators, 

(4.25) 

and with 

(J1' (J2 = (Jxx + (Jyy + (Jzz , (4.26) 

as in (2.48) 
1 

/ Clm = I <(JIm> =4 Tr MMt (JIm· (4.27) 

Thus, 
1 - 1 

/ Fs = 4/[1 - (Cxx + Cyy + CZZ)]. 1Ft = 4 / [3 + (Cxx + Cyy + CZZ)). (4.28) 

so these combinations of observables again select specific features of the spin dependent 

interactions. The remarkable experimental result is that Fs is consistent with zero, so the 

AA pairs are produced only in the triplet state. Tabakin, Eisenstein, and Lu (1991) have 

provided a complete theoretical description and analysis of this reaction and its spin 
. , 

observables in terms of the helicity amplitudes, and they show that 

I Fs = IE/2, (4.29) 

where E(8) is the singlet-to-singlet transition amplitude in the (coupled) singlet/triplet 

representation of the M-matrix. They noted suggestions that the vanishing of Fs in this isospin 

T = 0 channel is due to the presence of a strong tensor force, in accord with the expectation 

that it be enhanced in the pp T = a channel (Buck, Dover and Richard 1979). Since the 

association of a particular helicity amplitude with a particular component, e.g. tensor, of the 

interaction is not transparent, one can express this Fs "'" 0 result in terms of the ajk, whose 

connections with the components of the spin-dependent interactions have been noted in section 
,. 

3.1. 
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For this reaction, .the; M-matrix is that of (3.7). Under particle-antiparticle 

interchange, charge-conjugation (C) symmetry requires that ayo = aoy and azx = axz, and 

(3.7) reduces to the ·six terms 

M = aoo + ayo(eJ'yo + eJ'oy) + axx eJ'xx + riiyy eJ'yy + azz eJ'zz +azx(crzx + eJ'xz) 

With (4.27), 

and from (4.28) 

so 

1= /aoo/2 + 2/ayo/2 + /axx/2 + /ayy/2, + /azz/2 + 2/azx/2, 

I Cxx = 2Re(aooaxx" - ayyazz") - 4Im(ayoazx'), 

I C yy = 2Re(aooayy o· ~ axxazz"') + 2/ay~12 + 21azx12, 

I Czz = 2Re(aooazz
o 

- axxayy"') +' 4Im(ayoazx'), 

1 . 
I Fs = 411aoo/2 + /axxl2 + layy/2 + /azz/2 

- 2Re(aooax/ + aooayy"' + aooazz 0) 

+ 2Re(axxayy 0 + ax~azz 0 + ayyazz 0)], 

1 . 
I Fs =4/aoo - axx - ayy - azz/2 , . 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

and (aoo - axx - ayy - azz) is the singlet-to-singlet helicity amplitude Mss. Similarly, 

(4.34) 
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Thus, quite generally, for Fs = 0, Ft = 1 the spin-independent and spin-spin amplitudes, aoo 

and ajj, must vanish, and only the spin-orbit, ayo, and tensor, azx, terms contribute i~ the _ 

reaction. 

Another experiment carried out at the LEP collider at CERN made use of the self analyzing 

property of the 't' lepton in the reaction e+e- ~ 't'+r' (Decamp et a/ 1991). This experiment 

provided a determination of the ratio of the neutral current vector (v) and axial-vector (a) 

. coupling constants of the 't' lepton from a measu~ement of the 't' polarization Pz, thus 

providing an important specific test of the theoretical model of e.lectroweak interactions . The 

measurement was made at the Z resonance energy where the weak-interaction ZO-exchange 

amplitude is dominant. This reaction, again with the spin structure of section 3.1, provides 

another example of the large reduction in the number of independent amplitudes that follows, as 

in electron scattering, from the relativistic nature of both the e and 't' leptons. Further 



simplicity results from the requirement that the e+e- annihilation (and -r+-r- production) 

state has JP = 1-, that of the Zo (and the photon). (Note that fermions and antifermions have 

opposite parities). Since parity is not conserved here, one starts with all sixteen amplitudes 

(3.4). Then with relativistic helicity conservation for both leptons and the J = 1 requirement 

that the total helicity be ±1 in the initial and final states, only four helicity amplitudes (3.9) 

survive: 

M(++,++) = 2(aoo + azo), 

M(++,--) = 2(axx + iaxy), 

M(--,++) = 2(axx - iaxy), 

M(--,--) = 2(~00 - azo), 
'-

(4.35) 

and each has its PC and PNC component. From helicity conservation Px = Py = 0, and only 

the PNC component Pz is nonzero. With Pz(-r+) = Pz(r) from C-symmetry, the Pz 

averaged over all -r production angles, <Pz>, has the very direct connection to the ratio via of 

the coupling constants, 

via <P z> = -2 ---'-'--=---

1 + (vla)2 ' 
(4.36) 

and, thus, to the weak mixing angle Ow from via = 1 ~_ 4 sin2 Ow. The experimental result, at 

the Z mass, of <Pz> = -0.150 ± 0.045 then gave via = 0.076 :t 0.023 and sin2 Ow = 

0.2302 :t 0.0058. Also, with 

I Pz = 4(Re aooazo' - 1m axxaxy)' 

I Az = 4(Re aooazo' + 1m axxaxy oJ, (4.37) 

it is clear that a measurement of A z with polarized electrons would provide the same 

informati~n, and t.his observable has been mea.sured in a very recent experiment at SLAC with 

an electron beam polarization pz = 0.224 ± 0.006 (Abe K et al SLD Collaboration 1993) -. 

The measurement of Az has clear advantages over that of Pz, in that all of the events identified 

as Z decays, both hadronic and leptonic, ca!1 be counted, and there is no need for an analysis of 

the decay asymmetries. The SLD results, Az = -0.110± 0.044 ± 0.004, sin2 Ow= 0.2378 ± 

0.0056 ± 0.0005 show this advantage in the very small systematic error. This indicates the 

considerable improvement in statistical precision that can be attained both with more events 

and with a higher beam polarization, since the statistical figure of merit is Lpz2, with L the 

luminosity. These Pz and Az results provide prime examples of the importance of spin 

observables. 
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Clearly, in terms of the parton model of the nucleon, with its quark and gluon constituents, 

the question of how the nucleon's spin is made up from those of its constituents, is really a most 

fundamental question to be addressed by QCD. The simplest view would be that the three 

(valence) sPin-~ quarks couple to J = ~ , just as (to a good approximation) the three nucleons 

. couple to give J = ~ for 3He. However, it has 'Iong been known that about half of the nucleon's 

momentum is carried by gluons which implies that they could also contribute to its spin. A 

more sophisticated quark model estimate was that 60 ± 12 % of the nucleon's spin is carried 

by the quarks (Jaffe and Manohar 1990), so the European Muon Collaboration result, (12 ± 9 

± 14)%, from deep-inelastic muon scattering (Ashman et al 1988, 1989). stimulated an 

intense interest and activity in the subject. 

First, though, how does one "measure" the spin fraction carried by the quarks? The 

answer was to measure the spin correlation coefficient Azz in the deep inelastic scattering of 

polarized muons from polarized protons, selecting the region of momentum and energy transfer 

that is associated with scattering from the individual quarks. This is an inclusive scattering 

process, Jl + P ~ Jl + X, as is discussed in section 3.4, and Azz{v,q) is now a continous 

function of the energy and four-momentum transfer, v and·q (Q2 = _q2). Then, with AZD = 

Aoz = 0 from PC, (3.1) gives 

lzz{++) - lzz{+-) 
Azz{v,q) = lzz{++) + lzz{+-)' (4.38) 

In the quark-parton model, with one-photon exchange lepton-quark scattering, 

-where D 

Azz{x) "'" D 
2xgdx) . ~£ ei2 [qj(x,+) - qj(x,-)] 

F () = 2x D 1 ' 
2 x "2£ e l [q if x, +) + q i{ x, -)] 

(4.39) 

is the (known) virtual photon depolarization factor, ei is the charge of the quark of 

flavor 
Q2 .. 

i, x. = 2mpv IS the momentum fraction of the quark within an infinite-momentum 

proton, qi{X,±) is the momentum-fraction distribution of quarks (plus antiquarks) with ± 

helicities within a proton of + helicity, and gdx) is the spin, dependent nucleon structure 

function. The similarity between (4.39) and (4.38) is clear since the lepton-quark cross

sections are proportional to el and the previously determined unpolarized (Le.spin 

averaged) nucleon structure function F 2{X) corresponds to the unpolarized cross-section. 
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2 1 
Then, for example, including only u(e = 3) and d(e = 3) quarks, with flqj(X) == qj(x,+) -

q;(x,-), 

(4.40) 

The experimental result, extrapolated and integrated over all x, is 

. P 1 d P . 0 1 .3.82 1. 08 dl· ' 
r1 = J x g1 (x) = 0.126 ± 0.010 ± .015 = "2 r-9- .1u + -9- fl , (4.41) 

o 

where the integrated model result on the right includes first order QCD corrections. Then, with 

the 8jorken sum rule, which connects the proton and neutron spin structure functions by the 

ratio of the axial to vector coupling constants from neutron ~-decay (8jorken 1966, 1970), 

(4.42) 

the neutron value (with the interchange .1 u H t1d ) is 

n 1 [1. 08 3.82 d l1 Tt = -0.065 ± 0.010 ± 0.015 ="2 9.1U + -9- .1 J. (4.43) 

Thus, the fractions of the nucleon's spin carried by the u and d quarks in this example would 

be 

.1u = 0.74 ± 0.03 ± 0.05, .1d = -0.52 ± 0.03 ± 0.05. (4.44) . 

The complete analysis included 5 qu·arks and gave the final result that only (12 ± 9 ± 14)% 

of the proton's spin is carried by the quarks, with the again surprising contribution from the 

strange quark sea, .1S = -0.19 ± 0.03 ± 0.05. 

This quite unexpected result stimulated a variety of theoretical explanations, but 

experimental confirmation is clearly needed. Recent results from two subsequent experiments 

have been reported, one from the Spin Muon Col,laboration (SMC) at CERN (Adeva et a/ 1993) 

the other from SLAC (Souder et al 1993). The SMC group measured Azzd(x) in deep inelastic 

muon-deuteron scattering and determined T 1d. Then from 2T1d == (T1P + T1n){1 - 1.5 Po), 

with Po the deuteron D-state probability, r1 n was inferred. Their result, in agreement 
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with the EMC proton result, is that(6 ± 20 ± 15)% of the nucleon's spin is carried by the 

quarks. The preliminary SLAC result does not agree. That group measured Azz3He(x} in deep 

inelastic electron-3He scattering. This provided a "direct" measurement of r1n, in that the 

neutron provides the 3He spin, again corrected for the 3He D-state probability. Their result 

is that approximately 63% of the spin is carried by the quarks, so a definite answer 

concerning the composition of the nucleon's spin from the spins of its parton constituents is yet 

to be revealed. 

5 . Spin and symmetries 

Certainly, in scattering and reactions one of the most important aspects of the intrinsic 

spin of particles is the almost indispensible feature. of providing spin observables that 

constitute the most sensitive tests of parity conservation, charge symmetry, and time-reversal 

invariance. This derives simply from the fact that the (axial vector) spin 5 and the available 

momentum vectors k; and kf have the different transformations that are shown 'in arriving 

at (2.39), so they can then provide the P-odd and T -odd observables. 

5.1 Parity 

Parity is conserved in the theoretical descriptions of the strong and electromagnetic 

interactions, and there is no experimental evidence to suggest any PNC component. However. 

'the PNC weak interaction provides a weak-current contribution, for example, to both 

nucleon-nucleon (NN) and electron-nucleon (eN) scattering. During the past several years, 

there have been very significant advances in the level of sensitivity achieved in experiments 

that were designed to determine the PNC contribution quantitatively. 

In ,principle, from (3.6a) either the transverse or lo~gitudinal analyzing power, Ax or 

Az , provides a null test, in which a measured nonzero value is a direct determination of the 

PNC contribution. In practice, Ax corresponds to an up-down asymmetry of the detected 

particles in the yz plane (fig. 1), whereas Az is invariant with respect to rotation around the 

z-axis. This latter fact permits the use of a large solid~angle cylindrical detector which 

reduces considerably both the statistical and systematic errors, and determinations of Az have 

reached levels of precision three orders of magnitude better than that achieved with respect to 

the transverse analyzing power Ay, for example. 

Determinations of Az in proton-proton scattering ha~e reached the remarkable preCision 

of ±2 X 10-8, The actual experimental values are 
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Az(13.6 MeV) = (-0.93 ± 0.20 ± 0.05) X 10- 7 (Eversheim et al 1991, 1993), 

Az (45 MeV) = (-1.50 ± 0.22) X 10-7 (Kistryn et al 1987), (5.1) 

and from these quantitative determinations of the PNC hadronic weak-interaction contribution, 

and other PNC experimental results, it is possible .. to derive specific information about the 

interaction. That is, in the meson-exchange description of the NN interaction the PNC 

contribution is provided by a diagram with one strong and one weak-interaction vertex. There 

are six "parameters" to be determined, the weak meson~nucleon coupling constants for 1C, p, 
and (J) exchanges with isospin L1 T = 0,1, or 2, as allowed. At present, there are not six 

linearly independent experimental results from which to determine the cQupling constants, so 

further experiments are planned (van Oers 1992) 

Experiments on the transmission of slow neutrons through various nuclear targets have 

shown very large enhancements above the = 10-7 values anticipated for PNC observables. 

Since an sop wave interference is required for PNC, these enhancements occur near a p-wave 
1 

resonance with ans-wave admixture. At the J = "2 -p-wave resonance at 0.73 eV in neutron-

139La scattering, an amazingly large value of Az .=; 0.10 has been found (Alfimenkov et al 

1983, Masuda et al 1989, Bowman et al 1989, Yuan et al 1991), both for the neutron 

capture (n, '1) reaction and for the total cross-section measured in a neutron transmission 
1 

experiment. This result is explained in terms of parity mixing with nearby J = "2 + sow a v e 

nuclear levels and the p-wave barrier hindrance of the PC transitions. Following this 

. discovery, neutron transmission experiments at the Los Alamos Neutron Scattering Center 

(LANSCE) have found many p-wave resonances in n238U and n-232Th with values of Az 

from 0.01 to 0.10. (Zhu et al 1992, Frankie et al 1992). The. intent, of course, is to convert 

these results, via a plausible and tractable model calculation, from the compound nucleus 

system to a PNC component in the underlying nucleon-nucleon effective interaction (Johnson 

et al 1991). but it is not at all clear that such a circuitous route to a better determination of 

the weak meson-nucleon coupling constants is feasible. 

The measurement of A z in inclusive electron-deuteron scattering, e + d -? e' + X, at 16 

to 22 GeV (Prescott et al 1978, 1979) was, at that time, .a .most important test and verification 

of the present standard (Weinberg-Salam) model of the electroweak interaction. The result for 

Az (Q2) = Az Q2, removing the known Q2 dependence of the electromagnetic amplitude, was Az 

= (-9.5± 1.6) X 10-5 . This nonzero. value eliminated some models which could explain the 

difference between neutrino and antineutrino scattering but which. were parity conserving in 

electron scattering. The derived value of the Weinberg (weak mixing) angle was sin2 Ow = 
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0.224 ±0.020, consistent with the W-S model and with the value obtained from neutrino 

experiments to that time. It is interesting to compare this value of Az with that of <Pz> = -

0.15 in the reaction e+e- ~ r+~- at the Z resonance, as is discussed in section 4.3, showing 

the dominance of the weak ZO-exchange amplitude there. 

5.2 Charge symmetry 

Conceptually, with respect to scattering/reactions charge symmetry (CS) is similar to 

-identical-particle (IP) symmetry and to charge-conjugation (C) symmetry in that each 

symmetry imposes the condition that an observable be invariant under the interchange of 

particles. IP-symmetry is exact, and C-symmetry (particle-antiparticle interchange) seems 

to be valid in the strong interaction, but is broken, along with P, in the weak interaction. C S 

is a symmetry under interchange of the "mirror" members of an isospin multiplet. In nuclear 

reactions this entails the interchange p H n. for all the reac~ion participants. Clearly, this 

interchange alters the electromagnetic energy,' but with the system corrected for this 

electromagnetic change there had been, for a long time, no convincing evidence of CS breaking. 

The problem has been that the corrections are large and/or model dependent. For example, in 

the long-researched comparison between the nn and pp scattering lengths, app = -7.81 fm is 

corrected to appc = -17.3 ± 0.4 fm for comparison with ann. Finally, a very clever way was 

devised to remove the necessity for such a large correction by using a comparison of spin 

observables in np elastic scattering itself. CS then requires that the neutron analyzing power 

An = Ap, the proton analyzing power, and determinations of LiA == An - Ap # 0 have been made 

in two technically challenging and demanding experiments. The results are 

LlA = (4.7 ± 2.2 ± 0.8) X 10-3 at En = 477 MeV (Abegg et a/ 1986, 1989), 

LlA = (3.31 ± 0.59 ± 0.43) X 10-3 at En = 183 Me V (Knutson et al 1991), (5.2) 

which have provided direct evidence of CS breaking at the level of about 4 X 10-3. 

At the quark level the p(uud) H n(udd) interchange is just the u H d interchange, and 

the origin of the (non-electromagnetic) strong-interaction CS breaking is the u-d quark mass 

difference. But CS is badly broken at the q~ark level, with ~ (mu + md) == 5 MeV, md - mu '" 

3 MeV, :~ == 1.8. However, because QeD has a scale A == 1 GeV. it is the smallness of these 

quark masses with respect to A (an accidental symmetry) that results in es breaking of the 

order (md - mu)/A (de Teramond and Gabioud 1987), which is consistent with the 
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experimental values (5.2). A comprehensive review of the charge symmetry of strong 

interactions has been provided by Miller et al (1990) 

5.3 Time reversal 

It is important to note that the measurelTlents o! the PNC Az in the NN interaction have 

reached the precision of :f: 2 X to-8 (4.45), while those of CS breaking An - Ap, have 
\ 

attained :f: 7 X to-4 (5.2}. The principal reason for this very substantial difference in the 

attained precision is that the Az measurement is a null test of PC; that is, Az = 0 from PC, so 

any nonzero value is an immediate signal of PNC. By contrast, CS requires neither An nor Ap 

to vanish, only that they be equal, so both must be measured arid compared. 

Tests of time-reversal invariance, T-symmetry, in scattering/reactions have all been of 

the latter category, and there is a proof of the nonexistance of a null test of T-symmetry (Arash 

et al 1985). This result can be seen in the condition (3.6b) .that T -symmetry equates a 

reaction observable to an observable in the inverse reaction, so the difference (or sum) is zero. 

Even in elastic scattering, which is its own inverse reaction, two different observables are 

related by T-symmetry; for example, the analyzing and polarizing powers, so that Ay - Py = o . 
• 

Since,here, the final state Py is determined via a second scattering, it is easy to understand why 

such T .. tests have rarely .attained the '10-2 level of experimental error. 

There is, however one feature of elastic scattering, not included in the nonexistence proof, , 
that makes possible a null test of T-symmetry. As is discussed in connection with the 

conditions (2.40), aT-odd· amplitude vanishes in elastic scattering, so an observable 

proportional to it would also vanish from T-symmetry. The spin-dependent total cross

section, with both beam and target polarized, provides just such an observable through its 

connection to the forward elastic amplitude .by the spin-dependent optical theorem (Phillips 

1963), 

. 4n . 
Idpj,Pk) = Tim Tr (pj,k M(O)], (5.3) 
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where Pj,k is the density matrix representing the inital polarizations, M(o) is the forward . 

scattering M-matrix, and Ir (Pj, Pk) is the corresponding total cross-section. Then with (3.7), 

for example, and 

Ir(Pj,Pk) = 1 (1 + PjPk AjkJ, 

Ajk = 1m ajk(O)/ 1m aoo(o). 

(5.4) 

(5.5) 



Unfortunately, the T-odd amplitudes 8zx and 8xz are odd functions of () and vanish at () = 0, so 

the total cross-section spin-correlation coefficient Azx cannot provide a null test of 1:-
- " 

symmetry. It is necessary to have a spin structure, like that of section 3.2, where tensor 

polarization is available. Then, the T~odd amplitude 8x,yz is an even function of () so the 

corresponding observable Ax,yz = 0 from T-symme~ry alone, thus providing a null test. The 

required total-cross section ratio IT(+,+)IIT(-,+) can be measured in a transmission 

experiment with the beam polarization Px and the target tensor polarization (alignment) 

along the direction y = z, as the notation indicates. It seems clear that such a null test will 

permit an improvement of several orders of magnitude in the experimental precision 

achievable in _ tests of T -symmetry (Conzett 1993). 

6. Summary 

One objective of this review has been to present the experimental description and 

definitions of spin-polarizatio"n observables along with the corresponding spin formalism" in a 

manner that reveals the required equivalence of the two. Then, the principal focus has been to 

emphasize the important common role that spin physics plays in the seemingly dissimilar 

disciplines of nuclear, particle, and electron- scattering physics. That of nuclear physics is the 

more complicated in the sense that all of the reaction/scattering amplitudes that are allowed by 

parity conservation, T-symmetry, and other specific symmetries (e. g., identical particles), 

are nonvanishing in general. Helicity conservation, a relativistic condition, reduces 

substantially the number of nonvanishing amplitudes in electron scattering and in particle 

reactions. Thus these disciplines are spin physics subsets of that of nuclear reactions. In order 

to emphasize this common ground, it is important to implement the use of a common 

terminology and notation. Finally, examples are given to illustrate the important use of spin 

observables in tests of the fundamental symmetries. 
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Appendix. Spin physics terminology and notation 

The most commonly e'ncountered polarization observables, as introduced at the appropriate 

points in this review,are listed as follows: 

A 1. General observable for the generic reaction a + b ~ c + d. 

X(jk,/m); j,k (I,m) designate the prepared (measured) polarizations of a,b (c,d). 

That is, j = y means that particle a has polarization Py, etc., with j = 0 unpolarized. 

SPin-~: j,k,l,m = o,x,y,z. Spin -1: j,k,I,m = 0, x,y,z, xx,yy,zz, xy,yz,zx. 

X(jk,lm) = 0 for nx + nz c= odd, from PC. 

A2. Specific observables 

A2.1. Analyzing powers 

Particle a : Ay = Ayo == X(yo,oo) 

Particle b: Ay = Aoy ==X(oy,oo) 

A2.2. Polarizing powers 

Particle c: Py = Pyo == X(oo,yo) 

Particle d: Py = Pyo == X(oo,oy) 

A2.3. Polarization-transfer coefficients 

a to c ; b to d: Dj! == X(jo,lo); Dkm == X(ok,om) 

a to d;b to c: Kjm == X(jo,om); Kkl == X(okJo) 

A2.4. Spin-correlation coefficients 

Initial state: Ajk== X(jk,oo) 

Final state : Clm == X(oo,lm) 

, . 

The initial and final (x, y, z) triads are defined by equations (2.38) and are shown in 

figure 1. At intermediate energies and in high energy NN scattering (8, N, L) usually replaces 

(x, y, z). Some different coordinate frames used are also shown in figure 1. Common to aU is 

that y, N, n = kl X k" so they are all related by a simple rotation around this axis. 

In the above listing, the left-hand-side simpler notation for the observable is the common 

usage. Wherever some confusion might result one can describe the observable more clearly or 

specify it early by its X(jk,lm) form. 

When spin-1 tensor components are involved a simple change in the notation is made. For 

example, a tensor to tensor polarization-transfer coefficient is Dxx,zz == X(xx,o;zz,o). 
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For the spin structure "2 +"2 -7 "2 +"2 a complete listing of the observables has been 

given by Hoshizaki (1986). 
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Figure caption 

Figure 1. a) The initial and final center of mass helicity frames. b) The usual N N 

elastic scattering frame with z along ki + kf. with (x, y, z) H (q, n, p). In 

electron scattering the target polarization reference frame is chosen with z along the 

momentum transfer q. This is the (in plane) transversity frame. All of these frames, 

including their (h H Be transformations, are connected by rotations around the y-

axis. 
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