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Instantaneous Amplitude and Frequency Dynamics of 
Coherent Wave Mixing in Semiconductor Quantum Wells 

D.S.Chemla 
Physics Department, University of California at Berkeley, 

Material Sciences Division, Lawrence Berkeley Laboratory. 

I) Introduction 

The delocalized electronic excitations of semiconductors are very srongly coupled by 

the Coulomb interaction. When a semiconductor is excited close to the fundamental 

bandgap, this interaction renormalizes both the band energies and the Rabi· frequency, 

which measures the coupling' to the applied electromagnetic field. 1;2 The 

renormalizations are repectively proportional to the populations excited in the bands and 

to the interband polarization. They provide a source of optical nonlinearities which are 

qualitatively different from the nonlinearities of isolated atomic systems. Atomic 

nonlinearities originate from Pauli exclusion. They are present in all material systems, 

including semiconductors, and are essentially instantaneous. Conversely, the Coulomb 

many-body nonlinearities become visible only when the excitation has produced 

significant population and polarization densities. Their contribution to nonlinear optical 

response is delayed and dephased with respect to that due to the Fermi statistic. 

Therefore, many of the specifiCities of many-body nonlinearities appear in ultrashort 

pulse time-resolved nonlinear optical experiments.3-1O 

In this article we review recent investigations of the specific features of nonlinear 

optical processes in semiconductors. It is organized as follows. In Section II, we discuss 

the theory of coherent wave mixing in semiconductors. We emphasize the case where the 
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excitation is resonant with only one exciton state. In Section In we review our recent 

experimental investigations of the amplitude and phase of coherent wave-mixing 

resonant with quasi-2d excitons (X) in GaAs quantum wells (QW).8,10 In Section IV we 

discuss these results and conclude. 

II) Resonant Excitonic Nonlinearities in Semiconductors. 

In this section we consider the case of a semiconductor resonantly excited at the 

lowest exciton state. Within this approximation, we wish to put the equations describing 

the time evolution of the exciton polarization and population, in a form simple enough to 

reveal directly the physics of the nonlinear optical response. We start from the usual 

two-band model of the semiconductor Bloch equation. 11 Neglecting the photon 
l 

momentum, we only consider vertical transitions. In this case the density matrix, n(t), 

breaks into 2 x 2 blocks, 

(1.1) 

where I1c, v(k) are the electron populations in the conduction and valence bands, and 'V(k) 

is the pair-amplitude which, as shown below, is proportional to the polarization (when it 

is possible to neglect the wavevector dependence of the interband dipole moment). The 

density matrix n(t) satisfies the Liouville equation; 

(1.2) 

where the Hamiltonian matrix, 
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comprises of three contributions. The first one gives the bare-band energies, 

Ec,v(k) = E~?~ + k2/2mc,v. The second expresses the coupling of the interband dipole 

matrix element, J..lk, with the electromagnetic field E. Finally the third one describes the 

how the Coulomb potential, Vk,k" couples states at different wave vector k. Dephasing is 

accounted for phenomenologically by the term, ;t nk(t) I relax. 

From the diagonal and off-diagonal elements of e, one sees clearly how the Coulomb 

interaction renormalizes the energies and the Rabi frequency. The difference in these· 

quantities when Vk.,k' is absent or present is, 

and 

Ej(k) ~ Ej(k) - LVk.,k' nj(k'), 
k' 

IlkE ~ J..lkE + l:Vk.,k''I'(k'). 
k' 

(1.4a) 

(lAb) 

For relaxed populations, the Coulomb terms in Eq.(I,4a) describe the well known "band 

gap renormaliz:ation". This equation accounts as well for the dynamic band-gap changes 

induced by coherent or transients populations. Similarly, the second term of Eq. (lAb) 

describes the dynamic interaction involving polarization waves at different k. To bring 

out the effects of the nonequilibrium populations, we transform to the electron-hole 

representation, nc(k) ~ Ile(k) and nv(k) ~ 1- nh(k). From Eq.(I,l) we obtain the 

evolution equation of the populations; 
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a a a a 
(-;- + -;- 'relax )ne (k) = - (-a + -a ' relax )nh (k) 

at at t t' 

and of the pair-amplitude; 

= 2Im[ 'Vk(llkE + L Vk,k''V(k'»*], 
k' 

[i( aa + aa 'relax) - (Eg + 2k2 )]'V(k) + L VkX'V(k') = 
t t m k' 

(1.5) 

(1.6) 

- (1 - neCk) - nh(k» IlkE + 2 L Vk,k'( 'V(k) n(k') -- n(k) 'V(k') ). 
k' 

In Eq. (1,6) the first driving term in the right hand side gives the nonlinearity due to the 

Fermi statistic, i.e. it accounts for the weakening of the coupling with the applied field 

due to Pauli exclusion. The second line expresses the Coulomb nonlinearity which 

corresponds to the exchange interaction between populations and polarizations at 

different wavevectors. A further and implicit source of nonlinearity is due to the 

dependence of the Coulomb potential itself on the electron and hole populations. 

These equations are very complex and are usually solved numerically. Often the 

physical intuition is lost in the computation. In the case where a single excitonic 

resonance is optically excited, the population and polarization of this state dominate over 

that of the other states and, Eq.(1,5) and (1,6) can be greatly simplified.13 First we 

Fourier transform these equations to r-space assuming that the interband dipole element 

is k-independent Ilk ~Il. Then, noting that, $vCr), the solutions of the exciton-Wannier 

equation in r-space, 

(1-7) 
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form an complete orthogonal basis set, we develop the polarization, 'I'(r) , and 

popUlations, l1e(r) and nb(r), on it. 

'I'(r) = l: 'Vv $v(r) (I-8a) 
v 

n(e.b)(r) = l: n(e.b)v $v(r) (I-8b) 
v 

The "components", 'l'v and n(e.b)v, in the exciton-representation are not functions of r, 

they can be, however, functions of time. Their time evolution is found to be given by; 

a .. 3 • 
[i( at + r,..} - 0t..]'Vt.. = -[L c!>t..(r=O) -11e.t.. - nb.t..]J1E 

. + l: v 4!v (11e.J.L 'l'v + nb.J.L'I'V) 
J.LV 

(I-9a) 

+ l:V4!v ('V~'I'v -'I'J.L'I'~), (I-9b) 
J.LV 

where Ot.. = Eg - Et... We have defined the non-local matrix-potential, VA.J.LV' by; 

. (I-IO) 

and we have introduced the phenomenological damping rates of the exciton states; rt.. 

and Y(e.h)t... These equations show that the exciton states are equivalent to a set of two-

level systems obeying Pauli exclusion and coupled by the non-local matrix potential 

VA.J.Lv. They are equivalent to the original Eq. (1-2). 
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To describe the case where only the lowest (1S) exciton state is resonantly excited, 

we retain only the terms for which A = Jl = v = IS. Henceforth we drop the index IS to 

simplify the notation. We have, Ye = 'Yh = 1}1 = Y and, therefore, nb = ne = n. Finally, in 

order to work with dimensionless quantities, we make a change of scale of all the 

variables according to recipe; x-+x x L3cp;s(r=0) for x = 'V, ne and nb, and 

V -7 V = V/L3cp;s(r=0). We obtain the equations describing the IS-resonant excitation, 

a • (at + Y) n = -2Im[ JlE'V (r)] 

;t 'V = -i(Q - ir)'V + iJlE 

- i2n JlE - 2iV n'll 

(I-Ila) 

(I-lIb) 

The first equation shows that the exciton state is simply populated by absorption . 

exactly as in the case of a two level system (2LS). The second shows that the exciton 

behaves as a driven nonlinear oscillator. The first line describes the linear response of the 

oscillator driven ~y the applied field, while the two terms on the second line account the 

nonlinear response. The first nonlinear term originates from the Pauli-exclusion reduction 

of the exciton coupling with the electromagnetic field, JlE(t) -+ (1 - 2n)JlE(t). This term 

is, of course, always present and accounts for the atomic-type nonlinearities. The second 

nonlinear term is specific to dense media semiconductors and molecular crystals.4-6,9,12 

In semiconductors, it describes the Coulomb mediated exciton-exciton interaction which 

causes the coupling between populations and polarization waves within the medium. 

Furthermore, in a semiconductor, the Coulomb potential is sensitive to the non-

equilibrium populations through dynamic screening, V itself is a function of n and'll. 

This dependence provides an additional nonlinearity. We call the two nonlinear terms 
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the Phase Space Filling (PSF)and the exciton-exciton interaction (XXI) terms, 

respectively. For excitation, where E(t) is an ultrashort optical pulse, these two terms 

have a very different temporal behavior. In particular when Eq.(I,ll) is solved in power 

expansion of E(t) one can clearly see that the XXI contribution appears delayed and out 

of phase with that of the PSF term! Finally let us note that the XXI term has the same 

form as the term introduced by Ginzburg and Landau to describe the mechanism that,· 

close to the transition temperature, drives metals toward a superconducting state. In the 

case of small excitation densities where n::: ''1',2, we can cast Eq.(I,llb) in the form, 

: 'I' = -i(Q - in'l' + illE 
ot 2 

-i ~IlE-iV ''1',2'1', 
'l's 

(1,12) 

where 'l's is a "saturation" parameter. This equation was extensively discussed in Ref. (5) 

and used in Ref. (9). To close this analysis, let us mention that the polarization density 

associated with 'I'(t) is; 

pIt' 2 • 
pet) = ~ = '$(r=O)' 11 'I'(t), 

L 

where L is the box-normalization length. 

llI)Amplitude and Phase Measurements 

(1,13) 

The simplest coherent wave-mixing configuration is that of two beam four-wave-

mixing (FWM). In such a configuration two ultrashort laser pulses, labeled pulse-2 and 

pulse-I, separated by a time delay At = t2 - tl, and propagating in the directions k2 and 

kl' interfere in a sample to generate a transient grating, which diffracts photons into the 
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background-free direction ks = 2k2 - k1• In the case of homogeneously broadened two 

level systems the FWM-signal is emitted immediately after the second pulse. It originates 

from the natural decay of the component of the nonlinear polarization pet), which emits 

in the direction ks, and corresponds to free induction decay (FID).14 For 

inhomogeneously broadened lines, the FWM-signal is delayed by L\t after the second 

pulse and corresponds to a "photon echo". To establish that the FWM-signal comprises of 

two phase shifted contributions, we are faced with the difficult problem of amplitude and 

the phase recovery of a signal. To achieve this goal we have used a combination of five 

measurements to detennine five quantities: the time integrated and time resolved 

intensities, the power spectrum, the interferometric autocorrelation and cross correlation 

with a reference laser pulse. Taken separately, each one is insufficient to retrieve the 

signal amplitude and phase. All together they give complementary infonnation that 

allows a good characterization of these two parameters. 8-10 In particular, since the 

interferometric autocorrelation does not give directly the phase of the FWM signal, we 

analyze the interferometric data in the following way. For each delay, L\t, we measure the 

dynamic fringe-spacing, i.e. the number of interferometric fringes during the 

interferometer delay 't, FS('t), for the FWM signal and, FSL('t) for the laser pulse passing 

through the same experimental setup and the sample Sapphire-holder but missing the 

sample itself. The Differential-Fringe-Spacing defined as: DFS('t) = FSL('t) - FS('t) is 

then detennined numerically. For precise calibration, the laser was operated CW, thus 

providing a reference frequency which was used to analyze the laser autocorrelation 

when operated mode-locked. The DFS('t) sign is detennined by measuring the cross­

correlation with the laser. If the phase of the FWM signal is a constant or has a linear 
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time dependence, the DFS(t) corresponds exactly to the phase difference between the 

laser and the signal. In the most general case and in the absence of other information, 

there is no simple mathematical relationship between the DFS(t) and the phase 

difference. In our experiments, however, we also know the FWM signal intensity 

temporal profile and power spectrum, which are smooth and well behaved. We have 

numerically checked numerous examples which confirm that in this case the DFS(t) 

reproduces faithfully the phase difference with the reference. 

Excitonic resonances in semiconductors are usually inhomogeneously broadened at 

low temper~tures. In QW -structures, however, the quantum confinement in ultrathin 

layers; narrower than the bulk Bohr radius, stabilizes the quasi-2D excitons up to room 

temperature. 1 Collisions with the large population of thermal-phonons homogenize the 

resonances and shorten their dephasing time. We have investigated two samples 

consisting respectively of 47 periods of 98A GaAs QWs and 96A Alo.3Gao.7As barrier 

layers and of 50 periods of 95AGaAs QWs and 45A Alo.3Gao.7As barrier layers. The 

output of a mode-locked Ti:Sapphire laser, delivering extremely stable :: 70.,.100fs 

transform-limited Gaussian pulses at 88 MHz. It was tuned close to the heavy hole 

exciton resonance, <.OL :: nhh , and split into three beams. Two of these beams were used 

to generate the FWM-signal. This signal could be detected directly as a function of At 

using a slow detector in the conventional way. Alternatively, for a fixed At, it could be 

directed in a Michelson interferometer for the autocorrelation measurements. For the 

power spectra measurements the signal was directed onto a spectrometer and detected by 

an optical multichannel analyser. In order to time-resolve the amplitude of FWM-signal, 

for every At, the light emitted in the direction ks was cross-correlated with the third laser 
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beam by sum frequency generation in a highly transparent nonlinear crystal. This cross­

correlation determined the temporal-profile of the FWM-signal vs the absolute time, t. 

Finally by placing the whole FWM set up inside a Mach-Zender interferometer, the 

interferometric correlation with the laser could be determined. 

In Figure (1) we present time resolved intensity vs absolute time, t, for a series of the 

time delays At, measured with a laser intensity such that the total (generated by both 

pulses) exciton density is Nx = 1012cm-2 • The laser pulse duration was 78±3fs. The 

weaker pulse-l acts at t = 0 and the stronger pulse-2 acts at t = At. Clearly, the time 

traces are asymmetric both in t and At. For all our measurements we have verified from 

the position of the maximum that the FWM-signal is emitted immediately after the 

second pulse. This behavior confirms that the exciton transition is predominantly 

homogeneously broadened at room temperature and therefore, that the FWM-signal 

corresponds to a free-induction decay. Furthermore, the self-consistency of the data was 

checked by numerically integrating the time resolved intensity vs t, for each At and 

comparing the result to the time integrated intensity measured with a slow detector vs At. 

Again, the agreement is excellent. 

In Figure (2) we display the temporal profile of (a) the time resolved intensity vs 

absolute time t at At = 0 and (b) the time integrated intensity vs At, for two exciton 

densities, Nx = 101lcm-2 and Nx = 4xlO11 cm-2 • The laser pulse duration was (98±2)fs. 

Since the relevant information is contained in the lineshape, the two curves have been 

normalized to unity and the unrelated time-axes have been shifted to bring the maxima 

into coincidence. The difference between the two profiles is evident: the former is clearly 
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broader than the latter, with a slower rising edge and a significantly non-exponential 

trailing edge. This difference is density dependent and shows up noticeably on the 

trailing side of the profiles. Within a At series the total exciton density is constant and, 

therefore, all the time resolved traces are expected to have similar lineshapes, although 

their height depends on At. This is indeed what is observed at low densities, 

Nx = 101lcm-2• At moderate density, Nx = 2-4xlOll cm-2, noticeable changes in the 

temporal profile are seen within a At series. In particular the sign of At is found to 

influence the temporallineshape. 

In order to be more quantitative, we have solved Eq. (1,12) numerically, for the 

nonlinear polarization, p(3) (t,ks), radiating in the direction ks, using Gaussian laser 

pulses with a duration corresponding to that of our laser and accounting for the effect of 

upconversion in the time-resolved measurement. This model involves only two fitting 

parameters: the exciton dephasing time, T2, and the ratio of the two nonlinearities 

R = V"';. We impose on the fit the severe constraint that all curves in a At series must 

have the same origin of the absolute time t and a constant calibration. We find that it is 

impossible to fit the data with such a constraint if we retain only the PSF tenn. An 

excellent fit is obtained, however, if both the XXI and PSF contributions are considered. 

This is shown in Figure (3), where we present the fit of the temporal profiles at low 

densities, Nx = 101lcm-2. The dashed-dotted lines give the PSF contribution, the dashed 

lines give the XXI contribution, and the smooth solid lines give their sum. The 

contribution of the XXI to the total energy of the pulse emitted by the sample dominates 

the emission. It is = 2.2 larger than that due to PSF. As the total exciton density is 

increased, the XXI contribution is reduced by screening as shown in Figure (4). 
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Interestingly, we find that it dominates as long as the exciton density does not exceed the 

exciton saturation density in the sample, Ns = 3xlOllcm-2•
1 When this critical density is 

surpassed, the XXI contribution decreases very rapidly and becomes negligible at high 

densities. 

As mentioned above, at low density both T 2 and R remained approximately constant, 

for all the TRS fits within a single At series. At moderate densities, however, this was not 

found to be the case within a single At series (i.e. fixed Nx ); both T2 and R had to be 

varied to fit the data. These observations can be understood in terms of the well 

established dynamics of excitons in quantum wells at room temperature. I Consider first 

the case of a total excitation density low enough that photo-generated excitons are the in 

bound state (binding energy = 10meV for = 100A QW) and are spatially well separated. 

They interact effectively via the Coulomb potential and their dephasing time is 

determined by phonon collisions. Their environment is independent of the instantaneous 

density determined by the order in which the laser pulses arrive in the sample (Le. At); 

therefore, T 2 and R are constant At moderate densities, however, when the strongest 

pulse-2 arrives first in the sample, it generates a substantial number of excitons in the 

bound states. They are ionized by collisions with the energetic thermal phonons (phonon 

energy = 36meV for GaAs), in = 1OG-200fs, generating e-h pairs in scattering states 

with a significant excess energy (= 25meV).15,16 The charged carriers, in turn, both 

shorten the relaxation time, T2 , owing to their larger effects on the neutral bound 

states,17,18 and screen the Coulomb potential. For the reverse time ordering, i.e. when 

the weaker pulse-l arrives first, less e-h pairs are generated by the first pulse, the effects 

described above are less pronounced, and the sample remains closer to steady state 
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during the FID emission. Finally, at very high densities, the band gap renormalizes so 

much during the laser pulses that 'the excitons are generated in scattering states, giving 

free e-h pairs immediately. They, of course, shorten the relaxation time below the 

experimental resolution. More importantly, however, they screen the Coulomb potential 

to the point that the XXI contribution to the emission is eliminated, see Figure (4). The 

fits also show that the maximum of the time resolved intensity is delayed with respect to 

the second pulse. We found that the delay is of the order T2. This indicates that the time 

required to establish the coherent polarization wave within the sample (rise-time of the 

emission) is directly related to the dephasing time T 2 which is usually associated only 

with the negative interferences that produce the signal decay. As the exciton density 

increases further, the time resolved and time integrated profiles become more similar. 

Finally; at very high densities, Nx ::: 1Q12_1013cm-2, where the band gap renormalization 

has completely washed out the exciton resonances, the two profiles become of the order 

of the laser pulse and are beyond our resolution. Then, the profile of all the traces of a L\t 

series become similar again. 

The power spectra of the FWM signal and of the laser are shown in Figure (5) for 

four densities, Nx ::: 3x109cm-2, 1.2x101Ocm-2, 6x1010cm-2 and 3xlO11cm-2, when the 

laser is tuned slightly below the heavy hole exciton COL < nbb • At very low exciton 

densities, Nx ::: 3x109cm-2 the FWM power spectra essentially reproduce the line shape 

of the exciton resonances within the laser spectra. The line shape is asymmetric, and 

exhibits only one resonance, As the exciton density is increased the FWM power spectra 

evolves toward that of the laser and becomes almost indistinguishable from it at the 

highest density shown in Figure (5). Figure (6) shows similar data obtained for a laser 
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tuned slightly above the heavy-hole exciton O>L > ilhh , which excites also the light-hole 

resonance. Two unequal peaks are present at low densities. They evolve toward a single 

and broader peak, almost in coincidence with the laser, as the density increases. The 

low-density line shapes in the two figures suggest, by Fourier-transform, dynamic 

nonlinear shifts of the FWM frequency during a single pulse. 

Figure (7) shows the At = 0 autocorrelation traces and DFS('t) for (a) the mode­

locked laser (calibrated to the reference frequency of the laser operated CW), (b) the 

low-density FWM signal and (c) the high-density FWM signal for a O>L < ilhh excitation 

corresponding to Figure (5). Figure (8) shows the same quantities when O>L > ilhh as in 

Figure (6). In both cases the high-density autocorrelation envelopes of the FWM signal 

are of the order of that of the laser and the DFS( 't) indicates that the FWM instantaneous 

frequency presents no significant difference with that of the laser. Conversely the low­

density the envelopes are much longer than that of the laser and, more importantly, the 

DFS( 't) shows significant nonlinear frequency shifts. For O>L < ilhh , the low-density 

DFS('t) starts with a positive linear variation. The slope corresponds exactly to the 

difference in frequencies between the laser and the principal peak seen in the FWM 

power spectrum of Fig. (5a). Then for 300fs<t<450fs the DFS(t) slope vanishes, 

indicating that during the pulse, the instantaneous frequency shifts toward that of the 

laser. This nonlinear phase dynamic is consistent with the power spectra of Fig. (5). In 

particular, the power spectrum of Fig. (5a), besides a main peak at the hh-exciton 

frequency, exhibits an asymmetric low frequency tail which extends well into the laser 

spectra. For O>L > ilhh , again the high-density DFS('t) has a zero slope showing that the 

FWM frequency is essentially that of the laser. Conversely, the low-density DFS('t) also 
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starts with a zero slope and then exhibits a negative variation with a curvature. This 

indicates that, in this case, the FWM frequency starts at the same frequency as the laser 

but is quickly dominated by a component below the laser central frequency. The 

dynamics of the instantaneous frequency, however, is complicated and does not 

correspond to a simple linear variation. Again this is consistent with the·power spectrum 

of Fig. (7a), which shows strong but unequal contributions from both excitons. In order to 

further explore this case we have adjusted the excitation frequency, COL == nIh, and 

intensity to obtain hh-exciton and lh-exciton contributions of roughly the same weight in 

the FWM power spectrum, as show-n-in-Fig.---f9a~. In this case, the interferometric 

autocorrelation, Fig. (9b) clearly shows several interference patterns which are in 

excellent agreement with the separation of the two peaks of the FWM power spectrum of 

Fig. (9a). In order to establish that the observed effect corresponds to the quantum beats 

of an homogeneous system and not to polarization interferences from independent 

systems we have applied the method of Ref. (I9). We verified that the asymmetric 

features seen in the interferometric cross-correlation for various time delays, vary as .1t 

and not as 2.1t. Quantum beats between hh- and lh-excitons have been observed recently 

as modulations of the decay of FWM signal intensity20,21. The new information 

provided by the interferometric techniques is shown in Fig.(9c) where the DFS('t) is 

depicted. It starts with a zero slope Showing that the FWM frequency is the same as that 

of the laser, COL == nIh. Then it exhibits a negative curvature showing a change toward a 

lower frequency. At around 't == 120fs, the DFS('t) experiences a sudden phase shift of 1t, 

before resuming its negative variation. The position of the 1t-shift corresponds to the 

middle to the first node in Fig. (9b). It occurs over a very short interval of about 10 
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optical fringes. This is shown in the lower left part of the figure where about a dozen of 

the fringes close to the center and close to the node of the autocorrelation trace have 

been expanded. The half-fringe shit over eleven fringes is clearly seen. The signal to 

noise ration is excellent. Since one fringe corresponds to 2.8fs and the measurement is 

performed with a calibration of 21 stepper motor steps per fringe or an accuracy of 

= 0.14fs. 

IV) Conclusion 

The time resolved amplitude measurements are very well explained by the model 

based on a single-resonance-excitaion approximation of the Semiconductor Bloch 

equations. They show that not only there is a XXI contribution to the nonlinear response, 

but that, in fact, this contribution dominates over the PSF one whenever the Coulomb 

interaction is not screened. 

The phase measurements provide much more delicate information on the dynamics of 

the instantaneous frequency of the FWM signal. The experimental observations obtained 

in the case of single-resonance contribution to the FWM, can be explained qualitatively 

in terms of the two-band Semiconductor Bloch equation. However since the exciton 

linewidth and the ultrashort pulse laser spectrum are both rather broad the detail of their 

overlap has to be carefully accounted for. From the purely experimental point of view, 

the consistency of the power spectra, Figure (5), and autocorrelation differential-fringe­

spacing, Figure (7), measurements are excellent. The case where two resonances 

contribute to the FWM is more dii'OCult to treat theoretically. It is necessary to consider 

three-band semiconductor Bloch equations with two valence bands. In this case one finds 
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two families (heavy-holes & light-hole) of excitons. Each one possesses "internal" 

Coulomb and Pauli nonlinearities. but. furthermore. they are coupled via these two 

mechanisms as well. The coupling of the hh-X and lh-X families by Pauli exclusion 

originates naturally from the fact that they share the same conduction bands. Hence once 

an exciton of one family is created the transitions to the conduction band for the other 

family is affected. The Coulomb coupling between hh-X and lh-X originates from the 

inter-valence band transitions which provide an additional transition channels between 

the conduction band and either one of the valence bands.24 This model implies that. the . 

inter-valence band transitions can be driven by excitation near the fundamental gap and 

emit THz radiation. This effect has been recently observed.25 
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FIGURE CAPTIONS 

Figure (1): Time resolved four wave mixing signal vs absolute time t, for a series of 

At and a total exciton density Nx :::: 1012cm-2. 

Figure 2: Comparison of the temporal profile of (a) the time resolved signal at At = 0 

and (b) the time integrated signal, for for two exciton densities, Nx :::: 1011cm-2 (left) and 

Nx :::: 4xlO11cm-2 (right). 

Figure (3): Fit of the time resolved intensity profiles at various At for Nx :::: 1011 cm-2 , 

using the model discussed in the text. The dashed-dotted lines give the Pauli exclusion 

contribution, the dashed lines give the exciton-exciton interaction contribution, and the 

smooth solid lines corrspond to their sum. 

Figure (4): Time resolved intensity profiles and theoretical fit for (a) Nx :::: 1013~m-2 

(b) Nx :::: 1012cm-2 (c) Nx :::: 4x lOllcm-2 (d) Nx :::: 2x 1011cm-2 (e) Nx :::: 1011 cm-2 , 

showing the effects of screening on the relative strength of the Pauli exclusion and 

Exciton-exciton interaction nonlinearities. 

Figure (5): Power spectra of the Fou~ Wave Mixing signal and laser spectra for 

exciton densities, (a) Nx :::: 3xl09cm-2 (b) Nx :::: 1.2x1010cm-2 (c) Nx :::: 6x 10ll cm-2 (d) 

Nx :::: 3x lOllcm-2, when the laser is tuned slightly below the heavy-hole exciton. 

Figure (6): Power spectra of the Four Wave Mixing signal and laser spectra for 

exciton densities, (a) Nx :::: 4x109cm-2 (b) Nx :::: 1.2x1010cm-2 (c) Nx :::: 6x lO llcm-2 (d) 
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Nx = 3x 101lcm-2 , when the laser is tuned slightly above the heavy-hole exciton. 

Figure (7): Interferometric auto-correlation, and Differential- Fringe-Spacing for (a) 

the laser, (b) the low-density and (c) the high-density FWM signal in the case where the 

laser is tuned slightly below the heavy-hole exciton. The conditions of (b) and (c) are the 

same as that of the power spectra (a) & (b) of Figure (5). 

Figure (8): Interferometric auto-correlation and Differential- Fringe-Spacing for (a) 

the laser, (b) the low-density and (c) the high-density FWM signal in the case where the 

laser is tuned slightly above the heavy-hole exciton. The conditions of (b) and (c) are the 

same as that of the power spectra (a) & (b) of Figure (6). 

Figure (9): (a) Power spectrum, (b) Interferometric auto-correlation, and (c) Differential­

Fringe-Spacing of the FWM signal in the case where when the laser is tuned to give 

contributions of the hh- and Ih~exciton of approximately same weights. The lower left 

figure is a blow up of about a dozen of fringes close to the center and the node of the 

autocorrelation trace showing how the 1t-shift occurs over eleven fringes only_ 



-400 -200 0 

Time 

23 

200 

(fs) 

~ ................ T= 160 f. 

T= 140 fs 

T= -40 fs 

400 



24 

of 
o 
o 
N 

CD 
E 

:.j:i 

CI) -o 
o 
N 



• 

£:) 

-0 
Q) 

> -o 
en 
Q) 

0:: 
I 
Q) 

E 
i= 

25 

Pulse 2 

P lse 1 (0) 

Pulse 2 

Pul e 1 (b) 

Pulse 2 

Pulse 1 (c) 

Pulse 2 

Pulse 1 

o 

(d) 

_ ....... -- .... . ""-."..... ....., 
~,/ ....... ...... 

• <II' '...... ....... 
~ ,,"" ............ - .............. 

200 

time (fs) 

400 600 



,,--...., 

::J . 
0 

'--" 

0 
c 
CJ) .-

(f) 

I 
""0 

Q.) 
4-J 
() 

0 
~ 
~ 
~ .-
0 

-0 
Q) 

> 
0 
CJ) 
Q) 

0::: 
I 
Q) 

E .-
I-

o 

26 

200 

time (fs) 

(0) 

(b) 

(c) 

(d) 

(e) 

400 600 



~ 
t5 
Q) 
c. 

W 

Power Spectra Below Resonance excitation 

(a) (b) 

(c) (d) 

1.4 1.44 1.48 1.52 1.4 1.44 1.48 1 .52 
Energy (eV) 

'" -....J 



Power Spectra Above Resonance Excitation 

(a) (b) 

.......-.. . 
::J . 
co 
"-' 

co 
S-......., rv 

00 
() 
(]) (c) 1\ (d) 
a. 
(f) 
S-
(]) 

3 
&. 

1.4 1.44 1.48 1.52 1.4 1.44 1.48 1.52 

Energy (eV) 



29 

2 
,........" 

en (a) .-
c: a. 
0 't- 1 .- 0 ...-
co en - ...-
0). .- 0 - - - - - - - -- - - -
s.... c: 
s.... ::J 2 0 ............ 
0 (b) q: 
0 .-...- .£:. 1 ::J en co 0) 
0 .- 0> 0 - - - --- - - - - - - - - - - - -s.... c: ...-
0) .-

(c) 
.t- 2 

E (1) 
0 > s.... .-
~ 

...- 1 co -
0) ~ ...- 0 c: - - - - - - - - - - - -

-
0 200 400 600 0 200 400 

Time Delay ( fs ) 



30 

(a) 0 

...-.. -1 en a. c: -2 0 '+--- 0 +-' 
-3 m en - ..., 

Q) --
'- (b) c: 
'- :l 0 
0 "'-'" 
0 4= -1 0 --+-' .r::. :::s en -2 m 

Q) 0 C) -3 --'- c: +-' 

(c) --Q) .:: 0 - - - - - - - - - --E 
~ e -1 --

~ 
..., 
m -2 -Q) 

~ -3 +-' c: 
0 200 400 0 200 400 

Time Delay ( fs ) 



31 

..-... 
0 

..-... 
(.) .c 0 , ........... ~ ~ CO ('oJ 

~ 

-- 0 J!? ~ <0 -0 
~ ~ N - ro (\') ~ ro Q) Q5 0 0 
0 Q) 

0 Q) CO E <0 E i= ~ 

i-

0 
0 

0 ~ N 
I I 

UO!lelaJJOOOlne (Id 10 sllun) YI4S 
~!JlawOJaj.Jalu I a6uJ.ij 9AIlel9J 

---.. 
CO 

('oJ ~ 
LO . 
~ 

-co ~ 
~ -~ ~ 

e> 
Q) 
c: 

~ 
W 

~ 
~ 



LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
1ECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

---" 


