
.. '
'" ~i:" ~~~:. ~~~ .

LBL-34423
UC-800

Lawrence Berkeley. Laboratory
UNIVERSITY OF CALIFORNIA

EARTH SCIENCES DIVISION

Qualifying Codes under Software Quality Assurance: Two
Examples As Guidelines for Codes That Are Existing or
under Development

D. Mangold

May 1993

------::-. -.':'""~' --::-~ .. ~.---.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

:0
m .

("). .."
...... C m
,0:0
OCDm
r:;:tnz (")
IlIZm
rfoO
CDrfo(")

o
"C

OJ -<
0.---
IQ

U1
lSI

I
I CD I
0- (") I , 0 W
III "C ~ , I<: ~

I<: N . I-' W

I
,

I
I
I

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

:-

Qualifying Codes under Software Quality Assurance:
Two Examples As Guidelines for Codes . ,

That Are Existing or under Development

Don Mangold

Earth Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

May 1993

LBL-34423 .

•

This work was supported by the Director, Office of Civilian Radioactive Waste Management, Office of
Facilities Siting and Development, of the U.S. Department of Energy under Contract No. DE-AC03-

. 76SF00098.

/" .

"

Summary

Software quality assurance is an area of concern for DOE, EPA, and other agencies
due to the poor quality of software and its documentation they have received in the past
This report briefly summarizes the software development concepts and terminology
increasingly employed by these agencies and provides a workable approach to scientific
programming under the new requirements. Following this is a practical description of how
to qualify a simulation code, based on a software QA plan that has been reviewed and
officially accepted by DOFJOCRWM. Two codes have recently been baselined and
qualified, so that they can be officially used for QA Level 1 work under the
DOFJOCRWM QA requirements. One of them was baselined and qualified within one
week. The fIrst of the codes was the multi-phase multi-component flow code TOUGH
version I, an already existing code, and the other was a geochemistry transport code

. STATEQ that was under development The way to accomplish qualification for both
types of codes is summarized in an easy-to-follow step-by step fashion to illustrate how to
baseline and qualify such codes through a relatively painless procedure .

./

,
\

Acknowledgment

The author gratefully acknowledges the assistance of Sam Horton and John Matras of
YMPOQA Division in discussions of QA as applied to software, to software developers
Karsten Pruess and Chalon Carnahan for th~ir unstinted cooperation in qualifying their
codes, and to Chin-Fu Tsang for the encouragement to produce this report. This work
was sponsored by the Director, Office of Civilian Radioactive'Waste Management, Office
of Facilities Siting and Development, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098.

Qualifying Codes Under Software Quality Assurance:
Two Examples as Guidelines for Codes

That Are Existing or Under Development

Introduction: The Reasons for Software QA

Software quality assurance is an area of growing concern for DOE, NRC, EPA and
other agencies in recent years, due to the poor quality of software supported by them and
the associated documentation on development and use. A Government Accounting Office
report (GAO, 1980) reviewing the situation stated that 45% of contracted software could
"not be used, 19% had to be reworked, and only 2% was usable as delivered. NRC reports
(NRC, 1987) showed cases where no one knew which version of a code had been used in

(

a reactor safety analysis calculation, and others where unverified codes were used. Such
sloppy scientific practice is no longer acceptable.

Actually, good software QA is just proper scientific practice. We have quality but we
need to give others assurance by having sufficient records to satisfy the community at
large and our funding agencies that we are following good practice.

Understanding Software Development Concepts and Terminology

In order to understand software QA ideas and tenns, there is a need to know the
computer science and software industry approach to code development. This is because
the software industry has been developing the principles of software QA for some years,
and their concepts and experience were taken by DOE and other agencies as the basis for
scientific software QA requirements.

Software development is considered by software professionals (including computer
science professional societies such as the Institute of Electrical and Electronics Engineers,
IEEE) to have a"life cycle" with well-defmed stages (see Figure 1). Basically, the stages
begin with setting up the requirements the code is to meet, then establishing the design
based on the requirements, followed by the implementation of the design including actual
coding and debugging, and fmally the testing of the code, called verification and validation
or "V & V" (see table below). This validation is not the model validation in the literature
of hydrology (see below). Mter the code has been documented to have successfully
passed through all these stages, it is considered qualified for use. In the context of
software QA. this implies official recognition that the code has been properly checked
both as to the meeting of the original requirements as well as the actual operation of the
code itself.

Summary of the Stages of the Life Cycle of SQftware Development

R~Quh:~m~nts Desi&n Impl~m~nlalhlD yay Ouali fi~aliQn
Specifies what Structure: Coding and Testing and Official QA
code must do control and debugging checking the acceptance of

data flow code code for work

Figure 1. Software Life Cycle -Traditional Approach

Traditional Waterfall. Approach

Requirements

l.~ \ software verification

~~l~ Design . --u,t;:"
)~l \ software verificafion

1m lementation ~"tt~'
(coding & debugging) ·~l \ software verification

. . V&V r:1.t.;'.

software verification & validation ~L.\ software verifi ation

_U~.,.

Qualification

2

"

'.

c.

3

In the professional software view. the satisfying of the original requirements is as
important or more important than making sure the code runs well They have good reason
for this attitude because careful cost studies have shown that the cost of correcting an

, error in sOftware goes up by as much as two orders of magnitude from the beginning of
the life cycle to the end (see chart below, after Bryant and Wilburn, 1987). In other
words. if an error is caught in the requirements or preliminary design stage, the cost to
correct it is approximately 1 % of what the same error costs if caught only aftet the code is
in operation. This is why professional software organizations say that a software QA

, program pays for itself many times over by catching errors early, and its cost is only about
3-5% of the total development costs (Boehm. 1981; Wilburn, 1992).

Relative
Coat to
Correct

EnOl
(Log

Scale)

(

. 100~--~

10

1 +-------~---------~--------------+_------------~---------~
R equlre"."ta D .. Ign Irrplenwnt Integrate vav Operation

Figure 2. Relative cost to correct software errors according to stage of
software development (after Bryant and Wilburn, 1987).

However. many scientists felt that this approach was too restrictive and more suited
for an engineering or, software industry large·scale production environment rather than a
research environment where there is typically only one or a handful of code developers for
a given code and goals are not rigidly set beforehand but are reachedtbrough some
amount of trial and error experimentation. In DOEJOCRWM this fortunately led to the
formation of the Software Advisory Group (SAG) with members from the participant
organizations including LBL. Through SAG and through the desire of LBL'sEarth
Science Division Geologic Repository Project (GRP) to formulate a software QA plan
acceptable both to scientists and to DOE. the requirements have recently been made much
more flexible.

Some of the terms in software development also need explanation because they are
different from the common scientific usage. Especially the terms "software verification"
and "software validation" are apt to be misunderstood. Software verification means
checking to ensure that a following stage (e.g., implementation) fulfills the requirements of
a preceding stage (e.g •• design). It does not merely mean that the mathematical formulas

4

embodied in the code are correctly computed. Also, software validation means that the
operational code satisfies all the requirements specifIed for it in the requirements stage. It
does not mean that the code is able to match experimental or field data-that is called
"model validation." For a fuller discussion of model validation, see Tsang (1987. 1989).

An Approach to Scientific Software QA

The professional software emphasis on requirements fIrSt has implications that may
not fit scientific software development The traditional software engineering approach to

. code development employs the ''waterfall'' model (see Figure 1): requirements are first
established in a detailed and thorough way, then the design similarly, and so forth down
through the life cycle stages like a waterfall cascading down from one level to another.
One hopes that at the end there is smooth sailing. '

The difficulty with this view is that the waterfall never flows back up. But scientific
code development has an iterative "feedback" nature where later work may cause the

. \

developer to go back to restate the requirements or design for the code. This is called
"prototjping" a code by software professio'nals, and within LBL's GRP project it is called
the "prototype activity," where the developer can go through all the life cycle stages more
than once before settling on what the requirements, design, ~tc .• should be (see Figure 3).
It is a useful way of programming when the problem to be solved is not fully defmed at the
outset and is the approach that fits programming for scientific research more closely. This
been implemented in the GRP Software QA Plan that has been officially accepted by
DOEJOCRWM (GRP, 1992) and is also incorporated into the recent DOEJOCRWM
Quality Assurance Requirements Document (DOE, 1992), the latter due to the efforts of
SAG.

Reasonable software QA' should be based on our own existing proper practice, not
just arbitrary niles. The GRP Software QA Plan and implementing procedures were
written. locally according to DOEJOCRWM (DOE, 1992) and' LBL lab-wide guidelines
(LBL OAP, 1993) for what needed to be addressed. We learned from both the DOE and
LBL QA staff that the procedures we write should be based on what we actually do, not
what we thought they wanted. and not to put in .excessive detail nor to over-require
ourselves. You will be audited to what you require yourself to do.

Under a proper QA plan, we can clean up our sloppy work habits so that we can
demonstrate to others the quality of our work. A proper scientific practice keeps
sufficient records for traceability and reproducibility of our results. It is no longer
adequate to excuse ourselves by saying that we know what we did (even ten years ago?)
or. that we have been doing it this way for years (but where are those outputs from way
back then?) or that "It's all in the paper" (but what version of the code did I use that
time-I never made a note). We need records of essential input flIes, mesh designs,
computer runs, etc., for our own sake to know what we have done, and to be able to
properly defend our work in front of the public who may want to use our results. A weil
kept scientific notebook meets most of the need for day-to-day record-keeping,' and
should be a normal part of all scientific work in any case.

5

Figure 3. Software Life Cycle -Prototype or Iterative Approach

Pro1otyping or Iterative Approach

. Design

((ImPlementation

'I V&V

Requirements
Design ~ V&V

Implementation
"package"

Prototyping, recorded in
scientific notebook

(

Qualifying with all)
--~~ Qualification appropriate forms &

documentation .

6

What follows is taken from the GRP Software QA Plan and implementing procedures
(GRP. 1992) for qualifying a scientific simulation code. the most important and common
case for our work. It has been tailored to fit our scientific programming practice and
nevertheless satisfy DOE requirements. The requested documentation and other
infonnation are quite typical of what is required by other parts of DOE or other federal
agencies for software QA. .

Qualification of an Existing Code: TOUGH·

Qualifying codes under software quality assurance is not difficult once the basic
approach is understood. For illustration, a large simulation code. TOUGH (Pruess. 1987).
was chosen. It already has gone through many tests (Moridis and Pruess. 1992) and has
considerable documentation. Based on these it took only one week to go through the
procedure to have the code baselined and qualified. The short summary below is intended.
as a guide to the step-by-step procedures that can serve as examples to follow in
qualifying "matured" codes.

An existing code such as TOUGH has. in essence. already passed through all the
. stages of the software life cycle: defining the requirements. establishing the design. coding
and debugging. and testing of the code. even though these tenns were not used in the
process. Thus. qualification is a matter of documenting what has been accomplished in a
manner fitting the QA requirements. The GRP Software QA Plan has a streamlined
procedure for such documenting of an existing code by summarizing what has been done
on a series of fonns. each of which covers some part of the software life cycle. Typical
fonns for qualifying an existing code are listed below with step-by-step guidance to
complete them. and following this the fonns for TOUGH are reproduced as an example in
Appendix A.

1. Software Classiflcation Form

This is the entry fonn for all software. existing, acquired. or under developmenL For
this fonn. as well· as all those that follow. someone in the software management of the
project or the division signs the fonn to indicate review and. approval at each stage of the
life cycle of the code.

•. Fill in your name, date, the original name of the code and its version.

• The purpose should be just one or two sentences. but it should convey the major
problems the code was developed to solve and its main applications.

• Under type. check the box that is appropriate for the code:

- Simulation codes: complex codes for modeling physical. chemical or
geological phenomena and systems, often with numerical methods.

- Data analysis software: codes that algebraically manipulate data to make it
more usable or understandable. whose functions cannot be exactly verified
in all calculations perfonned on the data.

7

- Auxiliary software: codes that perfonn specific pre- or post-processing
. tasks such as interpolation, simple statistical manipulations, etc., whose
functions can be verified by examining the code or hand calculation.

- System software: software that has no life cycle controls under the project
software QA plan.

2. Evaluati6n Report

In Part 1, fill in the spaces as noted below.

• Fill in your name, date, the original name of the code and its version. The
source can be "UCLBL-ESD."

• The intended use should be just one or two sentences describing the studies the
code was developed to perform and its main application(s).

• The performance specifications should be the brief and definite ,requirements for
perfonnance that have been subjected to testing already.

• The adequacy of documentation is evaluated mainly by whether a complete
user's manual exists, including a description of the mathematical models and
numerical methods, and a code listing.

• The adequacy of software validation is evaluated by sample problems or
calculations that are sufficient to demonstrate that the code meets all the
perfonnance specifications. TOUGH had 6 sample problems in the user's
manual and further verification and validation problems in another report to
show the code's capabilities to meet its requirements. References can and
should be made to the reports which incorporate the documentation and sample
calculations.

In Part 2, fill in the top as above.

~ • For installation and checkout, it is probably simplest to write a report
sUl1lIIlarizing the testing of the code and make it an attachment to the fonn,
referred to on the form. . One easy format to follow is shown in the report for
TOUGH: list each performance specification and then give the test results that
relate to it, in order, giving references to reports where the actual results are
recorded.

• Under test conditions and results, make a brief conclusion of the results and how
the perfonnance specifications have been shown to be satisfied.

3. Use Qualification Report .

This is the last fonn required for qualification. . It provides a summary of the
limitations on the use of the code.

• Fill in your name, date, and the name of the code: The baseline ID for the initial
qualification of the code is just "l.O.a."

8

• Write any general limitations and conditions on code use. For TOUGH, this
was the fact that the MA28 solver was proprietary and could not be used
separately ..

• Put in the limits on parameter values; a simple range is sufficient (e.g.,
temperature from 2°C to 360°C).

• Record limits on boundary and initial conditions. In TOUGH there was the
limitation that time-dependent Dirichlet boundary conditions could not be input
directly, but could be input indirectly; a reference to a report was given.

The example forms for TOUGH show a basic fonnat to follow, and are attached for
reference following in Appendix A

After qualification, certain arrangements are made by the software management
system of a project or of the Earth Sciences Division to preserve a record of the code, its
documentation, and the software QA documents. The code would . normally be written to
a read-only file on one of the local computer systems under its baseline ID and not
changed further unless it goes through formal change control procedures. The software
management system also keeps copies of the user's guide and other documentation as well
as the Software QA fonns in its meso These records are also updated through formal
change control procedures to ensure that all subsequent changes to the baselined and
qualified code are carefully documented as the code is modified, errors are discovered and
corrected, arid so forth. Then whenever a user employs the code, they can know exactly
what version they are using and what is its present status.

Qualification of a Code Under Development: STATEQ

Qualifying a code under development in software quality assurance is also
straightforward once the basic procedure is clear. For illustration, a medium size
geochemistry simulation code, STATEQ (Carnahan~ 1993), was selected. Although it had
not gone through> many tests and did not have a .long history of documentation, it was
nevertheless not difficult to have the code baselined and qualified. The short summary
below is intended as a guide to the step-by-step procedures that can serve .as examples to
follow in qualifying a code that is under development

The GRP Software QA Plan employs a streamlined procedure for the documenting of
a code under development by summarizing what has been accomplished on a series of
fonns, each of which . covers some part of the software life cycle. It does not necessarily
mean that each form is filled in when the code is just beginning to be developed. As

. explained above, scientific programming generaIJy follows an iterative life cycle rather than:
a . £'once for all" or waterfall type of life cycle. A code under development such as
STA TEQ may pass through the stages of the software life cycle a few times (defming the
requirements, establishing the design, coding and debugging, and testing of the code)
before any stage, including the fmt, is ready for QA documentation (see Figure 3).

Only after the whole process is reasonably complete, and the developers have
satisfied themselves that the code meets an acceptable scientific standard, do they need to
begin the software QA procedures for qualification. Thus, even a code under

9

development may be baselined and qualified with a modest effort, largely drawing on the
. work of development that has already been accomplished. and simply documenting it in a

manner fitting the QA requirements. Typical forms for qualifying a code under
development are listed below with step-by-step guidance to complete them, and following
this the forms for STATEQ are reproduced as an example in Appendix B.

1. Software Classification Form

This is the entry form for all softWare. existing. acq,,!ired. or under development. For
this form. as well as all those that follow. someone in the software management of the
project or the division signs the form to indicate review and approval at each stage of the
life cycle of the code.

• Fill in your name. date. the- original name of the code and its version.

• The purpose should be just one or two sentences. but it should convey the major
problems the code was developed to solve and its main applications.

• Under type. check the box that is appropriate for the code:

Simulation codes: complex codes for modeling physical. chemical or
geological phenomena and systems. often with numerical methods.

Data analysis software: codes that algebraically manipulate data to make it
more usable or understandable, whose functions cannot be exactly verifIed
in all calculations performed on the data.

Auxiliary software: codes that perform specffic pre- or post-processing
tasks such as interpolation. simple statistical manipulations. etc.. whose
functions can be verffied by examining the code or hand calculation.

System software: software that has no life cycle controls under the project
software QA plan.

2. Software Requirements Specifzcation (SRS)

This is the first fonn required for qualification of codes under development It
provides a summary of the limitations on the use of the code.

• Fill in your name. date. the original name of the code and its baseline ID. The
baseline ID for the initial qualillcation of the code is just "to.a."

• For listing the requirements. it is probably simplest to write a separate document
and make it an attachment to the form. referred to on the fonn. One easy
format to follow is shown in the example form for STA TEQ: list each
requirement specification' under the three major headings of functional
requirements. performance requirements. and interface requirements.

Functional requirements: these are the functions the software is to perfonn.
In STA TEQ,' these included calculating equilibrium concentrations from a
given set of basis species. how activity coefficients are to be estima~ two
forms for treating redox equations. etc. .

10

Perfonnance requirements: these are the attributes of the software such as
the fonnat and language (e.g., FORTRAN 77). issues such as portability.
correctness, maintainability. etc., and the applicable stages of the life cycle.

Interface requirements: referring to the code's relationship with other
software and the operating system. For STATEQ. this meant that it was to
be capable of stand-alone operation and able to write a general data me that
could be utilized by another program. .

One tip fo; making it easier for yourself later on in the process is to. write down the
tests of the requirements as you write the requirementS. This helps you to both cI3rify and
make practical the requirements you actually want, and it becomes a preliminary version of
the software validation test plan (see below).

3. Software Design Document (SDD)

This fonn gives the major components of the design related to the requirements for
the code as specified in the SRS. . The document is again best written up as a separate
report to be attached to the SOD fonn. A flow chart should be attached as part of the
report.

The general content of the STA TEQ SOD is very practical.

• Use the major headings of the SRS to provide the overall framework: major
components of the design related to the functional requirements. the
performance requirements, and the in~rface requirements. . .

• Elaborate on each item under a major heading, specifying the design of the code
to meet that requiremenL For 'example, tell how the mass balance will be met,
and in the case of STA TEQ, what options exist for the' code's calculations of
mass balance in different ways.

• The SOD should also contain a -description of the physical and chemical
phenomena being modeled, the equations and notation used, assumptions.
simplifications, and solution techniques. The simplest way is to refer ·to the
uSer's guide for all these matters.

• The SOD is also required to state the ranges of inputs and outputs. A separate
small section or table may do this easily.

The sample report for STATEQ has a good format to follow for the major
components of the design related to the functional requirements. It begins with the
program function and flow, goes on to the mathematical problem to be solved, then to the
procedure to solve. the equations, and finally covers any auxiliary calculations (including.
optional calculations).

4. Software Procedure Verification Summary

This fonn provides a summary of the work on the code up through implementation,
including requirements, design, coding and debugging. It verifies that the requirements set
forth in the SRS have been carried through from one life cycle stage to, the next, and that

11

this has been documented. This is done by someone in the software management system,
not the developers of the code.

• . The developers just fill in the name of their code, its baseline ID, and their
names at the top of the form.

S. Software Validation Test Plan (SVTP)

As stated above, software validation is a software development tenn for assuring that
the requirements set forth in the SRS are met by the completed code. It does not mean
that the code is compared to experimental or field data-that is called ''model validation,"
and is dealt with later. after the code has been baselined and qualified.

The software validation test plan is prepared by the developers based on the
requirements in the SRS and the design in the SDD. Again, it is simplest to write a
separate report and attach it to the form.' The test cases should be formulated for the
inputs and boundary conditions necessary to exercise the code, and may be the same as
sample problems in the user's guide.

• Follow the main headings of the SRSin order: functional. perfonnance, and
interface.

• Say what kind of test or inspection needs to be done to assure that each
requirement under each of the headings has been met The general means is
testing of the code with inputs that exercise the specified functions. Some
aspects such as language, modularity, use of comment lines, etc., can be checked'
merely by inspection of the code. .

See the attached SVTP for STA TEQ for a number of examples of how all these
points are easily done.

6. Software Validation Test Results (SVTR)

The software validation testing should be perfonned by a person not involved in the
development of the code. A summary report of the, test runs and inspections should be
attached to the SVTR.

• This is one form that the developers do not need to fill out

7. Use Qualification Report

This is the last form required for qualification. It provides a summary of the
limitations on the use of the code.

• Fill in your name, date, and the name and baseline ID of the code.

• Write any general limitations and conditions on code use. For STATEQ. these
were the facts that no transport calculations are performed. nor are any kinetic
calculations done.

• Put in the limits on parameter values; a simple range is sufficient (e.g .• for
STATEQ, the temperature can vary from 15°C to l()()OC).

12

• Record limits on boundary and initial conditions. In STATEQ there was the
limitation that no solutions of high ionic strength (brines) can be calculated (1<
0.1 M).

The example fonns for STA TEQ show a basic fonnat to follow, and are attached for
reference following in Appendix B.

After qualification, certain arrangements are made by the software management
. system of a project or of the Earth Sciences Division to preserve a record of the code, its
documentation, and the software QA documents. The code would nonnally be written to
a read-only file on one of the local computer systems· under its baseline ID and not
changed further unless it goes through formal change control procedures. The software
management system also keeps copies of the user's guide and other documentation as well
as the Software QA forms in its fIles. These records are also updated through fonnal
change control procedures to ensure that all subsequent changes to the baselined and
qualified code are carefully documented as the code is modified, errors are discovered and
corrected, and so forth. Then whenever a user employs the code, they can know exactly
what version they are using and what is its present status.

13

References

Boehm, B. W., 1981. Software Engineering Economics, Prentice-Hall, Englewood Cliffs,
-NJ, 767 p.

Bryant, 1. L., and Wilburn. N. P., 1992. Handbook of Software Quality Assurance
Techniques Applicable to the Nuclear Industry, NUREG/CR-4640.

Carnahan, C. L., 1993. Computer Program STATEQ: A User's Manual, LBL-34007.

Department of Energy (DOE). 1992. Quality Assurance Requirements and Description
(QARD)Document, Revision O. December 18, 1992, DOE'JRW/0333T.

Geologic Repository Project (GRP). 1992. Implementing Procedures for Software
Quality Identifiers (IP 19.01), Software Control Master Log (IP 19.02), and
Technical Calculations (IP 19.03), all Revision 0, November II, 1992.

Geologic Repository Project (GRP), 1992. Quality Assurance Program, Revision 0, April
7, 1992.

. Geologic Repository Project . (GRP), 1992. SOftware Quality. Assurance Program,
Revision O. April 7. 1992.

LBL Operating and Assurance Program (OAP) Plan (PUB-3Il1), Revision 3, 1993.
Program Element 3, Work Processes--Section 3.11, Computer Software Control.

Moridis. G. J .• and Pruess,K.. 1992. TOUGH Simulations of Updegraffs Set of Fluid
and Heat Flow Problems. LBL-32611.

Nuclear Regulatory Commission (NRC), 1984-1987. Licensee Contractor and Vendor.
Inspection Status Report-Quarterly. January 1984 through September 1987,
NUREG/CR -0040, Vol. 8-11.

Pruess. K., 1987. TOUGH User's Guide. LBL-20700.

Tsang. C. F., 1987. Comments on Model Validation. Transport in Porous Media. Vol. 2,
No.6. pp. 623-630.

Tsang. C. F.. 1989. Tracer Travel Tune and Model Validation, Radioactive Waste
Management and the Nuclear Fuel Cycle. Vol. 13. No. 1-4. pp. 311-323.

Wilburn. N. P., 1992. Software Quality Assurance for the Nuclear Industry. Washington
State University at Tri-Cities, September 15-17. 1992. course notes.

, A-I

Appendix A:

Sample Forms for TOUGH

UCLBL-ESD GRP-SQAP RO

A-2

Software Classification Form

Report prepared by: Karsten Pruess Date: March 2, 1993

Nmneofc~: _______ 'T_O_U_G_H __________________ V~on:~1~98~7 ____ _

Pur,pose: Multi-dimensional simulation of coupled transport of water,

vapor, air, and heat in porous and fractured media applicable to

both site characterization and performance assessment for nuclear

waste isolation, as well as geothermal reservoir studies and

unsaturated zone hydrology.

Type

I[J Simulation code
\

0 Data analysis software

0 Auxiliary software

0 Systems software

Ori .
.. gIn

o New development software

o Acquired software

So~e:. _____________ ~ _______________ ~ _____________________________ __

m Existing software

Review completed and approved:

3/1-('13
(Review Manager) (Date)

Page20of31

Evaluation Report - Part 1

UCLBL-ESD GRP-SQAP RO

A-3

Report prepared by: Karsten Pruess Date: March 2. 1993

Name of code: TOUGH Version: 1987
--- ----------

Source: UCLBL-ESO

Intended use: Simulation studies for site characterization and

performance assessment in nuclear waste isolation.

Performance specifications: For studies in partially saturated fractured

rock, the code must be capable of the following: 1) at least 2-D

calculations; 2) multiphase flow of water, vapor, and air;

3) nonisothermal heat flow to temperatures above 100°C; 4) coupled

transport of mass (two phases) and heat; 5) modeling of both porous

and fractured media.

Ad~ua~yofDocwnentation A complete user's guide is available,
incl~dln9 a description of themathematlcal models and numerical
methods, and a set of 6 sample problems (Pruess. 1987).
Ad~uacyofSoftwareValidation The user's guide contains 6 sample
problems and a recent report contains 5 verification problems and
3 validation problems (Moridis and Pruess J 1992). Also, the latter
nives references to ~the~~yerifications in the published literature. KeVlew completea ancr apptovcu.

(Review Manager) (Date)

Page 21001

LBL~20700

A-4

ITlI Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA '

EARTH SCIENCES DIVISION

TOUGH USER'S GUIDE

K. Pruess

June 1987

. - ...:.-

..... ~
.......... -. '-~--' --

..

Prepared for the U.S. Oepartment of Energy under Contract DE-AC03-76SFOOO98

TOUGH Simulations of Updegrafrs

Set of Fluid and Heat Flow Problems

by

George J. MoriLIis and Karsten Pruess

Earth Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

November 1992

A-5

LBL·32611

Evaluation Report - Part 2

UCLBL-ESO GRP·SQAP RO

A-6

Report prepared by: Karsten Pruess Da~: March Z, 1993

Name ofcade: TOUGH Version: 1987
---~~~--------~-------- -~~-------

Installation and Checkout: NA (Existing code developed at lBL)

Test conditions and results. Attach or refer to documents as needed.
See attached report •. According to this report, testing has been adequate
to exercise the code in all the requirements given in the performance speci
fications in Part 1, and the code has performed satisfactorily in all tests.
Also, the user's guide and the additional report are adequate to fulfill
all the requirements of this Software QA Plan when the code listing is
included in the documentation as it has been.

Therefore, it is determined that no further testing or documentation is
necessary to fulfill the requirements for this code and it may be qualified
Review completed and approved: for use.

3/4/93 ,
(Review Manager) " (Da~)

Page 22 of31

Evaluation Report for TOUGH

Test Conditions and Results

A-7

According to the perfonnance specifications in Part I, the code must be capable of:
1) at least two-dimensional calculation; 2) mUltiphase simulation including water, water
vapor, and air; 3) nonisothennal computations to temperatures greater than 100°C; 4)
coupled transport of mass (two phases) and heat; S) simulation of the above processes in

. porous and fractured media. Each point has been tested as described below.

1. TOUGH perfonns its computations by the integral fmite difference method which is
capable of simulations in one, two, or three dimensions (Pruess, 1987, pp. 7,9).
Sample problems 3 and S were calculated in two dimensions in Pruess (1987)_

2. The code has been designed and written to simulate mtiltiphase flow of water, water
vapor, and air (Pruess, 1987, pp. 2,4-6). Sample problems 1,5, and 6 in Pruess
(1987) demonstrate the capability of TOUGH to model multiphase flow of water,
vapor, and air including phase transitions between liquid and vapor phases. Sample
problems 2 and 3 in Pruess (1987) show the ability of the code to simulate two-phase
flow of water (liquid and vapor).

3. This code has been developed to calculate heat flow by conduction and convection
with temperatures greater than 100°C (pruess, 1987, pp. 2-6). Sample problems I,
and 4-6 in Pruess (1987) and verification problems 2 and 3 and validation problems 2
and lin Moridis and Pru~s (1992) demonstrate the capability of TOUGH to model
such heat flows in different geometries under varying initial and boundary conditions.

4. TOUGH was designed to calculate coupled transport of mass in two phases and heat
(pruess, 1987, pp. 2-6). Sample problems 4-6 in Pruess (1987) demonstrate the
capability of TOUGH to simulate coupled transport of mass and heat in different
geometrical settings.

S. The code has been developed to perform computations in porous and fractured media.
(Pruess, 1987, pp. 3,9). Sample problem 5 in Pruess (1987) demonstrates the
capability of TOUGH to simulate porous and fractured media simultaneously in the
same problem. Sample problems 2-4, 6 show the ability of the code to model flow and
transport in porous media.

Pruess, Karsten, 1987. TOUGH User's Guide, Lawrence Berkeley Laboratory Report
LBL-20700.

Moridis,George J., and Pruess, Karsten, 1992. TOUGH Simulations of Updegraff's Set of
Fluid and Heat Flow Problems. Lawrence Berkeley Labontory Report LBL-32611.

UCLBL-ESD GRP·SQAP RO

A-8

Use Qualification Report

Report prepared by: Karsten Pruess Date: March 8, 1993

Name of Code. ___ T;,.;:O:...;;U.=.;GH~_~ __ ~Baseline ID: TOUGH 1.0. a

General Limitations and Conditions on Code Use:

The MA28 equation solver is subject to proprietary restrictions, and must

not be used outside of the TOUGH program.

Limits on Parameter Values, if appropriate or if known:

Temperature range: 2°C ~ T~ 360°C

Pressure range: a bar< P < 1000 bar

Limits on Boundary and Initial Conditions, if appropriate or if known:

The only known limitation is that time-dependent Dirichlet boundary

conditions cannot be input directly. However, as shown in Moridis and

,Pruess (1992), they can be realized through appropr.iately chosen time

dependent sinks and sources.

Note: This form indicates that the above code has been qualified for use under the pro
visions of thisSQAP. but not that it has been model validated for any user's
application or for any site.

Review completed and approved:

(Review MaJlaieI')
3/,0 l't 3

(Date)

Page 28 of31

B-1

Appendix B:

Sample Forms for STA TEQ

,/

",

",:;\

", ~-

" ,-

, ... '~

',:'

,.~_ ... __ . l.: . .,: ... : ;:.
,

C.~ _~ •• '

. _ ~ " •• :, ",~. -:l'-~ : •

. ,,' ~i.: .") -.!,'

,-

UCLBL·ESD GRP·SQAP RO

B-2

Software Classification Form

Report prepared by: C, L. C ~ v ",- ~ AI'\.

Name of code: 5TA iE G

Date: 3 - s-- , 5

Version: A~j" ',2.
Purpose: To c." (CIA' fA,;te ,,"fo.:t··c c. ~,v i (; Iq",,' y....., J is.,.· ... ; "" f :, .,
.f ~'V~'I.(S tifecies A~pf ei-th<r:'~!t;(;(,"'a..1-~'fhe e..,,,,eo'lt.s

5,ec.1es· "";1'''- ?~(~ct-e,.J.. $. ''',($.,t- c.9.(c,f1,. (4,f'-t ~1-I\!C!.r-,',,,,

In 0 "c..~ s f.DV" t;e (e"t-~ i , (.. c>t~.

Type

~ Simulation code

o Data analysis software

o A uxiliary software

o Systems software

Origin

B New development software

o Acquired software

Source: _____________________ _

o Existing software

Review completed and approved:

(Review Manager) (Date)

Pagc20of31

UCLBL-ESD GRP-SQAP RO

B-3

Software Requir~ments Specification

Repon prepared by: C. L. C", ... 1\ ~ "A " Date:. 3 - s=-- ~ 3

Name of Code 5 TA TE Q Baseline 10: I ~ (). C\..

Review completed and approved:

(Review Manager) (Date)

Page 23 of31

B-4

Software Requirements Specification for STA TEQ

This code will need to pass through all the stages of the deveiopment life cycle. in
cluding requirements definition. design specification. and implementation. as well as soft
ware procedure verification and software validation.

L Functional Requirements

The name ST A TEQ signifies that this code is intended for geochemical static equilib-'
rium studies. 1berefore. the code must be capable .of the following:

1. Calculate equilibrium concentrations of a given set of aqueous species from an in
. put water analysis;

2. Equilibrate these aqueous species with (input) selected solids or calculate the
saturation indices for them;

3. Incorporate fonn/iltion of complexes and ion pairs in the aqueous phase. dissocia
tion of water. reversible precipitation of stable solid phases. and oxidation-reduc
tion (redox) reactions.

Basis aqueous species and solids must be input with identifiers and analytical concen
trations. Equilibrium constants are to be calculated from input values of Gibbs free ener
gies of fonnation. Activity coefficients are to be estimated by an extended Debye-HOckel
Connula.

Redox equations should be treated by two methods. One would be the "direct"
method where the oxidation potential (Eh) is controlled directly by the chemical reactions
included in the simulation. The other would be the "indirect" method where a hypotheti- .
cal electron activity ("e-") is defmed to be a basis species.

n. Performance Requirements

The code should be written in standard FORTRAN 77 for portability and efficiency.
It should be written in a modular style to enhance the maintainability and reliability of the
code. Comments should be interspersed in the code for clear identification of its compo
nents to strengthen the assurance of its correctness, and for ease of understanding.

m. Interface Requirements

1;be code should' be capable of stand-alone operation and also generating output to a
general data flle that could be util.iud by another program.

. I

. I
1

UCLBL-ESD GRP-SQAP RO

B-S

Software Design Document

Repon prepared by: C. L, C ".,.. 4 ka" Date:' 3 - ({) - '1'3

Name of Code S TAtE" r; Baseline 10: I. 0 t c!.

Review completed and approved:

(Review. Manager

Pal!e 24 of 31

B-6

Software Design Document for STA TEQ

L Major Components of the Design Related to the Functional Requirements

The main functienal requirements will be incorporated into the design as follows. A
flow chart is attached.

A. Program Function and Flow

The MAIN program will control the sequence of input, calculDtion, and output by
calling a sequence of subprograms where most of the work will be done (see flow chart).

B. Mathematical Problem to be Solved

See the user's guide (Carnahan, 1993) for the descriptions of the physical and
chemical phenomena being modeled, the equations in'the model, the notation used, and
the assumptions and simplifications of the model' equations. A set of algebraic equations is
to be solved, some of which may be nonlinear. There are two kipds of equations in the
set:

'(1) Mass balance, depending on an input parameter, say INDEXI. that indicates
which of the following will enter into the mass balance calculations:

(a) basis species only;

(b) basis species plus complexes containing the basis species;

(c) basis species plus complexes plus solids containing the basis species;

, There is to be one equation for each (aqueous-phase) basis species; one equation
may be replaced by a charge-balance equation that includes all aqueous-phase
species. ' ,

(2) Balance equations for solids, comparing the current product of activities of the
basis species in the solid to the theoretical solubility product of the solid.

C. Procedure to Solve the Equations

See the user's guide (Carnahan, 1993) for the descriptions of the solution techniques
utiJiud. Newton-Raphson iteration shall be employed. This requires the following
calculations:

(1) Calculate the residues of the equationS described above using current values of
the unknowns;

(2) Calculate individual elements of the Jacobian mattix;

(3) Solve the linearized matrix equation for the vector of corrections to the un
knowns: concentrations of basis species and solids;

B-7

(4) Use corrections to calculate new values of the unknowns.

The calculations are iterated untilthe fractional change of each unknown is less than the
input convergence criterion.

D. Auxiliary Calculations

The following are particular calculations done to support the main calculations de
scribed above:

(1) Eh is only computed once, if at all;

(2) Input free energies of formation are used to calculate formation constants and
solubility products, done only once;

(3) Activity coefficients must be computed during each iteration of the solution pro
cedure as described in Section 3 above, Procedure to Solve the Equations;

(4) Saturation indices are calculated only once, after convergence of the solution.

E. Ranges of Inpu,ts and Outputs

The following are the ranges of inputs and corresponding outputs of the·main
variables used in the simulation:

(1) Temperature varies between 150 C and 1000C;

(2) pH varies between 0 and 14 (standard);

(3) Eh, if it is used at all, varies between -0.9 and 1.2 volts (standard);

(4) Ionic strength varies between 0 and 0.1.

. n. Major Components or the Design Related to the Perrorma!,ce Requirements .

The code should be written in standard FORTRAN 77 in a modular style with inter
sPersed comments in the code for clear identification of its components. There should be
provision for a title to identify a run. For control of the iterative solver, the maximum
fractional change of the absolute value of any unknown parameter pennitted for conver
gence should be specified by input value, and also the nwriber of iterations between print
outs when calculating the equilibrium distributions of chemical species should be specified.

m Major Components of the Design Related to the Interrace Requirements

The code should be capable of stand-alone operation and generating output to a gen
eral data me that could be utilized by another program.

Rererence,

Carnahan, C. L., 1993. Computer Program STATEQ: A User's Guide, LBL·34007.

SATUR
calculate
activity products,
saturation Indices
for solids

DATOUT
write output

B-8
Flow Chart for ST A TEQ

EHCALC
DA TIN ~~ calculate Eh.

read . Input electron activity

eacoN
If mS>O. call EOCON J.4.-~~ calculate equilibrium constants

STATIC
14---~ calculate equilibrium

14--41~ If solids are present
caliSATUR

callDATOUT

distribution of species

Acrco
14-~~ calculate activity

'-r-----" coefficients

calculate residues
for Newton-Raphson

calculate new
values of conc.
of basis species
and solids

calculate new
values of complexes

SIMQ
solve for
corrections
for N-R

Computer Program STATEQ

A User's Manual

Chalon L. Carnahan
Earth Sciences Division

Lawrence Berkeley Laboratory
Berkeley, California 94720

Apri11993

LBL-34007

B-9

This work was supported by the Director, Office of Civilian Radioactive Waste Management, Office of Facil
ities Siting and Development, of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

UCLBL-ESD GRP-SQAP RO

B-lO

Software Procedure Verification Summary

Name of Code· ·5 corA TF Q Baseline 10: leO, A...

Developer C· \ L. C~ If' "4{ k. a.

Requirements review andapproval, ____ :J_.t...6...:./....;'2..;;;;;· -J./---:.t:;......:3~ ___ _
(date)

Comments

Design review and apprOval ________ 3--:.~--.;..l_~~/_1_=3~ ____ _.,;...
(date)

Comments

Implementation completion'---'-____ 3_/l~J_'--=-I_cr.!_..,;~~ ____ _
(and ready for software validation) (date)

Comments

Review completed and approved:

. (Review Manager) (Date)

Page 25 of31

UCLBL-ESD GRP-SQAP RO

B-ll

Software Validation Test Plan

Repon prepared by: C, L.. Ca. v-~ (e '" Date: 3 -(e -&f 3

Name of Code . SrArE"Q Baseline 10: (. O. c........

Review completed and approved:

(Review MaJlaieI') (Date)

Page 26 of31 .

B-12

Software Validation TeSt Plan for STA TEQ

Overview

ST ATEQ should be tested or examined to ensure that it fulfills all the requirements
set forth in the Software Requirements Specification (SRS) and Software Design Docu

. ment (SOD).

In each of the following sections. the general means for software validation of the re
quirements of the SRS shall be testing of the code with inputs that exercise the specified
functions. Some aspects will need inspection of the code listing. For checking the design
of the code. the principal means of software validation shall be inspection of the code list
ing to verify that all the design requirements of the SDn are mel

The hardware and system software shall be the present LBL main computer system
where the software resides. The code shall not perform any function that either by itself
or in combination with other fU,nctions can degrade the entire computer system.

L Test Plan Cor Functional Requirements

The code must be tested to be capable of the following:

1. Calculate equilibrium concentrations of a given set of aqueous species froni an in- .
put water analysis;

2. Equilibrate these aqueous species with (input) selected solids or calculate the
saturation indices for them;

3. Incorporate formation of complexes and. ion pairs in the aqueous phase. dissocia
tion of water, reversible precipitation of stable solid phases. and oxidation-reduc-
tion (redox) reactions. '

Suitable.input data shall be chosen to exercise the'code for each of these require
ments. The output shall be examined to assure that the calculations have been correctly
performed.

Inspection of the code listing shall be made to ensure that basis aqueous species and '
solids are input with identifiers and concentrations, equilibrium constants are calculated
from input values of Gibbs free energies offonnation, and activity coefficients areesti
mated by an extended Debye-HOckel fonnula.

Inspection of the code listing shall also be made to ensure that redox equations are
treated by two methods: the "direct" method where the oxidation potential (Eh) is con
trolled directly by the chemical reactions included in the simulation. and the uindirect"
method where a hypothetical electron activity (Ue-'") is defined to be a basis species. '

The major components of the design in the SOD shall be checked by inspection of the
code listing to ensure that the requirements are met for program function and flow. the
mathematical problem to be solved, the procedure to solve the equations. and the auxiliary

B-13

calculations. The ranges of inputs and outputs should be checked to ensure that they were
correctly specified.

n. Test Plan for Performance Requirements

Inspection of the code listing shall be made to ensure that the code is written in stan
dard FORTRAN 77 for portability and efficiency, and written in a modular style to en
hance the maintainability and reliability of the code. It should also be checked whether
there are interspersed comments in the code for clear identification of its components to
strengthen the assurance of its correctness. and for ease of understanding.

The major components of the design in the SDD shall be checked by inspection of the
code listing to ensure that the requirements are met for a title to identify a run, and control
of the iterative solver is accomplished through input values for the maximum fractional
change of the absolute value of any unknown parameter and input of the number of itera
tions between printouts when calculating the equilibrium distributions of chemical species.

m. Test Plan for Interface Requirements

Testing shall be performed to ensure that the code is capable of stand-alone operation
and that it generates output to a general data me that could be utilized by another pro
gram.

U~LBL-ESD GRP-SQAP RO

'B-14

Software Validation Test Results

Name of Code 5 r A r-r=- Q Baseline 10: I cOr "'-

Review completed and approved:

j}cnJJ M
(Review Man~ (Date)

Page27of31

B-lS

Sortware Validation TeSt Resultsror STATEQ

Overview

ST A TEQ was tested and examined to ensure that it fulfills all the requirements set
forth in the Software Requirements Specification (SRS) and Software Design Document
(SOO)~ . .

In each of the following sections, the general means for software validation of the re
quirements of the SRS was testing of the code with inputs that exercise the specified
functions. Some aspects had inspection of the code listing. For checking the design of the
code, the principal means of software validation was inspection of the code listing to
verify that all the design requirements of the SOD were mel

The hardware and system software were the present LBL main computer system
where the software resides. The code did not perform any function that either by itself or
in combination with other functions can degrade the entire computer system.

'L Test Plan ror Functional. Requirements

The code was tested to be capable of the following:

1. Calculate equilibrium concentrations of a given set of aqueous species from an in
put water analysis;

2. Equilibrate these aqueous species with (input) selected solids or calculate the
saturation indices for them;

3. Incorporate formation of complexes and ion pairs in the aqueous phase, dissocia~
tion of water, reversible precipitation of stable solid phases, and oxidation-reduc
tion (redox) reactions.

Suitable input data were chosen to exercise the code for each of these requirements.
The output was examined to assure that the calculations had been correctly performed.

Inspection of the code listing was made to ensure that basis aqueous species and
solids were input with identifiers and concentrations, equ~brium constants were
calculated from input values of Gibbs free energies of formation, and activity coefficients
were estimated by an extended Debye-HOckel fonnula.

Inspection of the code listing was also made to ensure that redox equations were
treated by two methods: the "direct" method where the oxidation potential (Eh) is con
~olled directly by the chemical reactions included in the simulation, and the ·'indirect"
method where a hypothetical electron activity (Ue·'j is defined to be a basis species.

The major components of the design in the SDD were checked by inspection of the
code listing to ensure that the requirements were met for program function and flow, the
mathematical problem to be solved. the procedure to solve the equations, and the auxiliary

B-16

calculations. The ranges of inputs and outputs were also checked to ensure that they were
correctly specified.

n. Test Plan for Performance Requirements

Inspection of the code listing was made to ensure thaqhe code is written in standard
FORTRAN 77 for portability and efficiency, and written in a modular style to enhance the
maintainability and reliability of the code. It was also checked as to whether there were
interspersed comments in the code for clear identification of its components to strengthen
the assurance of its correctness, and for ease of understanding.

The majpr component of the design in the SOD was checked by inspection of the
code listing to ensure that the requirements were met for a title to identify a run, and
control of the iterative solver was accomplished through input values for the maximum
fractional change of the absolute value of any unknown parameter and input of the number
of iterations between printouts when calculating the equilibrium distributions of chemical
species;

m Test Plan for Interface Requirements

Testing was perfonned to ensure that the code is capable of stand-alone operation
and that it generates output to a general data me that could be utilized by another pro-

I

gram.

UCLBL-ESD GRP-SQAP RO
B-17

. Use Qualification Report

Repon prepared by: C. L, C a v no. h , 1-1. Date: 3 - '-, -t:;" 3

Name of Code ~ r ArE Q Baseline ID: /. Q, c..

General Limitations and Conditions on Code Use:

ell No -tll"ll~S ,otZ ... T C4.,{ c.",llktlt2'" etV'e ()ev--NV'w..-ed r ,

Limits on Parameter Values. if appropriate or if known:

C. tA.., f h (-etA 0 '" So-t.-tw. ()..,..-e ID -e~ i 91\ Do C.11 "" e.'I ... :Y"" ~ e.G-'f-,'1 It {;)

T'f!e~.e v-lJ.., 'f- (A ... -e . { ~1:~ T ~ I 0 () °c

p H 0 £. f J-(~ (~

Limits on Boundary and Initial Conditions. if appropriate or if known:

r 0 Jl\l G- ? -tV' e." , 'th. 0 ~ r ~ C!J. I ~.

Note: This form indicates that the above code has been qualified for use under the pro
visions of this SQAP.but not that it has been model validated for any user's
application or for any site.

. (ReVlew Manaief) ~(Date)

Page 28 of31

-"i: ':".,

"~?i'\::'" .,: .. ;,.

.:.ri' ':

, ..
". " . - -
...... ,

,'.
:t"

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

~~ .;t~. ' .~. 1- ..

. -.;- .

't ~~:

'."~ .

~,.... ""I

