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Abstract 

Dilepton production associated with minijets is calculated in ultrarela-

tivistic heavy ion collisions using the first order approximation of the dilepton 

fragmentation functions of quarks and gluons. The full QCD evolution of the 

fragmentation functions is also studied. We find that the dilepton pairs from 

the fragmentation of minijets are comparable to direct Drell-Van at .JS = 200 

AGeV for small dilepton invariant mass M f"V 1-2 GeV /c2 while dominant 

over a large range of mass at Vs = 6400 AGeV . 
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I. INTRODUCTION 

In the search for a quark gluon plasma (QGP) in ultrarelativistic heavy ion collisions, 

electromagnetic signals are considered good probes of the dense matter [1]. Because of 

the large electromagnetic mean free path, leptons and photons produced by interacting 

(anti)quarks inside QGP can easily escape the hot and dense matter and carry the informa

tion of the system to the detector. Recent developments in parton transport phenomenology 

indicate that dileptons and photons could also reveal the dynamics of the early evolution 

of the a dense parton system [2-4]. However, like for all the proposed QGP signals, back

ground must be understood and subtracted in order to distinguish the true features of a 

QGP. In general, there are two kinds of background sources for the thermal electromagnetic 

signals. One comes from the evolution of the hadronic phase and the decays of the produced 

hadrons. The other one is due to the initial parton scatterings at the very earliest stage 

of the heavy ion collisions. For dilepton production, the latter one is usually referred to as 

Drell-Yan (DY) processes [5]. 

In the lowest order, O(a2
), the DY processes are simply quark-antiquark annihilations. 

First order contributions O(a2a s ) in perturbative QCD (pQCD), originating from initial 

state radiation and virtual corrections, give rise to about the same amount of dilepton pro

duction as in the lowest order, which is often characterized by a so-called "K -factor" of about 

2 [6,7]. These corrections are also responsible for large PT tails of the dilepton transverse 

momentum spectrum. At small PT, summation over the initial state soft gluon radiations 

generates a Sudakov form factor regularizing the perturbative low PT production [8]. By 

now, there also exist matrix element calculations of the second order pQCD contributions, 

O(a2a;), to the K-factor [9]. 

In this paper, we will investigate dilepton production associated with minijet final state 

radiation in heavy ion collisions at collider energies. It is expected that at energies .jS ~ 200 

AGeV, minijets [(anti)quarks and gluons with PT rv few GeV Ic] are produced abundantly 

via multiple semihard scatterings. These minijets have important contributions to particle 
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production, transverse energy and overall evolution of the formed quark-gluon system [10]

[13]. Therefore, it would be interesting to study dilepton bremsstrahlung from the initially 

produced minijets. Especially, it is important to know whether the dileptons associated 

with minijets could compete with the lower order DY processes at midrapidity and small 

invariant dilepton masses M N 1 - 3 GeV Ic2 , where a window for observing the thermal 

dileptons is expected [1]. 

Rather than strictly applying the almost complete O( a2a~) results from the matrix 

element calculations [9], we take a different and simpler approach by calculating the dilepton 

fragmentation functions of the final state minijets. Unlike in the real photon fragmentation 

functions [14,15], the relatively large invariant masses M ~ A of the dileptons fix the lower 

limit of the momentum scale of the QCD radiation processes. This makes the problem 

calculable in pQCD. In the leading logarithm approximation and in an axial gauge [16], 

the dilepton fragmentation functions can be calculated up to all orders in pQCD. Using the 

obtained fragmentation functions to convolute with minijet cross sections, we then compute 

the contribution to the dilepton production from the final state radiation of minijets. We 

will show how the associated production of M '" 1 - 2 GeV Ic2 dileptons from minijets with 

PT ~ 2 GeV Ic is comparable to the first order DY results at BNL Relativistic Heavy Ion 

Collider (RHIC) energies but becomes dominant at CERN Large Hadron Collider (LHC) 

energies, even up to masses M rv 5 - 10 GeV I c2
• We will also study the effects of nuclear 

modifications of the parton distributions, especially nuclear shadowing, to the dilepton rates. 

The remainder of the paper is organized as follows. In the next Section, we will calculate 

the dilepton fragmentation functions in the framework of pQCD. The connection and the 

difference between real photon fragmentation functions are discussed. We will derive both 

the first order result and the one with QCD evolution, including corrections to all orders 

in pQCD. In Sec. III, the dilepton fragmentation functions are convoluted with hard and 

semihard parton scattering cross sections to calculate the minijet-associated dilepton pro

duction in heavy ion collisions at both RHIC and LHC energies. Finally, a summary with 

some discussions on the implications to the dilepton production from a QGP is given in Sec. 
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IV. 

II. DILEPTON FRAGMENTATION FUNCTIONS 

In this Section, we review the dilepton fragmentation functions of quark and gluon jets. 

We will work in an axial gauge so that interference terms in the final state radiation disappear 

in the leading logarithm approximation [16]. 

A. Lowest order in pQCD 

Let us define Z as the fractional light-cone momentum and q2 as the virtuality of an off-
\ 

shell parton as illustrated in Fig. l(a). The differential cross section for a. quark qi produced 

in a hard process with momentum scale Q to emit a dilepton with invariant mass Mis, 

1 du 2 a a 
-d d d 2dM2 = ei-2 2Pq-+,,;q(Z)2 M2 P,,;-+l+l-(Zl), 
Uo Z zl q trq 7r 

(1) 

where ei is the fractional charge of the quark qi, Uo is the total cross section of the hard 

process, and 

. 1 
Pq-+,,;q(z) = -[1 + (1 - Z)2], 

Z 

P,,;-+l+l-(Z) = Z2 + (1- z)2, 

(2) 

(3) 

are the splitting functions for q --+ ,q and, --+ l+l- which are similar to those of q --+ gq 

and 9 --+ qi'j, respectively, except for the color factors. Integrating over the virtuality q2 of 

the intermediate quark and the fractional momentum Zl of one of the leptons, one has the 

QED dilepton fragmentation function of a quark, 

(0) ( 2 2 -lQ2 211 1 du 
DDL/q. z,M ,Q)= dq dZl-d d d 2dM2 

• M2 0 Uo Z Zl q 

= e~ (~)2 3!2 1n (~:) ;[1 + (1 ~ z?]. (4) 

One can see that D~£/qi(Z, M2, Q2) is similar to a virtual photon fragmentation function, 

except for a factor due to the extra QED coupling and the integration over the relative phase 

space of the leptons, 
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D (O) ( M2 Q2) a 2 D(O) ( M2 Q2) DL/qj Z, , = 271" 3M2 'Y./qj Z, , . (5) 

For a real photon fragmentation function, the lower limit forthe integration over q2 in 

Eq. 4 is in principle given by the quark mass. For massless quarks, the infrared divergence 

in the lowest order has to be regulated by some cutoff of the hadronic scale. In the absence 

of a large mass scale, the QCD corrections to real photon fragmentation function have also 

to be regulated by some cutoff. The physics below· the cutoff becomes nonperturbative. 

One has to introduce some initial conditions for the real photon fragmentation functions, 

either given by experimental data or by some model-dependent assumptions. The problem 

of dilepton production is different because the fixed invariant mass M provides a natural 

cutoff below which kinematic restrictions will terminate the processes. The QCD processes 

above this cutoff are in principle calculable to all orders. 

Since gluons are not directly coupled to photons and leptons, the dilepton fragmentation 

function of a gluon in the lowest order is, 

(6) 

For later convenience, we define 

(7) 

and 

(8) 

so that we can rewrite Eq. 4 as 

(0) ( 2 2 (a)2 2 (M2)( It ) (O)() 
DDL/qj z, M ,Q ) = 271" 3M2 In A2 e - 1 Qi Z. (9) 

B. First order contributions 

The first order contribution in pQCD to the dilepton fragmentation function of a quark 

comes from a gluon bremsstrahlung before the virtual photon production as shown in 
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Fig. l(b). Remember now that Z = Zl Z2 is the fraction of the momentum, carried by 

the dilepton, of the initial quark before the gluon radiation. Defining the convolution of two 

functions as 

(10) 

it is straightforward to write down the first order dilepton fragmentation function, 

(il ) 

where, 

(12) 

is the running strong coupling constant with n f quark flavors. The splitting function for 

q --+ qg in QeD is 

4 [1 + z2] 
Pq ..... qg(z)=3 l-z +: (13) 

The "+ function" here is introduced to include the virtual corrections to cancel the singu

larity from the soft gluon emission and to guarantee momentum conservation [16,17]. Other 

splitting functions we will use in the following are the standard ones [17], 

Pq ..... gq(Z) = Pq-+qg (1 - z), 

Pg ..... qq(z) = ~[Z2 + (1 - Z)2], 

[ 

Z 1 - Z 11 2n f ] 
Pg ..... gg(z) = 6 (1 _ z)+ + -z- + z(l- z) + (12 - 36 )8(1- z) . 

The convolution in Eq. 11 can be easily done and it gives, 
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To the first order in pQCD, the dilepton fragmentation function of a gluon is not zero 

anymore. From the diagram in Fig. 1 ( c), we have 

(1) ( 2 2 ~lQ2 2 Qs(qi) 11 dZ1 ). (0) (z 2 2 DOL/g z, M ,Q ) = L....; dq1 2 2 -Pg_ qq(Zl DoL/q; -, M ,Q ) 
.. i=l M2 7rq1 z Zl Zl 

)

2 2 M2 2 2nf 

= (2: 3M2 ln( A2 ) Po (elt 
- 1 - K) ~ Pg ..... qq ® Q~O)(z), (18) 

and the convolution in z can also be calculated explicitly in this case, giving 

2nf 

G(l)(z) = I: Pg _ qq ® Q~O)(z) 
i=l 
2nf 1.4 

= I: e~-[-(1 - z3) + z(1 - z) + 2(1 + z)z In z]. 
i=l 2z 3 

(19) 

. As we will see below numerically, radiative corrections to any order will soften the QED 

fragmentation function of quarks and increase the fragmentation function of gluons. Because 

of the leading logarithm behavior of the radiations, the dependence of QCD corrections on 

the strong coupling constant is cancelled out so that they might become important to all 

orders. From Eqs. 9 and 11, we can see that the relative importance of the first order QeD 

correction to the QED fragmentation functi<?n is controlled by a Q-dependent factor, 

K 
Crvl---

elt - 1 ' 
(20) 

where K is defined in Eq. 7. For values of Q2 not too large relative to M2, K is very small so 

that higher order corrections can be neglected. Only for extremely large values of Q2 and 

thus K, C becomes comparable to 1. Then one has to include corrections to all orders. For 

our consideration here, Q2 is in the order of p} of the minijets. Thus, as we will show in the 

next Section, for most of the minijet production with PT rv 2 GeV Ie, first order calculation 

of the dilepton fragmentation functions should be sufficient. 

C. Full QeD evolution 

Following the same steps as we have calculated the first order corrections to the dilepton 

fragmentation functions, we can calculate the higher order contributions. Here we neglect 
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the further splitting of the radiated soft gluons and quarks, and only consider those diagrams 

with a simple ladder structure in leading logarithm approximation. Therefore, the radiated 

soft gluons and quarks are always on mass-shell. The general form of the contributions with 

n radiations before the dilepton production can be derived as 

(21) 

(22) 

where Q~n)(z) and G(n)(z) can be calculated iteratively from the lower order results via 

Q~n)(z) = Pq-+qg ® Q~n-l)(z) + Pq-+gq ® G(n-l)(z), 
2nf 

G(n)(z) = L Pg-+qq ® Q~n-l)(z) + Pg-+gg ® G(n-l)(z). 
i=l 

(23) 

(24) 

Since we know Q~O)(z) (see Eq. 8) and G(O)(z) = 0, we can in principle perform the above 

convolutions up to any order as we did for Q~l)(Z) (Eq. 17) and G(l)(Z) (Eq. 19), and obtain 

the full QeD dilepton fragmentation functions as, 

00 

DOL/qi(Z,M2,Q2) = L D&ni/q,(z,M2,Q2), 
n=O 

00 

DOL/g(z,M2,Q2) = LD&ni//z ,M2,Q2). 
n=l 

(25) 

(26) 

For large values of n, evaluating the integration in the convolution analytically is obvi

ously too cumbersome. One method to evaluate the full fragmentation functions is to solve 

numerically a set of coupled evolution equations. 

Taking derivatives of DOL/q"g{z,M2,Q2) with respect to Q2 and using 

(27) 

and the definition of as(Q2) in Eq. 12, we can derive from Eqs. 21-26 the following coupled 

evolution equations, 
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(28) 

(29) 

These evolution equations are very similar to those of real photon fragmentation functions 

[14,15] and the parton distribution functions in a photon [18]. The only difference is that 

. dilepton (or virtual photon) fragmentation functions, with a given mass M have a definite 

initial condition, 

(30) 

together with the boundary conditIon, 

(31) 

The boundary condition simply means th~t the probability for the dilepton to take the whole 

fraction of momentum of the initial quark or gluon is zero after QCD evolution is taken into 

account. Since there is always a finite contribution to dDoL/q; I dQ2 from the QED term in 

the evolution equation Eq. 28, one can verify that DOL/q;(z, M2, Q2) must approach zero 

as If1n(1 - z) at Z = 1 in order to satisfy the boundary condition at all Q2. For gluons, 

DOL/g(z,M2,Q2) must go to zero faster than I/ln(l- z). 

The above evolution equations with the initial and boundary conditions can be solved 

numerically. The scale M2 now sets the starting point of the evolution. We show the QCD

evolved dilepton fragmentation functions ZDDL/q;,g(z,M2, Q2) scaled by a common factor 

(a/27r)2(2/3M2) In(Q2IM2) in Fig. 2 for M = 1 GeV Ic2 and Q -: 5 GeV. Together, we also 

show the analytical results to the lowest and first order. It is clear that both the first order 

corrections and the full QCD evolution soften the fragmentation functions. The overall QCD 

corrections to the QED (or lowest order in pQCD) result are about 10%, except near z = 0 
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and 1. Since a gluon does not have dilepton production to the zeroth order in pQCD, the 

dilepton fragmentation function of a gluon is one order of magnitude smaller than a quark. 

Because there are logarithmic divergences at z = 0 and 1 for each order correction to the 

dilepton fragmentation functions, as can be seen in Eqs. 17 and 19, every order becomes 

important so that one has to sum them together to get the full QCD result. This is why the 

full QeD-evolved fragmentation functions in Fig. 2 differ considerably from the first order 

results near z = 0 and 1. To the first order, the fragmentation function of a quark is exactly 

proportional to the square of its fractional charge, eJ. This charge scaling is ohly slightly 

violated at small z for large Q due to the gluonic contribution to the QCD evolution as seen 

in Eq. 28. 

III. ASSOCIATED DILEPTON PRODUCTION 

A. Kinematical limits 

In this paper, we are interested in the dilepton production cross section integrated over 

the transverse momentum. Hence, we need only the dilepton fragmentation functions in-

tegrated over z. As we have seen in the previous Section, the fragmentation functions 

diverge at z = O. One must therefore introduce an infrared cutoff. Fortunately, for dilepton 

production, the invariant mass M provides a natural cutoff. 

Assuming that Q2 and q2 are the virtualities of the parton before and after the emission 

of a virtual photon with fractional momentum z, one can verify that the relative transverse 

momentum of the dilepton with respect to the original parton is 

k~ = z(1 - z) Q2 - _.- -- . 
[ 

M2 q2 1 
z 1-z 

(32) 

Neglecting q2 and requiring k} ~ 0, we can see that M2 provides a natural kinematical 

cutoff for z, 

(33) 
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In principle, one could take into account these kinematical limits at every step of the ra

diation processes, as done in Monte Carlo approaches [19-22]. Although not shown here, 

this can be done analytically for the first order calculation of the dilepton fragmentation 

functions. One could also use the relative transverse momentum k} as the argument in the 

running strong coupling constant. This is, however, beyond the scope of our simple leading 

logarithm estimates in this paper. 

With the kinematical cutoff in Eq. 33, we can obtain the integrated dilepton fragmenta

tion functions, DOL/q"g(M2, Q2), the probabilities for a quark or gluonto produce a dilepton 

with mass M within the interval dM2. The lowest and first order fragmentation functions 

can be obtained analytically by integrating Eqs. 9, 11 and 18 over z, 

(0)· 2 2 2 ( a ) 2 2 (M2 K. ) 

DOL/q,(M ,Q ) = ei 21r 3M2 In A2 )(e - 1 

{ 
Q2 3 M2 1 M4} 

21n( M2) - '2 + 2 Q2 - '2 Q4 ' (34) 

(35) 

(36) 

where the function 92( x) is defined as 

(37) 

We plot in Fig. 3 the full QCD-evolved results DOL/q"g(M2, Q2)as functions of M2 at 

fixed Q= 4 GeV The first order results D(O) (M2 Q2)+D(1) (M2 Q2) and D(l) (M2 Q2) . OL/q,' OL/g,' OL/g' 
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are very close to the full QeD-evolved fragmentation functions with only a few percent 

difference through the whole M2 range. As we have seen in Fig. 2, the full QeD-evolved 

fragmentation functions are enhanced at small z while depleted at large z as compared to 

the lowest order calculations. For small values of M2 /Q2, QeD evolution is important, 

but the lower limit Zo of the z-integration is also small. Thus, the integrated full QeD 

fragmentation functions are almost the same as the first order results. At large values of 

M2 / Q2, the lower limit Zo is large, but the QeD corrections in any order are increasingly 

smaller. Therefore, in the whole range of M2, the first order calculation of the z-integrated 

dilepton fragmentation functions is a very good approximation. 

B. Dilepton production associated with minijets 

In the following, we consider dilepton production associated with minijets. In particular, 

we are interested in the differential rates of dileptons with rapidity Y = 0 as functions of 

the invariant mass M. As a first approximation, we can assume the dilepton to be produced 

collinearly with the parent quark or gluon. Then the differential cross section can be writ-

ten down in a straightforward manner by folding the z-integrated dilepton fragmentation 

functions DDL/qi (M2, (2) and DDL/g(M2, Q2) with the 2 -+ 2 subprocesses of minijet pro

duction. We can also neglect the contribution from the initial state dilepton radiation, since 

the rapidities of these pairs are typically large like those of the initially radiated partons [23]. 

One has to take into account that the dilepton pair can be produced by either one of the 

final state partons, and connect this to the correct normalization of the integrated minijet 

cross section O"jet. In this way, the basic formula for the associated production of dileptons 

with Y /"oJ 0 from minijets in a AA collision at impact parameter b can be written as follows: 
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where the produced (anti)quarks and gluons (i.e. minijets) have transverse momentum 

Po ~ PT ~ ..JS/2 and the kinematical range of rapidities 

The momentum fractions of the initial state parton.s are denoted by 

and the Mandelstam variables in the parton-parton level for the massless partons by . 

i = -pHI + eY2 - Yl ), 

U = -p}(1 + eY1 - Y2 ). 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

The cross sections do-ab
-+

cd 
/ di N O( a;) for the various partonic subprocesses can be found 

e.g. in Refs. [14,24]. The parton density of a nucleus by our definition is 

(45) 

where tA(r.d is the thickness function of the nucleus which is normalized to J cf2r .1tA(r.1) = 
, ' 

A. The parton distribution in a nucleon is fa/N(X,Q2), and the ratio Ra / A(x,Q2,r.1) for 

the nuclear modifications to the parton distributions is both scale and impact parameter 

dependent [11,25]. In the following, we will approximate the impact parameter dependent 

ratio Ra/A (x, Q2, r.1) by its averaged value, 

(46) 

so that 

(47) 

where the effective parton distributions per nucleon in a nucleus is defined as 
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(48) 

In this paper we will use the set 1 of the Duke-Owens parton distributions [26] for 

fa/N(X, Q2). We use the scale dependent nuclear modifications for Ra/A(x, Q2) as studied 

in [27]. Especially, we assume that at the lowest scale Q = 2 Ge V, gluons are shadowed 

by the same amount as the structure function Ft in deeply inelastic fA scatterings. Note 

that the normalization of Eq. 38 can be checked by setting the M 2-integrated fragmentation 

functions to unity and integrating over Y; this will give us 20'jet(Po, JS) as expected when 

integrating over the inclusive 2 ~ 2 scattering cross section. 

As usually in the case of pQCD calculations, there are uncertainties in choosing the 

momentum scales both in the parton distributions and the fragmentation functions. We will 

choose the scale entering the parton distributions to be the transverse momentum of the jets, 

Q = PT, for Duke-Owens parametrization set 1 with A = 0.2 GeV [14]. The scale Q~x in the 

dilepton fragmentation functions represents the maximum virtuality of the final state parton 

before any radiation. As we have emphasized in this paper, the dilepton fragmentation 

functions at large fixed mass do not have nonperturbative contributions. Therefore, unlike 

the scale in the parton distributions, Qrnax in large mass dilepton fragmentation functions 

is not correlated with the choice-of A. Examining the matrix elements of a + b ~ a + b + ,. 

processes, one -can find out that the scale entering the leading logarithm term is one of the 

Mandelstam variables,s, -I, -it, depending on the channel of the specific process. However, 

in Eq. 38, we convolute the fragmentation functions with jet cross sections which include 

different channels and their interference terms. Therefore, Qrnax in Eq. 38 is only an effective 

momentum scale. From Eqs. 42-44, we know at least that Qrnax ~ PT. We will discuss the 

sensitivity to the choice of Qrnax when we present the results of our calculation. 

Note also that for the minijet production the lower limit Po of the integration over PT is 

a parameter which determines the division between calculable "hard" and model-dependent 

"soft" processes. Most of the minijets are produced with PT f'V Po f"V few GeV Ic, and they 

are basically nonresolvable as distinct ET-clusters, even in hadronic collisions [28]. The 
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phenomenological value of Po depends on the model for O"soft of soft processes, the par-

ton distribution functions and the corresponding scale choice. Since these issues can not 

be addressed within pQCD, the possible range of values of Po has to be determined phe-. 
nomenologically, in connection with a model for the soft contribution O"soft to the particle 

production in PP and pji collisions [11,12,29,30]. We will use here Po = 2 GeV Ie, as suggested 

and studied in detail in Ref. [31]. Although alre~dy exactly calculated for inclusive jet pro

duction [32], the O( a:) contributions to the lowest order parton cross sections are simulated 

here by an overall factor f{ 'V 2 .. Clearly, the parameter Po depends also on the size of the 

next-to-Ieading order terms. We want to point out, however, tha~ the cross section for the 

associated dilepton production in Eq. 38 is much less sensitive to the choice of Po than the 

minijet cross section itself. For Qrnax = PT, the dilepton fragmentation functions vanish for 

M ~ PT. Whenever M > Po, M takes over as an effective cutoff in the integration over PT in 

Eq.38. Therefore, the cross section for the associated dilepton production does not depend 

on the exact choice of Po at la.rge M. 

The symmetrized formula of Eq. 38 can be somewhat simplified by considering all the 

possible pairs of partons in the initial and final states, (ab), (cd). By changing the integration 

variables Yl,2 into -Y2,1 appropriately in the other half of the expression, and by using the 

i,ft-syrnmetries of the subprocess cross sections, a Y ~ -Y symmetric formula can be 

written down. Especially, at Y == 0 we get: 

(49) 

where TAA(b) = f ~r .ltA(r .l)tA(lb - r.lD is the nuclear overlap function of the two colliding 

nuclei. 

As discussed in the previous Section, the first order results in Eqs. 34-36 are a good ap-

proximation for the full z-integrated dilepton fragmentation functions, which is the approx

imation we shall adopt in what follows. The results from Eq. 49 with nuclear modifications 
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to the parton distributions are shown in Fig. 4 (solid curves) for Vs = 200 AGeV and 6400 

AGeV, respectively. In the figure,' we have compared the minijet associated production of 

dileptons to the lowest order differential cross section of the direct Drell-Van process (dashed 

curves), 

dN~X (b) I ( 47ra
2

" 2 [ A ( 2 A 2) 
dM2dY Y=o = TAA b) 9M4 7 eqi xlfq;f(N) XI, M )x2fq;f(N) (X2' M 

+ xlft/(N)(Xl, M2)X2f~/(N)(X2' M2)] , (50) 

where Xl,2 = M J Vs at Y = o. We have chosen the scale in the parton distributions as 

Q = M. To simulate the first order pQCD contributions to the DY cross section [6,7], we 

multiply Eq. 50 by an overall factor I<OY rv 2. Note that since we have used the Duke-

Owens parton distributions, which extend only down to Qo = 2 GeV, the results for direct 

Drell-Yan cannot really be trusted much below M = 2 GeVJc2. 

To study the sensitivity of the minijet associated dilepton production to the choice of 

the scale Qrnax in the fragmentation functions, we plot in Fig. 4 the results of Eq. 49 for 

both Qrnax = PT and 2PT. It is apparent that the results are relatively sensitive to the 

choice of Qrnax. As we can understand from Eqs. 34-36, the difference between the two solid 

curves is due to the fact that the z-integrated fragmentation functions are proportional to 

In2(Q~xJM2). Due to the kinematical restriction M ::; Qrnax, changing Qrnax = 2PT to PT 

also effectively doubles the lower limit of the integration over PT for fixed M in Eq. 49. This 

is the reason why the two solid curves have different slopes. As one of the main purposes 

of this paper, Fig. 4 demonstrates how the relative contribution of the dileptons associated 

with minijets in the range 1.:5 M oS 10 GeV Jc2 changes with increasing energy as compared 

to the direct Drell-Yan production. Even after taking into account the uncertainties due 

to different choices of Qrnax, it can be seen clearly that at RHIC energy, -IS = 200 AGeV, 

dileptons from the bremsstrahlung of minijets are comparable to the direct Drell-Van at 

M.:5 2 GeV Jc2
• However, when going up to TeV energy range, dileptons associated with 

minijets become more important, and dominate the Drell-Yan at LHC energy, -IS = 6400 

AGeV, even up to masses M rv 10 GeV Jc2• Qualitatively, our results are similar to the 
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minijet-associated photon production in Ref. [33] where real photon fragmentation functions 

in the lowest order are considered. 

To demonstrate the effects of parton shadowing and antishadowing, we plot in Fig. 5 

the results calculated with (solid) and without (dashed curves) nuclear modifications of the 

parton distribution functions. We can see that nuclear shadowing depletes the Drell-Yan 

dileptons relatively more than the dileptons from the minijets.The basic reason for this is 

that Drell-Van pair production dNfI in Eq. 50 as a function of M = Xl,2Vs probes the 

(anti)quark distributions directly, at least in the lowest order. Furthermore, the antiquark 

shadowing does not vary strongly with the scale M, as has been experimentally measured 

[34,35]. On the other hand, in the minijet-associated dilepton production, we have to in

tegrate the contribution over the whole range of x. In addition, we also have to integrate 

over the scale Q = PT. The gluon shadowing [27] we used here has stronger Q dependence 

than the (anti)quark. Therefore, the net effect of the nuclear modifications of the parton 

distributions to the minijet-associated dilepton production remains relatively small even at 

Te V energy range. 

IV. SUMMARY AND DISCUSSION 

In this paper, we have studied minijet-associated dilepton production in ultra-relativistic 

nuclear collisions. We calculated both the first order approximation and the full pQCD 

evolution of the dilepton fragmentation functions of produced partons. The dilepton pairs 

from the fragmentation of minijets are found to be comparable to direct Drell-Yan at RHIC 

energy for small invariant mass M f'V 1-2 GeV /c2
• At LHC energy, the associated dilepton 

production becomes dominant over a relative large range of the invariant mass. These 

dileptons plus the direct Drell-Van pairs would constitute part of the background to the 

dilepton production from a QGP and its pre-equilibrium stage. Other background includes 

dileptons from final hadronic rescatterings [36,37] and the decay of charmed hadrons [33,38]. 

It is also straightforward to calculate the PT distribution of the associated dilepton pairs in 
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our fragmentation function approach. Since one has to convolute the dilepton fragmentation 

functions in z together with the PT distributions of the jets, we expect the resultant PT 

spectrum of these dileptons to be softer than the PT spectrum of the jets. Therefore, the 

dileptons associated with minijets should have smaller PT relative to the direct Drell-Yan 

pairs which have a high PT tail like that of the produced jets. Since thermally produced 

dileptons in a QGP also have relatively small PT as compared to Drell-Yan [1], minijet., 

associated dileptons thus po~e a more intangible background. 

In calculating the dilepton fragmentation functions, we have assumed leading logarithm 

approximation so that we can include contributions from all orders in pQCD. However, 

the higher order corrections are small and the first order results are sufficient enough for 

our estimates of the minijet-associated dilepton production. The largest uncertainty in our 

calculation is the choice of the momentum scale Qrnax used in the dilepton fragmentation 

functions. Since the correct scale in a matrix element calculation is channel-dependent, 

we used only an effective scale choice in the fragmentation functions to convolute with the 

minijet cross sections. We evaluated the dilepton spectrum for two choices of the scale, 

Qrnax = PT, 2pT. However, the results with Qmax = PT should give us the lower bound of 

the associated dilepton production. Another notorious uncertainty of the PT cutoff Po in 

minijet-related problems is greatly reduced here due to the kinematic restriction At :::; Qrnax. 

For Qrnax = PT, the PT cutoff is replaced by M whenever M is larger than Po· 

The abundance of dileptons associated with minijet production at high energies is mainly 

due to the large gluon-related minijet cross sections and the high initial gluon densities inside 

the colliding nuclei. This should have important implications for the dilepton production 

in the pre-equilibrium stage of the quark gluon plasma. As pointed out recently [39-41J, 

the parton system is not at all in chemical equilibrium when initially produced in the ear

liest stage of high energy nucleus-nucleus collisions. Because of the small cross sections 

for (anti)quark production, the initial parton system is dominated by gluons and is quark 

. deficient as compared to an equilibrated QGP. Studies [39-41J also suggest that the parton 

system thus produced may not be able to achieve chemical equilibrium before hadronization. 
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In this case, dilepton production through qq annihilation should be severely suppressed. On 

the contrary, dilepton production. from gluon fragmentation could become relatively im

portant for a gluon dominated system, since gluon-related cross sections of small angle 

scatterings are about 9/4 larger than the quark. Even though the dilepton fragmentation 

function of agluon is about one order of magnitude smaller than a quark, a gluon density at 

least about 5 times higher than the quark could easily compensate the small fragmentation 

function and make the gluon associated dilepton production important. 
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FIGURES 

FIG. 1. lllustration of the diagrams of (a) the lowest order, (b) the first order contributions in 

pQCD to the dilepton fragmentation functions of quarks and (c) gluons. The dashed lines present 

the associated hard processes with momentum scale Q. 

FIG. 2. The QCD-evolved (solid), the lowest order (dot-dashed) and the first order (dashed) 

approximations of dilepton fragmentation functions ZDDL/a(z,M2,Q2) of a u-quark and a gluon, 

for M = 1 GeV /c2 and Q = 5 GeV. A factor (a/27r?(2/3M2)ln(Q2 / M2) is divided out. 

FIG. 3. The z-integrated dilepton fragmentation functions DDL/a(M2, Q2) for a u-quark (solid) 

and a gluon (dashed) as functions of M2 at fixed Q = 4 GeV. A factor (a/27r)22/3M2 is divided 

out. The curve for gluon fragmentation is multiplied by 10. 

FIG. 4. Mass spectra of minijet-associated (solid curves) and Drell-Yan (dashed) dileptons at 

Y = 0 in central Au + Au collisions at ..;s = 200 and 6400 AGeV. The two solid curves correspond 

to two choices of the scale Qrnax = PT and· 2PT in the dilepton fragmentation functions. Parton 

shadowing is included in the calculations. 

FIG. 5. Mass spectra of the minijet-associated and Drell-Yan dileptons in central Au + Au 

collisions at ..;s = 200 and 6400 AGeV, with (solid) and without (dashed) parton shadowing. 

For the associated production, the scale in the dilepton fragmentation functions is chosen to be 

Qrnax = 2pT. 
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