Submitted to Nuclear Physics B o LBL-3440
o Preprint €.

l UNIFORM SEMICLASSICAL ORBITAL CALCULATIONS OF
} HEAVY ION COULOMB EXCITATION

Herbert Massmann and John O. Ré.smussen

November 8, 1974

Prepared for the U, S. Atomic Energy Commission
under Contract W-7405-ENG-48

e

4 \
TWO-WEEK LOAN COPY
This is a Library Circulating Copy -
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
\

Yre-1d1

J

y?



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



"

Uniform Semiclassical Orbital Calculations of Heavy Ion

Coulomb Excitation*.

Herbert Massmann** and John O. Rasmussen

Lawrence Berkeley Laboratory,U. of Calif.; Berkeley,Calif.

November 8, 1974

Abstract

A new semiclassical appfoach, which can be derived from
Feynman's path integral formulation of quantum‘mechanics, is
applied to multiple Coulomb excitation for-Backward scatfering
angles. The basic features of this method are that the dynamic
of the problem is treated completely classically (that is, one
solves classical equations of motion) but the quantum mechani-
cal superposition pfinciple is retained by evaluating a phasé

along the classical trajJectory and adding probébility amplitu-—

~ des for indistinguishable processes rather than probabilities
themselves. One finds even a quantitative agreement with_the'

'éonventional De Boer - Winther code. The limit of sudden colli—

sion (§ =0) for 2-900 (z= Sommerfeld parameter) is evaluated
analytically and is in very good agreement with results publi-

shed for this case.
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TI. Introduction

With the recent availability of heavy ion beams at nuclear
research.enérgies, a new interest has arisen fOr_semi—classicél
theoretical methods to explain the experimental results. For heé—
vy ilon scattering, counled-channels quantum-mechanical calculétions
are bevond the capability of modern computers.

In this navner we wish to renort on our exploration of uniform
semiclazsical approximation (USCA) orbital methods of the type de-
veloped and anplied in recent years to molecular'scattering and
reaction problemsd-;{Ihl this method one uses the classical equa-
‘tions of motion to generate the semi-classical annroximation to
the time-independent quantum mechanical S matrix.

In the usual semiclassical avpproximation methods one treats
the motion of the nrojectile classically, i.e.. the radius vector
'? of the relative motion is rfssuﬁed to be a weli—defined function_
of.time'?(f). The interaction between the target and the projecti-
le is treated guantum-mechanically, i.e. by solving the time-de-
pendent Schrddinger-equation for an initial coniition corresnonding
to fhe target nucleus in its ground state and ﬁumerically integra-
tingvthe coupled—differehtial eauations until a later time, when
the interaction becomes negligible. A problem arising in thié type
of calculation is accounting for the effect the interaction has |
on the orbit of the brojectile)which during the collision trans-
fers energy, angular momentum or mass to the target, Some effort

ir =0lving this nroblem has recently been made for the case of



Coulomb Excitation 4). In the USCA method however, this vnroblem
does not exist since one treats the dvnamics of the svstem cla-
ssically and solves this exadtly. In the DrOCess of extractihg
the S matrix elements (or the excitation probabilities) however,
one retains the quantum-mechanical superpoéitiqn princiﬁle.
Section II presents the general equatibns of the USCA me-
thod. 1In this paper we will illustrate the USCA method for back-
~ward scattering (,ein=0) from an even-even deformed target, at

‘energies below the Coulomb barrier. The equations of motion

and the excitation probabilities for this exémple are written down

in Section III. In Section IV the results of the numerical cal-

culations are presented and discussed.



11 Théory

The theoretical basis of the USCA orbital method has been
1)53)

given in great detail by Miller and in its applicatioh to
nuclear physics in refs. 6,8), therefore we will give here only
the results, referring to those papers for details.

Let r and p, be the radial translational coordinate and
momentum, and q and n the action angle variables describing cla-
ssically a given "internal" degree of freedom of the system. The
action variable n is the classical counterpart of the quantum.

number for this degree of freedom. The S matrix describing the

. transition between the "quantum" states D,y D, is then given by:
(: é(”’l n‘-)

S . £ ™
nn . ﬁ '

| 12 ~ | LT e ’ '
(in(nq,na)

2n,on,
where the phase & is given by:

fl-—a+°¢

Blar) = - 5| (PR *97) o @

1, -0

The;sum in equation (“) goes over all possible classical pafhs‘:
that conserve energy and are such that n(t1)=nq and n(t2)=n2..

To find the paths, one solves the classical equations ofvmotion
for all poséible initial conditions consistent'with the reStric-

tions mentioned above. Then one selects those values of q for

which n(t-2)§n2. The phase along this path is called -é(n,] ,nz).



The eQuatioﬁs (1) and (2) are usually_defived from Feyn-
man's path integral formulation of quantum'mechanics. The semi-
classical limit of matrix elements of quantum mechanical dpera—
tors is found b& invoking the stationary phase method to evaluéte
integrals. In the limit f}»o the equations (1) and (2) béqome_
exact. finally, we would like to mention that the periodicity

of the angle variable q has as a consequence that /An= an-n1}

has to be an integer,



IIT Application to Coulomb Excitation

We will consider here only the case of backward scatte-
ring from an even-even d:formed target at energies below the
Coulomb barrier. By far the most important efféct will then be
Coulomb excitation. This is not of pure academic interest since
in Coulomb excitation experiments one usually wmeasures at back-
ward scattering angles, since at those angles the excitation
probability of high spin states is highest ( as long as the cen-
ter of mass energy is below the Coulomb barrier ). In Table I,'.
one can compare results, computed with the De Boer‘- WintherS)
semiclassical code for multiple Coulomb excitation, for the ex-

_ o .
citation probabilities at two different angles O _ =180 and

. o
0,165 for "Oar on 228y at B, =170.0 MeV ( O cn™ 67 0"
responds to 162.0° in the laboratory ). The difference of the

excitation probability between these two angles is small compa-
red to the Vvariation of the excitation probability with spin :
and therefore excitation probabilities at 180 ° are ﬁseful to
,interpret experimental results at backward scattering angles
( which are usually n¢t results corresponding to exactly .180°
because of experimental reasons ). |

If the projectile moves in on the target with zero ini§1 ‘
tial impact pérameter, then classically.the collision takes
- place 1in a plane (defined by'the projectile and the,symmetry

axis of the target), and only two degrees of freedom are rele-

vant. In this case therefore, one can use the[USCA method to



solve a much simpler planar problem and then, by properly weight -
ing the probability amplitudes, obtain the backward scattering

excitation probabilities for the 3-dimensional problem. .

a) Equations of motion.
Let the z-axis be the initial beam axis and let O, @
be the azimuthal angle of the projectile and the symmetry axis

of the target, respectively. It is convenient to introduce the

angles (see Fig. 1)

% = /5"9 o | DR “ o (3a)
y=pBve | | BNES

If r is the distance between the nuclear centers and p., Dy, p}"

are the_canonicélly:conjugate momenta to the generalized chrdi-

nates f, X, yﬁ_then we can write the classical Hamiltonian for

the system as:

| pE (44
H(n%p8,) - d v B (5 v 5 ) +
_ | | +ZTZ o2 ) Z!,e"Q.f;):

h 2F3

(4)

Here we have explicitly made use of the fact that fin=o and
that initially the rotational angular momentum of the target is
zero (ground state of an even-even nucleus), j.e. that the total

angular momentum J=0O and this implies that p)~(t)=0. In the ex-

Rlwr)




pression for the Hamiltonian m is the reduced mass of the target-
projectile system,:L is the nuclear moment of inertia of the tar-
get, ZT’ ZP are the charge numbers of the target and projectile
respectively and Qgg) is the intrinsic quadrupole moment of the
target. This Hamiltonian does hot take into account any inter-
action between the target and the projectile.due to the nuclear
-force nor any higher electric and magnetic multipole moments.
Also we are not taking into account any excitation of the pro-
jectile nor any excitation of the target besides the excitation -

 of the collective rotational degree of freedom. Thé electric

intrinsic quadrupole moment Qi?) is defined by:

(5)

(2) 16 | q'z-o
(:20 = 5 e

with

‘ 3 A q o | g
9, = |db s(elX ()"
| %ﬁo | Vol : | o
where 59(2) is the charge density of the target.
The Hamiltonian depends only on two coordinétes and their
canonical conjugate momenta. The four equations of motion.are:,,
. P |
m | (7a)
. Z 2 2 ~(2)
P ZoZre” | 3Ze Q)
3 t z T — m E(C"S%) (70)
F 2 |

X
i

I




st g)e @

- Zpe* Q2 ; (7a)
P, - - s 2 P (w%) _ |

If one is interested in the angles. /3 and 9 then the value

of X" has to be known, whlch can be found by :Lntegratlng

X«.-z(“ m‘k2+’l'a’ | - (7e)

'Anoth_er quantity of interest is the phase évwhi‘ch is in this

c_,ase: | - ‘t’r o |
§~-—|(rp+xp)dt ©
AT , ¢

~ The differential equation for é is therefore

é‘*“%‘(”ﬁ*%&) o S

| The €qS. (7) are 1ntegrated numerlcally W1th the initial

condltlons

. = {arﬁe | | ;(9a)'

L



. | Z_ Z 2\ | v

fr. = VZm (Em - T,:e ) | (9b)
/‘%o ( Ccké/?Lkak7> - | (90)
O

¢ =8 | - | (94)

o
!

(9e)
$;, =0 | | - (98)

The initial distance, T, Was taken to be 20 times the distance
of closest anproach The quantity p)’ is the classical angular
momentum of the target; the ‘rotational energy of the planar ro-

tor is given (classically) by:

2%

One of the advantages of thls orbital method is the ease

E =

(10)

of including other terms in the 1nteractlon potentlal In séme

cases a hexadecapole potential
(%)

‘VHexa, = ZF 9 Q P‘{'(CDS Z) | )
23 o
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was used where ng) is defined by:

(4) - h _1 : : ,
Q — 16 T ?‘\‘0 o (12)
o o ._3 | e - Lo

For energies'below the Coulomb barrier it is also easy to in-
_élude the exponential tail of the real nuclear potential and so
get the nuclear-Coulomb interference in this case. However, when
the energy is above or close the barrier top,:the complete nu;b
clear potential has to be used. The orbital method for compiexv
potentiais (with complex trajectories) ‘was recently applied to:

6, 7).

heavy ion elastic and inelastic scattering

b) Excitation Probability.

Integrating the equations of motion With the initial con-
dition X= ﬁ, for various values of /50, the ",guantum number"
function i'( ﬁo) is found, where 1 is the value of p,t’ after
the}integration. - | 'v

- The target nucleus has, besides the aziﬁuthél symmetry;-‘
also a reflection symmetry. This'syﬁmetry has as a consequéncev'
} that only even spins I can be excited and one needs to coqsider
‘ only roots in the interval ED,TKAE] ; also in the expression
for the S matrix the factor 8/ifr instead of‘1/2iﬂ’ appears in

the preexponential factor.
' |

max OB€ has two real roots to the equétionv

For IKKI

P(p) -1

(13)




1

in the interval [O, Tf/2] . Let's call the two roots ﬁsﬂ and

ﬁz. The S matrix is then:

_"a@ﬁc@ )'«z@z,
2=\ (;;191F , Vm 91 2], e - ™

where 4@ is given by (2). Writing it in a different form:
I

& --1L ("?—Pﬁnt%%)df | (15)

21

Using

2% _ X. = #" . (8)
2

and introducing the definitions
2 10 . : (,]7)

"7 |(35)
5y = 5&”’((5{1) | o | (i]S)’

(and similarly for root 2) one can write the S matrix in a more -

useful form:

' ' + :E:S; ¢ I >,
Sox(e) _ V}T@‘*(éf 4t ')‘\“V_é—'@ (§52+45> (‘19)-
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The factor (1- 610/25 appears in eq. (17) because the "phase
space" of_initial orientations leading to I=0 is half as large
than for I $0. o

The square of this S matrix can be interpreted as an exci-
tation probabiiity for backward scattering angles, so we have

what is called the primitive semiclassical expression:

Po(I) = | Sy (E)]”

It

i

(P +p +2VRR sin(28) (20)

where

A$ =

(21)

5 - 8,

The USCA method can also be used to obtain excitation pro-

. c 24,3). _ .
babllltles to final states with I > Imax »2/, TFor I)>ImaX

there are two complex solutiohs'(one conjugate to the other) to
. ‘ o |
‘the equation “I(ﬁo)=I', also the two phases é',] and @2 become
" complex conjugate of each other. ' |
= ' Cwi P>
6 éR t+ ¢ él \\/l\LL\ él /0

(22)

Let's note that root 1 is defined as - the one with positive
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imaginary phase. The S matrix in this case is:
08 -8
& S | (23)
\/7'( o1 )’
2¢ \ 90, /4

Only one root contributes to the S5 matrix.;If:the other root

were present one would have a contribution from that root which
is exponentially increasing with I, which is unacceptablevfrom

f physical grounds.

For the excitation probability we flnd

P {’@ | E (24)

c) Uniform Semiclassical Expressions .

For I close to ImaX the_equations (20)jand (23) do nét
represent at all a good approximation to the.excitation probabif
lity ( one has EZI/Q73-?O and p, and p, —» @ ). The origin of
this difficulty lies in the fact that in this case the two roots
ﬂ ﬁg become very close and then the evaluation of the inte-
grals, in the derivation of the equatlons of section II, by the
statlonary phase approximation has to be modified. This difficul-

tyxdisappears when the so called uniform semiclassical exprés4:

sions are used:

UM-WP{ VB + VF:) A ~Z) |
+(Y-E-r_ -\/'é") 15;2_(--3)_ Ié:([ajjx



amn

and

Po= 4wz p A=) I>Tne  (20)

where Al and Bi are the Airy functions, and z is given by:

, 3 2/3 , S .
z =(Tp AP | = (27)

A rigorous défivation of these equations is possible 2). Uéing'_
rthe asymptotic expression for the Airy functions one can show
that.eqs. (25) and (26) approach egs. (20) and (2%) when ’II
 131not close to I _ . , | o
| Equation (26) is not easily applied. To obtain AP with-
out integratiﬁg the equations of motion witﬁ complex variables
one has to approximate f(/s) as a quadratic and @ as a. cu-

- bic about ﬂ and this leads to the equation 2:

max .
(4L} .
Al A o - (28)

2 | QZE
QP,

) P% N q,
un A

‘with

AL = I - IM,- - <2§>-
A = (ert/a/&'&)max | . | ‘(36)

2 (%% /o).
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%{E“gﬁ‘ = - 'ZZ:' "RI ‘f%f’ e

d) Modifications for three-dimensional backscattering

So far the problem considered has beén?the backscatté-
ring from a rotor in two dimensions (2D5; Here we would like to
modify the previous equations so that they correspond to the
threé dimensional (3D) backscattering from a rotor, without in-
tegratlng the full three dlmen51onal equatlons of motion.

The energy levels of a quantum mechanlcal rotor in 3D
are given by:

E, = —E—(IM)I (32)
| 27 | |

- Using equation (10) one would like to make thé identification
Py =h{r(z+1) hbwevér, since px/ﬁ is the action variable in
this case, it has to vary by an integer for the various states

of the system (see section II). The next beét suggestion, and

the one adopted here, is to make the usual semiclassical identi-

'

- fication:
4 (1+%) | o (33)

which also gives the correct energy spacings when using equation
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(10). We solve therefore ( in the 3D case ) .for roots of the

A
function I(/i) at even integers plus 1/2.
The moment of inertia is obtained from the experimental

energy of the first excited rotational state of the target E2-

and eq.(52), that is

_3%

2

1= (34)
Flgure 2 shows a ty%}cal graph of the function IQB)
N>
At O and 90 I(/‘) goes trough zero since in those cases no
torque acts on the target, and we are assuming that initially
the target is not rotating. How to modify the p's (defined in

(17)) 'can be deduced by noting that for I# 0O

= 2 ﬁ ﬁf - (35)
FEm) A

2
i.e. quhas the geometrlcal meaning that it is the probabilitj‘

that the initial orientation of the (2D) rotor is in the 1nter—

>
val [-ﬁ’l’/g’lj (IB,] andlﬁ,] are defined in Fig. 2) Deflnlng

D, as the probability that the initial azimuthal angle of a .
- < > T
- rotor in three dimensions is .in the interval ['@,, ,/6 p ] we -

275,,,16 Jﬁ, -4, g _ 25"0,&, (36)
o (5), '

Qp,

~V{ -




e
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The éinf& factor arises from a purely geometrical argument
(see Fig. 3). The excitation probabilities for the 3D backscat-
- tering problem are obtained when in the previdus expressions
the p's are replaced by the p's. |

To be able to make the above argument it is necessary for
the target not to rotate (in the plane where the scattering is
going to take place) initially and therefore one still integra-
tes the equations of motion with the initial_;ondition ij==O.
It is not very clear whether this is really iﬁéonsistent with
eq.(33) since the equations of mdtioh we intégrate belong to a
rotor in two dimensions and a rotor in two dimensions does not
have the energy levels given by eq.(32). For I=0 one has to mul-
. tiply P by 0.75 since the initial orientations space leading*».
to i=O is 25% smaller then for I# O (see Fig.2)..

The prescription described in this section is the oné
followed in this paper and is the one giving the most consistent
results when cbmparing to the De Boer -~ Winthér code (where fhe
"internal" degrees of freedom are treated quanfum mechanically).
This prescription is far better than.using instead of eq.(33)

the identification b, = £ 1.
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IV Results and Discussion

a) Examples.

For a typical case, CAr +°°8y at Eq gy = 1700 MeV (with-
out hexadecépole nor nuclear interaction) the function %(F&)
and _@ (ﬂ,) obtained by integrating the ‘equations of motion are
shown in Fig. 4 . The function £(€k> is periodic with period of
a /2 since the force from a monopole~guadrupole potential has
this periodicity. The phase ¢ , however, does not have this pro-
perty (it is nof periodic with any period). ,.

In our code the functions f(,Bo) and é(/go) were compu'ted
with an interval of 5°. We wuse a simple three-point quadratic
ihterpolation between the discrete ﬁoints. to find the roots of

‘the equation I'\(ﬁo) =I+1/2. Calling ﬁ,‘ R /32 the roots for I+1/2
‘ ,ﬁ4 the roots for -(I+1/2), then one finds that '

and 3 |
Aé=l13,, —162 l =[I65-IB4I )i.e. even though the function é 1is
quite different in the 'intervals EC,QT/2] and [TBQZ,ﬂt] , the
phasevdifference for a given final state is the same in both in-
tervals. This justifies restricting‘oneself to the interval
[o,’lT/z ] The derivatives (9 1/9,[{,) x (and therefore D, ') —
are alsovimmediately found by using the fitting coefficients of
the function f(ﬁi) . |
In Fig.5 A@ and V—'ﬁ_‘ are plotted vs. I. Fig. 6 shows the

excitztion amplitude for this example calculated in different

‘Wways. First of all there is the classical excitation probability |
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Pcl =§,l +§2 , which has no interference effect and goes only up
to spin I =8 since this is the largest spin allowed by classical
dynamics (see Fig. 4 )..For I =0 the excitation probability is
roughly 3 /4 of what it is for I=2; this is not an interfe-
‘rence effect but rather has to do with the facbtv that the space
of initial orientations leading to I =04is about ‘3/4 as large as
the one leading to I=2 (see Fig.2 ). The uniform semiclassical
result in three dimensions (that is eq. (>25)v and (26) but with
the p's insteéd of the p's) is indicated by open circles in Fig.
6. For comparison the result using the sehiclassical code for
multiple Coulomb excitation of De Boer - Winther is also indicated.
The agreement is very reasdnabie.

'The main featui'es of the 3D-USCA can be understood by u-
sing Fig. 5 and remembering that the primitive semiclgssical ex-
pression should give similar results to the uniform semiclassical,

except when I is close to T (in our example 'I~’10_). The regions

max
where the interference is constructive or destructive are indica-
ted in Fig. 5. For I=4, for example, Aé is in a region of des-

- tructive interference. Hence, P is much smaller then Pcl’ For

uni
I=6, A@ is only slightly into a region of constructive in’cer.—’
ference, therefore Puni is a little larger then "Pcl. The fact
that V—f):—,: goes to zero for small I+1/2in the 5D case (due to
the sin 16’1 in eq. (36) ) has the consequence that the iﬁteri‘-erence

pattern becomes progressively weaker going to small I . In the

2D-USCA §p 1 does not tend to zero (as a matter fact the curves

for vp,] and . p, are fairly similar and lie between the curves
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V5‘1 and ’152 of Fig.5); and therefore the 2D interference

pattern is much larger (see Fig.6 ), in disagreement'with the
De Boer - Winther code.

| In éur example the excitation probabilities add up to
unity (fo within a fraction of 1%) as required by the unitarity
of the S matrix. ,

Welwbuld note at this point that we have recently learned

of a éimilar independent treatment of Coulomb excitation by Le-
Qit, Smilansky and Pelte8). There are some differences between

the formulations, such as, (1) they do not make the sinfs weight-
ing to go'to the three dimensional application, i.e. they solve
the backscattering from a planar rotor, (2) they neglect the trans-
verse force term in the equations of motion, sovas to constrain
the orbit exactly to the beam axis (this effect is actually very
small).

In Fig. 7 we show the excitation probability for the same
ekample at a higher energy (Elab=200.0 MeV), with and without
‘hexadecapole pofential. Again we find the same kind of agreement
‘with the De Boer-Winther code. The excitation pfobability with

() . more slowly . ROOE ’ _

Q. # 0 falls off sdewer for large I than with Q, 7=0. In our
case this comes about because the function %(ﬁo) is flatter‘ét‘
 the maximum when Q(%>7ECL
| The main difference between the results computed with
the De Boer-iinther and our code are the smaller excitation ampli-

tudes we find for large I. Large spins are excited when the ini-

tial azimuthal angle of the target is around §4° (see Fige. 4).
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‘The quadrupole potential at this orientation exerts a repulsive
force on the projectile; the projectile thereféré does not come
as close tobthe target énd spends less time there than if it were
moving in‘a pure Coulomb trajectory aﬁd as a consequence high I
states are less excited than calculated‘with*tﬁe;Dé Boer-{inther
code. However, an estimate of this effeet shows that it should
be much smaller than the one shown in Figs. 6 and 7. There are
sevéral possible reasons to explain this difference: (1) In the
evaluation of excitation probabilities for "¢lassically forbidden”
transitions (%hat is, transitions to states not reached by cla-

- ssical dynamics) we are using the approximate formula (28) in- -
stead of equation (26); (2) we are approximating the extremumvofb
the function’f(ﬂo)_ (which occurs around 54° for our example; see
Fig. 2) by a pafabola, an abproximation which may not be toogood
for (classically) very forbidden transitions; (3) the transition
from 2D to 3D (as outlined in III-d) may nof be quite consisténté
(4) since a fully quantum mechanical calculatidn is not availae

ble for compérison, we do not know the actual errors in-either

the De Boer - Winther calculation or the uniform semiclassical.

5)‘ThebLimit of Sudden Collision.
In this section we will limit the discussion only to qua—'
- drupole Coulomb excitation.- | |
When writing the equations of motion (7) in terms of di-
mensionless quantities one finds that the evolution of the sys-

tem depends only on the following dimensionless‘parameters:
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2
Z - ZT Z’P e (Sommerfeld parameter) (37a)
h V., -
§ - E. | (Adiabaticity parameter) (37b)
o2 Z 2 Ec" '
2)
— Z.f 8L Q, (Quadrupole interaction (370)
= 37¢c
042_ | 4_% V. Qz strenght parameter) | .

where v; is the velocity of the incoming projectile and _a_' is
half the distance of closest approach:
2
ZI’ Z-r e

In ofder to limit the number of parameters (and so make
vthe'comparison with the conventional semiclassical method easi—,
er) we consider from now on the case .goz =0, This corresponds.
physically to the limit of sudden collision (that is, the period
of rotation of the target isvhuch]aﬁTﬂfthan the time'during which
the interaction takes place). For the convenfional semiélassiCal
approach, this ‘§°1 =0 limit has been stvdied by Alder and Win—
ther 10);'and one has there that the excitation pfobability for
backscattering depends only on the Qﬁadrupole interaction strength
Eé . In our case, however, we have also the additional paraméter |

ZZ ) Eé,/zz‘ giving é measure of how much the orbit of the pro-
jectile is disturbed by the interaction. The ¢dnventional semi-

-~



23

classical method corresponds therefore to ’Z———? 00 . It can be
shown 2) that classically the largest aéimuthal angle 6 through
which the projectile can be scattered is approximately 252 /?.
A nice feature of the USCA method is that the £20=0,
Z —> o0 limit for backscattering can be solved analytically. '

The result for the function f(ﬁ,) and é(,&,) is
f(/)’) =-Q§z 5/,,(2/5) : BN EEY
3(B) = 23, (sif -B.5in (28)) (w03

from ‘f’hich the phase difference A@ and the 7 's can b'e'found: ‘
| Nt | ~ : N ) -
A@___< 26-;&“4"{? ‘,()Akccosfl . 1[)\,/ (M)
| 23 {m—fLﬁ(f+y7§e_‘}"')l SR
- (%) (,—fﬁ g”(%%{) Pt o
B . ’ 3. V4-f2 cos<A"‘j” ) (42a

e

9 o)

| 4
b = — ' - |
ER A SO

‘with f defined by:
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Q?Z

In Fig. 8 the phase difference Ad vS. g, is plotted

‘f_b
i

(43)

for £<1. The_regions of constructive and destructive interfe-
rence are also indicated. ¥With this figure one readily under-
stands thevfeatures of the excitation probability (Fig. 7, ref.
10) . ‘

Subéfituting eqs. (41) and (42) back into egs. (25) and
(26) we £ind the excitation probabilities in the §,, -0,

Zf —> o0  limit. Let's note that in this case we are using
the "exact" expression (26) for the classicéi/fbrbidden transi-
tions (that is for £ >1) and not the approximate expression (28).

For the special case f =1 the excitation probability is:

P o 5 2/3/\‘2(0) | | ()
un 1[57 %fg v C : )

In Table II the excitation probabilifies are tabulated
for some values of I and compared withresults tabulated by Al-
der and Winther (Table 5, ref. 10 ). Except for I::O,IWhere-the
difference is a little larger, the results are:very_éimilarles-
pecially for large 52. The difference between.the excitation
probabilities calculated by the two different semiclassical me-
thods (for not toosmall 52) is Z§P==Puni;'ng £ 0.003 . The
results are tabulated since in a figure like Fig. 7 of reference

10 one would hardly find any difference between the two calcula-
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culations. The agreement is very good even foiﬂ small 62 (52_<5)
where the u.ni_form approximation with Airy functions should be-
come gradually worse and a uniform expression in terms of Bessel
functions should be applied 3). For ?-—9 00.,' “the conventional .
semiclassical method and the quantum mechani'cal. theorj should
give identical results;b however, Table 5 in reference ﬁO was ob-
tained with the use of some additional approximations and it is
difficult to say whether the small »differences between the two se-
miclassical calculations are due to (1) thioadditional appfo;ti-
mation., (2) to the numerical evaluation of 'the. excitation pro-
babilities or (3) due to the basic approximations of the USCA -
méthod.

In realistic scattering 'problems,' Z is finite and the
-projectile's orbit will differ from a pure hyperbola, thé 'quan—
tity 62’ /'Z being a measur.e of the size of the oorreo‘tion ‘ex»—
pec“ced‘. Fig. 9 shows the ('Z ;52) values for various target -
;$r0jectile systems at several energies (in Me‘f). Figure 10 showé
the backscattering excitation probability for S"’- =0 and E2=9.
Vs. 1/2 . In our oalculations one finds thatv by varying Z from -
50 to 350, the phase difference,; A@ increasesv for the various |
states between 0.3 and 0.7 radians; with this fact and Fig. 8 we
can rationalize the variation of the excitation probabili’cj with
- ? in Fig.. 10 . ‘For e%ample for I=6, A@ moves away from the
region of oonstructivé interference with increasing /Z , there-

fore the excitation probability deoréases; for I= 8 R AQ moves
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into a region of constructive interference, the excitation pro-
bability increases with 77 . The variation of Ad witn 7 is
the main contribution to the change in the excitafion probabili-
ty with Z ; the p's also vary with 2 (the larger the spin
T, the greater the variation). For I=14, A& moves deeper
into the constructive interference region and the excitation pro-
bability should increase with ‘%Z » but this is cancelled by
the decrease of thé p's with increasing f? » S0 the excitation
probability actually goes down a little.

| We should note here that in the De Boer - Winther code
one takes approximately into account the energy loss of the pro-
Jjectile during the collision by choosing proﬁerly symmetrized or-
bits. . In otherlwords, some part of the corrections to the hyper-
bolic orbit due to the monopole - quadrupole interaction are ta-
ken into account. In the ~§¢2==O case however,‘there is no ener-
gy loss and therefore the finite '%Z corrections shown in Fig.
_10. come about because of the change.in the projectile's orbit
due to the anguiar momentum transfer between the target and pro-
Jectile. The ahgular momentum transfer between'tafget and projec-
tile is not taken into accdunt in the conventional be Boer - Win-
‘ther code élthough'WOrk is currently being done to include it

approximately 4).

c) Conclusions.

The basic approach of the USCA is that one employs clas-

sical dynamics (equations of motion) but retains the quantum me-
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chanical superposition principle (addition of probability ampli-
tud=s for indistinguishible processes rather than probabilities
themselves). With these basic features one fiﬁds evén a gquanti-
tative agreement with more conventionalAmethods. |

It is suggested that one could even géf the corrections
to the excitation probabilities in the De Boer - Winther code due .
to the coupling of the excitation process of the target and the
orbital motion of the projectile,

The USCA can lead to a better explahation and gives more
physicalbinsight to the process as compared to thé conventional
‘semiclassical and quantum mechanical‘approach. Another advantage
of this mé%hod is that the amount of computer time needed is
practically independent of the number of final states considered
(actually the: more states that are excited the more applicable
is the method), | V

If one wants results not only for backscattering, then:
one has to solve the full 3D problem. A full 3D calculation for
Coulomb excitatidn is considerably more complicated to do; there
one has two coordinates thSpecify the initial orientation of
the target and one has to do a two dimensional root search to
fihd the initial orientations leading to a given final state.

In genefal there will be four roots; a uniform expression for
four roots has been made plausible although it“has not been pro-

- ved rigorously 1),
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Table T
&
Probaility to excite a rotational state of angular

momentum I calculated with the De Boer-¥Winther code

for "Onr+”?%y at By, =170 MeV, Q£2)=1O.84}barn.'
T O,y =180 Q=165
0 0.07859 © 0.08195
2 0.17013 0.16754
4 0,05372 0.05422
6 0.20703 0.22%77
8 0.29012 1 0.28689
10 0.15091 ) 0.14127
12 0.04146 0.03735
o 0.00716 0.00626
16 0.00088 0.00076




Table II

The nrobabilities for excitation of rotational states
even-even nucleus in the limit Egy=0 and
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in an

=00, Tabulated

are the results of the USCA and the traditional semiclassi-

cal apnroximation (ref.9).

USGA A=W USCA A=W | Usca A=W

%o
N P h P, P P, P

1.0 | 0.6%30 | 0.6945 | 0.2518 | 0.2850 | 0.000% | 0.0006
a5 | ousman | oLazon | o.z017 | o.4s12 | 0.00%9 | 0.0057
2.0 | 0.1940 | 0.2152 | 0.5733 | 0.5597 | 0.0203 | 0.02A0
5.5 | 0,002 | 0.7021 | 0.4802 | 0.4842 | 0.0650 | 0.0750
2.0 | 0.0242 | 0.0835 | 0.3084 | 0.3008 | 0.1485 | 0.1572
%5 | 0,107 | 0.1108 | 0.4362 | 0.1380 | 0.2568 | 0.2563
1.0 | 0,422 | 0.4319 | 0.0509 | 0.0514 | 0.33%85 | 0.3%54
5.5 | 0.7418 | 0.1294 | 0.0822 | 0.0600 | 0.3571 | 7.3555
5.0 | 0.0820. | 0.0881 | 0.1193 | 0.1158 | 0.2999 | 0.3006
5.5 | 0.0553 | 0.0571 | 0.41569 | 0.1540 | 0.1911 | 0,71932
6.0 | 0.0067 | 0.0463 | 0.,1427 | 0.1412 | 0.0828 | N.0843
c.5 | 0.0530 | 0.0547 | 0.0921 | 0.0917 |0.0242 | 0.0250
7.0 | 0.0830 | 0.0671 | 0.ou62 | 0.0459 |0.0%17 |0.0312
9.5 | 0.0637 | 0.0687 | 0.0352 | 0.0343 |0.0809 | 0.0798
2.0 | 0.05%2 | 0.0570 | 0.0568 | 0.0552 |0.1251 | 0.1242
2.5 | 0.0396 | 0.0413 | 0.0836 | 0,0879 |0,129% | 0.1292 |
9.0 | 0.0%20 | 0.0%329 | 0.0892 | 0.0879 | 0.0925 | 0.0930
0.5 | 0.0%45 | 0.0%55 | 0.0692 | 0l0685 |O0.0842 | 0.0447

0.0409 {1 n.ou%2 | o.ou12 | 0.0408 |0.0428 | 0.0189

10,0

(to be continued)
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USCA A=Y USCA A=W Uaca r oW
a5 _
- Pao Pao Pay Py Pig Pag
1.0
1.5
2.0 | 0.0n00 | 00004
2.5 | 0.0004 | 0.0006
3.0 | 0.0022 | 0.0029
3.5 | 0.0084 | 0.0704 0.0001
6.0 | 0.0207 | 0.0286 | 0.0003 0.0004
4,5 | 0,058 | 0.083L | 0,007 0.0014
5.0 | 0.1927 | n.aa74 | 0.0038 | 0.004%
5.5 | 0,7829 | 0,183 | 0,0107 0.0124 g 0.0002
.0 | 0.2u57 | 0.2835 | 0.0255 | 0.028% | 0.0006 | 0.0007
5.5 | 0.,2768 | 0.2757 | 0.0523 0.0558 1.0018 | 0.0022
7.0 | 0.2615 | 0.2616 | 0.0933% 0.0961 | 0.0050 | 0.0058
7.5 | 0.2008 | 0.2014 | 0.1452 0.1455 | 0.0120 | 0.0134
2.0 | 0.1160 | 0.71174 | 0.1946 0.19%8 | 0.025% | 0.0274
2,5 1 0,0436 | 00446 | 0,2266 0.2258 | 0.,0478 | 0.050%
9.0 | 0.0124 | 0.0728 | 0.2277 | 0.2275 | 0.0808 | n.0828
9.5 | 0.0290 | 0.0286 | 0.1930 | 0.1935 | 0.1221 | 0.1223
10.0 | 0.0725 | 0.0719 0.1326 | 0.1627 | 0.1622

0.1316
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Figure Captions

Fig. 1. Diagram showing the geometry for the projectile - tar-

get gystem.

.

Fig. 2 . Graph of the function I(5) wvs. ﬁ. The two roots /@,]
A _

and ﬁ’g of I(P Y=TI+1/2 are shown for I=4,

Fig. 5. Initial orientation of the target. The probability that
the azimuthal angle of the symmetry axis lies between IB, and

ﬁ’ + dp, is clearly proportional to sin/& in the 3D case.

N
Fig. 4 . Graphs of the function I(p ) and é (/B) are shown for

40 238

the case Ar + U at E =170.0 MeV . For this example:

lab
Gy =5.574, 77 =127.0, £,2=0.01% .

Tig. 5. Graph of Aé, UE,] and y§2 vs. I for the same

example of Fig. 2.

Fig. 6 . Calculations of Coulomb excitation probabilities to

excite members of rotational ground band in 238

scat.tering of 40 Ar at E 1ab = 170.0 MeV on U. For this
2

case: E2 = 0.0449 eV, Q<02>=1O.81+ barn, Q(:Q=0.0 barn” ,
£ 5, =0.019, %=127.0 and T =5.57%4 .

U with the back-
238
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Fig. 7 . Calculation with the USCA-3D and the De Boer - Winther
code of Coulomb excitation probabilities to excite members of

o]
the rotational ground band of -°°U with the backscattering
40 238

(@ =180") of
2
E, = 0.0449 MeV, QE, ) = 10.84 barn, E,z =0.0153, 2 =117.1 and

Ar (Elab = 200.,0 MeV) on U. For this case:

52 =7.112. Two cases are shown: with hexadecapole moment Q(:)é

2.65 bzau:'n2 and without hexadecapole moment (Q(ﬁ) =0).

Fig. 8 .Graph of phase difference Aé VS. '?;'2‘ for the case gn =O

and Z —» o7, obtained with eq. ( 41 ). Shown are the results for

all spins up to I =18 but only for f<1.

. laporaio : o v
tems at severalYenergies (in MeV) are shown. The cross (X) indi-

Fig., 9 . The (Z s EE ) values for various Itarg_et —projecfile sys-— |

: : 4/3 13 . . - ‘
cates the place where 2a=1.4( AT + Ap ) (a is defined by
eq. (38)). |

Fig. 10 . Backward scattering excitation probabilities to Coulomb

excite members of a ground rotational band of an even-even tar-

get. Results are shown vs. Z for };2:0. and ’q‘2 =9.0 . The
G — 62 1limit was evaluated in the way described in IV-b.
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