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Chapter 1
Introduction

1.1 Results

This thesis is primarily a stﬁdy of certain aspects of the geometfic and algebraié
structure of _coa.djoint orbit representations of infinite-dimensional Lie groups. The goal of
this work is to use coadjoint orbit representations to construct conformal field theories, in
a fashion analogous to the free-field constructions of conformal field theories. ,

The new results which are presented in this thesis are as follows: First, an explicit
set of formulae are derived giving an algebraic realization of coa.djoint orbit representafions
in terms of aifferen_tial operators acting on a polynomial Fo& space. These representations V
are equivalent to dual Verma module repreéenta.tions. Next, intertwiners are explicitly con-
structed which é]low the'.construction of resolutions for irreducible representations using
these Fock space realizations. Finally, vertex operators between these irreducible repre-.
sentations are explicitly constructed as chain maps between the resolutions; these vertex
oﬁerators allow the conétruction_ of rational conformal field theories aiicording to an alge-
braic prescription.

From the point of view presented in this thesis, the space of states associated with

- each primary field of a conformal field theory.is described by a Hilbert space of holomorphic
sections of a cgrtain line bundle over a complex homogeneous space. The vertex operators-
are simply differentiai operators taking sections of one line bundle to sections of another
line bundle. For conformal field theories with a simple Virasoro symmetry, there is a BRST
complex of line bundles connected by differential operators for each primary state, and

.physical states are those states in the BRST cohomology of this complex. In the case
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of conformal field theories with affine algebra symmetries such as the WZW model, the
restriction to hoiomorphic sections of the line bundles automatically restricts to the space
of physical states, so no BRST complex is necessary. L

| The infinite-dimensional groups which are studied invthis thesis are the centrally
extended loop groups LG where G is a compact simple finite-dimensional Lie group, and
the Virasoro group Diff51. In the case of the loop groups, the coadjoint orbit construction
is eﬂ'ectiirely equivalent to the Borel-Weil theory describing irreducible representations, and
is already fairly well understood [53]. For the Virasoro group, on the other hand, there is
not yet a complete understanding of the structure of coadjoint orbit representations; the
results presented here are a modest step towards such an understanding. Edr all these
infinite-dimensional groups, the explicit realization in terms of differential operators given
here is new.

The construction of rational conformal field theories using resolutions and vertex
operators on dual Verma module'representations is algebraically very similar to the related
construction using free field theories and Feigin-Fuchs or Wakimoto modules {27, 18]. The
approach developed here has several advantages over the free field construcAtion.A Because
of the geometric nature of the coadjoint orbit construction, the dual Verma module reso-
lutions are more naturally geometrically motivated. Additionally, the resolutions in terms
of coadjoint orbit representations are vone-sidéd, ‘and therefore avoid some of the compli- -
cations a.ssocia.ted_virith the two-sided resolutions arising from Feigin-Fuchs and Wakimoto
modules. Finally, the known relationship between coadjoint orbits and actions for con-
formal field theories may indicate that the vertex operators described here naturally arise
in some unifying geometric approach to conformal field theory. On the other hand, some
of the advantages of the free field rea_.liza.tionsb are absent in the coadjoint orbit construc-
tion. The most significant of these features is the field theory interpretation of the free
»ﬁéld construction. As yet, we have no analogous field theoretic interpretation for the coad-
joint orbit representations, which presents a major obstacle to the physical interpretation
of this construction. Also, the free field construction is based on well-studied techniques
from string theory, which lead to powerful computational methods for the conformal field
theory correlation functions. The construction presented here in terms of coadjoint orbit
. representations is not yet sufficiently -well developed to allow the computation of corrélatioﬁ

functions of any signiﬁcant complexity.
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1.2 Background

The method of coadjoint orbits was originated by Kirillov and Kostant twenty
years ago [43]. This approach has proven to be a valuable tool in investigatiﬁg geometri-
cal aspects of the representation theory of Lie groups. The Kirillov-Kostant approach is
esséntia]ly a generalization of the Borel-Weil theorem, which constructs irreducible unifa.ry
representations of a finite-dimensional compact semi-simple Lie group G as spaces of holo-
morphic sections of complex line bundles over the homogeneous space G/T, where T is a
maximal subtorus of G. In the coadjoint orbit approach, one begins with a‘group G, with
Lie algebra g. The group G has a natural coadjoint action on the dual space g;‘. ‘Choosing
an element b in g*, one considers the coadjoint orbit W of b in g*. For any b, the space
W, has a natural symplectic form w. For those b with the property that a complex line
bundle £, can be constructed over Wj, with curvature form iw, one attempts to relate an -
appropriate space of sections of £y to an irreducible unitary .repreéentation of G by using
the technique of geometrit quantization on the space Wj. For finite-dimensional compact
semi-simple G’, the representations produced by this construction are equivalent to those
given by the Borel-Weil theory. The coadjoint orbit approach is particularly useful in the '
case of non-compa.ct groups, where the Borel-Weil theory does not apply. It is possible
to a.pply the Borel-Weﬂ approach to eertain infinite-dimensional groups such as the cen-
trally extended loop groups /e (53]. For other mﬁmte—d1mens1onal groups, such as the
(orientation-preserving) d1ffeomorph1sm group of the circle Diff S, and its central exten-
sion Dlﬂ?.S'1 the Virasoro group, there are difficulties with applying even the more general
coa.d_]omt orbit theory. Many of the Virasoro coadjoint orbits do not admit a Kahler struc-
ture, so that it is difficult t,o geometrically quantize these spaces. Also, it is known that
the Virasoro group has rather peculiar mathematical properties; such as the fact that the
exponential map on the Lie algebra is neither '6nto nor 1-1 in the vicinity of the identity.
Due to these difficulties, a full understanding of the coadjoint' orbit representations for this
grdup has not yet been attained, although there are some partial results in th.is‘diréction
[44, 47, 58, 64]. Achieving a full underéta.nding of the geometry of the coadjoint orbit rep-
resentations of the Virasoro group could be a valuable step in the general study of Virasoro
representations and conformal field theory.

A more dJrect rela,tmnslup between irreducible representations of infinite-dimensional
Lie groups and conformal field theory (CFT)is enibodiedvin the free field approach to CFT’s.
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The free field approach was fundamental in early developments in string theory [37] 1t was
eventually shown that the operators assodated with free fields. acting on a bosonic Fock
space could be used to construct all irreducible unitary representations of the Virasoro
algebra. The “Feigen-Fuchs” free field represent‘atio'ns were described in the work of Dot- -
senko and Fateev {22] using a Coulomb gas-like free field theory with background charge.
In this work, these representations were used to calculate correlation functions in Virasoro
minimal models. The structure of the Fock space in the Feigen-Fuchs representations was
originally described in [26]: It was subsequently shown by Felder [27] that the irreducible
r‘epresenfa.tions in the ¢ < 1 discrete series could be described in terms of the Feigin-Fuchs
representations using a BRST-type screening operator which had previously. been intro-
duced by Thorn [61]. A similar construction for conformal field theories with affine algebra
symmetries has also been carried out [14, 33, 63]. The resulting free field representations of
the affine algebras are known as “Wakimoto” modules. Recently, the free field approach to
conformal ﬁéld theory has been described in the algebraic language of modules and resolu-
tions, and puf into a systematic algebraic formalism. From this point of view, the a.lgeﬁra.ic
structure of the Feigin-Fuchs representations is similar to that of a twisted Verma module.

For a review of this approach, see [18].

1.3 . Summary

' The structure of this thesis is as follows. In Chapter 2, we review the coadjoint
orbit description of irfeducible representations of Lie groups, and construct an explicit al-
gebraic realization of the Lie algebra of an arbitrary Lie group by taking local coordinates
on a coadjoint orbit and performing a gauge fixing on the complex line bundle over that
coadjoint orbit. This construction gives a set of representations of the Lie algebra which are
expressed in terms of first-order differential operators acting on a polynomia.l Fock space.
These representations are studied in detail fof finite-dimensional Lie groups, loop groups,
and the Virasoro group, and examples of explicit realizations are given for each of these -
types of groups. By considering global aspects of these representations, we show that in the
cases of finite-dimensional groups and loop groups this construction gives rise to irreducible
unitary representations, and that for such groups all irreducible unitary representations can
be constructed using this method. In the case of the Virasoro group, these representations

are reducible representations, with irreducible subspaces corresponding to the irreducible
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unitary representations of the Virasoro group. In Chapter 3, we consider in more detail
‘the module structure of thesé representations. We show that all the coadjoint Qrbit repre-
sentations wé have constructed are locally equivalent to dual Verma mbdules, and describe |
resolutions for irreducible representations in terms of ex-pliciﬂy defined formulae for inter-
_ twiners between coadjoint orbit representations. We go on in Chapter 4 to describe vertex
operators which allow these irreducible representations to be combined into rational con-
‘formal field theories. In Cha.pter 5, we review our results, and discuss open questions and
. relatiénships between this research and other recent work. In particular, we describe briefly
a recently active area of research in which coadjoint orbits are used to construct conformal
field theory actions. We specula,te that there may be an underlying connection between the

structure of these actions and the conformal field theory formalism described in this thesis. -



Chapter 2
Coadjoint Orbit Representations

In this chapter, the geomfetric and algebraic stmétmes of coadjoint orbit represen-
tations are presented and analyzed. In Section 2.1, we describe the class of groups to which
the analysis in this chapter is applicable and establish notation for Lie groups and algebras
which will be used throughout this thesis. For each of the groups in this section, a de-
scription is given of a local coordinate system near the identity on a homogeneous quotient
space of the group which will be later identified with a coadjoint orbit space. In Section
2.2, we review the geometric constructigin of coadjoint orbit representations as sections of
line bundles £; over the coadjoint orbit spaces associated with elements b in the duél of
the Lie algebra. In Section 2.3, we prove a pair of general propositions in which sufficient
conditions are given for a set of functions to describe a local gauge-fixed connection on the
- line bundle £;. These propositions are used in Section 2.4 to construct formulae for the
coadjoint orbit representations of the group algebfa in terms of differential operators on the
space of locally holomorphic functions at the point b in the orbit space. In Section 2.5, we
give examples of these realizations for the groups SU(2),SU (3),LSU(2), and the Virasoro
group. In Section 2.6, we discuss global questions about these representations; in particular
we consider the question of which sections of the line bundle Ly are globally holomorphic,
- 'and we discuss the existence of Her_m.itim structures on the line bundles £;. Both of thesé
questions are addressed from the point of view of the local formulae derived in the earlier

sections.
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2.1 Lie groups and algebras

There are three main types of Lie groups which, along with their associated Lie al-
gebras, will be of interest in this thesis. The compact simple Lie groups are the most familiar
and best understood examples in the theory of continuous groups and their representations.
We will use these groups as a class of elementary éxa.mples and as a reference point with
which to compare our results for infinite-dimensional groups. The centrally-extended loop

_grdups, whose associated Lie algebras are affine algebras, are the second class of groups
which we will study. Although not as well understood as the finite-dimensional simple Lie
groups, these groups share many of the properties of groups in that class. The affine al- =
gebras are important in physics, where they appear as current algebras in two-dimensional’
field theories and provide a primary tool for the understanding of the algebraic structure of
a la.rgé class of conformal field theories. Finally, we will study the representations of the Vi-
rasoro group, which is of central importance in the physics of conformal field theories. This
group is even less understood from a geometric perspectivé,tha.n the loop groups - hopefully
some of the work in this thesis will help to provide a basis for a deepér understanding of
the geometric structure of the representations of this group.

In this section, we define these three types of Lie groupé and develop the notation
which will be ﬁsed throtghdut the thesis. We also derive or state some important theorems v
abo‘ut these groups which will be used in later developments. In particular, we give a
description in terms of local coordinates of a natural quotient space of each Lie groupv by a
maximal abelian subgroﬁp. In the case of the Virasoro group, a rigorous proof of the validity
of this coordinate system is not given; however, arguments are given for the plausibility of
this coordinate system in a well-defined mathematical context. General references for the

ba.ckgrdund material in this section are [1, 40, 41, 45, 51, 53].

2.1.1 Compact simple Lie groups

A finite-dimensional Lie group G is a manifold of finite dimension  which has a
group structure v _ ‘ v
-t GXGE— G (2.1)

In this subsection, we assume that all Lie groups are finite-dimensional. Associated with

~ every Lie group is an algebraic structure on the tangent space g to G at the identity. This
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algebra, called the Lie algebra of G, is defined by the product

(€71 = lm —fettemestemn 1}, (22
where the éxponéntia.l map e : g — G is defined by taking e*¢ to be a one-parameter
subgroup of G with de*/dt = lim,_, e‘§ Jt = & When G is ﬁﬁite—dimensional, it can be
shown that this exponential map exists and is locally 1-1. The Lie algebra product is

antisymmetric and satisfies the Jacobi identity

6+ G+ Glem=0 @3

A Lie group is compact if its underlying ma,nifold is compact. A Lie group is
complex if its manifold is a complex manifold and the group composition law is holomorphic. '
A Lie algebra is complex if the vector space is complex and the Lie algebra product is
.complex-bilinear. The Lie algebra associated with a complex Lie group is a complex Lie
algebra. A complexification Gg¢ of a Lie group G is a complex Lie group whose Lie algebra
is the complexification gc = g ®r C of the Lie algebra g of G. When G is a compact group,
such a complexification always exists [53]. _

A simple Lie group is a nonabelian Lie group with no continuous normal subgroups.
It follows that a simple Lie algebra is a nonabelian Lie algebra with no nontrivial ideals.
The compact simple Lie groups have been classified, and consist of the groups SU (N), |
SO(N), Sp(N ), the exceptional gr'oﬁps Gy, Fy, Eg, E7, Eg, and groups which are related to
any of these groups By taking a quotient through a finite normal subgroup [40]. For the
remainder of this subsecti‘on, wé assume that all Lie .groups are compact and simple. Most .
of the results for simple groups can be easily generalized to the class of semisimple Lie
groups, which are groups locally isomorphic to a product of simple groups (with no abelian
factors); we will not bother, however, to explicitly discuss these generalizations, in order to
keep the presentation relatively simple. v

A representation of a Lie group G (Lie algebra g) is a linear action of G (g) on a
vector spaée V. A representation is irreducible if V' does not contain a nonfrivial subspace
W which is mapped into itself by G (g). It is a theorem that all irreducible representations
of compact Lie groups are finite-dimensional [53].

The group G has a natural representation on g known as the adjoint action; for
each g € G ’ ‘

Adg:g — g, (2.4)



CHAPTER 2. COADJOINT ORBIT REPRESENTATIONS 9

where

Adg:ur— %{ge‘“g'1 -1} : o (25)

There is a related coadjoint action of G on the dual spa.cé to g, g*. The coadjoint action is

denoted by Ad*, and given by
(Adh,u) = (b,Adg1u), forbegrueg. (26)

The derivative of the adjoint action gives an action of g on g, denoted by ad, wheré ad,v =
[u,v],for all u,v € g. Simila;rlf, the infinitesimal coadjoint action of g on g* is denoted ad”,
and is given by . . '
(adyd,u) = (b,[u,v]), fordeg*,u,veg. | (2.7)

In order to study the representations of a Lie group G and its algebra g, it is useful
to describe a root space decomposition of the complexified Lie algebra gc. One first picks
a maximal subtorus T’ of G. (A maximal subtorus of G is a cdntinudus abelian subgroup
of G which is _nc;t contained in a continuous abelian subgroup of higher dimension.) The
complexification tc of the Lie algebra of T' is a Cartan subalgebra of gc. The dimension of
T is defined to be the rank r of G. All maximal subtori of G are conjugate [1], so the rank is .

“well-defined. The adjoint action of g on g extends naturally to an action of g on g¢. Since
the Lie algebra t is abelian, the restriction of the adjoint action on gg¢ to t is simultaneously

diagonalizable, and we can write

gdc=tc® @ Yo (2'8)

where @ C ¢ is the set-of nonzero roots of G (which we will also refer to as roots of g), and
. . . “ )

8o = {u € gc|lh, u] = (@, h)u VA € t}. . (2.9)

An analysis of this root space decomposition reveals that the root spaces g, are one-
dimensional and that @« € @ = —a € &.- It is possible to choose elements e, € go
and hy € f¢ such that when f, = e_,, we have .

[eon fa] = hqo
[harea] = 2en _ | - (2.10)
[ha’ fa] = —2fa-
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In this basis, when a # —8 and [eq, eg] # 0, it follows that [es, €] C Ga+s- It is furthermore
possible [40] to choose a base A for &, where A C @ is defined to be a base when A =
{a1,...,0:} gives a basis for the linear space t{ spanned by &, and each root 8 € & has a
(unique) decomposition

B= ke, | (2.11)

. " a€lA .
" with ko integral and with all coefficients ko being either nonnegative or nonpositive. The
' roots in A are called simple roots. If all the coefficients kg in the decomposition (2.11) of a
root § are nonnegative, 3 is defined to be a positive root, and we write B = 0. Similarly, if
all coefficients are nonpositive, we define S to be a negative root. Because the root spaces
are one-dimensional, we ca.n'djrectly associate generators e, with roots; thus, we will often
refer to generators as beiﬁg simple or pdsitive when the associated root has such a property.
We denote by &4 = {a € ®|a > 0} the set of all positive roots. In physics terminology,
positive and negative roots are often referred to as “annihilation” and “creation” operators
on a representation space, respectively. The root lattice A is defined to be the sublattice of
t% spanned by the simple roots A. B
~ We denote the generators associated with simple roots by ej=éq; for 1 <j<m;
similarly, we define f; = e_q;, hj = hq;. The genera,t‘ors {ej,hj, fj : 1 < j < r} give rise to

a complete basis for the Lie algebra gc, under the relations

lei, i] = hi
les, fi] = 0 when j#k
[hive;] = Aije; ' - (2.12)
[hi, fi] = —Aijf;
(ad ;)" 4%e; = 0 when i#j
. (ad £;)!"4if; = 0 when i # 7.

This basis for the Lie algebra is called a Chevalley basis for the algebra, and the matrix
A is the Cartan matriz for the group G. Note that the a.lgebra, elements e; associated
with simple roots generate the algebra of positive roots in gc; similarly, the negatives of
the simple roots, f;, generate the algebra of negative roots. Both of these subalgebras are
- -closed subalgebras of gc. Note also that the algebra elements h; form a basis ©. for the-
~ Cartan subalgebra tgc.
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Wé now turn our attention to irreducible representations of simple groups. To
begin _vﬁth, it is a well-known result that all irreducible representations of simple groups
admit unitary structures. That is, on any complex repreéentation space V of a finite-
dimensional compact simple group G, it is possible to construct a positive-deﬁnite inner
product which is invariant under the action of G. The existence of such a unitary strﬁcture
can be seen by taking an arbitrary positive-definite inner product on V', and averaging
over G with respect to an invariant measure (suéh a measure, called a Haar measure,
- exists on all compact finite-dimensional groups). In most physical systems where group
representations play an important role, the undgrsta.ndiﬁg of a unitary structure on the
representation space is essential. It is customary for physicists, when dealing with unitarity
group representations, to take a basis for the Lie ﬂgebra. of the form :J, where J, are
Hermitian operators. In terms of this basis, the Lie algebra is written in terms of the

structure constants S as .
' [T, T = i3 T : ‘ - (213)

We will freely switch between mathematical and phy_sica,l notations for Lie groups and -
representations in this thesis. ' ' -

In any (complex) vector space V carrying a representation of G, it is possible to
choose a basis with respect to which the Cartan algebra tc is diagonal. The eigenvalues of t¢
on a basis element are then describ;':d by a weight w € {¢. The weights w of a represén’tation
lie on the weight lattice Ay, C {g, which contains the root lattice A as a sublattice. Clearly,
acting on a basis element of weight w with a generator e, gives a vector of weight w +.a
in V. A representation of G on a vector space V is defined to be highest weight if there
exists a vector v € V' which is annihilated by all positive roots; i.e., eqv = 0 for all @ € @4
For v to be a highest weight vector, it clearly suffices for all simple roots e; to annihilate
v. It follows from the fact that all i'rreducibie representations of a compéct Lie group are
finite-dimensional, that all irreducible representations of such a group are highest weight
representations. - - ' . o o

Given a choice A of base for G , the associated Borel subalgebra b+ C g¢ is defined
to be the subalgebra generated by the Cartan subalgebra and the positive roots,

bt=tc® P ga- . (2.14)

acdy

Similarly, the Borel subalgebra b~ C gc is defined to be the subalgebra generated by the
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Cartan subalgebra and the negative roots,

b =tc® Pa | (2.15)

_ a<0
The Borel subalgebra which is customa.rilyﬁséd in representation theory is the positive
subalgebra b*. For the purposes of this thesis, however, we will find it more constructive
to use the negative subalgebra b~. It is a theorem that these two Borel subalgebras are
conjugate [40]; therefore the analysis using b~ is equivalent to that using b*. (In fact,"
generally a Borel subalgebra is defined as a maximal solvable subalgebra; the theorem
states that all Borel subalgebras are conjugate.) The Borel subgroup B~ of Gg¢ is the
subgroup whose Lie algebra is spanned by.b~. The space G¢/B~ is a compact Kahler
homogeneous space for G¢; as long as the group G is compact, we have G¢/B~ = G/T
[53]. This space can be used to construct a general irreducible representation of G according
to the Borel-Weil theory [17], which we now review briefly, following [53].

It is a general fact that every irreducible representation of G is uniquely determined
by the associated representation of T on the highest weight state [1]. The representations
of T are the one-dimensional representations on a space of fixed weight, and are simpiy the

products of representations of the circle group S = {e¥® : 0 < 6 < 27},
e s e n . , (2.16)

Given a representation A : T — S! of T, it is possible to construct a line bundle £ over
the homogeneous space G/T. This is done by considering the product bundle G x C, and
modding out by the equivalence relation ~ defined by '

(9,2) ~ (gt, \(t™1)z)Vt eT. - (2.17)

AN

The line bundle is thus defined by

Ly=GxC/ ~. - - (2.18)

An alternative description of this line bundle is given by extending the representation A
holomorphically to the Borel subgroup B~. This gives a holomorphic representation of B~
taking values in C\ {0}. The line bundle £, can then be defined by |

Lr=Ge X Cf ~, - ' (2.19)
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where the equivalence relation (2.17) is extended to all elements ¢ € B~. From this point
of view, it follows immédiately that £y is a homogeneous complex line bundle and that
the group G¢ has a natural action on the spa,cé Hx of holomorphic sections of £). The
Borel-Weil theorem states that the resulting representation of G on H, is an irreducible
representation which reduces to the representation A of T’ on a one-dimensional subspace.
All irreducible representations of G can be obtained in this fashion; however, an irreducible
representation of G may arise from several distinct representations of T which are equivalent .
under a Weyl group symmetry. In particular, however, choosing A to be the representation
of T associated with the highest weight subspace of a particular representation qf G will
reproduce that representation of G in the action on H A

Most of the a.ﬁalysis in this thesis will be done locally, in a coordinate patch around
the identity of G. In order to perform local calculations, it will be useful to have a general
system of coordinates in a neighborhood of the identity both on G and on G/T. 1t is clearly

" desirable to choose these coordinates to be holomorphic on G/T. Such a coordinate systexﬂ'l

is a familiar tool in physics; see e.g., [66, 6]. We can define a natural set of coordinates
{zay@a;sPala € 4} on Gg by writing an arbitrary element near the identity in the form

g = exp l: Z zaea] exP [ Z aae-—a} €xp Z ﬂaha] 3 (2'20)

aedy x€dy €A

Where h, are the basis for the Cartan subalgebra tc defined by (2.10). Clearly, zc,v are a set’

. of coordinates on G¢/B~, since modding out by the right _action of B~ simply corresponds

to dropping the coordinates o, Bo It follows that Zo can also be taken as coordinates on
G/T. This result can be made more explicit by observing that (2.20) can be constrained

to be an element of G, which gives aq(2,2) and b4(z,Z) = Re B, as functions of the -

~ coordinates Za,Zo- These functions are single-valued in a neighborhood of the identity,/

and can be calculated in a perturbative expansion about z, = 0 by applying the Baker-
Campbell-Hausdorff (BCH) formula [43] ' .

Xe¥ — eX+Y+§[fo]+---’ : (2.21)

which expresses the product of two exponentiated elements of a Lie algebra in terms of a
single exponentiated element of the élgebra as a formal power series. (The ellipses in this
formula denote third- and higher-order commutators between X and Y.) It can be'seen that

the coordinates z, define a G-invariant complex structure on G/T by multiplying (2.20)
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on the left by an arbitrary element ¢’ € G; expressing the result again in the form (2.420),
one finds that the coordinates 2,(g’g) of the resulting point in G/T depend only on ¢’ and
the holomorphic coordinates z,(g) and not on the antiholomorphic coordinates Z,(g) [66].
Although this complex structure is defined locally, it can be extended to a global complex
structure on G/T by translating under the left action of G. _ '
We now conclude this subsection with a pair of examples of finite-dimensional
sir'nple Lie groups, SU(2) and SU(3), which we will use throughout this thesis as canonical
examples with which to compare results from infinite-dimensional groups. We will follow
the customary practice of using lower-case characters to denote Lie algebras, so that the
algebras of SU(2) and s U(3) are written su(2), su(3).
| First we consider the group SU(2) of unitary 2 X 2 matrices. As usual (for physi-
cists), we take the generators of the algebra g = su(2) to be {iJi : k = 1,2,3}, where
{7, Jk] = t€jrJi. The structure constants of su(2) are thus f,,¢ = €upe. su(2) is a three-
dimensional real vector space. Takiﬁg coordinates z;,2%2,Z3 on g, an arbitrary element
u € g can be written as u = iZzJk. An arbitrary element g of G can be written as g = e,
where u € g. We will take the maximal subtorus T to be {€%% : 0 < 6 < 27}. A root
space decomposition of gc is given by defining the generators '

e =Ty £iJs. (222

These generators satisfy [J3, Ji] = £Jx, and [J4, J_] = 2J3. The basis elements ey, ko can
~ be described in terms of theée generators by ey = Jy,e- = fi = J_, and hy = 2J3. We-
can now define A = {J;} to be a base, so that J4 is the unique positive root. The resulting
Chevalley basis is e; = ey, fi = e_,hy = hy, and the Cartan matrix is the 1 X 1 matrix (2).
The finite-dimensional irreducible representatmns of su(2) are representations with
highest wexght J € Z/2, corresponding to the exgenvalue of J3 on the highest weight vector.
The set of weights for the “spin” j representation is given by {j,7 — 1,...,1 — j,—j}; to
ea.chbweight there corresponds a single vector in the representation space V;. To each finite-
dimensional irreducible representation of su(2) there corresponds a representation of SU (2)
The weight space of a typical SU(2) representation (spin. 3/2) is shown in Figure 2.1.
With each irreducible representation j of SU(2), there is an associated represen-
tation of the maximal subtorus T. The homogeneous space SU(2)/T is S? with the usual
complex structure. The bundle structure of this quotient space is exactly that of the well-

known Hopf fibration S* — S$% — $? [60]. Each representation j of T defines a complex
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3/2

Figure 2.1: Spin 3/2 representation of SU(2) -

line bundle £; over S2 by the Borel-Weil theory (2.19). The bundle associated with the
representation 7 has a first Chern class with integral 2j, and 2 + 1 linearly independent

holomorphic sections which transform under the representation j of SU(2). The geometric

structure of this representation is equivalent to the coadjoint orbit construction for SU(2)

and will be discussed in more detail in Section 2.5.

We next consider the group SU(3) of unitary 3x3 matrices. The generators of su(3)

are customarily taken to be {J, : 1 < a < 8}, which in the fundamental representation are
related to the Hermitian Gell-Mann matrices {A,} by Ja = Aq/2. The Gell-Mann matrices

are

A1

Az

A7

o

[~ T

=T =)

0
0
0

0

0 Az
0

0 0
-1 0 A4

0 O
0 '—i
0 0 Ae
0 O
0 0 \
0 —: As
i 0

= O O
o -
o

(2.23)

o O O
= O
Q = O -

1 0 0
1 , o
7 01 0

0 0 -2

The generators J3, Jg form a maximal abelian subaigebra of su(3) and can be taken

to be the generators of a maximal subtorus

T = {¥#7262V3i%%s . 0 < 4 < 27).  (229)
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€2 €3

f3 | fa .

Figure 2.2: Roots of SU(3); simple roots are bold.

A root space decomposition of gc is given by the generators

ee = JitiJy e = Jg+iJy ey = Jsg+iJs _
i = Nh—il2 fu = Je—iJ7 fo = Ja—1iJs (2.25)
he = 2J3 he = (V3Js = J3) hy, = (V3Js+J3),

where the roots t,u,v are given by t = ((t, J3),(t, Js)) = (1,0), u = (-1/2, V3/2), v =

(1/2,4/3/2). In terms of this basis, we can choose a base A for su(3) to be A = {e, eu}.
The resulting Chevalley basis is given by

€1 = ¢ €3 = €y
A= fi fo = fa (2-26)

hl = ht h2 = htn

A=( 2 "1). (2.27)
-1 2 | |

In terms of this Chevalley basis, the.rema.ining generators are ez = [e1,€2] = e, and f3 =

and the Cartan matrix is

[f2, fi] = fu- The generators are graphed according to their roots in Figure 2.2.
Irreducible representations of SU(3) are labeled by the eigenvectors (p,g) of the
~ highest weight vector with respect to the Cartan algebra elements hj, k2. The weights of
a typical highest weigh‘t representation (4,1) of SU(3) are shown in Figure 2.3. Note that
* there are in general multiple linearly independent vectors in the representation space with
a given weight. As in the case of SU(2), all the irreducible representations of SU(3) can
"be realized via the Borel:Weil theory in terms of the left action of SU(3) on spaces of

holomorphic sections of line bundles over the homogeneous space SU(3)/T.
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Figure 2.3: Representation (4,1) of SU(3)

2.1.2  Loop groups

In the previous subsection we described a class of finite-dimensional Lie groups. It
is possible to develop a similar theory for infinite-dimensional Lie groups [51]. In general, an
mﬁmte—d.lmensmnal Lie group is a group whose manifold is an infinite-dimensional manifold
modeled on a complete, locally convex .topological vector space (a manifold is modeled on
a vector space V when the coordinate charts give diffeomorphisms between neighborhoods |
in the manifold and open sets in V). When the group is niodeled on a Banach space, there
is a fairly well-developed theory, and several theorems are true which do not hold in a more
- general context. We will primarily be concerned with local algebraic pi'operties of certain
infinite-dimensional grouf)s so we will not develop the general theory of infinite-dimensional
groups in any detail, but will simply quote results as necessary. ’

One of the main properties which we will need in the analysis of infinite-dimensional
groups is.the existence of a real analytic structure on the group. A sufficient condition for
a group to have a real analytic structure is that the exponential map from the Lie algebra
onto the Lie group is locally 1-1 and onto. The existence of a real analytic structure on a
Lie group is in turn sufficient for the group to have the BCH property, which means that
the Baker-Campbell-Hausdorff formula (2.21) is valid in a neighborhood of the identity [51].
Groups with this property are completely described in a neighborhood of the identity by

the Lie algebra structure. Since we will be concentrating on analyzing the representations
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of the algebra, this property is necessary to validate our analysis in a more global context.
.It is possible to generalize the concepts of a complex structure and differential
forms on a manifold to the infinite-dimensional case, provided that certain conditions are
satisfied. These generalizations are possible for all the manifolds we consider here [53] .
The first class of infinite-dimensional groups which we will consider are the cen-
trally extended loop groups LG. The loop group LG is defined for an arbitrary finite-
dimensional Lie group G by the set of smooth maps from S lto G

LG = {f:§' = G|f € C=(51,G)}. o (2.28)
The composition law in a loop' group is defined pointwise by

(f9)t)= (1) -g(t) Vt € S*. (2.29)

N

For simplicity, in this thesis we will restrict attention to loop groups LG where G is simple;
as in the finite-dimensional case, an extension to general semisimple Lie groups is straight-
forward. ‘ ' .

The Lie algebré Lg is simply the algebra of smooth maps from' S! to the Lie
algebra g. Again, the Lie algebra product of Lg is defined pointwise on S. It is not hard
to show [51] that th_eJ loop groups LG admit real analytic structures, and thus have the
- BCH property (the argument is more generaﬂy valid for arbitrary map groups; :.e., gfoups
of maps from an arbitrary compact manifold M to G). The existence of a real analytic

structure in this case follows from the fact that the exponential map
exp: Lg— LG ' - (2:30)

is a local homeomorphism. If the Lie group G has a complexification G, there is a natural
| complexification LG¢ of the loop grdup LG; which gives a natural complexification Lgc of
the Lie algebra. The Lie algebra Lgcv has a natural basis J;,(,,) given by the set of Fourier
~ modes relative to a basis .fa of gc (actually, techniéa.lly this is a basis for the related algebra
of real-analytic maps from § 1 tolg; in this thesis we will ignore this d.istinction,'for details

see [53]). The function from S! — g described by an element of this Fourier basis is
Ja(n)(e) = Jaéino- V (2'31)

If the structure constants of g are given by f,,°, then the Lie algebra of the loop group is
given by |
[Ja(n)’ Jb(m)] = ifabc‘]c(n+m)' (2.32) o
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The loop groups LG appear in physics as the symmetry groups of certain conformal
field theories (CFT’s); see for example [34]. For example, the conformal field théory with
n free real fermionic fields has a natural LSO(n) symmetry, and the CFT" with n free
complex fermionic fields has LSU(N) symmetry. These symmetries apply to the classical
field theories. When the quantum field theories associated with these classical theories are
constructed, the classica.l éymmetry group acquires a central extension due to a quantum
anomaly. For other conformal field theories, such as the WZW model, the classical symmetry

group has already a central extension. Thus, we now discﬁss the modification to aloop group
| caused by a central extension. | : o |

A central extension G of a group G is topologically a circle bundle over G. The

algebraic structure of a centra.l__‘extens'ion is described by the exact sequehée
S'5G—G. . (2.33)

In a neighborhood of the identity, we can choose a coordinate system in which the circle
bundle of the central extension is locally trivial. In such a coordinate system, an element

of G can be written as (g,2), g € G,z € S?; the group product is given by

(9,2)- (¢ 7)) = (99", ¢(9,9)27"), (2.34)

‘where ¢(g,g’) € S! is a group cocycle satisfying |
c(9,9)e(99',9") = e(9,9'9")e(g’, g")- ' - (2.35)
The Lie algebra of a centra.lly extended group G has a similar descriptién as
g = g®R. An element of g is given by a pair (u,1) where u € g and t € R. The Lie algebra
product is given by ' - _ V
[(u7 t), (v, 3)] = ([u, v], w(x,v)), : (2.36)

where w is a skew-symmetric Lie algebra cocycle satisfying
w([u, v}, w) + w([v, w], v) + w([w, u],v) = 0. (2.37)

The cocycle conditions v(2.35) and (2.37) follow directly from the condition of associativity
on the group G and the Jacobi identity on the algebra g, respectively.

It is a straightforward algebraic exercise to demonstrate that in terms of the Fourier
basis J,(,,), the most general central extension of Lg has a complexification with a Lie algebra
described by h | '

[Ta(n)s Jo(m)} = fab Tensm) + 1bn,~m7(Ja, J6)C, (2.38)
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- where C is the (Hermitian) central generator and 7(J,, Jp) is 2 symmetric invariant bilinear
in g¢[53]. In particular, since G is simple, there is a unique symmetric invariant bilinear

form in g¢ (up to scalar multiplication). This is the Killing form
Nab = faa®Fic?- ‘ (2.39)

It follows that v(J,, Jl\;) is proportional to 7. By choosing a basis in which fhe, structure
constants f,;¢ are completely antisymmetric, the Killing form can be put in diagonal form;
often physicists write the algebra (2.38) in terms of the diagonal form §,3.

In order to extend the algebra (2.38) to a global central extension of LG, it is
. necessary to make a choxce of v such that the cocycle w can be extended to a central
extension of the group. A necessary and sufficient condition for this to be possible is that
¥(ha, ha) be an even integer for every root « of G. It is fairly easy to see that thi§ condition

is at least necessary. Consider the subalgebra of (2.38) generated by
‘ Iﬂ: = éia(o), . (2.40)
N I3 = hg ©) /2 '

- This subalgebra is isomorphic to the (complexified) Lie algebra su(2), which follows from
[Is5,I+] = +I and [I4,]_] = 2I3. The central terms vanish, since they are proportional to
the mode number which in this case is 0. We now consider the éubalgebra generated by

I+ = eza(zy) : (2.41)

= zC
I; = __ha(O)/z

where £ = 9(hq,ho). This subalgebra is also an su(2) subalgebra, as can be seen from

computing
[f3,fi] = 4+, | (2.42)
1] = 2B- 2 4 4(area,

and observing that the igvaria.nce of v under G -imp]ieé that
Wwea) = 1Uarhaliea) )

1 : T
= 57(ha7 [eas fa]) = _2'
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From the subalgebra (2.40), we know that that exp(47il3) = 1in the grc;up LG. Similarly,
for (2.38) to extend to a global group structure, we must have exp(47rz'j;;) = 1. From the
definition of C as the generator of the central extension satisfying exp(2riC) = 1, it follows
that z € 2Z. A

It can be shown that the above condition is also sufficient to gua.ra.ntee that the
algebra (2. 38) can be globally extended to a central extension LG of the group LG [53]. The
condition on the algebra can be rewritten as a _global topolog1cal condition on the differential
form associated with the cocycle w; we will discuss the geometry of this condition further in
Section 2.5.3. It is easy to see that there must be a minimum multiple of the Killing form
which has the desired property. We will denote this minimum multiple by gap = 7,,,(Ja, Jb).
In terms of ggp, the centrally extended algebra (2.38) is written

) [Jd(n)’ Jb(m)] = ifabcjc;(n+m)-+ kn‘sn,—mgabca o ' (2.44)

where k is integral. »

At this point, it is necessary to discuss a difference between physical and mathe-
matical notation for current ‘a.lgebra,s; In general, physicists take the convention that C =1,
and déﬁne the algebra (2.44) to be the current é.lgebra, or Euntwisfed) affine algebra, on
G at level k. Mathematicians, on the other ha.nd, restrict attention to the case k = 1,
and retain the description of C as a (¢ommuting) algebra element. The group for k = 1 is
referred to as the universal central extension of LG, and is written as LG. This extension is
called universal because all other extensions can be realized as quotients of LG by a finite
cyclic group. We will pnma.nly use the mathematxcal description here, because it allows for
a simpler and more consistent description of the coadjoint orbit representa.tlons of centra.lly
" extended groups. We will, however, denote the eigenvalue of the operator C by k, so that

the notation is still osténsibly equjvaleﬁt to that used by physicists. Note that the centrally
_extended loop groups have locally 1-1 exponential maps from the Lie algebra; which follows ‘
directly from the fact that the groups without central extensions have this property. The
exponential map is also locally surjective, so it follows that the groups Ic héwe the BCH
property. (Note that in general, the exponential map is not globally surjective for loop

groups.) | ‘ |
We will now describe the adjoint and coadjoint action of the centrally extended

loop group LG on the algebra fg. Denoting an arbitrary element of zg by

(fria) = f(t) +iaC, f:S'=gaeR, (2.45)
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we can describe the adjo_int action of an elerﬁent g:St = G of LG on (f,ia) by

. . i [ -

Ady(f,ia) = (Adg(f), ia — g/‘; ~ dfrm(g 1(0)g'(l9),v-f(0))) . (2.46)
(The adjoint action of the central element S is trivial.) To prove that (2.46) is the correct
formula for the adjoint action, it suffices to demonstrate that taking g close to the identity
reproduces (2.44) and that the action is indeed a group action in the sense that AdyAd, =

Adpg. The first of these (;ond.itions is easily verified; when |
g =14 €eJs(n), (2.47)

and f = Jp(m), (2.46) reduces to

d, . . 0
Egle:OAdg(f’ za) = (2 achc(n+m)9 _5; A

= (ifa Tettm)s nn,-mab) -

27 : )
i d07m(in']_a(n)7 Jb(m) )) (2.48)

Although this calculation is performed in the complexified algebra, clearly the restriction

' ~ to real linear combinations satisfies the same equation. Recall that we are using the math-

ematician’s convention of £ = 1. To demonstrate that the action is a group action, we

write .
| AdnAdy(f,ia) = (AdhAdy(f),ia — 2), (2.49)
where | )
= gz; /027r d9_[ym(g72(0)g'(8), £(6)) + ’)’m(‘h_l(e)h'(a),Adg(g) £8)]
= gz,; / " a8 1m(g72(6)9(6) + g1 (B)R"L (K (8)g(8), F(6)) (2.50)
o ‘ :
Y ' . e
= = /0 48 7m((hg)~}(6)(hg)'(6), £(8)),
S0 ' ’

AdnAdy(f,ia) = (Adsg(f)ria— o= [ " a0vm (o) (6)(h)(@), SO)) . (251)

The dual space to Lg is L(g*) ® R. We can write elements of this space as pairs
(b, —it) where b: S — g* and ¢t € R. The dual pairing between the extended loop algebra
and dual space is given by '

. - 1 2% . l'
(b, =it), (fria)) = 5= [ 0 (b(6), £(6)) + at. s
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It is straightforward to verify that in order for this dual pairing to be preserved under the

group action, the coadjoint action of an arbitrary element g € LG on (b, —it) must be given

by _ .
Adj(b, —it) = (Ad;b + t(g'g™1 )", —it), , (2.53)

where we have deﬁned a dual map * from g to g* such that

(g*,'f).v=_'rm(g,f), Vf,geg- o (2:54)

This map is well-deﬁned since the Killing metric is nondegenerate for simple G. From (2.53)
we can calculate the coadjoint action of the algebra; we find that

(6, ~i0), (i) = o= [ 40 [6(0),70), w(O) + trm (W@, SO, (259)

in agreement with (2.44). _

Just as for finite-dimensional ‘groups, we will find it useful to define simple roots
for the centrally extended algebra Zg. IfGisa _simple finite-dimensional gioup of rank r,
and we denote the highest root of g by %, then we define the generators’a.ssbcia.ted with the
r + 1 simple roots of f,g to be . | -

e = {_ejm)" e (2.56)
e—ya)y J=r+1

The space of roots for Lg is naturally described Hy Z x ®, where the integral parameter is the
mode number and & is the root space of g. (Often, an auxiliary operator generating rotations
about S ! is introduced, for which the mode number is the eigenvalue; this formalism has
the advantage of keeping the interpretation of a root as an elément of the dual space to the
Cartan subalgebra, where the dual of C is 0 and the new Cartan subalgebra is RQRC ®tqy)-
We wﬂl forgo the extra complications in notation which would be involved in this formalism,
and we will simply take the mode number as a.n extra parameter in the root space.) In
this space, we define a positive root (n,a) > 0 to be any root which can be written as a
sum of the simple roots with nonne/\gative coeficients. For a general representation, positive

weights can be defined similarly. We have then a natural decomposition of the algebra zgc,

fgc = tqo) GBCC & @ Gan) © @ Ga(n)- (2.57)

(n,a)»0 (n,a)=<0
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Note that the central element has weight (0,0) in the adjoint representation. Note also,
that the adjoint representation is not highest weight. Just as in (2.56), we can define the
rest of a Chevalley basis for Lgc by

oy 1<j< |
fj={ Tie) =I=T (2.58)
ey-1)y J=THL '

hions | 1<j<
hj=1 O | ST (2.59)
3Ym(hy, hy)C — hy), J=7+1 .

Using this basis, the Cartan relations (2.12) are satisfied, with a singular Cartan matrix A '
Using the Cartan matrix approach, a general class of affine algebras can be defined which
contains in particular the centrally extended current algebras described here [41].

The main result we will need about simple roots is that juét as for finite-dimensional
groups, the simple roots of zg geher-a.te the subalgebra S of positive roots. This result can
easily be seen, as follows. Certainly, if « € &, is a positive root of g then’ea(o) isin S,
since e, is in the subalgebra of posifive roots of g, which is generaJted by the simple roots
of g. The root €_y(1) is a simple root of fg, and is thus in S automatically. Since the roots
of g form an irreducible representation of g (the adjoint) with lowest weight —, we can
reach any root eg(;) by commuting positive roots eq(g) With e_y(1). Since ¢ # 0, there is
an element h = —hy /2 of the Cartan subalgebra of gc which satisfies [h,e_y] = e_y. The
first Fourier mode of this operator, h(1), is an element of S from the above argument, so
[(hays e—p)] = €_y(2) € S. Continuing in this fashion, we see that all generators associated
~ with positive roots are in .S . Similarly, the negatives of the simple roots generate the algebra
of negative rooté, again as in the finite-dimensional case.

We now review briefly the representation theory for centrally extended loop groups
and their algebras. In the case of finite-dimensional groups, we had the result that all
irreducible representations are highest weight representations. This is not the case for the
groups LG. We shall restrict attention, however, to a class of irreducible representations
which are of physical inferest; all the representations we shall consider are highest weight.
To begin with, we will restrict attention to representations on vector spaces V which can

be written as direct sums of weight spaces

B Vi | (2.60)

(n$)EZ Xt
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Not all representa,tioxis are of this form, since some representation spaces do not admit an
-action of the rotation group S! which commutes with the constant generators Ja(0)- We will
further restrict to the class of répresenté,tions for which the decomposition (2.60) contains
only weights (n,%) with n < m for some integer m. These representations are referred
to as “bositive energy” representations, because the mode number m ~ n can be related
to an energy operator of a physical syétem. From now on,v-unless otherwise noted we will
- assume that all representations of LG and its algebra are positive energy representations
which admit the decomposition (2.60). As an example of a representation which does not fit
in this category, consider the adjoint representation of LG on fg, which has both positive
and negative mode numbers of arbitrary magnitude. It can be shown that all irreducible .
representations in the category of interest admit unitary structures [53]. We shall discuss
these unitary structures further in Section 2.6.

| With the above restriction, the representation theory of the groups LG can be
described in a very similar fashion to that of the finite-dimensional simple groups. In
fact [53] , it can be showxi that all irreducible representations of the algebra Lg of the
desired type are highest weight representations. Note that we have defined highest weight
representations with respect to the choice of simple roots given in (2.56). In some of
the literature, these representations are referred to as “antidominant” represenf:ations, due
to a different convention for positive and negative roots. The fact that all irreducible
representations are highest weight can be seen fairly easily by showing that the subspace
of highest mode number n must admit an irreducible representation of the subalgebra 9(0)
of Lg generated by the 0 modes J,(); since this representation is i_rréducible, it must be
finite-dimensional, and therefore must contain a highest weight vector which is annihilated
by all simple roots of LG. ‘ A - )

Thus, we can describe every repreééntation of fg By an integér k (the eigenvalue
of C, also called the level of the repiesentation) and a highest weight vector v, with weight
(n,A). Since the mode nmber n of the highest weight vector can be shifted by an arbitrary
integer, we will take n = 0 for all representations. Finally, by examining SU(2) subgroups
of LG, it is possible to show thét k and A must satisfy an additional relation for a highest
weight representafion of Lg to extend to a representation of LG. From (2.40) and (2.41),
we know that the eigenvalues of the operators 213 and 2f3'deﬁned in those equations must

be nonnegative integers when acf’mg on the highest weight state v. It follows that for all
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Toots a, we have
‘ 0. (X ha) < 5 Rrm(has ho) (2.61)

(Recall that the weight A is naturally in the dual space {g.) It can also be shown [53] that
for any k, A satisfying the constraint (2.61) an irreducible representation of LG exists. Note
that the condition (2.61) indicates that for-a given level k, there are a finite number of
distinct irreducible répresenta.tions of IG.

The Borel-Weil theory which is used-to describe irreducible representations of
finite-dimensional compé;ct groups can be generalized to cover the groups I ; however, the
apparatus used to implement the construction in the infinite-dimensional case is consid-
erably more sophisticated [53]. This construction is again closely related to the coadjoint
orbit technique which we will describe later in this thesis. As in the finite-dimensional case,

s

one can construct a homogeneous space
LG/(Tg) x S*) = LGc/B~, (2.62)

where T(q) 1s the zero mode restriction of a maximal -subtorus of G, S! is the central
extension, and B~ is a Borel subgroup formed just as in the finite-dimensional case from
the group whose Lie algebra contains the negative roots of Lg and the zero modes of a Cartan
subalgebra (and also C ). Because LG has an analytic structure, we can put a coordinate
system on this quotient space just as in (2.20) (with an infinite number of coordinates
{zZa(n) : (1, @) - 0}). We will use such a coordinate system when describing coadjoint orbit
representations of loop groups in Section 2.5.3.

Finally, we will give a simple example of a representations of aloop group. Consider
the group LSU(2). For SU(2), weights are given by a single integer 25 = (A, h4) = (A, 2J3).
The inner produc‘:t Tm satisfies Ym(h4,hy) = 2 From (2.61) it follows that at level k, the
allowed highest weights A satisfy j < % ' Thus, for k£ = 1, the only allowed representations
of ISU (2) have j = 0 and j = 1/2. Consider the representation‘with j = 0. For each n, we
have an su(2) suba.lgebfa of the current algebra generated by

Iitny = ex(an) (2.63)
' nC
Iy = < hy(0y/2.

The eigenvalue of I3(,) on v is n/2; so the operator If?;l) must annihilate v. Based on this



CHAPTER 2. COADJOINT ORBIT REPRESENTATIONS ’ 27
m = (¥, J3(0))
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Figure 2.4: Weights of representatioil (. k) = (0,1) of LSU(2)

observation, we graph the weights of the representation (j,%) = (0,1) in Figure 2.4!. In
general, highest weight 'represex'l;ca,tion_s of LG have this general structure. The subspace
with mode number 0 carries an irreducible representation of the group G, and the subspaces
with ﬁﬁ:ed mode number contain a finite number of irreducible representations of G, with
highest weight vectors whose weights increase approximately as vn. We will discuss the

detailed structure of these representations further later in this thesis.

2.1.3 The Virasoro group

We will now consider our final example, the Virasoro group. The Virasoro group is
the universal central extension of the group Diff S? of smooth diffeomorphisms of the cirde
S!. Unlike the centrally extended loop groups, the Virasoro group does not admit a locally
1-1 or onto exponential map from its Lie algebra. We shall, however, avoid this difficulty
by analyzing a more well-behaved group which has an equivalent algebraic structure.

! Note that the weights of this representation (called the fundamental representation) are ostensibly given
in [53] (Figure 3, Chapter 9; pp. 180). The weights ir that figure are different from those shown here. By
examining the character formula from [53} (Chapter 14; pp. 282), it is clear that the weights given here
are correct and those in the reference are incorrect. Apparently, the error in [53] is that the inner product
should be defined (in their notation) by ||u|]* = u?/2, not by {|u||® =«°.
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The group Diff S! is defined to be the group of all smooth ofientation-preserving
diffeomorphisms f of the circle S, ‘

DiffS* = {f : §* 35 57| fe Cc™(s",5M)}. O (2.69)

The group multiplication is defined by the composition' of maps, so (g - f)(0) = f(g(0)).
The Lie algebra of this group is the algebra VectS! of smooth vector fields on S!. Writing .
a vector field f as a function f : S — R, the Lie algebra product is given by

[£(6),9(8)] = f(0)g'(6) — g(O)F'().- = (2:65) -

Just as for central extensions of loop groups, it is possible to find a single central extension
DIffS! of DiffS! which is universal in the sense that all other central extensions can be
realized by taking a quotient by a finite cyclic group. This universal central extension is
the Virasoro group. We denote its algebra by VectSl. Elements of VectS! are of the form
(f, —ta), with £(0)8/06 a vector field on S* and @ € R. The commutation relation between

elements of VectS1 is given by
’ . i 2% ,
(0f, —iar), (9, —ian)] = (f9' = of's o= [ (FO"6) = 9(OF"©))36) . (266)

Defining the (complex) vector fields I, = ie"""a/ 96 in VectS 1. we can define the usual

Virasoro generators by

L, = (l,,0); forn # 0,

1 : )
= — . 2.67
Cc = (0,1). '
The commutation relations then take the standard form
[Lm’ Ln] = (m - n)Lm+n + ﬁ(m - m)ém,—n’ - (268)
[C,L,] = o. '

The Virasoro algebra is defined to be the complex Lie algebra .spa.nned by the'generators
(2.67). As in the case of current algebras, it is traditional for physicists to treat the operator
C as a c-number c, whereas mathematicians leave € in operator form and take ¢ to be its
eigenvalue in a specific repfesentation.. For the purpose of the coadjoint orbit description of

‘Tepresentations, we will adhere to the latter convention. .
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 We will ndw briefly describe the adjoint and coadjoint action of VectS! on 1tse1f
and its dual space. The (smooth) dual space to Vect 51 consists of pairs (b, it), with b(6)d6?
‘a quadratic differential on 5, and ¢ € R. The dual pairing between (b, it) and an element
(f,—ta) € Ve:t\Sl.isgiven by |

(G,i0), (=il = [ 8(0)7(6)d0 + at (2.69)

For this pairing to be invariant under the action of the algebra Vect! Sl, (b, it) must transform
under the coa.djoint action by’ '

t

53 f"0). (2.70)

Ad‘('f,-ia)(ba it) = (Zb_f, + b’f -

Using these equations, it is possible to derive formulae describing the coadjoint action Ad*
of the group DiffS! on the dual space Ve’c?S_ 1*; however, we will noi: need these formulae
since the orbits of the cé)"a.djoint action with which we will be concerned are topologically
. trivial (see Section 2.5.4). ‘ , | |
~ Unlike the centrally extended loop groﬁps, the Virasoro group cannot be described
by the formalism of simple roots and the Cartan matrix. In'many ways, the Virasoro group
is s’gructur.ally similar to finite-dimensional non-compact groﬁps, while the loop groups are
more similar to compact groups. Nonetheless, it is possible to make a definition of positive

and negative weights and roots for the Virasoro algebra. The Virasoro algebra has a natural

- decomposition _
| DiffS! = (CC & CLy) @ V. ® V_ (2.71)
where | :
Vi = CL, , (2.72)
n>0 . ) . '
and S :
v.=cCL_. . (2.73)
n>0 ' v

are defined to be the spaces of positive and negative roots of Dﬁf\Sl. (Technically, these are
the spaces of generators associated with the positive and negative roots; we will simplify
notation by referring to these generators as themselves beh}g the roots. This will not lead
to confusion, since the roots and generators of this algebra are in a 1-1 corréspondence, just
as is the case for compact groups.) The operators C and L, form a maximal commuting

subalgebra of the Virasoro algebra. On any irreducible representation space V of DEF\.S'I,
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the eigenvalue of C is a constant ¢, and the representation space can be decomposéd into
subspaces with distinct eigenvalues of Lo '
V=@V, : (2.74)
' neZ : ,
where Ldv = nv for all v € V,,. We take n to be the weight _of the space V,;; according to
the definition (2.72) of positive roots, a ;veight n is “positive” when n < 0 (this unfortunate
terminology arises from the mergin_g of well-established conventions in mathematics and
physics for highesf weight representations and Virasoro generators).
7 At this point, one might be tempted to define I to be the single simple root of
Diff51. Unfortunately, however, the generators {Lg, L4y} form a closed s_ubélgebfa of the
Virasoro algebra, isomorphic to the algebra of SL(2,C). Thus, it is impossible to define the
Virasoro algebra from this subalgebra with any choice of Cartan matrix. It is impossible to
choose more than one simple root for the Virasoro algebra, sin;:e then roots could not be
‘uniquely written as a linear combination of simple roots. For our purposes,. however, the
only result about simple roots which will be used in the following development is the fact
that the simple roots generate the subalgebra of positive roots.' To this end, we can select
the pair of roots L, L, of the Virasoro algebra, and denote these roots to be “quasi-simple” .
roots. These roots do indeed generate the algebra of positive roots, which can be seen
iﬁductively by observing that [Ly, L,] is nonzero and proportional to L,y for n > 2. In
the general analysis in the sﬁbsequent sections of this chapter, whenever we are discussing
a general Lie group and its simple roots, we include under consideration the Virasoro grdup
and its. quasi-simple roots Ly, L,. : l | |
In discussing representatioﬁs of the Virasoro group, vwe will again restrict attention
to a category of representations of particular physical interest. This category of represeﬁ-
tations consists of highest weight representations which admit a unitary structure. Since-
some highest weight representations do not admit unitary structures, this means that we
will restrict attention to represeﬁtationswith a certain set of values for the highest Wéight.
A highest weight representation of the Virasoro algebra VectS! is simply a repre-
| sentation which admits a decomposition (2.74) such that for some weight h the space V}, is
+ one-dimensional, and all spaces V;, with m < h are zero-dimensional (recall the convention
of positivity for the Virasoro roots)‘. For all values df h and c¢ (c being the eigenvalue of
C), there exists a unique irreducible highest weight representation of the Virasoro algebra.

These representations do not all admit unitary structures, and cannot all be integrated to
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representations of the Virasoro group DiffS1. A theorem by Goodman and Wallach, how-
ever, states that all unitary representations of the Virasoro algebra can be integrated to a
continuous unitary representation of the Virasoro group [36]. This theorem is based on a
conjecture due to Kac [42]. Since we are a.ctua.ll& only interested in unitary representations,
it will sﬁfﬁ_ce to categorize 'representa.tions of VectS! which admit unitary structures.
The set of values (k, c) for which the Virasoro é.lgebra admits an irreducible unitary
- highest weight representation is a well-known'result to physicists. We will simply quote the
result here, although in Section 2.6 we will briefly discuss the formalism used for its proof.
The result is that unitary representations break up into two categories. In the first category
are all pairs (h,c) with ¢ > 1 and h > 0. The. second category comsists of the so-called
“discrete series” of representations, which have o

6

T m(m+1) (2.75)

c=1

and : .
po Umt+)p—mg®—1
- 4m(m + 1) ’

for integers m,p and ¢ satisfying m>2and 1<g<p<m-—1.

- (2.76)

We conclude this subsection with a description of the géometry of the Virasoro
group ‘and a set of coordinates on a quotiént space analogous to the homogeneous §p$ces
G/T for conipa.ct finite-dimensional groups. |

As mentioned above, the Virasoro group has a poorly behaved eﬁcponentia.l map,
which keeps us from defining coordinates in a neighborhood of the origin as we did'in the
cases of compact groups and loop groups using (2.20). The failure of the exponential map
to be 1-1 and onto follows from two important features of this group, which we will now
describe, following Milnor [51]. To begin with, we note that because the extension of the

| diffeomorphism group Diff st is ceﬁtra.l, the failure of the exponential map must also occur
for the‘ unextended group. Thus, we will focus atténtiop here on the unex‘tended_ group.

| The first aspect of the full diffeémorphism- group which gives problems for the

exponentiai map is the inclusion of diffeomorphisms which have no fixed-points. From

the existence of such diffeomorphisms in the group, we can prove that the exponential

map is neither locally 1-1 or onto. To see that the ﬁiap is not locally 1-1, consider the

| 'diﬁ'eomorphis;n ¢ : S' — Sl given by ¢(8) = 6+ 27 /n where n is an integer. For any vector

field f € VectS! which is nowhere zero (f(8) # 0 V8 : 0 < @ < 27) and which is periodic

s
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with frequency » (f(8 4+ 27/n) = f(8)), there must exist a real number ¢ € R such that

#(8) = e4(8). : (2.77)
This follows because ef(8) satisfies
a ° -~
5.2 (6) = £ (0)), (2.78)
S .
so ‘
. ¢
F(6) = 6 + / dsf(e (8)), (2.79)
. 0 : - .
and when f is periodic with frequency n it suffices for
_ ) _
- / dsf(e* (8)) = 2F « (2.80)
! Jo n

to hold for any value of 6 to guarantee that the condition (2.80) holds for all values of §. It
follows that the péribd.ic diffeomorphism ¢ lies on the one-parameter families corresponding
to the fra.jectories under the exponential map of an infinite number of elements of the Lie
algebra; thus, the exponential map is co-1 at each point ¢. Since by choosing n large,
we can make the diffeomorphism ¢ arbitrarily small, the exponential map is certainly not
locally 1-1.

In a similar fashion, we can use the existence of diffeomorphisms without fixed-

points to show that the exponential map is not surjective. Consider the diffeomorphism
. 27 . 2
o(6) =6+ - + esin“(né), - _ (2.81)

where € € 1/n. The diffeomorphism ¢“'dearly has fixed-points at 8 = wk/n for integral k,
however no 6ther points are fixed under ¢". Because ¢ has no fixed points, if ¢ = ef for .
some vector field f it follows that f can have no zeros. But by the same argument as above,
if f has no zeros and e™f(0) = 0 then e"f(§) = 6 for all 6. It follows that ¢ is not in the
image of the exponential map. Since ¢ can be taken arbitrarily small by taking n arbitrarily
. large and ¢ arbitrarily small, it follows that the exponential map on VectS?! is not loca.lly.
surjective onto DiffS!. (Acttia.lly, here we must be careful about our definition of local;
technically, Diff 5! as a group is modeled oﬁ a Frechet space — see below. In fact, however,
it is still true that any neighborhood of the identity in Diff S! c’onté.ins some diffeomorphism
of the form of ¢.) _ '

We see then, that the existence of diffeomorphisms without fixed-points in the

diffeomorphism group makes the exponential map from the algebra of vector fields rather
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poorly behaved. In fact, still more problems arise from the inclusion of non-analytic vector’
fields; this is the second problem referred to above. As an example, take f to be a vector
field which vanishes with all derivatives at § = 0, but which is nonzero in a region /2 <
6 < 37 /2. The constant vector field J = —ily = 1 can be exponentiated to form the rotation
diffeomorphism R, satisfying Ry(0) =0+ 9. If the Lie group Diff S had a well-behaved
real .a.na.lytic structure, the adjoint action of the group on the algebra which gives -

(BofR)O) = fO+4) (2:82)
could be descriBed by an exponentiation of the adjoint action of the algebra on itself
(1, f]= adsf = £ e
However, since f and a.]l its derivati\-fes vanish at 8 = 0 it follows that |
Ce¥rf0)=0 v¢, - (2.84)v

which contradicts (2.82). Thus, the analytic structure of DiffS? is further disrupted by the
' e:ustence of non-analytic diffeomorphisms.

In order to accomplish the coadjoint orbit construction of representations of the
Virasoro group, we will need to have coordinates on a homogeneous space of the form_
Diff S'/S!. Although by the argumen-ts above, such @ coordinate system cannot directly
Be constructed using a formula like (2.20), it is possible to proceed formally as though
such a formula were applicable. This approach has been successfully used in the past, and
leads to correct results for the curvature and other properties of the spa.ée Diff /5! [66]
(the curvature result was first obtained by Bowick and Rajeev usiﬁg a generalization of a
method of Freed [20, 30]). We will make some attempt to justify the use of this type of
coordinate system here, by considering a closely related group which is more nicely behaved.
Finally, however, the justification for the formulas we will derive is that they successfully
give algebraic representations of the form expectéd from the coadjoint orbit construction.
A more rigorous denionstra._tion of the validity of the methdd; used here is left as a vproject
for further research. »

- We now sketch an argument for the validity of formula (2.20) on a group with an al-
gebra isomorphic to the Virasoro algebra. To begiﬁ with, the homogeneous space Diff S1/S?
is the space of the infinite-dimensional manifold of the group DiffoS?! fof diffeomorphisms of
s1 which have a fixed point at 8 = 0. By restricting to this group, the problems associated
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with diffeomorphisms without fixed-points are removed. The only obvious difficulty which
remains is the existence of non-analytic diffeomorphisms. For our purposes, and as far as
most physicists are concerned, we can restrict to the subgroup of DiffpS! of real-analytic
diffeomorphisms, which we denote Dy. This group has none of the problems described
above for its exponential map;‘ however, it is still not clear whether this group admits a
real-analytic structure. We will now show that a dbsely related group with an isomorphic
algebra can be given a real-analytic structure; we will denote this group by V, and we will
show that Do C V. Although this result does not prove conclusively that Dy admits a
| real-analytic structure,‘ it indicates the plausibility of this assertion. For those purists un-
willing to accept this statement withoﬁt.a. more rigorous proof, the discussion in the rest of
this chapter should be taken to apply fb the formal group V, wifh the homogeneous space
DiffS'/S? being the formal quotient of V through the action of Lo.

) We define the group V to be the set of all formal power series in z with leading

term proportional to z and leading coefficient positive,
,

V={f=fiz+ fiz’ +--- € zR[[z]]: 1 > 0}. (2.85)

We can deﬁne a topology on the space of V by treating V as a subspace of the vector space
A = zR[[z]]. We take a local base around 0 € A for the topology of A to be given by the
countable family of open sets

B(n,m)={feV:fi< %.Vi < m}, " ' (2.86)

where n and m are integers. The topology on V is then that induced by the embedding in
A. Since the topology thus defined on V has a countable, convex local baéis, it follows that
V has a metric invariant under linear translations on the vector space [56]. It can be shown
that V is complete in this metric, so Vis a Frechét space. It is also possible to show that
A has no bounded neighborhood of 0 with the resulting metric, so V cannot be a Banach
space. The technical details of what type of space V is modeled on will not concern us here; |
however, it is significant that V is modeled on a Frechet space, since the essenﬁal problem
here is to show that a group modeled on a Frechet space can have a real-analytic structure.
Having defined a topology on V, we can now define a group stmcturezgiven by
composition. Given elements f = fiz + f222 + --- and ¢ = g1 + g22% + - -, we define
g-feVby
(9-H)=) = £(g(2)) = 1z + caa® + -+, (287)
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where o

ck = Zfsgllglz ** 'gl.v (2‘88)
~ with the sum taken over all s,ly,...l,> 0 with k = Iy + -+ -+ I,.
The inverse can be computed; if ¢ - f =1, then

A= lYa (2.89)

fx -g* [Z Ssgy - '91.] k>2,

s<k

with the sum ta.ken over the same range as Before, however with the additional restriction
that s < k. |

From these explicit expressions, it is easy to verify that multiplication and inverses
are continuous in the chosen topology, so V is a Lie gi‘oup modeled on a Frechet space.

Furthermore, we can define a smooth “square root” operation in V. If f = g2, then we have

@ = (A | | © (2.90)

g = (fe— Y Gegt, - -q1.)/ (g1 +9F) k>2,
1<s<k

where the sum is again as before, except now we restrict 1 < s < k..
' Now, we can prove the further claim that the exponential map from the Lie algebra
of V to V is 1-1 and onto (globally). The Lie algebra of V is exactly the space 4, with the

Lie bracket of two vector fields u = w1z + uo2? + --- and v = v;z + voz? + - - - given by

[u,v] = w = wyz + woz? + - - -, o (291)
with
A N
w; = 0 - _ - (2.92)
. N
Wy = Z J(Uk—j4105 = UjV—j41)-
J=1

The Lie bracket operation on the algebra is clearly smooth in the same topology we had
before. ‘ ,

The .proof that exp: A —» Vis 1-1 and onto essentially follows from iterating the
square root.map above. If we define f(® by ) = f, f(n=1) = f(n). (n) then by iterating
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the square root map we can show that the limits

g = Im (2°(f"-1) (2.93)
g = Jlim (2"f,£")) k> 2 | -

exist. We then define g = g1z + gzz(:2 + -+, and have ¢ = f. Since each function f has a
unique “lJogarithm” g, the exponential map is 1-1 a.nd. surjective. -

We have thus shown that the Lie group V, which is modeled on a Frechet space,
has a 1-1 and onto exponential map. The Lie group Dy can be identified with the subgroup
of V consisting of power series which are a) convergent with all deriva.tives.for all z, b)
periodic in z in the sense that f(z 4 27) = f(z)+ 2, and c) monotonically incréasing inz
(f/(z) > 0 Vz). The topology on Dg induced by this embedding is different from the usual
topology, however the group opera.tion‘is smooth under both definitions. In order to prove
that the exponential map on Dg is 1-1 and onto, it would suffice td demonstrate that the
square root operation defined above for V is closed on Dg. In fact, we assert that it suffices
to show thatif fEe Do CVand f=g- gin V then condition (a) holds for g. That is, if g
is convergent for allvz: conditions (b) and (c) on g follow from the same conditions on f. A
‘brief outline of this argument will now be given to conclude this subsection.

Assume that f and g are as above, with f = ¢ in V and f satisfying conditions
(a), (b), (¢), and with g satisfying condition (a). It follows from the fact that g satisfies the
differential equation ¢’(g(z)) = f(z)/¢'(z), that if g has a bounded continuous derivative,
then g is monotone increasing. It is then fairly easy to see that the following conditions

must hold on g:

- f(z)>g(z)>z, when f(z)>z _
fl@)=g(z)=2, when f(z)=z (2.94)
f(z) < 9(z) < z,  when f(l.'z:) <z

‘To see that these conditions must hold, assume that Zg, T are consecﬁtive fixed-points of g
(and therefore also of f). If g(z) > z for zo < z < z; then g(j(a:)) = f(z) > g(z) > z since
g(z) < z1, which follows from the monotonicity of g. The ofher conditions can be proven
in a similar fashion. From these inequalities, we see that G(z) = g(z + 27) — 27 is also a
solution to G(G(z)) = f(z). If the solution g is unique, which it is in V, then g = G, and

g is periodic. We have thus shown everything except that the square root of an element
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of Do must be 'conve‘rgent. The exponentis.l map on Dy is thus at least 1-1; however, the
surjectivity of this map has not been shown rigorously. To be certain of working with a

group with the BCH property, one must consider V; in the remainder of this thesis, however,

we will ignore the details of this questxon and simply calculate with the Virasoro group and '

algebra as though it were well-behaved.

2.2 'Coadjoint orbit construction

"This section contains a description of the geometry of coadjoint orbit representa-
tions. The construction of coadjoint orbit representations is originally due to Kirillov and

Kostant [43]. The discussion here is similar to the presentations in [43, 64]; however, the

- notation is slightly different; in particular, some difficulties with signs are dealt with here

in an internally consistent fashion. _
As describéd in Section 1.1, given a Lie group G with algebra g, G acts on the
dual space g* by the cdadjoint action (2.7). For any b € g*, one can consider its orbit W,

in g* under the coadjoint action of G. It turns out that W, admits a natural symplectic'

structure, which may be defined as follows: There is a natural association between elements
of g and tangent vectors to Wb at b. Given an element u € g, we define @(b) € TbWb o be
the tangent vector to W, at b associated with ad%b. (Note that @(b) = 0 when u is in the
-stabilizer of b; i.e., when adjb = 0.) We can define a 2-form w on W, by

w((b), 5(8)) = (b, [, ). )

It can be verified that this 2-form is well-defined, closed, G-invariant, and nondegenerate,
and thus defines a G-invariant symplectic structure on W,. w also gives a Poisson bracket
. - structure to the space of functions on W;. In component notation, the Poisson bracket of
two functions f and g is given by

{f,9} = & (8:f)(8;9), o (2.96)
.wherg w' are the components of w1

. Every function f on W; generates a Hamiltonian
vector field vy on W, defined by ' o

v}=u"i(a,~f).v | o (297)

For any u € ¢, there is a function &, on W, which generates the Hamiltonian vector field

v . =&
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" 4. This function 1s given by
B,(b) = —(b, u). (2.98)
To see that ®,, generates the vector field %, we us-e the fact that .for any 'v. €g,
58;84(b) = —(b, [u o) '= wp ek, (2.99)
Since the vector fields ¢ span the tangent space to W} at b, we have |
8;2,(b) = wik@*(0), - - o - (2.100)
so
W9;8,(b) = @ (2.101)

- ‘The functions @, also satisfy the equation
{2, B} = Bpu)s o o (2.102)
since

{2u,8,) = WI(8:8.)(8;8,) = W (wind)(wid')
= wpd* 5= (b, [0, u]) = By (2.103)

In order to construct representations of G using the coadjoint orbit Wy, it is now necessary
to quantize the manifold W} according to the technique of geometric quantization [65, 59].
The first step in this procedure is to construct a complex line bundle £; over Wb.with
curvature form iw. This is known as “prequa,ntizé.tionf’. For this step to be possible, it is
necessary that 5= be an integral cohomology class (i.e., that the integral of w over a.ﬁy closed:
2-surface in Ws be an integral multiple of 27.) I such a line bundle £; exists, then there
is a natural homomorphism ¢ from the Lie algebra g to the space of .ﬁrst-ordervdifferential

operators on sections of £y, given by
d:u—a=-Vz+1i3,, _ : (2.104)

where V; is the covariant derivative in £; in the direction #. Explicitly, written in compo-

nent notation in a local coordinate chart,

3= —TB)(3 + AB)) +i84(D), C (2109)
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where A; is a connection on £ satisfying 9;4; — 9;4; = iw;;. To veﬁfy that ¢ is a homo—v
morphism, we must check that ‘ ,

- [2,8] = [, ]. (2.106)
We define £, to be the differential operator corresponding to the vector field —; i.e.,
£, = —1*8;, and we define 4, = @' 4;. With these deﬁnition_s,

i=E, — Ay + i, C (2.107)

One can easily calculate - .
[€ur 0] = Eue)r - (2108)
and | :
£u®u(d) = By 4y(0)- - . ‘ (2.109)
One also finds that '
fudo — Evdy = [H]iA.- — @84 — 8;A;) ‘ (2.110)

= A[u,v] -I‘-» i@{u,v] .

Note that since the vectors # span the tangent space to W} at each point, Equation 2.110,
along with the conditions that A, is linear in v and that 4,(b) = 0 when ad3b = 0, could
have been taken as the definition of a connection A4, associated with the derivative operators

€u. It is now trivial to compute the commutator

[2,9] = [bu— Ay +1Dy,& — Ay + 18]
= Lol ~ Al T 18] | (2.111)

= [w9)

Thus ¢ is a homomorphism, so we have determined that ¢ gives a representation of g on thé
space of smooth sections of £;. Unfortunately, this representation is in general much too
large to be irreducible; this is where the second stage of geometric quantization enters, which
- involves choosing a “polarization”. We will only be concerned here with a specific type of
polarization, the Kahler polarization. In general, choosing a polarization restricts the space
of allowed smooth sections of £, to a subspace containing only those sections which satisfy
some local first-order differential equations. A Kahler polarization of W, exists when W,

admits a G-invariant Kihler structure with w as the associated (1,1)-form. This condition
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is equivalent to the condition that W admits a G-invariant complex structure with respect
to which w is a (1,1)-form; i.e., the only nonvanishing terms in w have one holomorphic
and one antiholomorphic index. In general, if W, does not admit a Kahler polarization,
and is not equivalent to a cotangent bundle, there is no standard way to find a polarization,
and carrying out the geometric quantization program becomes extremely difficult. In case
Wy does admit a Kahler polarization, we can restrict the space of allowed sections of £;
to the space H; of holomorphic sections. When £, has a Hermitian metric, then we can
further restrict H; to be the Hilbert space of square-integrable holomorphic sections of L.
According to the general principlés of Kiri]lov and Kostant, the action of G on H; should
give an irreducible unitary representation of G for every b such that H, can be constructed.
This principle holds fairly well for compact seﬁﬁ-simple finite-dimensional groups, and even
for loop groups; however, it does not seem to hold in complete generality. Some of the
representations of Diff 51 constructed this fashion are nonunitary, and some are reducible,
as we demonstrate below. In the case of finite-dimensional compact simple Lie gfoups, this
construction is equivalent to the Borel-Weil construction outlined in Section 1.1, and the
Kahler structure compatible with w is equivalent to the complex "structure defined in (2.20)

for the homogeneous space G/T.

2.3 Gauge éxing

In this section, we prove several assertions which will simplify the process of explic-
itly constructing the coadjoint orbit representations in local coordinates. If one attempts to
use Equation 2.107 to construct explicit formulae for the operators @ as differential opera-
tors on Hp, one encounters several obstacles. First, it is necessary to calculate the functions
®, in local coordinates. Second, one must find an explicit formula for a connection A,
which satisfies (2.110). Finding these expressions in terms of a local set of holomorphic
coordinates is in general a somewhat nontrivial problem. Note, however, that the operator
i ca.n'b,e written as ' - '

&=t fur | C (2112)

where &, is the first-order differential operator defined above, and f, is a function of the

local coordinates satisfying

€ufo— Eufu = frun- ' (2.113)
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We will find it easiest to construct explicit expressions for the operators 4 by finding directly
a set of functions fu which satisfy (2:113), and which correspond to the representation in
question. We find these functions f, by making a simplifying assumption which amounts to

- choosing a simple gauge for the connection Ay. To ensure that the set of f,’s we c;)nstruct
_ in this fashion are equivalent to those we would get from (2.110) by a specific choice of

gauge, we will need the following two propositions.

Proposition 1 Given a coadjoint orbit W, of a group G, with Ly a complez line bundle
over Wy with curvature iw, and with §, and ®, defined as above, on a coordinate chart
corresponding to a local trivialization of Ly, if a set of functions f, on W) are linear in

u € g, and satisfy the conditions

(1) . §ufo — &ofu = f[u,v]:
(i) fulb) = i®u(b) when adib=0,

then the operators & = £y + fu are equal to the operators @ from Egquation 2.107 for some

choice of connection Ay on Ly satisfying (2.110).

Proof.  To prove this proposition, it will suffice to show that the functions AL (d) =
— fu(b) + 1®4(b) satisfy (2.110), are linear in u, and are zero when ad;b = 0. The last two
conditions follow immediately from the definition of f, and assumption (ii). To see that Al
satisfies (2.110) is a simple calculation:
qu:: - ng:" = fu_("fu + iév) - fv(‘fu + iéu)

= = flup] +2t®[u ) ' . (2.114)

= Aiu,v] + i@{u,v]..
Thus, Ay, is a valid connection on L, and the proposition is proven. O

Proposition 2 With the same premiseé as Propositibn 1, when G is path connected the

condition (ii) can be replaced by the weaker condition -
(if"). For some point by € Wy, fu(bo) = 1®4(bo) for all u such that adjby = 0,
and the result of pmposition 1 still holds. |

Proof. We need to pi'ove that when G is path cbnnected, condition (if’ ) implies condition

(if). Assume ad;b = O for some u € g,b € W;. Since bo € W, for some g € G we have
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b = Adjbo. If u stabilizes b, then ug = Ad,—1u must stabilize bo. But then we have

(b, u) = (Ad3bo, Adyuq) = (bo, uo), (2.115)

50 &4(b) = Pu,(bo). It remains to be shown that fu(b) = fu,(bo)- Since G is path connected,
we have a path g(t) in G with ¢(0) = 1 and ¢g(1) = g. We claim that

Sl =0,  (2119)

where u(t) = Adg()uo, and b(t) = Adj,bo. Defining

o) = L1 e g, e
we have p
| Eb(t) = ad3b(2), o - (2.118)
and | o
%u(t) = ad,u(?). o (2.119)

It follows that

%fu(t)(b(t)) = &0 fu)(6(8)) + fou(ey(0(2))
' = —&ofur)(0(2) + Lu(e) fo(b(2)) + Slo,u(e(b(?)) (2.120)
= 0,

where we have used the fact that @(t)(b(¢)) = 0. Thus, we have shown that

Fu(®) = fuo(bo) = i®yy(bo) = i®u(d). (2.121)

Since u and b were an arbitrary solution of ad};b = 0, we have proven that condition (ii’)

implies condition (ii), and thus the proposition is proven.O.

2..4 Local formulae

In this section, we derive a set of general formulae for the local realization of a
coadjoint orbit representation in a neighborhood of a point b in the coadjoint orbit W;. This
is done by first computing an exact local formula for the vector fields £, and then performing

a gauge-fixing to derive a general expression for a set of functions fu satisfying the conditions
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of Proposition 2. For finite-dimensional compact groups, the resulting formulae give a
representation of fhe Lie algebra g in terms of first-order differential operators acting on
a ring R of polynomials in a finite number of cemplex variables. When the group G is an
inﬁnite—dimenéional group, such as a centrally extended loop greup or the Virasoro group, .
 the realizations are again in terms of first-order differential operators acting-on a ring R of
polynomials in a set of complex variables; hewever,_ the set of complex variables becomes
infinite, and the differential operators are described by infinite series, with only a finite
number of terms acting nontrivially on any fixed polynomial in R. One important feature
of these explicit realizations of Lie .algebras in terms of differential operators is that the
differential operators associated with raising operators J,,a € ®4 in the Lie algebra are
independent of which representation of the algebra is being realized. The independence of
these operators from the highest weight of the relevant representation will be used in the
following chapters to simplify formulae for conformal field 'fheory observables calculated
using these representa.tions. |
The first step in finding a local realization of the coadjoint orbit representations
is to choose a set of coordinates on the orbit space W} in the vicinity of b. In Section 2.1
we described such a set of coordinates on quotient spaces of the form G/T where Tis a
maximal abelian subgroup of G, for all types of groups under consideration in this the31s
A given coadjoint orbit space W is homeomorphlc to a quotient space of G of the form
G/S where S is the stabilizing subgroup of bin G. (The stabilizer of a point p in a space
V which carries an action of the group G is the subgroup of G which leaves p invariant.)
All the coadjoint orbit spaces which we will consider here arise from elements b € g* whose
stabilizer is a maximal abelian subgroup T’; thus, these coadjoinf orbits are homeemorphic
to quotient épaces of the form G/T. We will describe these ceadjoint orbits more explicitly
 for speeiﬁc Lie groups in Section 2.5. In general, however, we can use the coordinates
{%a : @ € ®,} associated with the positive roots of a group G, which are defined through
(2.20), as complex coofd.inates on the coadjoint orbit spaces of interest.

Once we have a set of coordinates on W;, we can use explicit formulae for the
coadjoint action to calculate the value of the symplectic form w associated with the cpa.djoint
orbit W}, in terms of the local coordinates z,. As discussed above, the form 5= must be an
integral cohomology class in order for the coadjoint orbit to admit a holomorphic line bundle
Ly with curvature #w. For all the groups with which we are concerned in ‘thislthesis, there

is a set of coadjoint orbits which have a symplectic form w satisfying this condition. ‘These
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coadjoint orbits have the additional property that with respect to the complex structure
described by the coordinates (2.20), the symplectic form w is a (1,1) form. Thus, on all
these coadjoint orbits we can take a Kahler pola.rizatidn of the space of sections of £, by
restricting to the space H; of holomorphic sections. Locally, the holomdrph.ic sections of £
are described around the point b by polynomials in the variables z,. The action (2.104) of
the Lie algebra on the space of holomorphic sections reduces to a representa,tion of g in terms
of first-order differential operators @ on the space of these polynomials. The remainder of
this section is devoted to the derivation of a general formula for these differential operators.

For the rest of this section, we assume that a specific group G has been chosen, and
that a particular coadjoint orbit Wj satisfying the necessary conditions for. qua‘.ntizatibn has
‘also been selected. We will assume that the group G has a set of simple roots which generate
the subalgebra associated with positive roots; as described in 2.1.3, when G is the Vifasofo
group, the set of siﬁlple roots actually refers to the set {L;, Lo} of quasi-simple roots, which
also generates the subalgebra of positive roots. We will use a combination of physical ‘and
- mathematical notation for the generators of the algebra gc; we write all generators in the
form J,, where a can either be a root a = o € ®, or an element a = h € © of the basis
O = {ho|a € A} of the Cartan subalgebra. When J, is in the Cartan éubalgebra,, we write
a = h =~ 0, since a corresponds to a weight of 0. We use the physics notation fap€ for

algebra structure constants, so that
(Jas Jb) = i fop°Je- (2.122)
In particular, in this notation we have
i fra” = (o, h) fora € ®,h€0O. : (2.123)

All the equations in this section could be rewritten in terms of a Chevalley basis and Cartan

matrix; however, this does not seem to simplify the form of the results.

i

2.4.1 Vector ﬁelds
’I‘he first step in constructiﬁg the operators
Jumbat fa . (2.124)
which implement the action (2.104) of g on H, is to calculate the vector fields

o= —1g8/0zq | (2.125)
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associated with the coadjoint action adj, of J, on W;. Actually, these are vector fields in
the complexification of the tangent space to W3, since the generators J, are in gc and not
necessarily in g. The vector fields in the actual tangént spéce are constructed by taking
. the complex linear combinations of J, in g; since the left action of G on W leaves the
complex structure invariant, we are only interested in the holomorphic parts of the vector
fields £,. We are constructing operators v;)h.ich. will act on polynomials in the holomorphic
variables z,, so by taking the holomorphic vector fields (2.125) we actually will construct 2
representation of gc on the space of polynomials in M. ‘ v -
The holomorphic vector fields £, can be calculated by multiplying an azbitrdry
" element of the form (2.20) on the left by the group element exp(eJs;). The components
#$ appear as the order sﬁifté to the holomorphic cooi‘din’ates_ Zos a.I/ld can be derived by

writing the product exp(eJ,) exp(>" zqJo) in the form

eTeexp( Y zala) = exp [ > (za+ eﬂz)_Ja} f{Jalax0})+O(€) (2.126)

a€dy acdy

to first order in €, where f is some function of the generators J, corresponding to negative
roots and the Cartan suba.lgebra To exphmtly compute these vector fields, we use the

infinitesimal forms of the BCH theorem, -

X = exp(Y +e€ Z (ady )kX) + 0(62), » | (2.127)
iso F . ,

-

Y +eZ+eX  _ exp (y +eZ —¢€ E x a,dy)kX) eX 4+ 0(62), (2.128)
k>1

and

eXeY = eY+‘[,X’Y]e‘X +0(e?), - (2.129)

where By is the kth Bernoulli number (Table 2.2). The first of these equatlons can be
derived by writing :
< gle) = eXeY = Y7 4 () . (2.130)

and defining

g = gO)=e¥, ' (2.131)

, o
bg = a—6|€=og(e)= eV,
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From these definitions it follows that

g l6g=erx, (2.132)
But writing v
gi(e) = '+, (2.133)
we have ‘ ‘
] ' ,
5;(99:) = Zg: + Y bgr. (2.134)
It follows that .
, : o, _. _ _
5;(9¢ '89:) = 97" Zg, (2.135)
and thus that )
: 1 ¢ ad e ady :
g lég = / dtetdvz=(——— )7 (2.136)
0 _ ady

From this expression and (2.132), it follows by formally manipulating the power series in
ady that '

Z= (ea:’i”_ I)X l;) Zady )X, (2.137)

which gives (2.127). Equations (2.128) and (2.129) follow 1mmedla.tely from the same type
of argument. ' | ' )

We now give the general expression for the vector field components which arise
- from performing the calculation (2.126) using (2.127), (2.128) and (2.129).

Proposition 3 The components 4S of the vector fields £, are given by |

ag = - Z BiaCa (ah ->@k)Zay - - - Zay, d B (2'138)

k>0,Aa(k, a)

. where A is the minimum integer such thata+ay +az+...+ax >0 (A =0 when a > 0),

Ag(k,a) = {(al,ag, ey @k) Q1. 0k = 0,64+ a1 + a2+ ...+ ar = o}, (2.139)

Ca(a'l’ s ak) .= ik Z . falabl fa2bl b2 e fakbk_1a7 . (2'140)
byyeebiy T
and .
k .
= (—1)F1 Z e (2.141)

(By is the Ith Bernoulli number, as in (2. 127) and (2.1 53) The Bernoulli numbers and
values of Bk,x are tabulated for small values of the subscmpts l,k,A in tables 2.1, 2.2 at the

end of this section. )
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Proof. We begin by noting the identities

(ad(z zaJa))kJ = Z Ca(@1,-..,8k)2q, - . - Zay Jatay +...tars (2.142)
. @] peeesBp >0 )
and v
Cai(az,..., a,)Ca.,.al‘.*."_+a,(a,+1, e ,‘ak) = Cglay,...,ak)- (2.143)

Applying Equétio_n 2.127 to exp(eJ,) exp(> zoJo ), We have

a?p(eJa)exp( > zada) ~ | (2.144)
a€dy . .

— B | |
€xp ( Z ZoqJo + € Z k_fca(al,- --1ak)zal .. -zakJa+a1+...+ak) ’

QGQ.', ) ) . k>0,a1 ,...,a >0
where by z ~ y it is meant that z = yf + O(€?), with f some function of the J,’s with
a < 0. Dividing the terms in the exponential into generators J, with a > 0 and a < 0, this
can be rewritten as

exp(eJa)exp( Y zada) ~ | : ' (2.145)
acdy -

exp ( E 2qda — € Z ,Bl(c?,{ca(aly ceey ak)zal e 2g,Jatar+.tap -

a€®4 k>0,4F (k)

. By, ; " \
+e Z ﬁca(alﬁ ceay all)zal . 2‘111 Ja-|.-al«}-...+a11 ’

120,45 (11)

where ﬂ,Etz\ is defined by

' B k-1, Bty Bi,—i Bi,—i,., Bk '
,B(t) = _Zr _ _1)3‘*' 170 27 canid) —,  (2.146)
k.A k! t20>0,0$ll<zl;»<...<la<(z\ : LY (2 -14)! (I, - l,_1>)!_ (k- 1,)!

and the sets A‘f(k‘)“:a.re defined by
At (k) = {(a1,a2,---rar) 1 @15...,ax > 0,a+ a; +az + ...+ ar > 0}, - (2.147)
and

A7 (k)={(a1,a2,...,ak): a1,...;ak > 0,a+a;+ax+...+ar <0} (2.148) ‘
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Applying (2.128) and (2.143) to Equation 2.145 ¢ times, we get

exp(eJq) exp( Z Zada) ~

a€dy
. €Xp ( Z ZaJ — € Z 'Bk AC (al, ak)zal .- -zakJa+a1+...+ak (2.149)
a€dy k20,4F (k) ' ' .
B, B B;_
t+1-1 4 1ol -1
Z (-1) + 1_11_!1(12 i l:)! e l:)!Ca(al, cee3@)2g, .- 72a,Ja+a1+...+a,) .
o<y, <...<l,<l,A;(l)

Since ﬂ,(ctz\ = ,3(°°) for £ > A, to all orders in 2 we have

exp(eJs)exp( D zada) ~ ' (2.150)
acdy .
exp ( Y. zada—€ > ﬁ,ﬁ?i)ca(al,----,ak)zm ---ZakJa+a1+...+ak) ,
. \a€ds £20,4F (k) .

We will now show that ,BL % = Pk Using the fact that Bygyq = 0 for k£ > 0, it is not hard

to determine that

() _ _ Bk
,3 - -_k—!" )
ﬁ(oo) = be1, ' . _ )  (2.151)
. B,_1 By By,_,_ By
ﬂ(°°) = ‘ —1)tHk_—h L WSS — . forA> 1.
a20,1<112<;..<l.<)(\ ) (=D — ) (I = 1m1)! (R = 1,)!

' When A > 1, we can write a genera.tmg function for ﬂ,(c ,\) by

) ﬁﬁ?;’)yk-*xk: 3oy ( —z)+1 Z(l $(— x))’ (2.152)
k2A>1 A>m>0 s20 .
where
z B, .
= - Z 2.153
#(z) = gon (2.153)

From (2.152), it follows that

k=1
(°°) k B k+1
Bix =(— 1) k= 1)t -1) ) (2.154)
5 T~ S T
where we have used the fact that _

k-1 k

> B =0, fork>1. , (2.155)

=0 _l ‘ :

e
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From (2.151) and (2.155), it is also easy to vérify that ﬂ,(:g) = Pk, and ﬂ,(:f) = Bk,1. Thus,
for all £ and A, we have shown that ﬂ,(:;) = Bk, and Proposition 3 is proven.O

The result of Proposition 3 can be restated in terms of the vector fields &,.

Corollary 1 The vector fields &, are given by
. | 5 |
& = Z ﬂk,ACa(al, ceey@k)2g, .- Za > (2.156)

k>0,4F Zatay +:-tay .
where A, C,, B, and A} are defined as above.

When a = 0, we can use (2.151) to simplify the fbrmula,e for &, to
’ By 9

e = v —~——=Co(81,...,0k)2,, ...2q, 57— fora >0, 2‘.157

¢ kZO,aIZ.:.,ak »0 k! ¢ ) . * aza+al+...+ak . . ( )
and : _
]

=2, a . 2.158

én g% (e, h)za P forh € © (2.158)

Note that (2.158) could alsovha.v_é been obtained more directly through (2.129).)

2.4.2 Gauge fixing

' Now that we have explicit formulae for the vector fields &q,in order to constfuct the
operators J, it will suffice by the results of the previous section to ﬁn& a set of functions f,,
which are linear in the parameter u € gc and which satisfy conditions (i) from Proposition 1
and (ii’) from Proposition 2. We will explicitly construct these functions by making an
appropriate choice of gauge; before discussing the gauge-fixing procedure, however, it will
be u's‘eful to discuss some general features of the vector fields &, calculated in the previous
subsection. 4 |

The main observation to be made is that the ring R = C[{2q}] of polynomials in
the variables z, has a natural grading, according to the weights w € A in the root lattice
of the group G. Recall that the root lattice A C tg is the lattice generated by the simple

roots a € A.. We can associate to each variable z, a degree
degzy = a € A. : (2.159)
By giving the unit element 1 a degree

degl=0, v , (2.160)
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and by defining the degree of a prdduct of monomials recursively by

deg(f.é) = deg f + degy, ' (2.161)

we define the degree for all monomials f = z4, «--2,,; to be @3 + -+ + ;. The ring R thus
admits a A-grading

R= @ R., ‘ ' (2.162)
wEA
where
R, ={f € R: deg(f) = w}, | (2.163)
and where N | .
| 'RyRy C Rusy. ‘ (2.164)

We define a polynomial f € R to be quasi-homogeneous when f has a deﬁnite' degree
deg f € A. '
Considering the action of the operators £, on the space R of polynomials in the
Zq, we find that ,
€2Rw C Ruw—q when a %0, | (2:165)
‘and ‘ _
énf = —{(w,h)f for f € Ry,,h € O. (2.166)
Thus, the action of the vector field part of the operators J, on R has a very natural structure
- with respect to the grading. , |
We now prove a proposition which describes further the action of the vector fields
& on R; this proposition will be used in this section to calculate the gauge-fixed functions
fa, and will also be used in Chapter 3 where we describe in more detail the gc-module

\

structure of Hp.

Proposition 4 The unit element 1 in R, which we denote by | ), is the unique function in
R (up to scalar multiplication) which is annihilated by &, for alla > 0; i.e., |) is the unique

highest weight state in the module R under the action of the &, ’s.

Proof. Assume there is another function ¢ € R which is annihilated by {q for all a > 0.

Since R is graded, ¢ can be written as a sum of quasi-homogeneous functions,

6= bur u € Ru. (2.167)

w>0
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Take w to be a minimal nonzero weight with ¢,, # 0 (w is a minimal weight satisfying this
condition as long as there does not exist a nonzero weight y € A with w > y and ¢, # 0).
Now, let a be a maximal root such that some term in dw contains a factor of Zo: Py can

now be written in the form

bu=3 27 .S,'i’,,.a({za :8 ¢ o), (2.168)

m>0
where for each m > 0, g,(,,_)ma is a quasi-homogeneous polynomial of degree w — ma in the -
. set of variables 2 with 8 ¥ o. Since for a > 0, all terms in &, except the lea.dmg term

—3/82z, contain derivatives 9/ azg with § >~ a, we can compute

abo=— 3 mzm'ly.(p"l)m({ﬂ : B ¥ a}). (2.169)

m>0

For this expression to be zero, all the functions g,(”'i)ma would have to be zero for m > 0.
But then ¢,, would not contain any terms with a factor of z,, contradicting our assumption.
Thus, the only states in R annihilated by all & with a > O are the constant functions in
. | . o
| Note that the proof of this proposition also indicates that there are not even any
formal power series in C[[{2,}]] other than | ) which are annihilated by all &,a > 0. We
will mention this point again in connection with Virasoro representations.

The choice of gauge we “use to construct the functions f, is a gauge in which the
structure of the action (2.165), (2.166) of the operators £, on R is preserved for the operators

Ja, that is, we will find a gauge in which
JaRy C Ry (2:170)

for all generators J, (w — @ = w when a € ©). A priori, it is not clear that such a gauge
choice is possible. We will use (2.170) as an Ansatz for the functions f, = ja - &a- We.
now demonstrate that there is a unique set of functions f, satisfying this Ansatz and also
conditions (i), (ii’), and that therefore these functions f, correspond to a particular choice
of gauge by Proposition 2.

The first consequence of the Ansatz is that the functlons fa all lie in the ring R,
and furthermore that f, € R_,. Specifically, this means that v

fo = 0, forax> 0,
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fn € C, forheo, ' (2.171)
f-a € R,, forasx>O0.

We have chosen the element b in the cda.djoint orbit W}, to be such that the stabilizer of
b under the coadjoint action of gc is precisely tc. In the coordinates z,, b is the point at
which all coordinates are 0. By condition (ii’), it follows that the functions fj are given at
the point b = 0 by _

| fu(0) = i®n(b) = —i(b,B). C(2172)

Since the functions f; are constant functions in R, it follows that
fo=—i(b,R). (2.173)

We will now use (2.173) and the consequences (2.171) of the Ansatz to construct
~ functions f_, € R, for all @ > 0 which satisfy (i). For these functions, the condition (i) is

given by ' _ ) o
Eafe = Ecfa = ifac fa. - (2.174)

For particular choices of a and ¢, this equation reduces to the equations

thfa = —(a,h)f-a, Va>0,h€® | (2.175)

fafoa = Y ify gy fr Va0 - (2.176)
heO© .
§af-c = 0, Va,c>0wherec—a 0 (2.177)
bafoe = a(_c)“'cfa_c, Va,c > 0 wherec—a >0 (2.178)
Eaf-c— §—cf;a = if(_a)(_c) —a—cf—a—c’ Va; c> 0. - (2-179)

From (2.166) and (2.171), it follows immediately that (2.175) and (2.177) must hold. We can
use (2.176) to calculate the functions f_, for simple a. For a simple root a, the space R,
is one-dimensional and consists of all functions of the form f = zz, with z € C. The vector
field operator £, has a leading term —8/8z,, with all other terms containing derivatives

8/8zp with B > a. Thus, if we write
foa = 224, (2.180)

then
afea =~z = fo, = —i(b, ha)- (2.181)
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It follows that .
fea =b,ha)2e, Va € A. - (2.182)

(Note: in the case of the Virasoro algebra, this equation does not give the function f_, |
associated with the qua.si-simp_le root L,; this special case is discussed in the next section.
The rest of the analysis in this subsection, however, is still correct for the Vifa,soro algebra
ai'tér one correctly fixes the function f-2.)

Now that we have expressions for f, where a is either a simple root or an element
of the Cartan subalgebra, we can proceed to construct the remaining functbions fa induc-
tively, using (2.179). Such a construction is possible because the set of simple roots always
generates the algebra of positive roots. We will now proceed to prove that this construction
gives rise to a unique and well-defined set of functions fa for each a > 0, which satisfy
(2.175)-(2.179). '

Proposition 5 The functions f, € R defined by the recursive formulae

fo = 0, a>0,
fao = —i(b,h), he® ' (2.183)

foa = ibha)2a, €A,
-2

- v fa+¢ = ?"}T;.Z[fafc_fcfa]a a,c<0 ‘
are well-defined, and satisfy (2.174).

Proof. In order to prove this proposition, it is clearly necessé,ry to demonstrate that for a
fixed root d < 0, the last equation in (2.183) gives a well-defined function for fg = fot(d-a)s .
~ independent of the choice of a satisfying 0 > a >~ d. The fact that all functions fq are defined
by this equation follows again from the fact that the simple roots generate the algebra of all
positive roots. Because the functions f, defined through (2.183) clearly all satisfy (2.171),
we know that (2.175) and (2.177) are satisfied by these functions. What we must therefore
show in order to guarantee that the réma.ining conditions (2.176), (2.178), and (2.179) hold
and that the functions f, are well-defined, is that for every a > 0, there is a unique function

f _a € R, which satisfies the conditions

bafea = X ifun) s o | (2.184)
heo
befa = & c(__a)c_afc_a’, Ye :a>c>0, . (2.185)
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f—a = [{c-af—c §—cfc—a] , Ve a'>'c>'.0° : (2'186)
f(c—a)(—c) ‘

We will prow}e (2.184)-(2.186) by induction on a. As a basis for the induction,
we take the simple roots a = o € A. We have defined the functions f_, for simple roots
precisely such that (2.184) holds when a € A. In this case, there are no roots ¢ satisfying
a > c > 0, so (2.185) and (2.186) are vacuously satisfied. We now proceed by induction,
taking as the induction hypothesis the assertion that for all roots o’ satisfying a > o’ > 0,
conditions (2.184)-(2.186) are satisfied. In order to guarantee that these conditions are also

satisfied for the root @, we claim that it will suffice to demonstrate that

-1 . . .

EC—_:: [Ed—af—d - g—dfd—a] = Z ? o(—a) fe, (2.187)

(d~a)(~d) e |
Vd,c: a>d> 0,c> 0.

(where we have written foar as f-a when a’ < @.) That this condition implies conditions
(2.184) and (2.185) follows immediately when the function f_, is well-defined. However,

because the right hand side of (2.187) is independent of d, it also follows from this condition
that

- —i | |
e | = (a—af-a - E—dfd-a) - (bo~af-ar — E-a far—a)
S, (d—a)(—d) f (d'—a)(—d') o _
' Vd,d',c: a>d,d' > 0,c > 0. (2.188)

But by Proposition 4 this implies that the quantity in brackets is an element of C for fixed
values of d,d’. Since this quantity is an element of R,, and a > 0, the quantity must be
0. But this would imply that f_, is well-defined, and thus that (2.186) is satisfied for a.
Therefore, it will be sufficient to prove (2.187) in order to have a proof of the proposition.
We shall now demonstrate that (2.187) is satisfied, given the induction hypothesis. .
This is essentially a straightforward algebra.lc computation. Using the induction hypothesis

and the Jacobi identity, we have

Ec—;—— [ld—af-a — §—dfd-a] : o : (2.189)

famay-a)
- — [ > Frtoa) Cefod + Eimabefoa — i3 foy_g) Cefima — f_dfcfd_a}
f(a-ay(-a) E .

f—lTa' Z [fc(d_a)efef—d + f;(_d) efd-afe - fc(_d)efefd_a ~- fc(d_q)ef—dfe]
(d—a)(~d) € ' :



CHAPTER 2. COADJOINT ORBIT REPRESENTATIONS , 55

= f—'—l——:; Z [fc(d_a)e (bef-a —&~afe) + fc(;d)e (a—afe — fefd'—a)]
@-a)(=d)  © -

i X e P e
7 - > [fc(d—a) feeay’fa + Fya f(a-a)(e)"fg]
r (d-a)(-d) e "

P> (R
(d-a)(-) 9

= zfc(_a) fg.

We have thus shown by induction that the condition (2.187) is satisfied for all
a > 0, so the proposition is proven.O '

We now have an explicit set of formulae which define the functions fa in the gauge
fo € R_a. | .

2.4.3 General formula

We can now state the complete result of this section.

Proposition 6 An ezplicit representdtion of the algebra g on the space R of polynomials

in the variables {zo : @ € 21} is given by the operators
Ja=Es+ fa, = | (2-190)

where €, are the first-order differential operators given by (2.156), and fq are the functions
defined by (2.183). On the space of holomorphic sections Hp of Ly, this representation
corresponds to the coadjoint orbit representation in the particular gauge f, € R_,.0

Because the operators &, are independent of which coadjoint orbit W is used,
and the functions f, are 0 for a < 0, it follows immediately from this proposition that the
operators J, with a < 0 are independent of the chosen coadjoint orbit, and thus independent
| “of the highest weight of the associated representation. This feature of the coadjoint orbit
represenfations will be exploited in Section 4, where it is used to simplify formulae for
certain correlation functions of vertex operators in conformal field theories.

Note also that the explicit representations described in this section can be defined
for any highest weight representation of the Lie algebra, whether or not it is integrable to a
representation of the Lie group. Thus, the set of formulae give;l here are actually somewhat

more general than what we need for analysis of the coadjoint orbit representations.
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WET0 1 2 3 1 5 6 7 8 9
0113 -% 0 % 0 -mm 0 maw O
1 0 1 0 0 0 0 0 0 0 0
2 10 0 -3 -5 O 720 0 ~305% 0 TH09563
3 (0.0 0 g 3 TH —Tam 56 ©O0 . 150550
4 [0 0 o0 0 7 % oo 500 0455 3555500
5000 0 0 0 35 3@  ®p e 38w
6 |0 0 O 0 0 0 -5 —%% —3097 TIN5
710 0 | 0 0 0 0 0 0% 5470 15
gloo o o0 0 o 0 0 -5 —i5as0
9 {0 0 0 0 0 0 0 0 0 ;

Table 2.1: Values of Sk

362880

.86

" In the following sections and chapters we will give explicit examples of these repre-

sentations and study their properties further. We give here tables of the Bernoulli numbers

(Table 2.2) and the constants B which appear in (2.156) (Table 2.1) for convenience in

explicit calculations.

1lo 1 23 4 5 6 7 8 9 10
1 1 1 1 1 5
Bl =3 6 0 —35 0 55 0 -3 0 &

Table 2.2: Bernoulli numbers B;
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2.5 Examples of coadjoint orbit representations

In this section, we calculate some explicit examples of the coadjoint orbit repre-
. sentations described in the previous se'ctic;ns. We give the formulae in local coordinates for
the coadjoint orbit representations of the simple groups SU(2) and SU(3), the lodﬁ group
LSU(2), and the Virasoro group. The coadjoint orbit description of the representations
of the groups SU(2),SU (3) and LSU (2) are already understood from a global perspective
(in these cases, the coa.djbint orbit approach is equivalent to that given by the Borel-Weil
theory); however, an explicit realization for LsU (2) such as that given here has not previ-
ously been described. In the case of the Virasoro algebra, the representations arising from
the coadjoint orbit description have not been previously a.na.lyzéd in a complete fashion,
since the Borel-Weil theory does not hold for the Virasoro group. In this case, the explicit
formulae given here provide a useful tool for understanding previously unstudied aspects of

these representations.

2.5.1 SU(2)

We begin with the group G = SU(2). As.described in Section 2.1.1, the Lie algebra

g = su(2) is a 3-dimensional vector épace spanned by the generators iJk, k£ € {1,2,3}. The

effect. of the adjoint action of ¢Ji is to generate a rotation around the zi-axis in g The

~ dual space g* is also a 3-dimensional vector sp#ce. We choose a set 6f coérdina.tes br in this
space such that the vector

o b= (bi,bs,b3) €g* | (2.191)

ha,s coordinates

‘ be = (b,iJ). | (2.192)
In terms of these coordinates, the coadjoint action of ¢Ji generates a rotation around ’ghe
br-axis in g*. Given a vector b = (b1,b2,b3) € g*, the coadjoint orbit of b is given by

W, = {b' € g" : [b'|> = %}, (2.193)

which is just the 2-sphere in g* of radius b = |b]. We will now expiicitly calculate the 2-form
w on Wp. We choose_é, canonical element b = (0,0, -b) € W,. To calculate w at the point
b, we'need only find the explicit correspondence' between elements of g and T}, Ws. Under
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the Lie algebra coadjoint action, we have

a.d:]lb = (0,,—b,0), v »
adiLb = (b,0,0), (2.194)
adfb = (0,0,0).

It follows that

il i, 1
-wip(b) = (b, [, - 2] = 1. (2.195)
\ b b b
Since w is G-invariant, it is easy to see that w is defined globally on.W; by -
. o |
wij(b) = — 3 €ijicbi. | (2.196)

In order for w/2r to be an integral form, we must have Jw,w/2n =2b € Z,so0 b must be
a half-integer. Thus, whenever b € Z/2, we can construct a line bundle £, over W, with
curvature form iw. '

v Because the stabilizer of b under the coadjoint action is precisely the maximal
subtorus I" = <[Ie2i‘9]3 : 0 £ 0 < 27}, the coadjoint orbit space W} is homeomorphic {;o the
space G/T. Using the results of Section (2.1.1), we ha::re a simple complex coordinate system
on this space. As in (2.20), given any complex number z, it is possible to find functions
a(z, %) and B(z, z), with $(z, 7) real, such that

ezJ+ ea(z,E)J_eﬁ(zvf)Ja €G. ‘ (2197)

The functions a(z, Z) and f(z, Z) can be calculated explicitly by working in the fundamental
representation of SU(2); one finds that

] =2
a(Z, 2) = W, (2.198)

B(z,2) = In(1+|2[?).

By the general argument given for (2.20), z gives a natural G-invariant complex structure
to the space Wj. In fact, W} is just the space S2, and z is just the usuai complex coordinate
on 5% given by project;ibn from the south pole onto C, which is na.tﬁrally invariant under
the rotations generated by SU(2).

‘We can now rewrite the symplectic form w in terms of the compiex coordinate z.

We begin by reWriting fhe differentials dz, dz in terms of the original coordinates bx. At b,
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we have
& = o(db — idy), (2.109)
1 .
dz = %(dbl + 'ldbg).
It is now possible to express w at b in terms of the z, Z coordinates; one finds that

Wz = —-wz;" = 2bl, (2.200)

wzz = —wzz = 0.

Thus, w is indeed a (1,1)-form, and along with the G-invariant complex structure given by
z, defines a Kahler structure on Wp. We can therefore restrict a.ttenﬁon to the space H;
of holomorphic sections of £;. Since 32 is the first Chern class of £y, £p is a holomorphic
line bundlev over W, =IVS 2 of dégree 2b. For b > 0 it is a simple result of the Riemann-Roch
theorem that £ admits exactly 2b + 1 linearly independent holomorphic sections (see for
example Griffiths and Harris [38]).‘ The 2b + 1 holomorphic sections can be represented in
the vicinity of the origih z = Z = 0 by the holomorphic monomials, 1, z, 22,... , 2%, Ly also
has a natural Hermitian metric, which we will discuss further in the next section. Note
that when b < 0, the coadjoint orbit W} is the same as the coadjoint orbit corresponding
to —b. However, the complex structure on. this space defined by (2.197) has the opposite
orientation to that defined for —b. The holomorphic line bundle thus defined has negative
degree, and thus no holomorphic sections. We will discuss the representé.tions associated
with these bundles again briefly in 2.6; for now, we simply restrict attention to the coadjoint
orbits and a_ssoc':ia,te_d_ line bundles. defined for > 0.

It is also important to observe that when b = 0, the coadjoint orbit becomes
singular and the above analysis breaks down. On the level of the coadjoint orbit, what
happens is that for this exceptional value of b; the stabilizing subgroup increases in size
from T to the entire group SU(2). Thus, in this case the coadjoint orbit is a single point.
In this case constructing a line bundle, polarization, and representation over this space is.
trivial and leads immediately to the trivial representation. However, for the other groups
which we consider in this thesis, there are analogous singular coadjbi-nt orbits; particularly in
the cases involving infinite-dimensional groups, discovering a polai'iza,tion on these coadjoint
orbits is a difficult and in some cases unsolved problem. Thus, we will use a slight variation
on the usual coadjoint orbit method to construct representations for such singular values vof

the dual space variable.
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The essential observation is that when b = 0; that is, when the usual coadjoint
orbit is singular, we can simply take the ﬁsual space G /T as the base space upon which to
construct a line bundle leading to the appropriate representation of G. We use the same .
holomorphic coordina.tes'on Wy = G/T = §2 as above, and continue to use ww as a curvature
form where w is defined through (2.200). Although w is degenerate and thus no longer a
. symplectic form on the manifold when b = 0, the form is still a nonsingular G-invariant
(1,1) form on S 2,_ and gives rise to a Kahler structure. The rest of the analysis hefe, from
the construction of a line bundle over W} with curvature iw to the final local formulae for a
representation of g on a polynomial space, can be carried out directly on this “alternative”
orbit space. However, the resulting ].iné.bundle Ly will now be flat in certain directions
(all directions in the case of S U(2)). We shall see that for all the groups considered here,
this general procedure gives rise to representatidns for exceptional dual space parameters
similar in structure to the more generic coadjoint orbit representations. For the remainder
of .this séctipn when we refer to a general coadjoint orbit W}, we include the alternative
orbit space Wy = S§2. ' , '

We have shown that we have a Kihler pola.ﬁzation for Hy. We can now proceed to
. “apply the Test of the results of the previous section to the group SU(2). The result (2.190)
states that there exist operators ’

Jo=Eatfa (2.201)
for @ = 3, £, which act on H, to give a representation of gc, where the operators £, and f;
aré given by (2.156) and (2.183) respectively.

We will first describe the calculation of & in this case. The operators €4, &3
can easily be computed from the simplified veréioris of the vector ﬁéld formula (2.157) and

(2.158) respectively. Since J4 is the only positive root for g, we have

&y = —0/08z. v (2.202)
From (J4,J3) = 1, we havg :
_ ' {s = —za%.' e (2.203)
‘For the remaining vector field £, it follows from (2.156) that
£ = BraC_(+, )7 2. | (2.204)
Computing C_(+,+) = —2, and looking up f2.2 = —1/2 in Table 2.1, we have |
.= 29 ‘ (2.205)
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1t is easy to verify that these vector field operators satisfy the correct commutation relatiqns
(€5, 65) = £, [64,6-] = 265 | ’
We can now calculate the functions f,. The nonzero functions are f3 and f_; these
functions are immediately given by (2.183), and are v '
s = —ilb, Js) = b, ~ (2:206)
f- = i(b,2J3)z = <2b2. '

Combining these results together, we have

a
Jo o= —rp b
i, = =2 - (2.207)
T e ' )
- 8
— L2 _
J. = =z py 2bz.

Again, it is easy to verify that these operators satisfy the correct commutation relations
s, Ju] = £, [F4,d] = 275,

_ The operators (2.207) give an explicit rea.liz'a'.tionbf the algebra su(é)c on the
'spa.ce R = ([z] of polynomials in the variable 2. The Hilbert space Hp C R consists of all
polynomials in z of order < 2b, and carries an irreducible representation of the algebra. A

basis for the Hilbert space H; is given by the vectors
m) = z™, 0< m < 2b. (2.208)
In terms of this basis, the operators J, act according to

Hlm) = (b—m)m)
Jim) = —m|m—1) | ; (2.209)
J_|m)

(m = 2b)}m + 1).

Note that the state [0) = | ) is annihilated by J, and has weight b with respect
to j3; and the state |2b) is annihilated by J_; all of these conditions are necessary in order
for H, to form an irreducible representation of the algebra. In Section 2.6 we will describe
in more detail the condition of global holomorphicity on sections and the existence of a
Hermitian metric on this Hilbert space; in the following chapters we will also discuss the

general module structure of these representations.
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2.5.2 SU(3)

We now consider the case G = SU(3). The Lie algebra g = su(3) is an 8-
dimensional vector space spanned by the generators iJ, = iA\,/2,a € {1,2,...,8} defined
through (2.23). As in the case of SU(2),.we can choose a set of coordinates b in the dual
space g* such that the vector ‘ _
' b= (bi,...,bs) €g" I (2.210)

has coordinates
b = (b, idy). (2.211)

We now choose a canonical element b € g* with

b3 = —p/2
b5 = ——=(g+/2) - (2.212)
be = 0, k¢{3,8).

In this subsection, ‘we will denote the generators of g by

J+a = €a,
.J_a = fa, (2.213)
1
Ja = Eha,

where o € {t,u,v} (note that J, = J; + J,). With this notation, the nonzero structure

constants of the algebra are given by

frprn ™" = —ifpga Tt =+l

fiaga” = E2 ,

iforg™? = —ifige = (B, Ja) (2.214)
tftuzo ¥ o= —tfrotu =41

if:i:tq:v:F" = _if;vi:t = F1.

For generic values of p, g the only generators which stabilize b under the coadjoint action
are J, and J;. In this case, the (continuous) stabilizing subgroup is the maximal subtorus -
. T of SU(3), and the coadjoint orbit space is equivalent to the homogeneous space SU(3)/T.

There are exceptional values of the parameters p and ¢ (for example, p = 0 or ¢ = 0) for

N
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which ther stabilizing éubgroup of b is larger than T In this case, the actual coadjoint orbit
space becomes a smaller quotient space of SU(3). As in the case of an exceptional orbit
for SU(2) described above, rather than dealing directly with these smaller coadjoint orbit
spaces, we use the alternative coadjoint orbit space W, = SU(3)/T for all values of p,q and
carry out the analysis using the consequent degenerate symplectic form w.

We will use the local complex coordinates t,u,v on Wy = G/T defined by ‘

exp [tT4s + uJpy + vJ4p] exp [ > an_a} exp Z‘ﬂaJ_,,] €G, (2.215)
' ' ’ acdy €A : _

where a, and ﬂa are functions of t,u, v, %, @, D, with B, real. In terms of these coordinates,

it is easy to calculate that w is a (1,1) form at the point b, with nonzero components

Wt

(b, Ty, =JIe]) = - | |
Wyg = (b, [J‘H," _J—u]) .= —Zq ' (2.216) V
Wy = (ba [J-Hn 'fJ—v]) = —i(p + q)'

Again, note that in the exceptional cases when p = 0 or ¢ = 0, this form is degenerate.
Because the complex structure énd w are both G-invariant, it follows that w is a (1,1) form
everywhere on W3, and thus that we can choose a Kahler polarization when w/27 is an inte-
gral cohomology class. By using the analysis for the SU(2) case in the previous subsection,
necessary conditions for the integrality condition on w can be derived. Essentially, these °
conditions follow from taking all subgroups S of G which are equivalent to SU(2), and which
have the properf:y tha.t the stabilizer T’ of b in S is a maximal subtorus (homeomorphic to
S1) of S. In fact, because we are taking the orbit space to be SU(3)/T rega.rdlesé» of the
size of the stabilizer of b, we can also take SU(2) subgroups which completely stabilize b.
For each SU(2) subgroup containing at least a T stabilizer, the coadjoint orbit contains a
(possibly trivial) second homology class S /T. The integral of w over this homology ‘class
must be an integral multiple of 27; by contracting b with the generator of T this implies an
integrality condition analogous to that derived fbr SU(2). For the specific group SU(3) with
which we are currently concerned, these ﬁecessa,ry conditions for integrality can be derived
by taking the two SU(2) subgroups generated by the algebra elements {iJ;,iJy,3J2} and
{iJu, 16, tJ7}, with"sta.bilizing'subgroups_ generated by 7J; and i¢J,. The coﬁsequent inte-
: gré.]ity condition is that p and ¢ must be integral. It is possible to show that this condition

is also sufficient for w/27 to be an integral cohomology class. For the rest of this subsection,
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we restrict to coadjoint orbits which satisfy this integrality condition. Just as we restricted

to b > 0 for SU(2) to guarantee that the line bundle £; was of nonnegative degree, we will
also restrict here to line bundles with p, ¢ > 0. Negative values for these parameters again
correspond to a different choice of complex structure on the same coadjoint orbit, as was
the case for SU(2); the resultiné line bundles admit no globally holomorphic sections.

We will now proceed to construct the operators
Jo=bat for ' (2.217)

As in the previous subsection, we begin by calculating the vector fields &,. From (2. 158),

we can calculate

9 .
& = —ta - ??"’0-5; + >%5a (2.218)
é‘ = i }. 9 + 1 2.
v T T T 2% T 2%t
From (2.157), we calculate
6 - 2. 10
T T8t 2 v
v 1.0
w = ——— 4 —t— 2.219
€+ ™ +35t5, ( )
17
' §+v - _'a_v-
‘Finally, from the general equation (2.156), we ca.lcula.te the remaining vector fields
Y
€ = t2— + (=v - -l-tu)— + ( —tv — lt"’u)——
e = (v- ltu) s 2—3— + (—uv + = tuz)— (2.220)

v = (tv—itzu) +(uv+ tu2) +( + = t2 2)

It can be verified that these vector fields satisfy the commutation relations [€4, &) = £, e,
with the structure constants (2.214). .

We can now proceed to calculate the functions f, from (2.183). The nonzero
functions are fy, fu, and feas a € {t,u,v}. The functions associated with the Cartan

subalgebra are given by

ft = —i(b, Ji) = /2 . (2.221)
fu —i{b, J,) = ¢/2.
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The functions associated with the simple roots are given by

foe = i(b,2J)t = —pt (2.222)
f-u = ib,2Jy)u = —qu. |

We can compute the final function f_, from the recursive definition in (2.183), which gives
foo = E-ufor = Eefu] = —v(p + ) + Stu(p - 9)- (2.223)

Again, it is stra.lghtforwa.rd to verify that Eafo — Ebfa=1f,° fe.
We can now write the expressmns for the complete operators J, as first-order

differential operators on the space R = Clt, u, v] of polynomials in the variables %, u,v.

- 8 1 8 1 9 .

o= e T35 T3Yea TP

- 8 1 8 1.0

Ju = U~ 3% +2t3t+q/2'

Joo = =2_1,8

T T 2%

- 9 1,0
Jiu = ~ + Et% (2.224)
s a
J+U = —%. v

. 7] - B | 1

— 29 2N G (e, 2209

J: = tat-}-( v 2tu)6u+(‘7tvv 4t u)a pt
Ju = (v- —tu)at _3_ + (-l-zw + ltu2)i - qu

1 1
Joo = (tv - —t2u)—— + (uv +. —tuz) + (v + t2 2) -v(p+g)+ Etu(p -q).

We will discuss the module structure of these representations in later sections. For now, we
consider a simple example of an SU(3) coadjoint orbit representation, when p = ¢ = 1. This
choice of values for (p, g) corresponds to the adjoixi_t representation of SU (3)_. The irreducible
representation of su(3)¢ on R which contains the highest -Weight vector | ) is a representation
‘on an 8-dimensional subspace H; of R. A basis for H, is graphed in Figure 2.5, according
to the weights of the states. Note that there are two ]inea,rly independent basis states with
weight (0,0). It is a simple calculation to verify that the operators (2.224) act on the basis
of H, according to the usual description of the adjoint representation. Note that we have
not normalized this basis for Hp; a Hermitian structure for this Hilbert space is discussed

in Section 2.6.
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~te® el=]|)

2tv +.tzu . v —U

4v? — {242 ® ® 2yy — tu?
Figure 2.5: Polynomial basis for adjoint representation of SU(3).

2.5.3 LSU(2)

We now consider the example of the centrally extended loop group LSU (2). We
~ denote the Fourier generators of this group by Ja(;,) where d € {3,%} and n € Z; the central
generator will be denoted by J. = C for uniformity of notation. We will also abbreviate
J3(n) to simply J(,) The dual space L(g") ® R to the Lie algebra, of a general loop group
was described in 2.1. 2. In this case, an element (b, —it) of the dual space is defined by a
- function

b:S' = su(2)* (2.225)

and a real number ¢ € R. We will concern ourselves here oniy with the elements of the dual
space where b is a smooth function. Th;e dual pairing between the algebra Lg and the dual
space is given by (2.52), and the coadjoint action of LG on the dual space is given by (2.53).
A fairly straightforward analysis of the coadjoint orbits of a general loop group leads to the
result [53] that the coadjoint orbits are in 1-1 correspondeﬁce with pairs (¢, —ik) where c is
a conjugacy class in G and k£ € R. In the case we are concerned with here, namely Isu (2),
we can choose a representative of each coadjoint orbit to be described by a pair (b, —ik)
with b being a constant function taking a value in g* with coordinates (0,0, —b), where we
use the same coordinates b; for g* as in Subsection 2.5.1. We will take the dual elements of |
this type to be the canonical elements of the coadjoint orbits. We denote a fixed coadjoint -
orbit of this type by Wp k. ' :

From the expression (2.55) for the coadjoint action of the algebra, we can calculate
the change in (b; —ik) under the action of the generator J,(n). Calculating the components
of this shift, we have ‘

(é’dJa(n)(b7 _ik)'s(JC(m)’ 0)) = bn,—m [ib(ifacs) .+ Z'7"1‘:.‘7a¢:] . (2.226)
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From this equation, it is straightforward to verify that when 2b/k ¢ Z, the stabilizer of
(b, —ik) under the coadjoint action of ZST(2) is genera,téd by the elements Jio) and C,}md
is given by Tig) X S 1. Thus, the coadjoint orbits associated with these dual space elements
are homeomorphic to LG/(T x S'). For the excéptiona.l values of b,k where 2b = nk for
some n € Z, the coadjoint orbit spaces are smaller. As in the previous subsections, we
simply take LG/(T x S?) to be the alternative orbit space in these exceptional cases and
carry out the analysis in a uniform fashion.

As mentioned in Section 2.1.2, the expression (2.20) can be used to construct a
holomofphic coordinate system on Wy, = LG/(T x S1), with an infinite set of coordinates
{2(n)l(n, @) > 0}. Explicitly, we will use the coordinates z,(,) Where a € {£,3},n € A
and either n > 0 or (n,a) = (0,+). As with the generators, we will write 2(n) = 23(n)-

In these coordinates, we can proceed to calculate the components‘ of the symplectic

form w. We find that w is a (1,1) form at the point (b, —ik), with nonzero components

wzo(n)z_a(n.) = <(b7 _Zk)’ [Ja(n)v —J—a(—n)]) (2-227)
= —ib(ify_g)) + iknGa(a)
_In particular, we have |

Wziin)Bemy — F2ib + ink _ (2_.228)

w,(n)z-(n)' -_— znk/2.

This symplectic form (degenerate for exceptional vaiues of b,k) is a G-invariant (1,1) form
on Wb,kl; thus, as usual, we can choose a Kahler polarization when w/27 is an integral
cohomology class. As in the previdus subsection, we can use SU(2) subgroups of ZSU(2)
to give necessary conditions on & and % for the integrality condition to be satisfied. This
analysis is parallel to that carried out in Section 2.1.2 to determine the integrality condition
for a central extension -of LG. Clearly, the SU(2) subgroup given bf the constant loops
SU(2)(o) is a subgroup of f,_S U(2) with a subgroup stabilizing (b, —ik) given by T(o). The
generators of this subgroup are the generators I, given by (2.40). The integrality condition

associated with this subgroup is that
(b, —ik),il5) = =b € Z/2. (2.229)

So we have the condition that 2b € Z. Similarly, we find that the subalgebra (2.41) also
generates an SU(2) subgroup with stabilizing subgroup T.- The real generators of this
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subgroup are given by the functions

f(8) = %(A(o) +1_(8)) = cos8J; + sin 6J;
1(8) = sin6J, — cos8J, ' (2.230)
Ie) = Cc/2-Js.

- The integrality condition associated with this SU (2) subgroup is that
" k-2b€Z. (2.231)

As previously, in order to have holomorphic sections in our line bundles, we must further- .
more restrict to values where k¥ > 2b > 0. Thus, for all integers k£ and half-integers b,
satisfying £ > 2b > 0, we have a coadjoint orbit Wp x which admits a Kahler pola.riza.tion,
over which we can choose a line bundle £; with curvature form w.,

We can now proceed to construct the operators

ja(n) = Ea(n) + fa(n) » (2'232)

and
L C=Jd.=¢6+f. (2.233)

These operators act on the space R of polynomials in the infinite set of variables Za(n)- This '
space is graded according to Z @ Z, with the variables 21 () having degrees (n,+1) and 2(,)
having degree (n,0). From (2.158) we can calculate the vector fields corresponding to the

generators in the stabilizer

| o 3
§o) = —24m)a— Tt 2 i—(n (2.234)
) nZZ% O T ,Z% S P
& = 0. \

The vector ﬁ‘eld (o) contains an infinite number of term;,r but its action on any ﬁed
polynomial in R only involves a finite number of these terms. This is a characteristic
property of the generators in the polynoﬁ:xial coadjoint orbit representations for infinite-
dimensional algebras. The vector field &, is 0 because C is central in the algebra.

; We can now proceed to calculate the vector fields £;(r) for (7, a) > 0 using (2.157),
and the remaining vector fields using (2.156). It is difficult to write down these vector fields -

in closed-i_'orm notation; again, there are an infinite number of terms in each vector field,
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only a finite number of which contribute to the action on a specific polynomial in R. The

leading terms in the vector field operators £,(,) corresponding to positive roots are

9

) = T3 z;m———+--- (n>0)
o mZ):o m 8z+ o m2>:0 O P
8 |
E_(m) = Zi(m 4+ (n>0) (2.235)
e 02_(min) mz;o ™ 82ty (n>0)
() = — 9 +—Zzl ———-—-Zz ° - (n>0)
O Tor T 25 T M0 S ™ P2 im) T o

We can calculate the functions fu(n) using (2.183). The functions associated with

the generators in the stabilizer are given by

“fo = b, - - (2.236)
fe = k. | v

In general, the functions fi(p) are of degree (—n,F1), and the function f(,) is of degree '
(—n,0). The simple roots of Lsu (2) are associated with the generators J+(0) and J_(l)

The associated functions are

foo)y = —2bzy(g - (2.237)
fri-ny = (@b-k)z_y). |

All the remaining functions fa(n) can be calculated using the recursive equation

(2.183). Explicitly, we have

" fienmy = ) fi(mn) — k(=) f(-1) (> 0)
fo(en)y = & f(=n) = é(=n)f-(0) (n>0) (2.238)
1 .
Sflen) = 5 [f+(—n)f—(o) - f-(O)f+(-n)] (n > 0).

- We can combire these functions with the vector fields described above to get the
complete set of operators .fa(n), C which realize the algebra Lsu(2) on the space R of
polynomials. Explicitly writing all the terms in these operators which have nonzero matrix
elements between states of degrees with n < 2, we have ' |

C =k
. 3 a 1, ]
Joz) = P + z+(°)_3z(2) + EZ+(°)_62+(2) +Ds
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N

a 1

T = g T O g T
J+(2) = —8z+(2) +D |
J = - 9 +z 9 4122 9 1 z +lz 9
M T Telg 0%, T 8408, T \§HOT0 T 3w ) 5T
1 . ] 1 1 5 '
B Gl CRCRASICY I el e iO RO 3024©%- By T8
J = o 1z ___3 + -l-z 9 1z z 4 ‘
_ o = 0z1) 2 +(O)3z+(1) 2 -(1)32;(2) 3 +0) _(1)32(2)
1 1
HASTRICE OIS U I rm ) +Ds
. ,. d d 1 1
= _ -z D
I+ Bz 3z(2) (2 1) T gFHO) 3~ (1)) 322ca) +Ds
X 8
o = “2notiog o Eer-n ) 5o
8 1, n 3
+224) — —2Z+<o)z ~-Wgg T FH@ e | 5o
(1
+ (52+(0)2—(1)Z(1) — ZH0)Z-(2) Z(z)) FP
2 5 2 2,
T BHO-@ T 3RO T 3RE-@ T 20) ) 5o
+ gZ+§0)Z(1)Z+(1)-%z-\u(O)z-—(l)Z(x)_+ 5 2H0)#(2) T ZH(0)F+(2) Bz4(2) +Ys
3 9 .3
J = b—zp0y7—— + 2-(1)-
©) o T Mo
3 3 8 '
-z —_— iz -2 +D , - 2.239
W g T @G T ey, D - (229)
+(0) . &~ | 3Z+(0) z—(l)az(l) 22(.1) - 62+(°)z_—(1) 3z+(1)
+122 _a__._ + (lz z z ) a
6 —(1) aZ_(z) 6 =(1)4(1) -(2) 32(2)
(1 1 1 1 1 >
+ 902+(o)2-(1) - 12"’(1) ~ - T gFOF-(2) T 52(2) dz4(2) + 3
. k— 4b k— 2b
J_(c1 = z+(0)4_(1) + 24(0)2(2) — (k +2b)24(1)

1
+ (§Z+(0)Z—(1) + 2z+(0>2+(1)) B21c0)

.

1, 5 2
3% T 3O )

1, !
320 T -4 T 20 7-@) + z‘”) 9z_(1)
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(-1

Te-1)

J-(-2)

J-2)

- +0(2-(3)) .

2
.+ -Z+(0)Z-(1)+ Z—(1)2(1)+Z—(2))

!+ (22+(2) - 322(0)23(1) - 323_(0)2—(1)2(1) :
- a
62(1)

1 1 1,
—5 02 ~ 37O+ T 2@z + 321(0)2—(2))

14 1, L1,
T 57+©@©2=1) T 32+ 7~ (12D + §Z10)F~(1)7+(1)

+lz Z1\Za1y + 22 —123 z —122 z ‘+z 92 8
2FHOEMI+H1) T Z1(1) T ,+(°)_ =(2) T 3%H(0)%(2) T Z+(0)%4(2) dz4(1)

26—k (/]

9z4(0)

k 1 2,
24(0)2-(1) — —Zu)) +{3#@%) — —Z+(o)z @) — 2+@1)

9z_(1)
d
9z(1)

1 1
Z+(0)Z(1) z+(0) 2-(1) - ‘z+(0)z (1)2(1)

2
2,

+ §Z+(0)z—(1) ~ Z-(1)Z4(1) ~ ZH0)?~(2)

(3

1 1 2
--Z+<0)Z—(1)Z+(1)+ 5 740y~ @)+ 32O = 240) | 5o +0(2-@3)

(26— B)z_q1y + (2(1) — 740)7-(1))

+ ng(o)z"(l) —22-9) Oz(1)

8
— + 22
32+(0) Moz

1 - 8
+Ze) ~ gH@F-mF ~ -)%+) ) 5o +0(2-(3)

k- 4b 2 - k— 2b k-
—— 22 m+ 2% (0)2-(21) +
. | 2% 4b
+3— 240)2-)Z+(1) ~ b z4(1) + —5— 24 (0)2-(2)

+(k - b)z+(o))z(2) -2k + 2b)z+(2)

b
24(0) 231)

2 4 2 1 2 2
+ (zgz+(0)z-<1) + 132+0)%()

. 1 o N\ o ,
+230)2-()7+() + Z3) + -23-(0)2-(2) + 2z+(0)z+(2)) 3710) +O0(2—(3))

4b ko, 2
o2l — O -(n2z) + 2bz—(1)2+<1)

+(2b - k)z+(o)z_(2) - LZ(g)

1 2 1
+( o) (1)"‘(1) - Z+(0)2—(1) - —z+(0)2(1) = z4(2)

4 1 2, 1 8
=37HOF-(MFH) + SHMZH) ~ 3710~ (2) T 57+0)2(2) 324(0)

+0(z2—(3))
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- 44—k ; "
J+(_.2) = 3 z+(0)23(1) - bz..(l)Z(l) + (2b - 2]6)2_(2)

(2 1,
+ | 37+ Z-(1)2(1) ~ 324(0)%-(1)

+'0(Z—(3)),

—=2Zf1y — Z2_(1)2. -2z 2_¢2) + 2,
25 T FWHM T RO F2) | 5

where by D3 we denote terms containing derivatives 8/92q(n) With 7 > 3, and by O(2_(3))
we denote terms containing qua,si-hox.nogeneous'polynomials of degree (n,w) > (3,-1).

As_ an éxample, we consider the coadjoint orbit with (4,k) = (0,1). In the repre-
sentation of the algebra on R, the highest weight state |) clearly must satisfy

CJoly=b), | (2.240)

and -
Cl)=kl|). | (2.241)

From this, it follows that the irreducible representation of the algebra which contains [ ¥
- must be exactly the irreducible representation with (j,k) = (0,1) which was described in
Section 2.1.2 and whose weights are graphed in Figure 2.4. As a check on this equivalence,

we can verify that the generator j+(’_1) acting twice on | ) gives 0. Indeed,
Tyl ) = @b—k)z_) = ~z_q1), o (2:242)

and )
Frepl) = (@b —k)zZ gy + (26 - k)%22 ) = 0. (2.243)

Wg will study the structure of the coadjoint orbit loop group representations further in the

following sections.

2.5.4 Virasoro group

Finally, we discuss the coadjoint orbit representations of the Virasoro group. As
described in Subsection’2.1.3, the generators of Ve’c?Slc are L, and C. The equation
describing the coadjoint action of the Virasoro algebra VectS? on the dual space VectS? is
given by (2.70). By computing the stabilizer of a general dual element (b, it), it is possible
to completely classify the coadjoint orbits of D?ﬁ\S'I [58, 47]. A clear review of this analysis
in the genéral case is given in [64]. We will only be concerned here with the simplest case;

in which the orbit contains an element (b,ic) with b(#) = b a constant function. We will
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refer to this orbit as W; .. In this case, the stabilizer in VectS? of the point (b, ic) is given
by all elements (f, —ia) with f(0) satisfying

- E%f”’ = 2", (2.244)

When —487r§ is not the square of an integer n, the only solution to this equation with
period 27 is f(0) = 1. In this case, the stabilizer of (b, ic) is the Asubgroup generated by Lo
and C, so the space Wp is equivé.lent to the space Diff 51/51. For the ekceptioha.l values of
b, c, the generators L, are also stabilizers of (b, ic). Thus, the coadjoint orbits W_ .2 48
are given by the spaces Diff S1/SL{")(2,R), where SL(")(2,R) is generated by the elements
lo,l4n in VectS!. As we have done for all the other groups, we will take the alternative
orbit space to be W; . = DiffS1/S? even for these exceptional values of b,c, and we will
‘proceed with the analysis using the degenerate symplectic form w on this space.

From now on, we will consider a fixed orbit Wy ., of the DiffS1/S! type. We .
can now follow the identical procedure to that used for all the examples in the previous
subsections to construct representations of VectS! on a polynomial space. In Subsection
‘(2.1.3), we gave an a.rgumeht jﬁstifying the use of (2.20) in constructing a holomorphic
coordinate systeni on the quotient space Diff S*/S i. Explicitly, we have the formal re-
sult that given a countable set of variables z = {21, z,,.. }, there exist unique functions
tn(2, 2), p(2,2),7(2,2), expressed as formal power series in the z! !s, such that 7(z Z) is real
and

exp( D znLn)exp(D_ tn(2, z)L_,,)exp(p(z z)Lo)exp(7(z 2)C) € DiffpS™. : (2.245)
n>0 ‘ n>0

The variables 2, thus form a set of holomorphic coordinates on Diff ! /S which give a
G~1nva,r1a11t complex structure.
We can now compute the components of the symplectic form w with respect to

this coordinate system. As usual, w is a (1,1)-form; the nonzero components are given by
Wz = Wi 5n = 1 (4T D + émS).  (2.246)

Note again that when b= — the 2-form w is degenerate.

481r’
We now make the observation that DiffS! /S* is-a contractible space. To see this,
we use the identification of Diff S1/S! with the group DiffoS? of orientation-preserving dif-

feomorphisms of S! which fix the point 1. Viewing an element of DiffS! as a monotonically
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increasing function f : R — R with the properties f(0) = 0 and f(z +,.27r) =27 + f(z), we
can explicitly give a retraction of DiffsS? to a point by defining the one-parameter family
of functions fi(z) = (1 — t)f(z) + tz, for each f € DiffoS?, t € [0,1]. Since Diff $1/S?
is a cont_réctible space, all 2-cycles are homologous to the null 2-cycle, so that Jow =0
for any 2-cycle a. Thus, for any b,c, we can construct a line bundle £, over Wi with
curvature iw. (Note that the second cohomology of Diff S*/S? is nontrivial if one restricts
to forms invariant under DiffS!, however this should not affect the construction of L; it
does however imply that L, will not have a global Diff Sl-invariant connection.) We can
use the Kahler structure defined by w to restrict to the space Hj of holomorphic sections of
Lp,c, which can be identified with the ring R = (2, 2,,.. ] of polynomials in the variables
. z; due to the topologically trivial nature of the orbit space (actually, for this group all poﬁver
series can be considered to be holomorphic sections; see Section 2.6.1). We now proceed to

construct the operators ‘ v
fln = fn -+ fn : . (2247)

C=¢+f ’ (2.248) | |

as differential operators on R. For this group, the ring R has an integer grading with
deg(z,) = n. As usual, fc_he operators L, act on the subspace R,, of degree m by

LnRm C Rmn. | : (2.249)

From (2.158) we calculate the vector fields corresponding to the generators Lo, C;

& = Zm

k>0
& = 0.

o (2.250)

The remaining vector fields are difficult to write in closed-form; the leading terms are given
by '

= ' 2.
&n az,, += Z(m e +..., forn>0, (2.251)
m>0 . .
and
Een = E (m+ n)zm 4+..., forn>0. (2.252)

m>n Zm—n ‘
Just as was the case for ZSU(2), although these operators are all expressed as an infinite.

sum of terms each of which is a first-order differential operator, the action of a fixed vector
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field operator on a fixed polynomial in R can be computed using only a finite number of
these terms. B _ ' v

To calculate the functions f—, and f. using (2.183), we begin as usual by calcu- |
lating the functions for the stabilizing generators. Writing the quantity 27 + ¢/24 as |

h = 27b+ c/24, (2.253)
we have
fe = =i{(b,ic),C)=c (2.254)
fo = —i{(b,ic),Lo) = 27b + gz = h.

For the simple root L;, we have
f-1 = i((b,ic),2Lo)z; = —2hz. (2.255)

The qua.si-vsimple root Ly, however, is a special case. It cannot be computed inductively,
a.nd does not follow from the equation in (2.183) for simple roots. However, we can write a
pa.1r of equations which f_, must satisfy, by using the condition (2 174) In this case, that

condition implies that

- c
fmfn - §nfm - (m - n)fm+n m,—n(m - m) . (2-256)
It follows that we must ha._ve

c&af-2 = f— =4fo+ - =4h+, (2.257) |

lola
[V IR

£1f—2 = -'azf_z = 3f_1 = —6hz1. .

Since f_; is a linear combination of 22 and z,, these two equations determine both cpeﬁi;
cients, so that ‘ '
foa = —(4h+ 2)zm + 3haf. . (2.258)

From here, we can continue the analysis according to the usual prescription, treat-
ing the quasi-simple roots L, L, as simple roots. The remaining functions f_, can be

calculated inductively by

‘—\lfl-n - fl—nf_lj, forn > 2. ’ (2259)

- —
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We now give explicit formulae for the terms in the operators L, which have nonzero

matrix elements between polynomials in R of degree < 3. These terms are given by

- 7}
Ly = ~ 3% + Dy, |
- 7/ 1 3 '
L, = ~o% —5218—23+D4a
- 7] 19
Ly = fa—a + 5223::3 + Dy,
_ I 9 g
Ly = h+ 218—21 + 2225;; + 323-52 + Dy, (2.260)
- 8 ' 3
L-l, = —2h21.+ (322 - Z%)a—z; <+ (423 — 22122)6_22 + 0(24),
L_, = —(4h + —)22 + 3hz1 + (523 — =212+ 23 )—-' + 0(24),
K 2 2 821
..l:/_3 = —(6h + 26)23 + (13h + 6)2122 - 4h2¥ + 0(24),

where D, denotes terms containing derivatives §/9z; with k > 4, and O(z4) denotes terms
containing quasi-homogeneous polynomials of degree at least 4.
We will discuss in more detail the structure of these representations in later sec-

tions.

2.6 Global properties

For most of the rest of this thesis, we will concentrate on properties of the coad-
joint orbit representations which can be described in terms of local algebraic properties of
the representations. These properties are completely captured by the explicit formulae for
operators on spaces of polynomials described in the previous sections of this chapter. In
this section, however, we will consider some global properties of the coadjoint orbit repre-
sentations. We will discuss these properties from the point of view of the local algebraic
representations, and will give results in a form which can be represented in terms of loéal
algebraic formulae. In Subsection 2.6.1 we consider the question of which polynomials (or
power series) in the local holomorphic variables 2, can be extended to global holomorphic
sections of the line bundle £;. In SuBsection 2.6.2 we discuss the question of whether
the holomorphic line bundle £, admits a Hermitian sttuf:ture, and the related question of
‘whether the representation of the group G on the space H; of holomorphic sections is a

unitary representation.
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2.6.1 Global holomorphicity

In the previous section, we derived formulae which described for various groups G
an action of the Lie algebra g on the ring of polynomials in the variables z, corresponding to
positive roots of G. We argued that locally, this ring corresponds to the space of holomorphic
sections of the line bundle £, over the coadjoint orbit space Wp. In this description, we

have ignored the question of which of these polynomials a.ctﬁa.lly cdrresponds to a globally

" holomorphic section of £;. In this subsection, we describe which of the polynomials in R

actually extends to a global holomorphic section. We begin with the simple case of SU(2),
where the coadjoint orbit space is simply S? with the usual single complex coordinate z.
We showed in Subsection 2.5.1 that the line bundle £, correspon&ing to any half-integral
value of b was precisely the unique holomorphic line bundle over 52 of degree 2b. When

b > 0, this bundle admits precisely 2b + 1 holomorphic sections, which correspond to the

local functions 1,z,...,2% in R. In order to derive a.ﬁa_logous constraints on holomorphic
functions for other groups, we will find it useful to see how this result can be arrived at
purely by local considerations. ' '

In order to analyze which functions of z are holomorphic globally, we must begin

by choosing a second coordinate chart on $2 which covers the point z = co. The standard

choice is the chart w € C with the transition homomorphism w = 1/z. In terms of these

variables, the partial derivative operators 8/9z,8/0w are related by
d 2 0

, B - (2.261)

~ Given a line bundle £ over S? with a connection described by local gauge choices as 4., A,

in the two coordinate charts, the connections are similarly related by
A, = —w?dy. (2.262)

For the gauge choice used for the local formulae (2.207), the connection terms 4,,.a = 3, %

. can be written in terms of 4, and are given by

Az = —zA, v
Ay = -4, , - (2.263)
A. = A, '

’Ihe connection 4, = —f, + ¢®, can be explicitly calculated by eValua,ting A

8a(2) = —(Adj( b, Ja)  (2.264)
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= —(b, e—a(z,i)J_ e-zJ+ JaézJ+ ea(z,E)J..).
One finds that

A3 = 2bza(z,2), |

Ay = 2ba(z,2), . - | (2.265)
A. = -—2bz%a(z,3).
Thus, we have
—2bz
4, =17 L (2,266)
and therefore in this gauge,
) .
A, = 2bz|z|? 2b (2.267)

TIHRE T @+ wP)
In the coordinate space w, we must find a choice of gauge where this connection is nonsin-

gular. If we perform the gauge transformation on sections given by
¢ — w"¢, (2.268)

then Ay — Ay — 2. Thus, when we choose n = 2b, we have

2b 1 ) ~2bw

o T er YT T e (2.269)

w:

which is not only nonsingular, but is of precisely the form of‘ (2.266). Under the gauge
transformation (2.268) with n = 2b, the monomial 2™ is described in the w chart by the
monomial '
o 2™ 2™ = gy 2em, , (2.270)
It follows that for this choice of gauge, the functions in R = C[2] which extend to globally
holomorphic sections of £ are precisely the functions 2™ with m < 2b, just as stated above.
For b < 0, this indicates that there are no holomorphic sections and that the associated
representation of G is 0-dimensional. For b = 0, this result states that only the constant
function is a global holomorphic section. This is exactly the same result we would have
gotten had we taken the correct pointlike coadjoint orbit space in this case, rather than
using the alternative orbit space S? with a flat bundle. '
. The result we have derived for § U (2) can be restated in the following fashion: The
only polynomials in R which can extend to globally holomorphic sections of £, are those
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which lie in the orbit o_f the unique highest wéight state | ). (For those coadjoint orbits
for which | ) is not globally holomorphic, there are no globa.ll& holomorphic sections.) This
follows for SU(2) because for a given choice of b, the monomial 22 is annihilated by the
opera.tof J_. We claim that in fact, for all compact simple groups G this formulation of
the global holomorphicity condition is correct not only for the group G but also for LG.
An immediate conséquence of this result is that for this set of groups, the representation
on the space of holomorphic sections is an irreducible representation.

We can prove the general condition for any G by using the above analysis for
SU(2) to give the necessary conditions for local functions in R to extend to holomorphic
sections of the line bundle over S? given by the restriction of £ to various SU(2) subgroups

of G. This analysis is similar to the method used in the previous section to ascertain the

quantization condition on the coadjoint orbit parameters using SU(2) subgroupé. Basically,

the point is that for every SU(2) subgroup S of G containing a subgroup T = S! or SU(2)
which stabilizes the canonical element b of the coadjoint orbit, there is a condition on the
polynomials in z, which is necessary to ensure that the polynomial ca.ﬁ be extended to a
globally holomorphic section. This condition is simply that for each such subgroﬁp 5, a
polynomial ¢ € R must lie in an irreducible representation of the su(2) algebra given by

the Lie algebra of S. For finite-dimensional compact simple G, all of the positive roots of

G are in the complexification of such an su(2) subalgebra. The same condition is true for
LG. 1t follows then, that for all these groups the polyl;omial ¢ can only be extended to a
_ globally holomorphic section if it lies in the orbit of | ).

We will demonstra.te this argument explicitly for S U(3); the general argument

follows in an analogous fashion. For SU (3), let us choose a general polynomial ¢- €R=
Clt, u,v]. From the SU (2) subgroup generated by {iJ;,iJ;,iJ2}, we see that ¢ must be in
an irreducible representation of the corresponding subalgebra, so that applying Jy: to ¢

some integral number of times, we arrive at a function -
¢ =Jne - , (2.271)

which satisfies J,+¢' = 0. We now consider the SU(2) subgroup generated by {iJy, 14,15}
Again, we can apply J,, some number of times to get a function ¢” which is annihilated
.by J4v. Because [Jy¢, J4y] = 0, the function ¢” is also still annihilated by Jy.. Finally, we
take the SU(2) subgroup generated by {iJ,,:iJs,iJ7}. Again, we appiy J 44 some number
of times to get a function ¢ € R which is annihilated by Jiy. From the commutation

14
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relations, we again verify that ¢ is annihilated also by Jt+o and Jy,. Thus, 3 = | ). Since
each of the transformations we performed by repeated application of annihilation operators
was carried out inside an irreducible representation of the relevant SU(2) subalgebra, these
operations are all invertible, and it follows that ¢ can be reached from |) by the application
of the operators J_q, and thus that ¢ is in the orbit of |) under the action of the full algebra
on R. ‘

This analysis can immediately be generalized to an arbitrary group G with a finite
number of simple roots ‘which lie in complexiﬁcationé of appropriate SU(2) subgroup of G,
simply by applying the simple roots one at a time. Thus, we have shown that for a function
to be extensible to a global section, it is necessary for the function to lie in the orbit of | )
for the groups G and LG. Furthermore, if there exists any globally holomorphic section
whatsoever, this result implies that |) is such a section, and that the set of holomorphic
sections must be precisely those sections in the orbit of | } since the space of holomorphic
sections must be invariant under the action of G. We have thus shown that for all these
groups, the representation of the algebra (and therefore of the group) on the space of
holomorphic sections of £ is irreducible. |

Let us now consider the case of the Virasoro group and algebra. In this case, as we
observed in Section 2.5.4 the coadjoint. orbits are tbopologica.lly trivial, so there is absolutely
no constraint on funcﬁons of the variables 2, necessary for functions to be holomorphic.
Thus, in this case not only are all functions in R = C[{z, }] holomorphic, but even all power
series in C[[{z,}]] with infinite radii of convergence must be considered as holomorphic
functions on Ly . We will not concern ourselves with the general power series here; for the
purposes of this thesis we restrict attention to the polynomials in R = C{{z,}]. (In any
case, we must extract irreducible representations of the Virasoro group by the resolutions
which are constructed in the next chapter; the infinite power series’ do not contribute to
the cohomology of these resolutions é,nd so vanish from consideration at that point.) The
difference between this group and the loop groups essentially lies in the fact that although '
the (complex) Vira.soro‘algebra. contains many su(2)c subalgebras, thése subalgebras do not
correspond to compact SU(2) subgroups of the Virasoro group,v but rather to nonéompact
SL(2,R) subgroups, as demonstrated in Section 2.5.4. | '

Finally, we conclude this section with a brief remark on other approaches to the

question of global holomorphicity. For finite-dimensional compact groups, an argument is
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often given (see for instance [53]) for the irredui:ibility of the representation on the space of
holomorphic sections, which follows by demonstrating that there is a unique highest weight
state in this rep'resenta,tidn. In the case of compact, finite-dimensional groups, this result
follows because the space of holomorphic sections is known to be finite-dimensional, and
thus can be written as a direct sum of irreducible representations. For infinite-dimensional .
groups, tlﬁs argument breaks down because the space of ’ho_lomqrphic sections is infinite-

. dimensional. For eka.mple, the spaée R of locally holomorphic polynomials for fhe group
LSU(2) carries a representation of the algebra with a single highest weight state; this repre-
sentation is, howéver, not irreducible. Although the expected conclusion holds nevertheless -
for this group, in the case of the Virasoro group not only does the argument break down, .

but the conclusion is also mcorrect

2.6.2 Hermitian structures

We will now discuss the question of whether for a given gi'oup G and coadjoint
orbit W, the line bundle £, admits a Hermitian structure. In general, a complex line
bundle L over a complex manifold M is defined to have a Hermitian structure when M
admits a measure du and £ admits an inner product which when integrated over M with
the ‘mea,sure du gives a positive-definite inner product on the space of holomorph.ic. sections
of L£y. Written in terms of a local trivialization of £, the inner product is described by a -
real function & : M — R; the inner product between two holomorphic sections ¢, 1 of Lp
is then given. by ' ;
| 0,8) = [ auetsry. | (2272)

In terms of such a local trivialization, there is a unique connectic;n A, the metric connection,
compatible with both the Hermitian metric and the complex structure on M; written in a
local set of holomorphic coordmates z;, this connection is given by A;, = 0, 4,; = Oh/@zz
(38]. | |

As an example of such a Hermitian structure, let us consider again the line bundle
Ly over S? of degree 2b. In terms of the coordinate z on S2, the rotationally invariant
measure on S? is given by '

9 .
d — 273) -
u= EE |2)2dzdz (2.273)

Associated with this measure, there is a natural Hermitian metric on £, described by the
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function .
. h(z,2) = _—1_
| N e PR | (2.274)
Combining these factors, the inner product (,) on Hj, is given by
o b 2idzdz o
)= [ o= [ e (), (2275)

where ¢ and 9 are arbitrary Holomorphic sections of £;. Performing this integral explicitly,

one finds that : .
(2, 2™) = Gy mdr [(Zb +1) ( l )] . (2.276)

This inner product on H, is proportional to the usual inner product on unitary irreducible
representation spaces of SU(2). The metric connection associated with this choice of Her-
mitian structure is precisely the connection A, calculated in the previous subsection,

4 = Oh(z,z)  —2bz
T 0z T 142*

(2.277)

. In a similar fa.shibn, it is possible to construct explicitly a Hermitian structure on
the line bundles £, associated with coadjoint orbits of all finite-dimensional simple compact
groups G. Unfortunately, such a construction does not seem to be possible when the group
under consideration is inﬁnjte-dimensi;mal. Asan example, we consider the Virasoro group.
If we wish to construct a Hermitian metric exp(H)on a coa.djoint orbit L, of the Virasoro
group in the local coordinates deﬁned in Section (2.5.4), we can begin by assuming that
the connection we have defined by our gauge-fixing procedure is the associated metric
connection, as, was the case for SU(2). We can then explicitly calculate H as a formal

power series in the z’s. We have

Ay = —fo+1Pg (2.278)

= —h- i((bo, iC), exP(" Z l-‘nL—n) eXP(— Z ann)LO
n>0 n>0 -
X exP(Z ann)eXP(z BnL_pn)) '
n>0 n>0
5 U
= e Zny -« -2y My - - - M
k,i>0;{n,m} k! l! ™ g ' l .
' [+
xCo(n1,... 0k, =My, ..., —my)(h + —(mf — 1)),

24
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where the sum is taken over all ng,...,nk,my,...,m; > O satisfying n1 + ... + mp =

my + ...+ my. If we assume Az, = 0 and A,, = dH/8z,, then we have:

Ag=—) nzd,, . (2.279)
n>0
and : : , :
H= —& 140, (2.280)

up to a constant. We will take this function H as a candidate for the Hermitian metric on

Lpe. The first few terms in a power series expansion of H are given by
— i 2 _ 2 ‘ |
H=-) 2n(h+ 57" = Dlzl . (2.281)
n>0
c

+ Z _ [(m2 + 4mn + n?)h + %

(m* + 2m3n 4 2mn® + n* — m? — 4mn - nz)]
n,m>0 - )

X(Zmznzm+n ‘;‘zmznzn+m) + O(Z4).

Note that H is e.xpectéd to be real, in order to be a Hermitian metric.

‘To have a complete description of a unitarybstmcture on R, it would now be
necessary to find an invariant metric on Diﬁ'S-l /S1. Unfortunately, it is unclear whether
such a metric can be found. Attempting to describe such a metric as a fofmal power
series gives rise to an expression with divergent coefficients. The matter is complicated
by the fact that the adjoint representation of the Virasoro algebra is not a highest weight
representation. It seems that some kind of regularization scheme may be necessary to
construct such a metric in a sehsible fashion. We can, however, get some information about
when such a unitary structure is likely to be possible directly from (2.281). If we take
only the first term in (2.281), and approximate the metric with a Gaussian, we see that for
h € 0or ¢ K 0, the metric diverges badly, and we will certainly not find a unitary structure.
When h,c¢ > 0, a sensible inner product on R can be found, at least in perturbation theory,
‘by taking a product of Gaussian iﬁtegrals. Using the Hermitian metric (2.281) to compute
~ anything nonperturbative, however, would be a difficult proposition. Further progressin this
direction will be impossible until some sort of a regularized invariant metric on Diff S /S 1
can be described explicitly. o

In the case of loop groups LG, a similar problem arises. For these groups also,
no invaria.ﬁt measure is known on the quotient space LG/T; furthermore, it is not known

. whether such a measure can exist [53]).
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The main ree,son that we are interested in Hermitian structures on the line bundles
Ly is that when a line bundle admits a Hermitian structure, the corresponding repvresenta.-
- tion of the group on the space of holomorphic sections is natureﬂy unitary. Although we
" are unable to construct explicitly the desired Hernﬁtia.n structures for infinite-dimensional
groups, we can still investigate the question of whether the associated representations admit
unitary structures. A simple way of constructing a unitary structure on a highest weight
representation is to simply define the inner product (1,1} = (| ) = 1, and to assume that
the creation and annihilation operators are Hermitian conjugé,tes under JL—, = J,. In fact,
this is the usual procedure used to construct unitary group representations from Verma
modules (which will be discussed in more detail in the following chapter). The result of this
construction is that the unitary structure is well-defined for all functions ¢ € R which lie
in the orbit of the highest weight state | ). For loop groupé, this means that the complete
~ representation on the space H; of holomorphic sections actually admits a unitary structure.
For the Virasoro group, this result is slightly more subtle. We devote the remainder of this
~ section to a more detailed description of this eonstmc!:ion in the case of the Virasoro group.

The above construction of a unitary structure is closely related to the essential
point in the proof of which irreducible Virasoro representations admit unitary structures.
The usual approach to the unitarity proof (see for example [34]) is to consider all possible
polynomials in the creation operators L_,, acting on a highest weight state |), and to use the
above criteria to define an inner product on this space. (The space is a Verma module for
the Virasoro algebra, which is discussed in more detail in the next section.) The resulting
inner product, known as the Shapovalov form, gives a zero norm to some state in the Verma
module precisely '»_vhen the determinant of the inner product matrix on some level vanishes.
By studying the changes of sign in this “Kac determinant” under variations 'of h and ¢, it
was shown by Friedan, Qui, a.nd Shenker [31] that forc < 1,a represenfation can only admit
'~ a unitary structure when when conditions (2.75) and (2.76) are satisfied. The existence of
a unitary representation for all values of % and ¢ satisfying these conditions was shown in
[35]. From the point of view of the coadjoint orbit representations on polynomial spaces R,
the vanishing of the Kac determinant at level n corresponds precisely to the existence of
a function in R,, which does not lie in the orbit of | )} (from the point of view of the next
chapter, such a function is associated with a cosingular vector). In general, it is impossible
‘to extend the unitary structure defined on the irreducible representation associated with

the orbit of | ) to these extra states. To see an explicit example of this problem, we can
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compute explicitly the lowest degree states arising from the action of the Virasoro algebra
. on | ). Using a basis for R of monomials in the variables 2;, where f € R is represented by

the state |f), we have

Laly = -2njz), |
I2)]) = —6hlz)+ (4R2+2R)28), - - (2.282)
Loal) = —(#h+3)lzs) +3hI). |

We expect that for those values of k, ¢ with a vanishing Kac determinant at level 2, we will
find a linear dependence between the states generated by combinations of raising operators
of degree 2. From the above expressions for L2,|) and L_,|), it is easy to see that these

 states are linearly dependent when

L _S-ck «(T—Tu?fs‘ | (2.283)

This is precisely the condition for the Kac determinant to vanish -at level 2. For example,
_whenm =3,p=2,g=1,and h =c = 1/2, Equation 2.283 is satisfied, and we have a
reducible representation on R, W1th an extra state |zl) in Ry which is not in the orbit of [)-

In this case we can compute
(mla) = (Ilalal)=22=1 . (2284)

9 3 9
(——22+ zll——22+ Z)—(leL 2| ) = 9/4.

If we attempt to extend this inner product to Ry, we get

(37— 221 |22) (21]L41]23) = -2 (2.285)

4, ..
= —3{lLalz) =0.

Thus, the inner product on the orbit space cannot be extended to one on R.

We have shown, then, that for compact. sxmple G and loop groups LG the repre-
sentation on the space of holomorphxc sect1ons of an appropriate line bundle £, is irreducible
and admits a umta.ry ‘structure, in agreement with the results of the Borel-Weil theory. The
same Tesult holds for the coadjoint orbits associated with unitary representations of the Vi-
rasoro group where the entire space R lies in the orbit of | ). In the case of those coadjoint
orbits of the Virasoro group corresponding to the discrete series of unitary representations,

however; there are states which correspond to globally holomorph_ic sections in Rilying
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outside the orbit of |). The unitary structure defined in this section does not lead to a well-
defined inner product for these extra ‘_sta,te's, and thus the complete representation of the
Virasoro group does not admit a unitary structure in- thése cases. However, the hredudble
répresenta,tion given by the orbit of | ) does admit a unita.fy structure, which is just the

usual unitary structure associated with this irreducible representation in the discrete series.
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Chapter 3 |

Modules and Resolutions

-

In this chapter, we define a variety of types of modules for an arbitrary Lie algebra

g, and describe how these modules ‘can be combined to form any irreducible representation

of g by constructing a chain complex whose cohomology is precisely the desired irreducible

v.representa.tion space. In Section 3.1, we define the concept of a g-module, and discuss some
particular types of modules, including Verma modules, dual Verma modulgs, and twisted

Verma modules. We describe the singular vector structure of these modules. In Section 3.2,

‘we discuss Fock spacé reaiiza.tions of representations; _these realizations are essentially equiv-
alent to g-modules on spaces of polynomjais where the action of the a.lgebfa is described

in terms of differential operators. We observe that the coadjoint orbit representations de-

- scribed in the previous chapter are locally equivalent to dual Verha module representations,
and we discuss the Feigin-Fuchs and Wakimoto (free field) representations of the Virasoro

and affine algebras, which are similar to twisted Verma modules 6f finite-dimensional alge-

bras. In Section 3.3, we define the notions of screening operators and intertwiners between

g-modules, and give explicit formulae for the screening operators and intertwiners between

coadjoint orbit representations. We find that the coadjoint orbit screening operators, like

the associated coadjoint orbit raising operators, are independent of the highest weight of

- the module under consideration. In Section 3.4, we describe how intertwiners can be used
to form a chain compléx of g-modules whose céhomology is nonzero at a single position

. in the chain, and is given by an irreducible representation of the algebra g. The explicit
formulae for coadjoint orbit intertwiners allow us to use these resolutions to construct ir-
reducible representations using the coadjoint orbit representations even in the case of the

Virasoro algebra, where the coadjoint orbit representations correspond precisely to dual
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" Verma modules.
For general background references on the algebraic constructions in this section,

see [18, 39].

3.1 g-modﬁles

A powerful approach in the study of representation theory is given by the alge-
braic formalism of modules. Given a Lie,a.lgebra g, e§ery vector space V which admits a
representation of g is defined to be a g-module. (More generally, given a ring R, an R-
module is defined to be an abelian group 4 along with a ring homomorphism from R to the
ring of endomorphismé from A into itself. In this case, the vector space V has the abelian
group structure given by vector space addition, and the ring R is the universal enveloping
algebra U(g) described below.) We will restrict attention here to modules which admit a
grading of the natural type for the algebra g, as described in Section 2.1. There are several
special types of g-modules v.vhich é:e of particular interest to us here. A useful structure in
-describing these special modules is the universal enveloping algebra U(g) of a Lie algebra
g. The universal enveloping algebra #(g) is defined to be the ring of all polynomials (over
R) in the generators of the algebra g, modulo the relations defined by interpreting the Lie

‘algebra product as a commutator via the equation
2, v]y ~ suvy — avuy, Vo,yEeU(g),uvEG (3.1)

A g-module V is said to be free over () on a vector v € V when each vector w € V has
a unique representation as w = X, - v for some X,, € U(h). '

One of the most important types of modules in the study of representation theory
is the Verma module [40]. A Vefma module for the algebra g is a module V containing a
‘vector v, such that V is free over U (g-) on v, wheré g_ is the subalgebra of g¢ generated
by the negative roots in gc. It is an immediate consequence of this definition that v is a
highest weight state in V.. For a fixed weight A € Ay, the Verma module V) with a highest
* weight vector vy of weight A is unique. A natural basis for this Verma module is giveﬁ by
the states X - v, where X is a member of a canonical basis for U(g_). From the definition,
it is clear that the Verma module V) has.the property that the entire module is in the orbit
of the state v, under the action of the algebra g. This is a characteristic feature of Verma

modules.
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| We can now define a dual space to Vy, which we denote by
Vy = Hom(Vy,R). | (3.2)

For any algebra g which has a polarization into positive roots a > 0 and negative roots

a < 0, we can define a natural dual action of g on VY by the equation
(ead, w) = (d, e_aw)\,- Vd e Vi, we V. (3.3)

(For generators %k in t, we simply take (hd, w) = (d, hw).) The module VY is a dual Verma
module. Note that all the groups considered in this thesis admit the necessary type of
polarization to construct modules of this type. In VY, there is a particular state v} which
is defined by '
| (v}, w) = { L w=o (3.4)
. 0, w#w :
It is clear that v} is a highest Weight' state in the dual Verma module. Furthermore, -
it follows froin the above definition that there a,ré-no other highest weight states in this
module besides multiples of this state, siﬁce every other state in the dual space must have
a nonzero contraction with some state of the form e, w with o < 0 and w € V). In fact, the
existence of a single highest weight vector is a characteristic feature of dual Verma. modules.
Another way of defining dual Verma rodules is through the characteristic propez;ty of being
cofree over the enveloping algebra U(g_) [18].

In addition to the Verma and dual Verma modules defined above, there are other
types of modules of interest. We have already discus_‘sed irreducible highest weight repre-
sentations, which have both the features that the associated module has a single highest
weight vector, and that the entire module is in the orbit of the highest weight state under

the action of g. There are also modules, called “twisted” Verma modules, which have nei-
| ther of these properties. These modules can be defined by the proﬁerty of being free over

U(m) and cofree over U(m’), where m and ™’ are subalgebras of g_. such that
g-=mom’. -_ ' . (3.5)

Twisted Verma modules were first introduced by Feigin and Frenkel [24].
In order to analyze these various types of modules and their properties, it is useful
to define certain vectors in a g-module to be singular. Following Feigin and Fuchs, we define

a vector v € V to be singular when g, - v = 0, and cosingular when v ¢ g_V. Intuitively, .
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when a vector v is singular it is a highest weight vector for a submodule W C V given
by acting on v with U(g-). In order to construct an irreducible representation containing
the highest weight vector of V, it is clearly necessary to mod out by any such submodule
w genérated by a singulé.r vector. Similarly, a cosingular vector is one which generates a
submodule X C V which lies outside the orbit of the highest weight vector of V under the
action of U(g). Any irreducible representa,tlon containing the highest weight vector of |4
must be modded out by any such submodule X generated by a cosmgu.la.r vector. Clea.rly,
a particular cosingular vector is only defined modulo g_V. We will frequently make use
of a choice of specific cosingular vectors from each equivalence class thereof, and will often |
simply refer to such vectors as “the” cosing'ula: vectors of a particular weight. From the
above definitions, it follows that a module V éonfa.ins a singular vector of weight A precisely
wheﬁ the dual module V' contains a cosingular vector of the same weight. Clearly, a Verma-
module contains only singular vectors and no cosingular vectors, and a dual Verma module
contains only cosingular vectors and no singular vectors. A useful graphical description of
‘modules' can be given by drawing a vpoint for each singular or cosingular vector, and then
drawing a.n.a_.rrow from the point associated with a vector v to thé point a.ssocié,ted with
a vector w whenever the submodule U(g)v contains the vector w. The arrow relation is
assumed to be transitive, so that when a sequence of vectors are connected by arrows such
as v - w — u, we omit the arrow between the vectors v and u in the dia.gra.m.‘ In this
diagrammatic notation, a Verma module has the property that all arrows lead away from
the highest weight state. The dual of a module has the same graphical structure as the
original module, however all arrows are reversed. In particular, for the dual Verma module
the graph has the property that all arrows lead toward the 'highest weight vector. Twisted
Verma modules are characterized by having singular or cosingular vectors with the same -
weights as the singular vectors in the Verma modiﬂe, but where the graphical representation
contains a diﬁerent set of arrows from the graph representing the Verma module.

As examples, in Figures 3.1a and 3.1b, we give the graphs associated with the
Verma modules and dual Verma modules. of the algebras su(2) and su(3). The singular
vector structure of Virasoro modules was first fully studied by Feigin and Fuchs [26]. In
general, when the Virasoro Verma module associated with a given highest weight is reducible
(contains a singular vector), the associated representation is said to be degenerate. For
values of h and ¢ corresponding to irreducible unitary representations, the Verma modules

fall into several categories. When ¢ > 1 and h > 0, the resulting Verma module has no :
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Figure 3.1: Graphs of singular vectors for SU(2) and SU(3) representations

singular vectors, and is theréfore always nondegenerate. When ¢ > 1 and A = 0, the’
- resulting Verma module has a single singular vector which is always at level 1, and the
resulting graph looks like the graph for an SU(2) Verma module in Figure 3.1a. When
¢ = 1 and h = m?/4 for an integer m, the Verma module contains an infinite number
of singular vectors; the resulting graph is shown in Figure 3.2a. The remaining unifary
representations with ¢ = 1 correspond to Verma modules with no singular vectors and are
. nondegenerate. The final category of Verma modules for unitary Virasoro representations
corresponds to the discrete series of representations with ¢,k satisfying (2.75) and (2.76).
The Verma modules corrésponding to these representations again have an infinite number
of singular vectors. The graph of the singular vector structure for these representatic;ns is
shown in figure Figure 3.2b. The graph associated with the Feigin-Fuchs representations of
the Virasoro algebra is shown in Figure 3.2&; these representations wﬂl be discussed further
m the next secfion. Note that the graph corresponding to the Feigin-Fuchs modules remains
fixed under the duality tra.nsforma.tion. Similar gfa.phs can be constructed describing the
singular vector structure of the affine algebras corresponding to the loop groups LG [24].

3.2 Fock space realizations

" In this section we describe a particular class of g-moduies which can be described
in terms of bosonic Fock spaces. In order to describe representations on bosonic Fock spaces,
we begin by defining a simple class of algebras, known as Heisenberg algebras. For any set
S, we define the Heisenberg algebra on the set S to be the Lie algebra with generators 1
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Figure 3.2: Verma module and Feigin-Fuchs Virasoro representations

and {e,, fala € S} satisfying the commutation relations

[ea,’ fb] = 6ab -1 .
leases] = [fa,fo] =0  (36)
[Le] = [Lfa]=0. |

For any set S, this algebra has a unique highest Wéight irreducible representation. The
carrier space of this representation is the bosonic Fock space on S, which has a natural basis
labeled by the occupation numbers N, of the independent bosonic fields; these occupation

numbers are the eigenvalues of the operators

-

Ng = fa€q. . . . . (3.7)
There is a simple realization of the Heisenberg algebra and bosonic Fock space onva.ny set
S in terms of differential bperators'acting‘ on a ring of polynomials. If we identify the Fock
space on S with the polynomial ring Rs = C{{z.|a € S}], the Heisenberg algebra on S has
a representation through the identifications
ea — 0/0z - (3.8)
fa — :a |
Thus, all representations of algebras in terms of diﬁ'erential operators acting on a space

of polynomials can be natura]ly rewritten in the language of bosonic Fock spaces and vice
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versa. _

There is a natural action of the Heisenberg algebra on S on the dual space R%.
This action is defined through the Fock space adjoint operation e} = f,, so that for any
g € R, h € Rs we have

(fag,h) = {g,esh) - (3.9)
(€agsh) = (g, fah)-

The space Ry carries a highest weight irreducible representa.tlon of the Helsenberg algebra,
and therefore can be ca.nomca.lly 1dent1ﬁed with Rgs.

In terms of this bosonic Fock space language, it is clear that the coadjoint orbit
representations defined in Chapter 2 for an arbitrary Lie group G in terms of differential
operators-on the space of polynomials in the variables z, with € &4 are realizations on
the bosonic Fock space over @, . By taking the Fock space adjoint of these representations,
therekef, — €_q, We can construct the duals to the coadjoint orbit representations. For
exé.mple, the dual to the coadjoint orbit representation of SU(3) described in (2.224) is
deﬁned' by the operators Ja, where

o 8 1.8 1 8
Jy = —ta-50%+2u(—9—u+p/2

= g 1 8 10

o= e T3V Tatm T
j—t = —t—ivi
2 ag v v
~ 1
Ju = —u+§va _ . . (3-19)
Jy = -v.
Fooo 2 9 199 189 1829, 2
w = temtu-g 5550 T " Gags 46t28u) P
7 ’___'ti_lﬁaH 62+(1aa+1682) qa
tu v 20tou’ " “ou? 20udv ' 40tou? du
o ’(_a_.a 19% 9 )+(68+1882)+(62 13232)
tv T St ov ‘>6t28 dudv ' 20t ou? 502 T 1982 62
(-9 4)3 0 ' »
'(p“)av T2 5tou

In the analysis of the coadjoint orbit representations in Chapter 2, we observed that for a
general group G, the generator J, corresponding to a positive root o € &, has a leading
. term given by —8/9z,, with all other terms being of the form ¢ 8/8z3 with § > a and with
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¢ being a polynomial in the variables z; with no constant terms. It follows directly that in
the dual representation, the generator f_;, corresponding to a negative root (o € $,) has
a leading term —z, with all other terms being differential operators of degree > 1, which
have at least as many derivatives as variables z, in each term. From this observation, we
can see that the universal enveloping algebra /(g— ) must act freely on the dual space to the
coadjoint orbit representation, since for any element X of this enveloping algebra there is at
least one term with a maximal number n of factors (we minimize n over all representations
of the element in question), and this term must contribute a characteristic term with n
factors to the polynomial X|) which cannot be canceled by any terms in X with less than
n fé.ctors. By a similar argument, we see that the entire Fock space is in the orbit of |)
 under the action of g. Thus, it follows that the dual representation to the coadjoint orbit
répreseﬁta.tion is a Verma module representation, and thefefore that the coadjoint orbit
representation is a dual Verma module representation for a,hy group G.‘ The result that
coadjoint orbits give rise to dual Verma module resolutions is already a well-known fact,
at least for those groups where the coadjoint orbit construction is equivalent to the Borel-
Weil theory. This property is perhaps somewhat simpler to understand using the explicit .
representations described here, however. ’ '

It is important to note that in an explicit Fock space realization of a particular
representation of an algebra g, the expression of the generators in terms of the Heisenberg
algebra will generally depend upon the highest weight of the particular representation being
realized. The coadjoint orbit representations described in fhe previous chapter have the
unusual feature that the form of all the raising operators is ihdependent of the highest
- weight of the representation.” This property of the coadjoint orbit representations will
s'iinplify certain calculations in Chapter 4. {

We conclude this section with a brief discussion of bosonic realizations of the
Feigin-Fuchs and twisted Verma module representations. We have seen above that the
coadjoint orbit representation and dual coadjoint orbit representation of any group G cor-
respond to dual Verma module and Verma module.representation_s respectively, and can be
realized in terms of bosonic Fock space representations. Similarly, we can realize twisted
Verma module representations on a bosonic Fock space. In general [18, 24], a twisted Verma
module realization can be constructed by beginning with a Verma module or dual Verma
module realization on a bosonic Fock space, and performing a Bogoliubov transformation on

the Heisenberg algebra (3.6) which leaves the form of the algebra unchanged, but requires
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Figure 3.3: Twisted Verma module representation for SU(3) '

a shift in the ground state | ). In general, such a Bogoliubov transformation corresponds to
‘a Weyl symmetry transformation on the Lie’ algebra. As an example of this construction,
consider the Verma module representation of SU(3) (3.10). Performing the Bogoliubov
transformation ¢t — —3/3t, 8/t — t, the form of this algebra is unchanged. However, the
ground state | ) is now annihilated by a different set of operators, so to fix the eigenvalues
of the diagonal operators correctly we must replace (p, g) by the vector (—p—2,¢+p+1).
This gives a new Fock space realization of the algebra of SU(3) in terms of operators J,,

where
o 8 1.9 1 98
Jg = ta—iv%+§uau—p/2
- 8 1 8 190
Ju = %% T 32" ;t5+(q+p)/2
p,oo 21,0 :
T 8t 2 0w __
Jow = —u+-;-vt (3.11)
Jow = —v |
_ - ¥, . b
Jee = —tza - (Etu + ltzv)a— + (ltv - u)i'+,pt
- 88 190 a? L1, o 8 1,8
Tn = —5ipstiteam t 4 5+ a 5ums WPt 5,
. 99 1,90 a ] o\ 02 a2 '
T = 5 T3 515w T “oude f( st “’)az T

_gd _(Pptatl) 6 -
This representation of the SU(3) algebra is a twisted Verma module representation V. The
Fock space module is free on the state | ) = 1 over the subalgebra generated by J_y and
J_,, and cofree over the subalgebra generated by J_,. The graph of the singular vector
structure for this representation is shown in Figure 3.3. Note that the graphical structure

of this twisted Verma module is identical to that of the Verma and dual Verma modules;
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however, the position of the highést weight vector has changed.

For any finite-dimensional Lie group, any twisted Verma module representa.tion '
of the corresponding Lie algebra on a polynomial Fock space can similarly be constructed
by performing a Bogoliubov transformation corresponding to some Weyl transformation on
the Lie algebra. Even the dual Verma module can be constructed in this way By a Bo-
goliub'ov transformation on the original Verma module; note, however, that the consequent
explicit realization on the bosonic Fock space is different from that given By the duality
transformation described above. In the case of infinite-dimensional Lie groups, there are
additional modules similar to the twisted Verma modules which cannot be constructed via
a Bogoliubov transformation. For example, since the irreducible representations of the loop
groups and Virasoro group do not conta.m lowest weight states, the dual Verma module
representation cannot be achieved by a Bogoliubov transformation from the Verma module
representation, unlike the case of finite-dimensional Lie groups.

Among the modules for infinite-dimensional groups which cannot be reached by
Bogoliubov transformations from the Verma module representation, one class of representa-
tions is of particular interest. These are the free field realizations, which have been studied

intensively by physicists since the early days of string theory (see [18] and references therein).
| In the éase of the Virasoro algebra, these representations were first studied by Feigin and
Fuchs [26] and were later described in terms of free fields by Dotsenko and Fateev [22]. In
the Feigin-Fuchs representations; there is a set of operators {a,, : n € Z}, corresponding to

the modes of a free bosonic field. These operators satisfy the Heisenberg-type algebra
[an,am] = 2060, -m. (3.12)

The operators a, act on a bosonic Fock space with a vacuum | ) satisfying a,|) = 0 for
n > 0 and ao } = 2a| ). The Virasoro generators appear as modes of the stress-energy

tensor, and are written in terms of the a’s,as [27]

L, = Gk Ok — ao(n + 1)a,,, for n#0, (3.13)

l\Dl)—‘ .::.lr-a

Lo = a.rar + ao — apag.

5
i_o:—
These generators satisfy a Virasoro algebra with

h = a(a~2ap), c¢=1-—2403. . (314)
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We can rewrite this representation in terms of the polynomial realization of the bosonic

Fock space by writing

7
an = 2nb—;;, forn > 0, | _ |
a@ = 2a ‘ (3.15)
Qupn = 2n, forn>0. -

In this notation, the Virasoro generators are

n-1 " ‘ )
L, = I;k(n k)aZk Fy—

+2n(a - ao(n + 1))6—— + Z kzpen— 83 , forn>0

k=n+1
. - . |
Ly = | afa - 2_010) + Z kzkgz—k, ' " -~ (3.16)
n—l ' 8 :
L., = (a+ ao(n - 1))z +— ;; ZkZn—k + k;l kzppn— Fr forn > 0.

The module structure of this representation is precxsely described by the graph in Fig-
ure 3.2¢, and corresponds to a module similar to a twisted Verma module, but which cannot
be realized by a Bogoliubov transformation from the Verma or dual Verma, inodules. -Note
that in these Feigin-Fuchs representations, the form of all the generators is dependent upon
both the pa.rameters h and c of the representation through the parameters o and ao, unlike
the coadjoint orbit representations of the Virasoro algebra, where only the genera.tors L
for n < 0 depend upon h and c.

- For the affine algebras correspondmg to loop groups LG, there is an analogous class
of free field representatmns which are similar to twisted Verma modules but again cannot‘
be constructed from the Verma or dual Verma module by a finite Weyl transformation.
These representations are the Wakimoto representations, which are constructed by taking
the normal ordered product of the currents associated with free fields having ic symmetry.
An equivalent mathematical description of the construction of thqs:': representations is given
by taking represéntations of the ﬁpit'e—diﬁe’nsional group G and replacing all Heisenberg
operators by free fields. The normal ordering must be enforced to give the correct affine
algebra. This process is known as “affinization”. For a review of this construction of

Wakimoto representations, see {18, 11].
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3.3 Intertwiners

In this section we derive explicit formulae for intertwining operators between the
dual Verma modules realized through the coadjoint orbit construction. Generally, an in- |
tertwining oper'a,tor, or “intertwiner” between two g-modules V' and V' is an element of
the group Homy g (V,V’) of g-module homomorphisms between V' and V’'. A g-module
homomorphism is a linear map ¢ between modules which intertwines with the action of g
in the sense that |

uopr = puz, Vz € V,ue€g. ' (3.17)

An analysis of the construction of intertwiners in a general algebraic context is
given in [18] In that work, it is proven that for two Verma modulés Vi, Vv, there is a
- 1-1 correspondence between intertwiners in Homyg)(Va, Var) and singular vectors in Vi .
of weight A. For each singular vector v in Vy of weight A, the resulting g-module ho-
niomorphism ¢ satisfies dl)y=v (here | ) denotes the highest weight state in Vy; we will
denote the highest weight state in V) by |)’). This characterization of intertwinefs for
- Verma modules is derived by first considering elements of the group of g_-homomorphisms
Hbmu(g_)(V,\,V,\r). Since the orbit of | ) under the action of the enveloping algebra U(g-)
conté.ins the entire Verma module, such a homomorphiszﬁ ¢ is determined uniquely by the
value of ¢| ) in V), and each element z € V), determines a homomorphism of this type by -
setting ¢| ) = z. The condition that ¢ intertwine correctly with the Cartan subalgebra t
requires that the weight of the state ¢| ) be exactly A. This leads to the general definition

of a set of screening operators s, which are g_-homomorphisms mapping
S0 : Vi = Viga (3.18)

Explicitly, given an element X € U(g-), corresponding to a state z = X|) in the Verma
- module V), the screening operator s, acts on z by ez = X J_al| ), where | )’ is the highest
weight state in the Verma module Vi+a- In general, all (g- & t)-module homomorphisms
between Verma modules are polynomials in the screening operators so. The screening oper-
ators generate an algebra isomorphic to g.. The condition that an operator ¢ described by
a polynomial in the screening operators intertwines with the remaining g generators simply
implies that the state ¢| ) is annihilated. by all the generators in g, which is equivaleﬁt to
the assertion that ¢| ) is a singular vector in V), giving the remaining part of the above
result.
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From this algebraic characterization of intertwining operators on Verma modules,
it is straightforward to consider the dual action of the intertwiners, which gives intertwining
operators on dual Verma modules. Clearly, for every intertwining operator ¢ between Verma
modules V and V), there is a corresponding intertwiner ¢* from the dual Verma. module
V3 to V¥, defined by ' _ _
($*z,w) = (z,dw), VYw € Vx,z € V3. o (3.19)

This correspon&ence is clearly 1-1, since the same argument can be applied on the dual -
space. From the result for Verma modules, we can derive the corresponding result for dual
Verma modules, which is that the intertwiners in Homy(g)(Vys, Vy) arein 1-1 correqundence
with cosingular vectors in V3, of weight A, and that the intertwiner ¢ corresponding to a
particular cosingular vector v € V), satisfies ¢v = | ) where |) is the highest weight vector in
Vyx. This intertwiner must also satisfy the condition that ¢w‘= 0 for any vector w € g_Vy, -
of weight ./\.. By taking the dual of thé screening operators s,, we get a set of screening

operators 5, = s} for the dual Verma module. These screening operators are maps ”
5a:Vy — Vi, S (3.20)

which intertwine with the algebra g, of generators corresponding to positive roots acting on
the _dual Verma modules. In fact, every intertwiner on a dual Verma module can be found
by constructing an appropriate polynomial in the screening operators; thus, in order to
characterize the intertwining operators in a particular realization, it will suffice to describe
the screenihg operators in that realization. .

We now proceed to give explicit. formulae for the screening operators in the coad-
joint orbit  dual Verma module representations. For an arbitrary group G, we begin by
defining a set of differential operators D, for all a € &, according to |

: ¥ o
. +
Doa= > ifys" "zﬂaz . (3.21)
| BED4lat+BED4 o+

These operators act on the ring R = C[{z,}] of locally holomorphic functions as first order

differential operators.
Propdsition 7 The operators 3, defined by -
§a=Ju+ Dy , : (3.22)

- commute with the operators Jp with B € &, and form a set of screening operators for the

dual Verma modules.
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Proof. Because the only nonzero Bernoulli number B; with [ odd is B; = —1/2 using
(2.157) we can write these operators explicitly as

. Bi(-1 7]
35 = Z %C (a1y.--3ak)Za, - - -

P
k>0,a1 ,-..,0% >0 . , a+ay+...4ax

fora>0. (3.23)

We now consider the effect of right multiplication of a general element (2.20) in the group
by an infinitesimal positive generator on the right. By taking the formal multiplication rule

exp( Z ZaJa )e‘J" = exp [ S (20 + €52)Jq ] Ff{Jela < o}) + O(e?), (3.24)

acdy a€dy

~we define a set of vector field operators S; = —9$8/92, which must commute with the
operators §,;. By repeating the analysis in the proof of Proposition 3 for these vector fields,
we ﬁnd‘ that the operators S, are precisely equal to 3, for @ € &,. Thus, we have proven

the assertion that ' , _.
[3a,J8] =0, Ya,B€ &,. - (3.25)

Since the operator S, lowers the degree of a polynomial in R by precisely «, it follows that
these operators are vaiid screening operators for the dual Verma modules O.

It is a consequence of this explicit formula that the screening operators are inde-
pendent of the highest weight A of the module on which they act, just as are the raising
operators in the algebra, J, with @ = 0. .

A similar approach to the one taken here was used by Awata, Tsuchiya, and
Yamada in [11] to construct the Wakimoto representations of affine algebras; in their work,
the result was achieved by using a construction similar to this one for finite-dimensional G
and performing an affinization to get realizations of the Wakimoto representations. '

As an example of an intertwiner, we consider again the coadjoint orbit dual Verma
module representations of SU(2) given by (2.207). For these representations, there is a

single screening operator §, given by

. 3 7
=J+-‘=—$

(3.26)
This screening operator obviously commutes with VJA.,_, and raises the weight of a stateby 1, as
measured by the eigenvalue of J3 in ‘a‘pa.rticula.r module. Since the screening operator goes
from a dual Verma module V;* to another dual Verma module V> ; with a new highest weight

state, we see that § intertwines correctly with J5. It remains to construct an intertwiner
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using . The dual Verma module V;* has a single cosingular state of weight —b — 1, which
is represented in the coadjoint orbit realization by the polynomial 22+! = aj?+!| ) where

aisa proportionality constant. Thus, we expect that we may construct an intertwiner
SV =V - (3.27)

by taking ¢ = 5%**+1. We have already verified that 3 intertwines correctly with all operators
in g except for J_. We can now compute directly the result of applying J_ before and after
the intertwiner ¢ to verify that ¢ intertwines.correctly with the entire algebra. Acting on

an arbitrary monomial 2", we have

Fogzm = gJ_z" = (7(% | O (328)

It follows that ¢ is an intertwinjﬁg operator, as claimed above. Note that the two operators

J_ in (3.28) have different realizations as differential operators, since they are acting on k

different dual Verma modules. In general, we will use a parenthesized superscnpt to denote
the highest weight of the module on which a coadjoint orbit generator is a,éting when there

is a possibility of confusion. Thus, we have

- F® = 2202 — 202, (3.29)
and (3.28) states that v ‘ :
JErVgon — g j® 0 | (3.30)

As a second example of an intertwiner consider the coadjoint orbit dual Verma
module representations of SU(3) glven by (2.224). For these representa.tlons the scTeening

operators are given by

r3 = i+l i
o at 2“av

: a 1 8 '
S4y = ——— — =t— 3.31
5+ du 2t8'v : . : ( )
. 9
Sy = —%.

A typical representation is the adjoint representation with (p,q9) = (1,1). The associated
- dual Verma module V{j ,) contains cosingular vectors with We1ghts (3,-3), (-3,3), (1,-5),
(-5, 1) and (—3,-3). A typical intertwining operator is the operator

6 Viay = Vs (3.32)
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given by
$-X-v=5 X -v=1X|), (3.33)

where | ) is the highest weight state in the dual Verma module V, (-3 ? is the cosingular
vector of wexght (3,—3) in V(3,4), and X is an arbitrary element of 2/(g-). In the explicit
coadjoint orbit realization above, v is given by the polynomial u?/2 (the unique vector with
this weight in the dual Verma module). That this operator ¢ is an intertwining operator
from V, Va, 1 b o V(3,3 follows from the fact that 5%,(v?/2)=1=).

As a final example of an mtertwunng operator, we consider again the s1mplest
example of the discrete series of Virasoro representations, thh m=3,p=2,g=1, and
h = ¢ = 1/2. As was pointed out in Section 2.6.2, the dual Verma module associated
with this representation has a cosingular vector at level 2. Thus, we expect to be able to

construct an intertwiner ¢ mapping
¢ Vi = Ve (3.34)

where V' refers to the Virasoro dual Verma module with highest weight h and central
charge ¢ = 1/2. This intertwiner is a polynomial of degree 2 in the screening operators
3n=Ln + D,,, and therefore can be written in the form ¢ = a§§ +b3,. Since the intertwining

operator must annihilate the state
) .. v . |
L2,]) = 3Ll ) = =32 + 24, -~ (3.35)

we determine that 4a — 3b = 0. Fixing the normalization by choosing 2z? as the cosingular

vector, we have a = 1/2, so the intertwining operator is given by

182 28 1 8
282 T 355, 13985, T D+ (3:36)

b= %5§ + %52 =
| In Chapter 4 we will review the inte.rtwining‘ operators for the Feigin-Fuchs Virasoro rep-
resentations, which were first explicitly described by Felder {27]. Because of the method of
construction of these intertwiners, explicit calculations of their action on particular states

are rather more involved than in the coa_djdint orbit realizations.

3.4 Resolutions

We now proceed to use the intertwining operators constructed in the previous sec-

tion to define algebraically a chain complex whose cohomology is given by a single irreducible
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representation of an algebra g. The resulting resolution is essentially the dual to the well-
known BGG (Bernstein-Gelfand-Gelfand) resolution for finite-dimensional groups [15]." The
explidt formulae for intertwining operators give us an explicit realization of this resolution.
The analysis in this section is similar to that of [18] where the primary consideration was the
understanding of twisted type Verma modules such as the Feigin-Fuchs and Wakimoto rep-
resentations. The primary difference between this work and the analogous construction for
free fields is the possibility of using single-sided resolutions; in the free field approach, one
-is forced into using two-sided resolutions, which are mathema.tica.ll& much more difficult ob-
Jjects to handle. From a mathematical point of view, the advantage of describing irreducible
representations through a resolution of Fock space ‘representations is that most properties
of representations are much easier to calculate for Fock space representations than for irre-
ducible representations. (An example is the character of a representation, which has a fairly
straightforward expression for the Verma module of most groups, but which is more compli-
cated for the irreducible representations.) Genera.lly, a useful approach to computing such
properties of irreducible representations is to compute the property for Fock modules and
to then combine these results with the resolution to arrive at the result for an irreducible
- representation. From the physical point of view, the resolution is essentially equivalent to
fhe BRST formalism for calculating properties of a physical Hilbert épace deﬁﬁed through
a BRST complex of simpler Fock modtile-type spaces. In the case of the free field approach
to conformal field theory, this approach was first made explicit algebraically by Felder [27].

We begin by briefly reviewing the formalism of resolutions. A chain complex

(M;, d;) of g-modules is defined to be a sequence of modules

--d—_fM—ld——*l'Moio*M1ﬂ>"' (3.37)

where d; € Homyq)(M;, Miyy) is a set of g-module homomorphisms satisfying
dipy - d; = 0. L _ (3.38)

A chain complex can terminate on either or both ends with a trivial module (0). The
cohomology of the above chain complex is defined as usual to be

Ker d;

H =Imd,-_1'

(3.39) -

If L is an irreducible representation of g, the above complex is said to be a resolution of L
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when ' A
H?;{L’ =0 (3.40)

0, i#0 :

A resolution based on a complex which terminates with either M; = 0 or M_; = 0 is said
to be a one-sided resolution. Otherwise, the fesolution is two-sided. In physical language,
d is said to be a BRST operator, and the cohomology spaces H' are the BRST cohomology
spaces, which contain all the physical states in a given representation. The states not in
the cohomology HP are called “ghost” states.

The classic example of a resolutioﬁ is the BGG resolution for irreducible repre-
sentations of finite-dimensional semi-simiple groups G [15]. This resolution is constructed
directly from the Verma modules of G. Given a highest weight ), we can assign an integer -
z('v) to each singular vector v in the Verma module V) by setting #(vy) = 0 for the highest
weight state and i(v) = ¢(v') + 1 whenever the graph of singular vectors contains an arrow
v’ — v. This ordering is equivalenf to the “Bruhat” ordering on the Weyl group of G. We
can then comstruct a complex by setting

Mij= @ Vi o (3.41)
. vli(v)=—j _
where A(v) is the weight of the singular vector v. The spaces M; are thus g-modules.
The g-module homomorphisms d are constructed by combining the inteftWining operators
¢ : Vaw) = V() for all singular states v’ — v. It turns out that the signs on these
inteitwining operators can always be chosen in such a way that the resulting is a chain
complex, by e'nfqrcing the condition that d; - d;—; = 0.

As an example of the BGG resolution, consider again a general Verma module for
a highest weight representation of SU(3). The graph of the singular vectors vy,...,vs is
showﬁ in Figure '3.4. The signs on the arrows indicate the signs used in the construction of

the chain complex. The g-modules in the resulting chain complex are

My = Wy

M_; = Vi ® Vi) o (3.42)
Moy = Vi) ® Vaw) |

Moz = Vi,

and the operators are given by

doy = ¢1,o+¢2;o
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M v3 .

Figure 3.4: Singular vectors in SU(3) Verma module

doz = ($31— ba1,~¢32+d42) (3.43)
d_3 = (¢s3, $s.4)

where we denote by ¢; ; the intertwining 6pera,tor from V,\(,,'.) to Vi(v;) (Y0 = v3). Because

the intertwining operators satisfy the relation
Bik - bij = Bjrk - Bigis ! : (3.44)

it follows that the operator d in the chain complex satisfies (3.38). That the cohomology of
this Vcomplex- indeed gives a resolution of the irreducible representation with highest weight
A is easy to verify by simple diagram chasing. o
Just as the BGG resolution gives a chain complex whose cohomology is an irre-
ducible representation of a finite-dimensional group, one can construct analogous resolutions
in terms of Verma modules for the Virasoro and loop group irreducible representations. For
thé Virasoro algebra, the relevant resolutions were essentially described by Feigin and Fuchs
[26]; for the affine algebras arising from loop groups, the analogous result was first obtained '
by Garland and Lepowsky [32]. A proof of the existence of such a resolution in terms of
Verma modules for infinite-dimensional groups is also given in [54]; in [55], these resolutions
are used to calculate the characters of irreducible representations of the Virasoro algebra.
Our interest here is in achieving an explicit realization of the dual of the chain
complex of Verma modules. Because the resulting resolution is simply the duai 'of. the
~ resolution described in the above works, the existence of such a resolution in terms o_f dual
Verma modules follows immediately. By combining the mtenwining»operators described in
the previous section, we find for any gfoup G among the groups under consideration in this
thesis, and for a.ﬁy highest weight ), a one-sided resolution of the irreducible representation -
with highest weight A, ,
‘ qu;ﬂ’»Mli‘»Mgf’—’»---. _'  (3.45)
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As an example of a dual Verma module resolution, consider once more the coadjoint orbit
dual Verma module realizations of SU(2). As discussed in the previous section, when b > 0
and b € Z/2, the dual Verma module V;* contains a single cosingular state with weight
—b— 1. The dual Verma n'10du1e V*,_, contains no singular or cosingular states. Thus,

using the simple intertwiner ¢ = §*+1 = (—-9/82)%+!, we have a resolution
0=V 3Vvs_, -0 - (348)

where Im ¢ = V2, _,, and Ker ¢ = I, is the irreducible representation of SU(2) with highest
' weight b. '

For the Feigin-Fuchs and Wakimoto representations of the Virasoro and loop group
algebras, it is believed that a similar resolution of highest weight irreducible representations
can be constructed in terms of similar intertwining operators [24]. In the case of Feigin-Fuchs
modules, this result was essentially proven by Felder [27]. For the Wakimoto representations
of LSU(2) and LSU(3), the existence of such a resolution has also been proven [14, 25].
In general, however, because the resulting resolutions are two-éided, the usual methods of

homological algebra which are used to prove these results for one-sided resolutions must be
generalized to deal with this situation. In [18], some of the specific results regarding these
two-sided resblutions are given or conjectured, and arguments _éxe given for the correctness
of the conjectures. Some of the outstanding problems regarding these two-sided resolutions
were successfully dealt with in {24], but the mathematical formalism necessary to resolve
these difficulties is significantly more complicated‘ than in the case of one-sided resolutions.
This is one of the reasons Why the approach used in this thesis, which concentrates on_dua.l '
Verma modules and one-sided resolutions, is perhaps a simpler approach to the algebraic
construction of conformal field theories. | v :

Finally, Wey.reitera.te the point that in thé case of affine algebras a.rising from‘_loop
groups, in a global geometric setting' the algebraic structure of resolutions is not necessary
to extract irreducible highest weight representations from coa.djbint orbit representations,
as the constraint of global holomorphicity already restricts to a Hilbert space corresponding
to an irreducible representation. In the case of the Virasoro algebra, however, the resolution
described in this section is necessary in order to extract irreducible representations from

~ the larger, reducible, dual Verma module representations which arise from coadjoint orbits.
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Chzipter 4
Conformal Field Theories

In this chapter we describe a method for the construction of conformal field theo-
ries using the explicit resolutions of irreducible répresenta,tions through dual Verma modules
described in the previous chapter. Bécause we do not')'fet have a ;;urely‘ field-theoretic de-

A scription of the coadjoint orbit representations, we must proceed according to the algebraic

- approach to conformal field theory, which was recently developed in order to give a formal
algebraic structure to the theory and to characterize conformal field theories in terms of free
field representations. This algebraic approach to conformal field theory is well-described in
the papers by Tsuchiya and Kanie [62] and Bouwknegt et. al. [18].

The essential element in the algebraic comstruction of a conformal field theory
from a set of irreducible representations of an infinite-dimensional symmetry algebra A, is
the construction of verter operators between the irreducible fepresenta.tions. In the case
of finite-dimensional gfoups, a vertex operator is eésentia.lly just described by the set of
Clebsch-Gordan coefﬁcients between three irreducible representations of the group. In the
infinite-dimensional case, vértex operators have a similar structure; however, they have the.
effect of combining two representations, one of which is highest weight and the other of
which is not highest weight, into a third highest weighf representation.

A conformal field theory is specified algebraically by giving an infinite-dimensional
symmetry algebra A, a set of highest weight irreducible representations of A, and a set
of vertex 6perators connecting the representations. In general, the symmetry algebra A
conﬁains holomorphic and antiholomorphic parts, and t»h'e}vertevx operators factorize into
“chiral vertex operators” corresponding to the holomorphic and antiholomorphic parts of

the theory. In this discussion, we will simplify by only considering the holomorphic part of
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the theory; our verte.k operators are therefore wha;t are usually referred to in the physics
literature as chiral vertex operators. The simplest class of conformal field theories are the
rational conformal field theories, which contain a finite set of irreducible representations
of .A. Each representation is generally associated with a primary field of the theorj and
a corresponding subset of the vertex operators. The fusion algebra of the theory is an
algebra whose elements are the primary fields of the theory, and whose product is deﬁned
by the action of the set of nonzero vertex operators associated with one primary field on the
irreducible module associated with a second primary field. The highest weight state of a
particular represen’f.ation with exceptional symmetry is geneia.lly singled out as the physical
vacuum |Q2); the physical observables of the theory (on the sphere) are then given by acting |
on the vacuum with a product of vertex operators and computing the component of the ‘
vacuum in the resulting state. Such an observable is referred to as a vacuum expect#tion

value or correlation function, and is written in the form

(Q®1(u1,21) - : cBr(uk, 21)|0), | (4.1)

where ®; are vertex operators which are pma.ﬁeterizgd by complex coordinates z; on the
sphere and enough extra parameters u; to specify a particular vector in the representation _
of A (not highest weight) associated with &;. |

In Section 4.1, we define vertex operators for finite-dimensional algebras We show
_tha,t these vertex operators can be wntten in terms of the explicit screemng operators for
dual Verma modules introduced in the prevmus chapter, and give a simple example for
the algebra of SU(2). In Section 4.2, we define vertex operators for the Virasoro algebra,
- and show that all vertex operators between degenerate Virasoro representations satisfy a
certain set of algebraic conditions. Furthermore, we show that any vertex operator which
has a realization as a chba.'m .map between dual Verma module resolutions can be completely
characterized by its matrix elements. In this section, we also give a simple class of examples
of vertex operators whose action on the vacuum can be computed in terms of the Virasoro .
generator L_,. In Section 4.3, we review the explicit construction of vertex operators for the
Feigin-Fuchs modules due to Felder, and the related construction of intertwining operators
for these modules. In Section 4.4 we describe the explicit construction of vertex operators
for the coadjoint orbit dual Verma modules. We discover a class of vertex operators whose
action on any state can be represented entirely in terms of the Virasoro generators. The |

existence of these operators is due to the independence in form of raising operators from
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the highest weight of the module on which they act in the coadjoint orbit realizations.
Finally, in Section 4.5 we review several approaches to calculating the correlation functions
- of conformal field theories. In principle, the coadjoint orbit vertex operators can be used‘
" to calculate an arbitrary correlation function for a conformal field theory oﬁ any Riemann
surface; in practice, however, a better description of these vertex operators is necessary to
make any such calculation a practical enterprise. .
' For the purposes of the discussion in this chapter, we will restrict attention to
" conformal field theories whose symmetry algebra A is the Virasoro alg_ebr"a.' In such a con-
formal field theory, a fixed value of the central charge c is chosen for all fields in thé theory.
The physical vacuum |Q) is defined to be the highest weight state in the ;'epresentation with
h =-0. The class. of conformal field theories corresponding to ¢ < 1 contain only a finite
number of primary fields, corresponding to the discrete series of Virasoro representations
with' h satisfying (2;76). These rational conformal field theories are called minimal models. _
A sysfema.tic definition and sfudy of Virasoro conformal field theories was first performed by
Belavin, Polyakov, and Zamolodchikov (BPZ); the point of view taken in that work [13] and
in much of the subsequent literature (see for instance [34]) is based on treating correlation -
functions as the primary objects, and analyzing their properties using differential equations
which they can be shown to satisfy. In the algebraic approach to conformal field theory,
the operators' themselves are taken to be the primary objects, and the correlation functions '
are viewed as algebraic constructs using these operators. We will primarily adhere to the
latter point of view; however, we will discuss some of the parallels between structures in
the algebraic formulation and their counterparts in terms of correlation functions. Much of
the content of this chapter, paiticularly Section 4.2, is essentially a recasting of the origi-
nal BPZ analysis of conformal field theory into the more algebraic framework of operators,
modules, and resolutions, where the differential equations satisfied by correlation functions
are expressed as algebraic equations satisfied by vertex operators.
| Most of the results in this chapter can be generalized in a straightforward fashion
using the ﬁreced.ing results in this thesis to construct conformal field theories whose sym-
metries are affine algebras, such as the WZW model, in a purely algebraic fashion from dual
Verma module resolutions. From a global geometric point of ﬁew, however, as mentioned
in the previous section, the conformal field theories with affine algebra symmétries can be’
| directly constructed from the coadjoint orbit representations without the necessity of in-

troducing resolutions since the constraint of global holomorphicity automatically picks out
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the physical states in the theory. We discuss briefly the pdssibility of extending the results
in this thesis to conformal field theories with other, extended symmetry algebras A in the
last chapter. ‘

4.1 Finite-dimensional vertex operators

.Although vertex operators are primarily of interest for their properties relative to
conformal field theories and infinite-dimensional algebras, it is possible to déﬁne..a.na.logous
objects for finite-dimensional groups [18]. Because these finite-dimensional vertex operators
are structurally similar to the usual infinite-dimensional vertex operators, but are mathe-
matically much simpler, it is interestihg to study them as toy models before proceéding to
the more complicated objects. |

A vertex operator V for a ﬁmte—dxmensmnal group G can be defined for any three
irreducible representations Iy, , I»,, and I, of G with highest weights A;, A2, and A3, to be
a set of operators

' Vo:In,—= I, Vuely : (4.2)

*  which transform under g according to

[2,Va] = Vau Vz €3 | (4.3)

Such a vertex operator is called a vertex operator of‘ weight A;. By the Wigner-Eckart
theorem, a matrix element of a vertex operafbr of this form is necessarily proportional to
the corresponding Clebsch-Gordan coefficient.

Since we are concerned with irreducible representations which arise from dual
Verma module resolutions, the next problem which arises is that of characterizing a vertex
operator in terms of resolutions of irreducible representations through chain complexes.
'Generally, if the irreducible representations I ,\; and I, are given through resolutions (M, d;)

and (M!,d"), a bosonic realization of the vertex operator V, is a set of operators
Vi M; - M! - - (4.9)

which satisfy (4.3) and . :
d:-Vi=Vitt .4, - (4.5)
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- and where V] agrees with V, on the cohomology of the complex. The constraint (4.5) is
the statement that Vi is a map of chain complexes for every u € I A.» and is equivalent to

the condition that the following diagram be commutative

d-—2 ) d—.l do d
—M_ 5 VMO M1 1
vzl W V1
—_—M — M M
@, dy

A chain map V* which induces a trivial map in cohomology is called a trivial chain map.
~ Some straightforward diagram chasing suffices to verify that any chain map induces a well-
defined map in the cohomology, and that every trivial chain map can be written in the

form .

Vi=d_, ¢t +t*tld; » - (48)

for some set of maps
' M- M. - ' (4.7)
It follows that every two bosonic realizations Vi and Vi of the same vertex operator V,

differ by operators of the form
Vi Vi = iyt 6 . (48)
where for each u € Iy, the operators £, satisfyi (4.7), and furthermore we have
[z,8] =1, vz €g. | (4.9)

Since we are primarily interested in bosonic rea.lizé,tions of vertex operators in terms of
chain maps, we will generally not distinguish in notation between vertex operators and
their realizations. Vertex operators which are realized as chain maps are frequently referred
to as “screened vertex operators”. ) |

As mentioned above, the Iﬁatrix elements of vertex operators of a finite-dimensional
group G are proportional to Clebsch-Gordan coefficients. It is fairly straightforward to prove
that a nontrivial vertex operator of weight I), between representations I, and I, exists
precisely when the tensor product rules of G are satisfied, so that the irreducible represen- -

tation Iy, occurs in the tensor product representation I, ® I, [18].
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For finite-dimensional groups, it-is possible to explicitly construct bosonic realiza-
tions of vertex operators as chain maps of dual Verma module resolutions using the screening
operators defined in Section 3.3. In fact, since I, is a highest weight representation of G

with a highest weight state v, we have
[z,Vi]=0, Vzeg,. | (4.10)

It follows that Vi, the component of the vertex operator associated with the highest weighf
state, can be written as a polynomial in the screening operators for every i, along with an
appropriate change in weight by A;. For V0 , the degree u of the pol};nomial in the screening
operators must be such that Az + A; — p = A3; the degree of the polynomial for each value
of i can similarly be calculated. Thus, for example, we must have a description of V2 as a

polynomial in screening operators 3, of degree
p=AMA4 A=A | | (4.11)

Note that we must have Az < A1 + Ao for such an dpéra.tor to exist, in agreement with
the Wigner-Eckart theorem. The remaining components of the vertex opera.tor can be
calculated using the relations (4.3). _

Asa simple example of a screened vertex operator for a ﬁmte-d1mens1ona.l group
G, we now give an explicit bosonic realization of an SU(2) vertex operator of weight j '
acting on the irreducible representation with weight k£ and taking values in the irreducible
representa.tlon with weight &’. As described above, the irreducible representation of SU(2)

of weight k has a resolutlon in terms of dual Verma modules by the chain complex

52k+1

00—V Vkl'-—v()i-' I (4.12)

The highest weight component V; of the screened vertex operator in question is given by

two operators V? Ve = V5 and V} VS = V%o as in the following diagram

§2k+1
0 Vi —k—1 0
0 1
vj VJ
0 \ % V01 0
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From the above argument, V9 and V} must be proportional to +*~%" and §+*'~* respec-
tively. In order to make the above diagram commute, we must choose the same propor-
tionality constant for bqth operators. Noﬁe that the form of this vertex operator depends
~ explicitly upon the weights k and ¥’ of the initial a.nd final modules. This is a general
property of vertex operétors defined for a particular Fock space realization.

4.2 Virasoro vertex operators

The vertex operators associated with the Virasoro algebra are defined in a similar
fashion to the finite-dimensional vertex operators defined in the previous section. The main
distinction is that the representation which defines the weight of the vertex operator is not
a highest weight representation. Within a single conformal field theory, the central charge
¢ does not vary between irreducible representations of the Virasoro algebra, so we shall
keep ¢ fixed to a consta.ﬁt value, and use the single parameter A for the highest weight of a
Virasoro module throughout the rest of this chapter. Given two irreducible highest weight
representatioﬁs of the Virasoro algebra I, Ijs, with highest weights k and k' respectively, a ’
vertex opera,tor' of weight I 'is defined to be an oéera,tor-valued function of a single complex
variable z, |

&(2) : Iy — I, (4.13)

which satisfies the relations
(L, 8(2)] = (z""’.lga; +(n+ 1)hz")v§(z). (4.14)

In the physics literature, a vertex operator is often defined to be an operator of this type
which has a nontrivial action on all irreducible representations occurring in a given theory.
We will adhere to the convention that a vertex operator is associated with a fixed set of
three weights A, k, and ', following [18]. _ '

To better study the structure of vertex operators, it is convenient to expémd a

 fixed vertex operator (z) in a power series expansion in z,
Q(Z) =z" E ¢-h—z+nz_n, ‘ ' (4'15)
" n€Z '

where z = k' — h — k. Note that the vertex operator is not singlé valued unless z € Z.

The modes ¢,, of the vertex operator satisfy the commutation relations with the Virasoro
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algebra
[Lasdm] = (nh. - = M)Pntm- ,. (4.16)

Thus, the modes of the vertex operator carry a fairly simple representation of the Vira-
soro algebra. This representation, howevei', is not highest weight; the weight of the mode
@—h—z+n is precisely h + z — n which is unbounded in both directions as n € Z.

Just as we did for finite-dimensional vertex 6perators, we can define a bosonic
realization of a vertex operator as a chain map between resolutions of the irreducible rep-
resentations Ix, It in terms of Fock modules, where the cha.m mai) satisfies the correct
commutation relations with the Virasoro generators. A vertex operator is again defined to
be trivial when its action on the cohomology is trivial, and two vertex operator realizations
which differ by a trivial chain map are considered to be equivalent. Again, equivalent vertex
operator realizations ¢},, &}, must differ by a chain map of the form d!_;#, + t5F1d;, where
[Laytiy] = (nh — n — m)ti .. | _

‘We are now interested in answering the question of which values of k, &/, and *
corresponding to unitary representations of the Virasoro group admit a vertex operator of
weight h from I to Ip». Moreover, we would like to know whether such a vertex operator,
when it exists as a map between irreducible representation spaces, can be realized by a
chain map between resolutions. Because the representation of the vertex operator itself is
not highest weight, we cannot use the methods of the previous section. That is, there does
not eﬁst a component of the vertex operator which commutes with all raising operators L,
n > 0, so we cannot describe the vertex operators of the Virasoro algebra in terms of the
screening operators 3,. This complication makes the explicit description of screened vertex
operators rather difficult. Nonetheless, for those vertex operators which do exist and have
realizations as chain maps, we can give a set of equations which uni_quely characteriée the
action of the vertex operator on the cohomology of the resolutions. '

. Unfortunately, we do not have a closed form expression for the rea,lizations of the
existing vertex operators on the coa.djoint orbit dual Verma modules, nor do we have a proof
of which vertex operators have realizations as chain maps. In the case where the resolutions
are trivial and the dual Verma modules V;* and V) contain no cosingular vectors, we can
prove the existence of a vertex operator of arbitrary weight h. Because the resolutions of
these modules are trivial, it follows immediately that these vertex operators have realizations

as chain maps; we can characterize these vertex operators uniquely by calculating their
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) matrix elements. When the resolutions are not trivial, the existence of cosingular vectors
in V¥ and singular vectors in Vir give a set of algebraic constraints on the values of h, &, &’
for which vertex operators can exist. In physical language, these are ‘constraints on the
fusion algebra of the associated CFT. Whenever this set of constraints is satisfied, there
exists a vertex operator between the appropriate irreducible Virasoro répresentatiorls. We
believe that every such vertex operator has a realization as a chain map between dual Verma
module resolutions, although we do not have a rigorous proof of this assertion. We can,
however, show that if such a vertex operator e:dots, it is unique up to a scaling factor and
the a,dd.i;‘,ion of cohomologically trivial vertex operators. Furthermore, we can calculate
the action of such a vertex operator on the cohomology of the complex, which uniquely
determines the action of the vertex operator on the irreducible representation and provides
the essential information needed to compute (genus 0) correlation functions in a conformal
field theory. We will now proceed to demonstrate the existence of vertex operators between
dual Verma modules with no cosingular vectors, and to describe the constra.mts on the
~vertex operators between nontrivial resolutions of dual Verma modules.

, In order to have a sensible algebraic description of Virasoro vertex operators in
terms of matrix elements, we find it useful to discuss briefly several simple points about
opera.tors on bosonic Fock spaces. vaen a Heisenberg algebra on a set § = {& € &, CA}
acting on a Fock space F with a A-gra.dmg, where ®, is the space of positive roots and A

is the root lattice for a Lie algebra g, an operator
O:F~F | . (4.17)
is uniquely defined by the matrix elements . »
(w|O[v), |v) € F,(w| € F". ‘ (4.18)
The number of elements v € F with weight A is given by the A-pa.rt1t1on functron 7rA()\),
which is the number of distinct' ways in which A can be constructed as a sum of elements
n®;. In the particular case at hand, the Vrra.soro group, the Fock space is the space
R = C[{z, : n > 0}] with a Z-grading. The dimension of the space R, of degree n is just
the integer partition function m(n). The canonical basis for R is the space of monomials in
the variables z,. An operator O : R — R can be described either by giving the complete set
of matrix elements (4.18), or by writing the operator in the form of a differential operator

0= Z > w(ﬂn»ﬂm)(Hzn.)(H—), (4.19)

n,m Tn,Am
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where 7, and 11;,,, are summed over all partitions {n;} and {m;} with ny +---+n, = n and
' my + ---+ mp = m. The description of an operator by a set of coefficients w is equivalent
to giving the coxhﬁlete set of matrix elements for that operator. However, these two ways
of writing the sa.rﬁe operator are related in a rather nontrivial fashion. For instance, the
operator P-on the bosonic Fock space C[z] which projects onto the highest weight state
-|) = 1 has all matrix elements equal to 0 except for the element { |P|) = 1. This operator
has the differential operator form

P=:e$cp(;z5‘?;) Z( 1)' 75 (4.20)

z"

where by the dots around the second expression we indica.te the normal ordering procedure,
by which all annihilation operators 8/8z are moved to the right of creation operators z.
Up to this point in this thesis, we hé,ve primarily described operators in terms of their
description as differential operators; in the following, we will find it mére useful to describe
screened vertex operators in terms of their matrix elements. - |

The Virasoro vertex operators which we wish to construct are chain maps &(z)
between resolutions (M;, d;) and (M, d’) of the irreducible representation spaces I and Ii
of the form '

d d d
0 — Ve —2 oMy — My

3°(2) Qléz)l‘, 32%(z)

0 — V3 M! M,
d g T 4

We will find it useful to define a particular set of states in Vi and Vi* = Vk: Associated

with each partition 7, = {ni| X ni = n} we define the opera.tors
L, = H‘Ln.- N S (4.21)
i .
Lewy = [[Z-mo>
i
and the associated states

Jfm) = Leenl)EVE K )
(Wnl = (|Lr, € Vi



CHAPTER 4. CONFORMAL FIELD THEORIES 117

Because Vi is always a Verma module, containing no cosingular vectors, the set of states
(7| are always a linearly independent basis for Vj..
We now consider the simplest case of a Virasoro vertex 6pera.t_or, where the dual
Verma modules V;* and V} contain no cosingular vectors and are therefore isomorphic to
‘the irreducible representations I and Ijs,. In this case, the corresponding resol_utions are
all trivial, with My, = M{ = 0. Because there are no sinéula.r or cosingular vectors in
the modules Mo, My, the states defined through (4.22) form complete bases for these Fock
modules. As discussed above, to characterize the vertex operator ®(z) it will suffice to give
all the matrix elements with respect to these bases. By counting weights, we see that the
only mode of the vertex operator which can contribute to a matrix element between states

(7n| and |7pm) is @—h—z+m—n, Wwhere £ = k' — h — k, so that

(0| 8(2)[Tm) = 25" (T | d—h—ztrnen | Trm)- (4.23)

The only nontrivial matrix element between the highest weight states is then

(lp-p-sl). » (4.24)

We will choose the normalization of the vertex operator to be such that this matrix element is
equal to 1. Just as the Virasoro commutation relations are used to construct the Shapovalov
formv on the Verma module, the Virasoro relations coupled with (4.16) can be used to relate
an arbitrary matrix element (4.23) to the canonical element (4.24). That this procedure
defines each matrix elément in a well-defined fashion, and that the resul_tihg operator satisfies
(4.16) follow from the condition that (4.16) defines a representation of the Virasoro algebra,
which is equivalent to the Jacobi-type equation

[L'ru [Lﬂh ¢P]] + [Lm, [¢P’ Lﬂ]] + [¢P’ [Lﬂ? Lm]] ) .
= (m(h=1) = p)(n(h - 1) = m - p) — (n(h — 1) - p)(m(h = 1) = n - p)
CAm-n)(ntm)h-1)~-p) - (a2)
= 0. |

Thus, we have shown that when the dual Verma modules V;* and V}: contain no cosingular
vectors, there exists a unique vertex operator ®(z) of any weight h. In addition, the matrix
elements (4.23) completely characterize ®(z). The resulting realization of $(z) as a differ-

ential operator on a coadjoint orbit representation can be explicitly calculated by choosing
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a monomial basis for R and relating this basis through a nonsingﬁla.r linear transformation
to the basis |7,,).

We now consider the case where the dual Verma modules Ve and V) contain
cosingular vectors and the resolutions (M;, d;) and (M!,d!) are nontrivial. As the most
general case, we assume that both weights k£ and k' are associated with representations
-whose Verma modules have the singular vector structure graphed in Figure 3.2b, and we
consider the resulting dual Verma module resolutions. For any of the unitary representations
with a simpler singular vec_tbr structure the resulting resolution is equivalent to taking this
.resolutioﬁ and simplifying by setting to 0 the modules which correspond to singular vectors
which do not exist in the simpler representation. |

A choice of signs on the intertwining operators which allows us to construct the

dual Verma module resolutions is as follows

+ o+
Vi My M, Mz M,

In this resdlution, each module M;,i > 0 contains a direct suxﬁ of two dual Verma modules
5 ,:‘( v;)’Vl:(w.') associated with cosingular vectors v;, w; in Vi© with weights h(v;), A(w;). The
arrows are (surjective) intertwining operators with the given signs.

~ From the discussion in Section 3.3 on the intertwining operators between dual
Verma modules, we know that the kernels of the operators dy and dj, are precisely the
orbits 2(g)| ) of the highest weight vectors in the modules V¥, V. For every cosingular
vector |v) in Vi at level n, there exists a singular vector (s| in Vj, which can be written in
the form | '

(sl = explmnl, . i - (4.26)

Tn .
where c,, arereal coefficients. Such a singular vector is annihilated by all lower_ing operators,
(s|Lon=0 VYn>0. (4.27)

It follows that
(s|tp) =0 V|ma) € Vi, n > 0, |  (4.28)
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and therefore that for any vector Iw) € Vi satisfying (slw) ;é 0, we have
» 6Iw)v # 0. | " (4.29)
A conseéueﬁce of this condition is that the nﬁé.trix’element |
(s12°(2) ) | (4.30)
must vanish-for any sfate |7n) in the orbit of the highest weight state in V,:, since -
do®°(2)|ms) = &'(2)do|mn) = 0. - (4.31)

This places a set of algebraic conditions on the weights h,k, k' for which veﬁex operators
areé allowed to exist. From the singular vector structure of the Verma module, we know that
there are (at mbst) two singular vectors s, t, corresponding to the cosingular vectors vy, wy
in V, with the property that the modules generated by s and ¢ contain all other singular
vectors in Vi, Thus, the set of all algebraic conditions associated with singular vectors in
Vir can be conipletely described by the condition that matrix elements containing s or ¢

must vanish,

<Sl§(z)l7rn) = 0; SR (4.32)
(t|®(2)|ma). = 0 Vim,) € V{,n>0.

A further condition on the matrix elements of ®(2) arises from the fact that at
every level n at which there is a cosingular vector in Vi, there is a linear relation between
the states |r,). Each such linear relation gives a constraint to the matrix elements of & of

the form '
| >~ Crn{Tml|®(2)I7a) = 0.  (4.33)

Again, because of the cosingular vector structure, this infinite set of constraints can be
completeiy described by the two families of constraints arising from the cosingular vectors
V1, Wy . _ '

Thus, we have derived a set of algebraic constraints on the weights h, &, k' which
must be satisfied for a vertex operator to exist as a map of dual Verma module resolutions.
Although we have derived these constraints from the point of view of chain complexes, the
constraints (4.32) and (4.33) also hold for the simpler construction of a vertex operator

of weight h between irreducible representations with highest weights k,k’. In the case of
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~

irreducible representations, the dual elements (s| corresponding to singular vectors must
vanish. Similarly, the linear conditions on vectors |7r,,) associated with cosingular vectors
in the dual Verma module still hold in the 1rreduc1b1e representation.

Just as the set of all matrix elements defines a vertex operator uniquely in the case

where the resolutions are trivial, the determination of all matrix elements of the form
(7l ®(2)|7rm) | (4.34)

determines the action of the vertex operator on the cohomology uniquely, and thus defines
a vertex operator on the associated irreducible representation (the uniqueness of this rep-
resentation essentially follows from the fact that the Shapovalov form is positive-definite
on an irreducible unitary representation). Since the constraints (4.32) and (4.33) are the
only extra conditions pla.céd ona verfex operator between irreducible representations, we
have essentially prov;zn the existence of such vertex operators whenever these conditions
 are satisfied. As mentioned above, we do not have a proof that in all cases these vertex
operai;ors can be realized as chain maps, but we believe this to be the case.

We will now discuss some special cases of the constraints (4.32) and (4.33), and de-
scribe the resulting conditions on the fusion algebras of the related conformal field theories.
For the purposes of this discussion, we shall find it useful to have explicit calculations of var-
ious matrix elements of a vertex operator ®(z) = 2% E P_h—z4+n2"" taking a representation
with weight k to one with weight &' =k + h + z.

(|$p-hmzl) = 1 (4.35)

(l1p-h—z41L-1]) = -z (4.36)
(I6-hostaloal) = h—c | (437)
(1¢-h—zs2l?i]) = z(z—1) : - (4.38)
(|#-h-z+3l-3|) = —2h—-z (4.39)
(|6-hozssloaloal) = a(h+z-1) (4.40)
(I¢-h-zssl?;]) = —z(z = 1)(z~2) (4.41)
(ILi¢-hos-1l) = 284z ' (442)
(IL2$-h-s2l) = 3htz | (4.43)
(IL3¢-h-z-2|) = (Ch+z)(2h+2+1) (4.44)

(|1L3¢-h-z-3l} = 4h+z | . (445)
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( |L1L2¢_h_z_’3| ) = (3h +z +1)(2h + .’D) ' (4.46)
(1L3¢-p-z-3|) = (2h+2)2h+z+1)2h+2+2) . | (4.47)

First, we consider the case where ¢ > 1. For any values of h,k and k', where
k,k' # 0, all of the representations have trivial resolutions, and a vertex operator can be
constructed through the above reasoning. It is interesting to -note that élthough vertex
operators between modules of this form are well-known in terms of multiple bosonic fields -
(we will discuss this further in the following section), we can use the above results to
construct any vertex opera.tof of this type in terms of a single bosonic ﬁeld with modes
an,n € Z. The representation of such a vertex operator is rathe;' complicated algebra.ic'a.]'ly,
however, and does not appear to have as simple an expression as when multiple bosonic
fields are used. o

Now, let us comsider the case where either k = 0 or k' = 0, indicating a vertex
operator which either acts on or maps to the vacuum module. The dual Verma module -
with highest weight A = 0 has precisely one cosingular vector, at level 1. Thus, if ¥ = 0,‘ :
the constraint that (4.42) is 0 indicates that z = —2h, so h = k. Similarly, if k = 0, setting
(4.36) to 0 gives k' = h. Thus, we have the result that a vertex opérafor of weight h acting
on the vacuum in either direction gives the module of weight h. This is precisely what we
would expect from standard physical theories. _ ‘

Finally, we consider a slightly more complicated example, that of a rational con-
formal field theory with ¢ = 1/2. From the equations (2.75), (2.75) describing the discrete
series of Virasoro representations; one finds that the only unitary representations corre-
sponding to this choice of central charge are those with highest weights A = 0,k = 1/16,
and h = 1/2. We know that there is a cosingular state in the module 172 at level 2. The
linear combination of states in this module which vanishes as a result can be calculated
from (2.282) to be | . ‘ o
| (L_z — %Lz_l)l y=0. ' (4.48)

If we take k = 1/2, this equation leads to the constraint on A and ¥/,
322+ 1z —4h=0. | (4.49)

*

The solutions for this where &’ and A both correspond to unitary representations are (&, k') =
(0,1/2), (h, k') = (1/2,0), and (h,%k’) = (1/16,1/16). We can perform a similar analysis
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using the initial module with k = 1 /16. The consequent vanishing condition in the dual
Verma module is '
(Log— gL?_l)] y=0. (4.50)

The pairs h,k’ which satisfy this vanishing condition are (k,%') = (0,1/16), (h,k') =
(1716,0), (h, k) = (1/16,1/2), and (h, k') = (1/2,1/16). We could go on and consider
the constraints imposed by the singula.f vectors in the Verma module Vjs at level 2. In.
order to ensure .that all constraints are satisfied, it is also necessary to include the con-
straints a.risiﬁg from the second cosingular vector in the dual Verma module, which in this
case appears at level 3, and also the constraints from the corresponding singular vectors at
level 3 in the Verma module. However, none of these other constraints pla,cés any further
restrictioﬁ upon the vertex operators which are allowed in a ¢ = 1/2 conformal field theory.
We have thus calculated the restrictions on the fusion algebra of this CFT. Traditionally, a

CFT fusion algebra is written in the form
[R][k] = > _[¥1], ) (4.51)
. kl . .

where k' is summed over all weights for which there exists a nontrivial vertex operator of
weight h connecting the irreducible representations with weights &, k’. In this notation, our,
results for the ¢ = 1/2 fusion rules are ‘ '

[1/16][1/16] = [0]+[1/2]
[1/16][1/2] = [1/2][1/16] = ([1/16] | (4.52)
(1/161[2/16) = [ol. |

(We do not write the fusion rules for the vacuum module [0] explicitly, since these fusion
rules are standard for all CFT’s.) This is pfecisély the fusioﬁ algebra for the set of 6peratoré
in the ¢ = 1/2 CFT which corresponds to the Ising model [13].

'We, will now say a few words about the relationship between the analysis in this
section and the differential equations approach to CFT. In their initial work on conformal
field theory [13], BPZ defined vertex operators primarily as objects which appear inside
correlation functions, and not in terms of an explicit action on a repi'esenta.tion épa.ce.
From this i)oint of view, they analyzed the operator product expansion (OPE)'of a product
of two vertex operators, represented as a sum over other vertex operators and so-called

“descendant fields” which are defined by applying Virasoro operators to the primary fields
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(vertex operators). Théy showed that the résulting coefficient for every descendant field
in a given confofmal family (descending from a particular primary field) could be written
in terms of the coeflicient of the primary field, multiplied by a consta.nf depending only
upon the conformal weights of the three primary fields involved. This set of equations is
precisely analogous to the determination of the matrix elements (4:23). This equivalence
can be made precise by observing that these matrix elements are essentially components
of a correlation function of 3 vertex operators of the form (4.1). In their work, BPZ also
derive a set of constraint equations on the fusion algebra analogous to (4.32). They write
these equations in terms of a set of d.ifferenti_al operators which must be satiéﬁed by certain
correlation functions. Although these constraints are effectively equivalent to those imposed
here, from the field theory formalism it is somewhat less clear that these constraints can all
be consistently iﬁposed, and what theii effect is on the structure of the relevant Virasoro
‘represeﬁtations. ' : ‘ | h
Finally, we conclude this section with a simple example of a vertex operator Whoéé
action can be computed purely in terms 'of the Virasoro generators. A standard result in

conformal field theory is that any vertex operator ®(z) satisfies the equation
8(z) = *L18(0)e L1, | , (4.53)
This follows immediately from the differential equation
o, . |
(L1, 8(2)] = 5-8(2). | (4.54)

A result of (.4.53) is that the action of this vertex operator on the physical vacuum is

described completely in terms of the Virasoro generator L_; by

- 0 zi Li . .
3(2)I0) = i) = 3 o2, (4.55)
. ) =0 .
where | ) = ¢_n|Q) is the highest weight state in the module associated with the primary
field ®. This result follows because the physical vacuum |Q2) is annihilated by L-;. In
general, acting on a highest weight state of an varbitra.ry module with the vertex operator
.(4.53)' does not give a result which ha,s such a simple description in terms of the Virasoro
genera.tors; We shall demonstrate in Section 4.4 that the explicit rea]izafion of the Virasoro
genera.tdré L, on coadjoint orbit dual Verma modules leads to a more general version of
" this result. |
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4.3 Free field vertex operators

In this section we briefly review the results of Felder [27] and others on the con-
struction of screened vertex operators in terms of resolutions over Feigin-Fuéhs modules.

The fundamental object used in this construction is the standard bosonic vertex operator

Va(z) = : P*) ; = 7P oxp (,B Z Zon ") ( B E In '") - (4.56)

n=1 n=1
where the bosonic field
¢(z)—aolnz+z Gn '“+Ea—" n - (4.57)

n=1 " n=1 v ' .
is expressed in terms of the bosonic modes (3.12). The operator V3(z) is a vertex operator
of weight (8 — 2a) with respect to the realization of the Virasoro élgebra, (3.13) on Feigin-
Fuchs type Virasoro modules. This operator changes the Fock space of the Feigin-Fuchs

module by increasing the eigenvalue (2a) of ag by 28.
Setting the background charge ag to 0, we can combine a set of D bosonic fields
to give a realization of the Virasoro algebra on a Fock space with central charge ¢ = D,
with vertex operators carrying a momentum vector ﬂ and having a conformal weight of
,3 ﬂ These are the original vertex operators from string theory [37]. From these vertex
operators, for D > 1it 1$ possible to construct a vertex operator with ‘arbitrary weight A,
acting on a module with highest weight.k and resulting in a module with highest weight
k' for any k,k’ > 0. This can be accomplished by simply choosmg an initial state of
momentum ﬂ where & = |3|? and a vertex operator with momentum ¥ where h = l7]? and
K—-h—k=2 E 7. Note, however, that not only does this construction only work for
integral ¢, but aléo that a larger Fock space, containing at least two sets of bosonic field
modes, is ﬁecessa.ry. The construction described in the previous section realizes the same
vertex operators in turns of a single bosonic field. Whether this observation can be used to
a useful end in conformal field theory is an open question; however, it is a useful example

of the genéral applicability of the methods in this thesis. |

v Using the above description of a free field vertex operator, Dotsenko and Fateev
were able to explicitly construct vertex operators on the discrete series of Virasoro modules
in terms of Feigin-Fuchs representations {22]. This work was subsequently expla.iﬁed in the
language of BRST cohomology. and resolutions by Felder, who introduced explicitly the
associated intertwining (BRST) operators [27]. In this approach, a value of ¢ = 1 — 2403
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corresponding to a particular rational CFT is fixed, and a set of mtertwmmg operators Q,,
are defined in terms of the vertex operators (4.56) by

. ezﬁai_m -1 : .
m = E/Va+(2o)"‘va+(zm—1) H dz; e umeal B (4.58)
=0 Le 1
where v - _
ay = ag+1/1+ a2, ' o (4.59
0

and the contours of the integration variables 2o, ..., zm—1 are concentric circles about z = 0.

Similarly, the screened vertex operators are defined by

: . r! r
Vr:‘lv: = / Vl—n’a-/2—na+/2(z)va—(z0) Te Va-(zr’)Va+(w0) te Va+(wr) H dz; H dw;,
' = (4.60)
with similar integration contours. The integer indices n,n’,r,7’ in the screened vertex
operators, and m in ‘the intertwining opefa.tors, specify which representations in the discrete -

series these operators map to which other representations. We will not study these operators.’

" in any significant detail, but we will give a brief synopsis of the results achieved using this.-

approach, and compare to the methods used here.

The vertex operators and intertwiners above do not exactly commute; heuristically,

: these operators obey a rela.tmn of the form

QV(2) = ez"“’V(z)Q, (4.61)

with a generally nonzero phase . This relation is highly reminiscent of the q—cdmmuta.tion
relations used to define quantum gréups. In fact, in the related contéxt of free field theories
using Wakimoto realizations of affine algebras, a similar nontrivial commutation relation
gives precisely the form of a particular class of qua.nfum group relations, and leads into a
rather subtle relationship between the representation theory of the affine algebra:s and qua.n;
tum groups [18, 19]. In the case of the Virasoro algebra, these nontrivial phases can simply

be removed by a redefinition of the phases of the vertex operators. It can then be shown

[27] that the operators Q,, act on the Feigin-Fuchs modules associated with the discrete

series Virasoro representations, such that Q2 = 0, and in such a way that the resulting chain

complex has a cohomology resolving the corresponding irreducible representation. The op-

’ ' e . ) .
_ erators V|,” are then vertex operators describing a chain map between two resolutions of

n

irreducible representations. These screened vertex operators can then be used to construct

"CFT correlation functions in the fashion discussed in Section 4.5
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The elementary ob jeéts of the form

Q= / Vo, (2)d2 : . (4.62)

play a role in this theory analogous to the screening operators defined in Section 4.1 (in
fact, this operator has the effect of screening a single unit of charg;a, and was the initial
motivation for the term “screening opéra,tor”). This objéct clearly commutes with the
Virasoro generators, since the conformal weight of the bosonic vertex operator in the integral
is 1. However, not only do the modes of this operator not obey the expecte_d commutation
relations a.zﬁong themselves, but the operator itself is not generally well-defined since in
most cases the initial power of z (which is equal to 2a4a), is not an integer. Only for
the proper combinations of m and & does the operator Q,, have a sensible definition as an
6pera.tor on the bosonic Fock space. The connection between the field-theoretic point of

view and the algebraic perspective in this case remains rather unclear.

To conclude. this review of the free field approach to constructing vertex operators ‘

for Feigin-Fuchs representations, we now give an example of a specific computation of the:

action of an intertwining operator @Q,,. This explicit calculation hopefully demonstrates
clearly the connection between the language of ﬁélds and the more algebraic language of
modules a,ﬁd resolutions, and illustrates the computational complexity of moving between
these descriptions. -

We consider again our favorite example, the discrete series Virasoro representation
withe=h =1 /2. In terms of Feigin-ichs_ modules, this irreducible Virasoro representation
has a two—side& resolufion; denoting by Fj the Feigin-Fuchs representation with highest
weight h, the central part of this resolution looks like

o Fpy % Fy 2 Fy % s iz Fipy — (4.63)
We will analyze the particular intertwining operator

V QZ : F5/2 - F1/2 » (4.64)

as it appears in this module (in the place of the usual operator d_;). From the discussion

‘earlier in this chapter, we expect that the image under Q2 of the module F5/p will be'a

submodule of Fy/, with the highest weight vector | )’ from Fy/; being mapped to a singular

/

vector at level 2 in Fj/,. As we knbw, this singular vector must be the vector

=3I (4.65)

4



CHAPTER 4. CONFORMAL FIELD THEORIES 197

where | ) is the highest weight vector in .F ;.- {
The appropriate values of ag, ¢, and a4 for the Feigin-Fuchs module Fj /2 are

1
o = —=

0 43

a = -100p , (4.66)
oy = 8dp ‘

Writing the action of the operator Q2 on the highest weight vector of this module explicitly;,

we have
Qél y = -;-/du dv v=10/3y~2/3 exp(qq. E a;"u")‘ | . (4.67)
exP(-a+Z'—U ")eXP(04+Z =v™)]).

1

It is a standard exercise to commute the -annihi_la.tion operators from V,,(u) with the

creation operators from V,, (u). This exchange gives an extra factor of (1 — v/ u)z"i, $0 we

have

Qul) = 3 [ dudo v - 0w exp(a, 3 22 ) (469

Changing variables to u = z,v = wz wé have

Q2]) = % / dz dw 273w 1931 — w)B P exp <a+ > ‘%" (1 + w"))) ) (469)

We can now explicitly inte'g'ratevover z; the remaining integral over w is around a-contour

' surrounding the branch points w = 0 and. w = 1,

Q2| )/ - wi/dw.w‘w/"’(l _ ,w)8/3 [a+ 1.';102 _2| ) +a 2 (1 + 'w) 2 I)] (4.70)

Deforming the contours to run d1rect1y from w = 0 to w = 1 (these are the original contours

used by Dotsenko and Fateev in [22]), the integrals become standard S-function integrals.

‘Writing the states a_3|) and a?,]) in the polynomial forms |23), |2?) respectively, we have

a result proportional to

DTN () o) + DI (10)) )

I'(4/3) I'(7/3)
I(-1/3)I(11/3) ;

T(10/3) (122) + 8a°'ff))




CHAPTER 4. CONFORMAL FIELD THEORIES T128

Using the usual property zI'(z) = I'(z + 1), we see that this result is proportional to the
vector '

|22) —'eaol,zf). | | (472)

From the explicit Feigin-Fuchs realization of the Virasoro algebra (3.13) with the value
a = 6ag, we can compute the singular vector
3.2 ' 1.4 3, 2.2 :
(2= 2D = (ot ao)la) + g1 = 1(e1s) + alz))
_ 3 15 4 .
= jaolz2) — =la) ~ (4.73)

= Zao(lzs) ~ 6ool})).

Thus, the vector Q| )’ is indeed proportional to the singular vector in F} /2- _
This example demonsfra.tes that although the vertex operators and intertwining
operators for the free field theory realizations of minimal models are expressed in a very
different language from the algeBra.ic concepts of modules and resolutions developed in
the previous sectioné, the effective content of the two formalisms is equivalent. The field-
theoretic approach used by authors such as Felder is more useful for computing certain
properties of correlation functions and partition functions which are expressable in terms
of that language. On the other hand; as this example calculation demonstrates, certain
underlying mathematical properties of the theory are much more easily accessible using
the algebraic formulation. Hopefully, in the future these disparate formalisms will merge
somewhat, clarifying aspects both of conformal field theory and the underlying group theory.
Recent work which will be discussed in the next chapter indicates that this convergence of

perspectives is indeed occurring.

4.4 Coadjoint orbit vertex operators

We will now discuss the specific form of the vertex operators of weight A
B(2): V-V E (4.74)

‘which are defined on the coadjoint orbit realizations of the Virasoro dual Verma modules. As
.we showed in Section 4.2, these vertex operators exist for all values of the highest weights
k,k’ which correspond to Virasoro dual Verma modules without cosingular vectors. In

addition, whenever such vertex operators can be defined on chain complexes of dual Verma
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modules with cosingﬁla.r vectors, their action on all physical states (states in the orbit of
the highest weight vector of V;') is completely determined by the matrix elements (4.23).
Our first goal in this section is to translate these matrix elements into the coefficients of
the modes of the vertex operator, when these modes are expressed as differential operators
on the polynomial space R. We then show that when z = 0 the action of these operators
on any highest weight state are closely related to the operator I_, associated with the
Virasoro generator L_;, and that the action of these opera.tors on any state can be defined
completely in terms of Virasoro generators L. , '

Explicitly, we can write the modes of a vertex operator (4.74) as individual differ-

ential operators

O—h—z—n = Z Z p(ﬂ'maﬂ.l)(H Zm; H aZ _ (4-75)

mI>0:m—Il=n Fm,%}

which act directly on the épace R. To calculate the coefficients 2(Tm, 71) in these differential
operators in terms of the matrix elements (4.23), we must relate the vectors |7,) to the
canonical basis for R of monomials. Similarly, we must relate the basis {7,;,| of the Verma

module Vi to the set of differential operators

3@.;(11%) =0 S (4.76)

where the evaluation at z; = 0 for all j > 0 has the effect of extracting the constant term
in a polynomial after the action of the product of partial derivatives. '
The linear relationship between the vectors |7,,) and the monomials in R of degree

n up to level 2 was given by (2.282); we expand this calculation explicitly to level 3,

) =1
Lal) = -2hn|z),
L%2,]1) = —6h|z) + (4h% + 2h)|23) |
Ial) = —(4h+§)|22)+3h|zf). ' | (477)
I3,]) = —24h|z) + (24h + 36h%)|2125) + (~8k — 12h% — 4h)|3])
LyL_5])y = —(16h+2c)|z3) + (26h + c + 8h% + ch)|z122) + (—6R? + 6h)|23)
B_s]) = —(6h+2¢)|zs) + (13h + ¢)|z122) + 4h|23).

The relationship between the states (7,| and the derivative operators 8,,. is easy to calcu-
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late; up to level 3, we have

(I = lz=0
(I = ~ 3zl
(|1 = 5'?:—%!,,-_0
(B2 = —gelmo (4.78)
(‘Ij?f = "_a_?:lilzﬁo
(i, = %a%, —a%a%lz,:o

Clearly, at each level n, invertiﬁg these rela/cionships involves calcﬁlating the inverse of a
7(n) X w(n) matrix. The matrix relating the basis (r,] to the operators 9, is al_wéys
~ invertible; the matrix relating |r,) to monomials in R is only invertible when V}* contains
no cosingular vectors. We do not have any kind of general prescription for calculating this

inverse; for the relations (4.77) at level 2 the inverse relations are given by

|2) = %3}1132_11 ) — 2h(2h + 1)L _y| ) (4.79)
1 C. - - - '
1) = Zh+ DILI) - 6hioal),
where _
v =16h3+ (2¢ — 10)R2 +ch . (4.80)
When h = 0 or the condition (2.283) is satisfied the determinant v is 0 and the inverse
. transformation is undefined. '
In Section 4.2, we calculated in (4.35-4.46) some of the matrix elements of $(z2)

between states of low level. The remaining matrix elements between states of level < 2 are

given by
(ILidon-ols]) = z+2k—2hz—2? | (a8
(|L1p—h—zs1L2,]) = (2h+z-2)2(z-1)—z(4k +2) ' (4.82)
(|Ly¢—hgi1L-2]) = (h—z—1)(2h+2) o " (4.83)

(|L3¢_p_z—1L_1|) = 8hk+4kz — 4zh? — 4hz? — 2% 4 2hz + 2° (4.84)
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(|L2¢-h-z-1L-1]) = z—3hz—-2> . o (4.85)
(|L2¢_h-zL?,4]) = 8k? + 4k + 8kz — 16hkz — 8kz? + 22. — 4zh? — 2hz + 2

| 4k 4 4ha® 4 o — 10he? — 407 (4.86)

('|L§¢_',,_.,.L_2| )y = 6k + 4% — 3hz? — 23 — 6h% — Ohz — 322 + 2h + 4z (4.87)

(|L2¢-h-zl?y]) = 6k+3ha?+2%+ 2z — 3he — 322 . (4.88)

(|1Lo¢-hszl_z|). = -¢/2=2h+ 4k + 22 + 3h% — 2hz — 22 (4.89)

From (4.35-4.47), (4.77-4.78) and (4.81-4.89), we can write the explicit formulae

for the low-order terms in ¢_j_,—p, for small |n|. Using again the notation that D, indicates

terms containing derivatives 553'—”— with m > n, we have

1. 8
G—h—zt2 = p [2R(2h + 1)(z — h) + 6hz(z — 1)) o

1 : 9?
+—[6h(z — h) + (c/2 + 4h)z(z ~ 1)] == + D3 -
v . . ’ aZl .
z &
C Poh—zt1l = 2hom + D2
z+2k—2hzx—2z2 9 S )
$-h-z = 1+ >h 2y + D, (4.90)
 Peh—z-1 = —(2h+2z)2+ D _
. -1 '
¢_h'_3_2 = —(3h + 2)22 + 5(2]2 + .’E)(Zh +x+ 1)212. + D]
Ph-z-3 . = —(4h+2)2® +(4h+32/2+ 6h% + 5hz + 222122

1
—5(h+2)(2h+ 2+ 1)(2h+2+2) + D

Although this explicit computation of the initial terms in the vertex operators is

in general rather unenlightening, we can nevertheless extract some interesting information

" from this calculation.

The first observation we can make is that the general form of the vertex operator
has a nontrivial dependence on all three parameters k, h, and = (vgenerally, this dependence
appears for all terms after the leading érder; here, we have only bothered to compute leading
order terms except for ¢_p_.). Although one might naturally expect this dependence based
on the method of comstruction, a cursory examination of thé free field vertex op.era,tor
(4.56) seems to indicate that Vj(z) depends only upon the parametef B, and thus upon
the conformal weight h = B(8 — 2ay) of the vertex operator. Upon closer inspection, this

problem becomes slightly less acute; the exponent Bag is equal to the quantity we denote
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by z, and the vertex operator Vg(z) always acts from a space of wejglit k= a(a—2a9) toa
space of weight k' = (a+8)(a+8—2ap), reducing the dimensionality of the space of allowed
vertex operators to 2. Nonetheless, the action of this vertex operator on the Fock space
certainly depends on one parameter fewer than the vertex operators we have constructed on
the coadjoint orbit dual Verma modules. This may be an indication that finding a closed
form expression for these coadjoint orbit vertex operators will be a particularly difficult
task. Certainly, the construction of a field theory from such operators will be complicated
by this fact; we would like to have a construction in which the vertex operators associated
with a single primary field depend only upon the weight of that prinia.ry field.

It may be, however, that the extra dependencies which this operator exhibits are a
result of two features of the explicit coadjoint orbit repréSéntations. The first feature is that
the Virasoro operator realizations on these representations are somewhat less dependent
upon the weight of the representation, in the sense that all the raising operators L,, n>0

. take an identical form independently of the weight of the associated representation. Tht;_ |
second feature is that the coadjoint orbit vertex operé.tors can be defined for arbitrary
triplets of weights h,k,k’ when ¢ > 1. All known free field re;iresentations on a single
bosonic Fock space place strong restricti(-)ns on the weights and central charges for which
vertex operators in this regime can be.constructed. Thus, it may be that by increasing the
generality of this type of vertex operator, we have lost some structure in the dependence of
the vertex opérator itself. In any case, further research is necessary to determine whether
this formalism will actually lead to results which go beyond those accessible through the
free field formalism. ‘

The second result which we can see from the expﬁdt construction of the initial
vertex operator terms (4.90) is that these operators simplify considerably when we take
z = 0or z = —2h. When we set x = 0, for instance, the low-order -terms in the vertex

modes look like

62
G_h—gyz = ——2h2(‘>h + 1)—— + --e;h“’a ? + D3
¢—h—x+1 = D2 v .
E 3 :
Gh—r = 14 32153 + Dq , (4-91)
' a
Ph—z—1 = =2hzn+ 2k2123— + D,
. 21

G—b—z—2 = —3hzy+h(2h+1)22 4+ Dy
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Ghmz—3 = —4h2®+ (4h+6h%)z12, — 3h(2h+1)(2h + 2)23 + Dy

Comparing to (4.77),vwe see that for n < 4 at least, the polynomial terms in ¢_p_z—p are
precisely the result of acting on the highest weight vector of weight A with the operator
L?, /n!. In fact, this correspondence is true to all orders; when k' = k + h, the action of a
vertex operator of weight h on the highest weight state | ) of a module of weight k can be .

described by ‘
' ) Xz L(h)’ : . ,
#(x)|) =Ly = Y 2L |>' (a9

, =0
where | )’ is the highest weight state in V)% and we denote by L( ) the realization of the
operator L_, on the module of highest weight . From the simplification (4.55) of the action
of the vertex operator on the ‘va,cuum, we expect that this relation should hold for a vertex
operator acting on the vacuum. However, when a vertex operator acts on a highest weight

- e - - - ( ' . . . & .
state with weight k£ # 0, there is no similar reason to expect a similar result. Using the

'vertex operator construction (4.56) on a single bosonic Fock space, no analogous situation

can arise due to the relation z = 2a8. We would not expect this type of result to be possible

for the free field realizations in any case, however, since for the realizations (3.13),
(240, 28 # (2P, 1Y) R C2

when k£ # 0. Because the coadjoint orbit realizations have raising operators indepéndent of

the conformal weight, we do have the relation
(ZE+ 1N = (Z®,I™] va>0. (4.99)

for these representations. _ _
For the coadjoint orbit representations, (4.92) follows from (4.94) and the result

in the spec’iél case k = 0. We can also demonstrate this property explicitly. Generally, we
wish to show that
. L(h)m i(hl)m-n
l)=(n(h—1)+h+m)( — )1

where | ) is a highest weight state of any weight k. From [L;,L(_l)] =2h + 2{0, it is easy to

L,

1 ' (4.95)

see that this equation holds for n = 1, since

L(h)m = (h)m—1 :
|)- 2h+(2h+2)+---+ (2 +2m — )]';l'T)!”’ (4.96)

L

(m =



CHAPTER 4. CONFORMAL FIELD THEORIES 134

We can now prove (4.95) by induction on n. Performing the commutator of L, with each

factor of i_l, and assuming the result for all values n' < n, we have

n ) = S (n+1)IW L |), (4.97)
: t=n—1
= Y (n+1)[nh-—n+i+1] i!(m — n) Sy

(t-n+ 1‘)!m.! (m — n)!

t=n—1
For the desired result to be proven, it suffices to demonstrate that

m-—1

! m!
i=§l(n+1)[nh—n+z+l]( n+1)‘ o)

But we can again use induction to prove this relation. The relation is trivial for m = n.

[A(rn+ 1)+ m —n]. (4.98)

Fixing n and assuming the relation for m’ < m, we have

m-1 .
(—m___l_ o _ (m 1)
(m— 1).[h(n + 1) +m-n-1]+(n+ 1) [nh — n + m] —-™t Y
(m -~ 1) [mh(n + 1) + m? — mn]

(m - n)!
Thus, we have proven (4.95). This gives us a formula for the action of a vertex opera.i:or on
any highest weight state when z = 0 in terms of the Virasoro generator f(_hl) . We can extend
this result to 'give an expression for an arbitrary mode of the vertex operator acting on an
arbitrary state in Vi of the form |7,) by using the relations (4.16) to move the creation
‘operators to the left, and then expressing the result in terms of 'modes of the vertex operator
acting on the highest weight state |) of V}*. For example, we have (still assuming k' = k+h),
$-henloml) = Lombonoal) +(A(m—1)= 0= m)dp_pon-ml)  (4.100)
= TN RS e = s
™ ! ' m!
This gives us an é.lterﬁa.tive approach to calculating the action of the vertex operators in
this special case, and indicates an interesting relationship between the vertex operators and
the Virasoro generators. However, it is still rather difficult to see how this relationship
might be used to comstruct any sort of closed form expression for the vertex operators.
It is also unclear whether this relationship has any natural geometric interpretation when |
we describe the vertex operators as global differential operators acting on the holomorphic

sections of various line bundles.
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4.5 Correlation functions

‘We end this chapter with a short discussion of correlation functions in conformal
field theories. For any conformal field theory, the correlation functions (4.1) are the primary
quantities necessary to describe the physics of the theory. The free field approach and the use
of differential equations give a fairly powerful set of tools for the computation of correlation
functions in a wide va.riet;v of physical theories. The appfoach presented in this thesis gives a
simple ﬁathmaticd structure to the definition of such correlation functions, but so far has
not given rise to any particularly ‘useful approach to the explicit calculation of these ob jects.
In this section, we review briefly some of the main methods and simplest results about
correlation functions, check that in the simplest cases oﬁr formalism is in agreement with
these results, and finally present some speculation about possible approaches to computing
correlation functions using this approach. _ '

The simplest correlation functions in any Virasoro conformal field thebry are the
2-point and 3-point correlation functions. It is easy to see, ﬁsing the scaling properties of
vertex operators under the transformation z — cz, that the 2-point functions are of the

form | | |
(QUB1(21)22(22)|2) ~ (21 = 22) 2, , (4.101)

up to an undetermined proportionality constant, where the conforzhal weights hy, hy of the

‘vertex operators ®1, @, satisfy o = hy; = hy. Similarly, the 3-point functions are generally

of the form . -
(Ql§1(21)§2(22)§3(23)|9> ~ (21 - .Zg)hs_hz_hx (21 - 23)"2_,13_"1 (22 = Z3)h1‘_h2—.h3. (4.102) V

For 4 or more vertex operators, the form of the correlation functions can become more
complex. For example, the 4-point function can depend upon an arbitrary function of the

anharmonic quotient '
(5 —2)(z - 2)
(21— 23)(22 — 24)

There are several main a,pproaches currently used to calculate these more complicated cor-

(4.103)

xr

relation functions. One approach, which was first developed in the original work of BPZ

[13] on conformal field theories, is to use the differential equations analogous to the con-
straint equations (4.32) as conditions on the correlation functions. Applying this method to

the 4-point functions of the minimal models, BPZ showed that these correlation functions
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could be expressed in terms of hypergeométric functions. This method has subsequently
been generalized and applied to a wide variety of conformal field theories. Pérha;is the most
famous example are the Knizhnik-Zamolodchikov differential equations which apply to the
correlation functions for rational conformal field theories with affine algebra symmetries
[46]. .
Another approach to the explicit calculation of conformal field theory correlation
functions comes from the free field approach. The correlation function of an a.rbitrary
* product of (unscreened) vertex operators (4.56) is kﬁown‘ to have the form

(QVp(21) - Vou(2a)IQ) = [[ (i — )05, (4.104)

Ci<s o

when 0 = 3 i, and to vanish when this condition is not satisfied. Using this result and
the definition of the screened vertex operators (4.60), the correlation functions of minimal
- models can be calculated.in terms of a set of contour integrals {22, 26].

The correlation funétions we have discussed so far are restricted to the case of con-
formal field theories on the sphere. In particular, the free field calculation described above.
does not need to exp]it:itly deal with resolutions of the irreducible representations in terms
of a cha.iﬁ complex of Feigin-Fuchs modules because the vacuum |£2) is a BRST invariant
state, and therefore any matrix element of the form of (4.1) will contain no contribution
from the “ghost” states in the module which are cohomologically trivial. One may also
consider a general conformal field theory on a higher genus Riemann surface. For example,
a correlation function on a torus could be calculated by taking a trace over the irreducible
representation space of ‘a product of vertex operators acting on that irreducible represen-
tation space. It was pointed out by Felder that the free field approach gives a simple way
of computing a correlation function of this type; a theorem due to Lefschetz states that
when a module I has a resolution of the form (M;,d;), and an operator O : I — I has a
realization as a chain map _

O+ M; — M;, ‘ (4.105)

then the trace of O is given by
o0 .
TrO= ) (-1)Tx 0. _ (4.106)
i=—00 ' .

A simple example of such a calculation is the formula for the character of an irreducible

Virasoro representation I,
x1(q) = Ter g™ (4.107)
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Although the character formula for a member of the discrete series of Virasoro repreéenta—
tions is somewhat nontrivial, the character of a Verma, dual Verma, or Feigin-Fuchs module

M of highest weight h is easily computed to be

Trpr ¢ = ¢ H ( ) = g"*1/2ip(g)"L. (4.108)

=1

Using this formula, along with (4.106) and a resolution of the discrete series irreducible

representationé in terms of Verma modules, the characters of the discrete series were first
computed by Rocha-Caridi [55]. |
In the last few years, th_eie has been a fairly large body of work in which the
free field method for calculating correlation functions has been generalized to higher-gehﬁs
R;iema.nn surfaces [12, 28, 29]. The approach taken in these papers is essentially to sew
together correlation functions on the sphere by using 3-point functions ‘to define a “vertex”

connecting spheres with punctures. Some care must the taken to ensure that the ghost

states combine correctly with this sewing procedure such that,their contribution to physical '

correlation functions vanishes. _

In principle, correlation functions for any conformal field theory on an arbitrary
Riemann surface can be constructed using the coadjoint orbit représent_a,tions in much the
same fashion that the free field representations were used in the work described above.
Because we do not yet have a general closed form expression for a vertex operator betwegn
coadjbint orbit realizations on dual Verma_, modules, we cannot use this abstract construction
to calculate any particularly sophisticated correlation functions using the methods of this

thesis at this time. We can however, do some elementary computations to verify that for the

' simplé-correla,tioh functions such as the 2- and 3-point functions, our formalism gives the

(h,k,k')

expected results (4.101) and (4.102). In the following calculations, we denote by ¢_ ;" /.

the nth mode of the Virasoro vertex operator of weight k mapping Vi — V% (415) In the
case of the 2-point function, the expression for a correlation function of two vertex operators

of wexght h in terms of modes is-

(QI‘I’(")(z)‘I'(h)(w)lﬂ) Z w"z-zh-"qs"‘,,"_’;)«pﬁ,"_’;"’) 7 ' (4.109)
n=0

‘Expa.nding around w = 0 and using the result (4.90), we have the expression

. 3
(@eM()eP(w)) = 2 (1+§¢‘_",;‘£';>¢§,’:';*°’+ ¢"‘h°.")¢£+"°’+"’(z3’>
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= (1 + 2h% + h(2h + 1)%2— + 0(%)) , (4.110) |
in agreement with (4.101), A similar argument shows that the 3-point function computed
in an expansion around zp = 23 = 0 agrees with (4.102). In fact, from the general result
' describing the action of a vertex operator on the vacuum in terms of L_; and L; when
acting on the left and right respectively, we can calculate (4.101) and (4.102) to all orders
~ for i;he coadjoint orbit vertex operaiors. It is reassuring, however, to see that the explicit
calculations in (4.90) are in agreement with the results of other methods.

The calg:ulafion of a corréla.tion function of 4 or more vertex operators using the
approach of this thesis would be a rather arduous task. In fact, without a more general or
abstract description of the coadjoint orbit vertex operators, there is absolutely no reason
fo pursue sucﬁ a computation. It is hoped, however, that eventually a better description
of these operators will be possible, with which the calculation of such correlation functions -
will be simpﬁﬁed;, since this approach gives a description of conformal field theories which
is in some ways much simpler than the free field picture, it is possible that this viewpoint
may even give insights into the theory which are inaccessible from the free field point of
~ view. ' -

For now, however, we can only speculé.te about what form a more concise descrip-
tion of the vertex operators described in this thesis might take. One possible approach ‘
is to attain a better geometrical picture of the nature of the vertex operator as a set of
differential operators on line bundles over the coadjoint orbits; From this point of view,
there is a very rich geometrical and group-theoretical structure to these operators, and it
seems likely that a simple intrinsic definition of the vertex operatoré might be given in a
geometrical language so_that index theorems and other powerful geometrical tools might
be of assistance in the explicit calculation of correlation functions. It is also possible that
by purely algebraic manipulations, one might be able to construct a closed form expression
fo-r the vertex operators similar to the expressions derived in this thesis for the differential
- operators assodated with the action of the algebra genera,tbrs and the screening operators
and intertwiners. If such a closed form expressibn were found, it might be possible to use
thi_s result to study more dgeply certain geometrical, algebraic, and physical properties of
conformal field theories. |
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Chapter 5

Conclusions

5.1 Results

In this thesis, we havé presented a basic conceptual framework in which conforma.l:
field theory has a completely geometric interpretation in terms of mathematical objects
with well-understood geometric, algebraic, and group-fheoretic structures.

We began by considering a general Lie group G which could. be either a finite-
dimensional group, the Virasoro group, or a centrally extended looi) group. We outlined the
coadjoint orbit construction, which associates with each irreducible unitary representa,ti(;m
Iy of G of highest weight b a complex line bundle £y over a complex homogeneous space
of the form G/T where T is a maximal subtorus of G. The group G has a natural action ,
on the space H; of holomorphic sections of £;. We described the associated action of the
algebra g explicitly in terms of a set of (first-order) differential operators aLcting_ onHpin a
particular choice of local gauge. For finite-dimensional groups and centrally extended loop
groups, the space H; carries precisely the irreducible representation I, under the natural
action of G. For the Virasoro group, we find that the resulting representation on the space
of holomorphic sections is that of the dual Verma module associated with the highest weight

. b. In those cases where this representation is reducible, we can use an infinite sequence of
line bundles associated with different highest weights b;, b to construct a chain complex of

line and vector bundles
0— Lo B Ly, @ Ly DLy Ly B o (51)

where the operators d; are combinations of intertwining operators which map holomorphic
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sections of one line bundle to holomorphic sections of another line bundie in such a way
that the intertwining operator commutes with the g-action on the spaces of sections. The
coliomology of this complex is nontrivial only in the first bundle, a.;ld gives precisely the
irreducible representation I, of the Virasoro algebra. |

Thus, we have a geometric construction of every irreducible unitary representation
of the gfoups of interest as either a space of all holomorphic sections of a line bundle, or
as the space of sections of a line bundle which are in the kernel of a particular differential
operator. We then proceeded to deﬁx}e vertex operators, §vhich map between irreducible
representation spaces by acting on the spaces of holomorphic sections of the associated
bundles. Given three weights b1, by, b3, a vertex operator of weight b; is defined by a set of |
maps

@y Ly, — Ly, (52)

where u takes a value in a representation of the algebra g associated with the weight b;.
In the case of ﬁﬁt&dimensiond groups, this space is merely.the irreducible representation
space with highest weight b;; in the case of the Virasoro and affine algebras, the space
is again an irreducible representation space of g, but is no longer highest weight. The

operators &, satisfy the vertex operator condition

(2,84]=®;, VzEGQ. (5.3)
For the Virasoro algebra, the vertex operator construction is slightly rhore complex when'
by or b are associated with degenerate representations. In this case, the vertek operator is
actually a chain map between complexes of the form (5.1).

- In order to make the connection to conformal field theory, a vacuum is chosen
which corresponds to a particular line bundle £, with extra symmetries under the group
action. We denote the holomorphic section of Lo which is highest weight under the g action
by |2). Generally, a conformal field thebry correlation function is then written in the form

(Q‘le)q,g) .. .QS":”Q) 7 (5.4)

- Although through most of this thesis, we dealt most directly with local expressions
for the differential operators associated with vertex operators, intertwiners, and the g action
on Hp, the fact that these operators take globally holoinorphic sections of one line bundle to
gioba.lly holomorphic sections of another indicates that these are actually. globally defined

complex-analytic differential operators on the bundles in question.
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Thus, the picture of conformal field theory which emerges is that of a fairly simple
geometrical structure which is closely related to the geometry of the Lie symmetry group

- of a particular conformal field theory. Although we have completed the basic skeleton of
 this geometrical picture of conformal field theory in this thesis, clearly much more work

is necessary to arrive at a real understanding of the geometric significance of the vertex
operators (5.2) and the associated correlation functions. In particular, the local formulae
we have derived in this thesis are useful for analyzing and understanding the basic struc-

tures involved, but are not as powerful for specific computations as the related algebraic

construction of free field theories. It is hoped that a better understanding of the underlying

gedmetry of this construction will lead to more powerful tools for the analysis of conformal
field theories in general. In the next section we discuss briefly some recent work which is
related to the material, outlook, and/or methods of this thesis. In the final section of this

chapter, we discuss some open questions and possible directions for future research.

5.2 Related work

In this section we discuss several issues involving a variety of recent work which is

related to the subject matter of this thesis, but which was not mentioned or significantly

referenced in the main discussion. -

5.2.1 Virasoro coadjoint orbits

One of the main developments which motivated the part of this thesis in which
coadjoint orbit representations of infinite dimensional groups were explicitly constructed

was the paper by Witten [64], in which progress was made in understanding the structure

of the coadjoint orbit representations of the Virasoro group. There has been a greaf deal -

~of previous work in the mathematics literature on the structure of the Virasoro group, its

representations, and the homogeneous space DiffS1/S?, which we do not attempf to sur-

vey here; as starting pointé, the interested reader is referred to the works of Kirillov [44],

Goodman and Wallach (36], Bowick and Rajeev [20], and Freed [30]. The coadjoint orbits of
Diff S were first classified by Segal [58] and Lazutkin and Pankrotova [47]. These coadjoint
orbits were further studied by Kirillov [44]. In [64], Witten presented some partial results
relating the Virasoro coadjoint orbits to the irreducible uﬁtmy representations of Diff $1.

By using perturbative techniques and the fixed point version of the Atiya.h—S_inger index
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theorem, Witten was able to calculate the characters of the representations associated with
the Diff S1/S? orbits, which he found to be the standard bosonic partition function (4.108)
associated with a nondegenerate Virasoro representation. The perturbative methods used
by Witten, however, were only valid in the semi-classical ¢ > 1 domain. In particular, the
structure of the ¢ < 1 discrete series of unitary representations could not be understood in
terms of coadjoint orbits using these techniques. Witten conjectured that these representa-
tions would be found in the DiffS?/ SL(“)(Z,.R) orbits, but since these spaces do not admit
Kéhler structures, it has not yet been possible to perform geometric quantizatibn in these
cases, and the representations associated with these orbits are still not understood.

More recently, related investigations provided fﬁrther clues to the structure of the
Virasoro coadjoint orbit representations. By using a techniqﬁe involving quantization on

- a group manifold, Aldaya and Navarro-Salas were able to construct representations of the
Virasoro group on spaces of polarized functions on the group manifold DiffS! itself [3]. For
those values of ¢ and h where the Kac determinant vanishes, they mé.de the observation
that the representation constructed through their method is reducible, yet contains only a
single highest weight vector. By taking the orbit of the highest weight veétor under the
Virasoro action, they found a subspace of the original representation space which corre-
sponds exactly to the appropriate irreducible uﬁitary representation in the ¢ < 1 discrete
series. Furthermore, they introduced an auxiliary set of operators whose kernel gave the
irreducible representation. By analogizing their techniques to the coadjoint orbit method,
Aldaya and Navarro-Salas conjectured that a similar situation would arise in the Diff S /5t
coadjoint orbit representations with ¢ < 1. '

The results in this thesis are in agreement with Witten’s results forba.ll ¢, since
the dual Verma module indeed has the partition function (4.108). Instead of finding the
discrete series of representations in Diff S1/SL(")(2,R) orbits as Witten suggested, how-
ever, we find that they can be constructed through resolutions of the dual Verma module
representations arising from the Diff S1/S! orbits. In addition, the structure of the dual
Verma module resolutions described in Chapter 3 corresponds precisely to the results of
Aldaya and Navarro-Salas. The dual Verma modules indeed contain a single highest weight
vector whose orbit is the irreducible representation for the discrete series of representations.

" Furthermore, the operators defined by A.lday;a, and Navarro—Sala.s are closely related to the

screening operators and intertwiners introduced to construct the dual Verma resolution.
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5.2.2 Coadjoint orbits and actions

Recently, the coadjoint orbits of inﬁn.ite—dimensioﬁal groups have been studied in
connection with conformal field theories for reasons which ostensibly are rather distinct
from those underlying the discussion in this thesis. Specifically, coadjoint orbits have been
used to comstruct the actions for Lagrangian descriptions of a wide variety of conformal
field theories. The basic idea behind this construction was first developed in the context
of infinite-dimensional groups by Alekseev and Shatashvili [4, 5], and es_sentia.lly follows
from the observation that the symplectic form w on a coadjoint orbit space can be t;ea.ted
as the natural symplectic form associated with a classical mechanical system. Under this
interpretation, the orbit space is interpreted as a classical phase space, and the process
of geometric quantization 1s simply the usual qua.ntiiation procedure on the associated
" classical system. By writing the symplectic form w as the exterior derivative of a 1-form,
w = da, a candidate action S = [ a (corresponding to a vanishing Hamﬂtonié,ﬁ) can be
givén for any trajectory of a particle in the clas_sical phase space. Because w is closed, but
not generally an exact fo‘ri‘n, this procedure can oﬂy be applied locally. However, in the
quantum theory the fact that 27w is constrained to be an integral hémology class means
that the action is always well-defined up to a phase of e?™. Using this approach, it was
shown by Alekseev and Shatashvili that the resulting action when this procedure is applied
to a loop group coadjoint orbit is precisely the action of the WZW model. Similarly, the
" result of applying this procedure to the Virasoro Diff S1/S? orbits is précisely the action
originally derived by Polyakov in [52) f_or two-dimensional quantum gravity. From this
point of view, the hidden SL(2,R) symmetry found by Polyakov has a natural geometrical
significance. Similar results have been achieved by Aldaya, Navarro-Salas, and Navarro-
using their approach of quantization on the group manifold [2].

. More recently, the coadjoint orbit method for constructing field theory actions has
been applied to a wide variefy of infinite-dimensional algebras, including the supér Virasoro
and N = 2 super Virasoro algebras [7, 8, 21], W,, and W, algebras [10, 49, 50], and the
algebras associated with groups of nﬁaps from 2-dimensional and 4-dimensional manifolds
into a target space {23, 48]. For a review of this work, see [21]. .

Another interesting and related development originated with the work of Bershad-
| sky and Ooguri [16]. In their paper, they considered the quantum version of Hamiltonian
reduction .on a theory of gauge fields coupled to the WZW model. They found that the



- CHAPTER 5. CONCLUSIONS | 144

resulting constrained SL(2,R) WZW model is closely related to the quantum field theory

on Virasoro coadjoint orbits which is described by the Polyakov gravitational WZW model
action. Similar constructions for SL(n,R) current algebras give rise to W,-algebra actions.
In their construction, Bershadsky and Ooguri explicitly used the bosonic _frée field realiza-
tions of the affine and Virasoro algebras, along with the relevant BRST complexes. Since
the original paper, there has been a large amount of literature extending this work; see for
example [57] and references therein.

The Hilbert spaces associated with the quantum field theories defined by the natu-
ral coadjoint orbit actions should in fact be precisely the spaces of polarized wave-functions
on the orbits, which are the states in the i_rredu'ciblé representations studied in this thesis.
It is natural to speculate that there may be a deeper relationship between the infinite-
dimensional symmetry groups of conformal field theories and the theories themselves than
is so far understood using either the methods of this thesis or the methods used to construct

field theory actions. Such a relationship was hinted at in [9], where the coadjoint orbit ac-

‘tion construction was extended to give Ward identities for correlation functions. Clearly, ‘

what is needed is some synthesis of these viewpoints in which the action and the Hilbert
space associated with a coadjoint ofbit enter into a unified geometric picture of a confor-
mal field theory. Possibly, fh.is could be accomplished by having a better understanding of
how a Hamiltonian picture of conformal field theories relates to the action which naturally

arises from coadjoint orbits. In this case, it is possible that the formal structure defined in -

this thesis which gives an association between coadjoint orbits and conformal field theory
correlation functions and vertex operators may be more than just a convenient way of ex-

_pressing the physical theory in a consistent mathematical fashion. In fact, it is possible that

the vertex operators constructed here may be in some way naturally connected with the

intrinsic action associated with coadjoint orbits. This could be a very promising direction
for future research.
5.3 Remaining questions

In this section, we discuss some of the open questions which remain regarding the

work presented in this thesis.

; Field theoretic formulation

]
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. Although we have given explicit realizations of the affine and Virasoro algebras in
terms of a bosonic Fock épace, the associated description in terms of bosonic free fields is
not completely clear. Unlike the Feigin-Fuchs and Wakimoto realizations, where the expres-
sions for the generators of the algebra are quadratic in the field médes, the coadjoint orbit
realizations have genérators which contain an arbitrarily large number of mbdes in a single
term. In the field fheory picture, this iniplies that the current algebras of the correspond-
ing physical theory must have an analogous representation, whi_ch seemé to indicate that
any associated field theory would not only have interactions; but might contain interaction
terms of arbitrarily high order which are related in a rather nontrivial fashion. Although
a simpler formulation of such a theory might be possible (such as the action formulation
described in the previous section), the essential distinction betweeﬁ these representations
a.nd the free field representations remains. Because the structure of the Fock space is that of
a dual Verma module for the coadjoint orbits, it is proba.bly impossible to wnte the theory
purely as a free field theory. A better understanding of the connection wlth_ﬁeld theory will S .g

probably be an essential component of ahy application of the methods in this thesis. . .

° Vertéx opefators v

. There are several questions remaining regarding thé vertex operators constructed
in this thesis. First, we have not proven that any resolutxon of an meduable representation
) through dual Verma modules admits a set of vertex operators of the desired form, even when
such a vertex opera.tor exists for the irreducible representations. It would be nice to have a
formal proof of this result. Second, we have given here a rather inconvenient characterization,
of the vertex operators by defining them through their matrix elements on the bosonic Focvk‘
space. For a better understanding of the structure of these operators, it is desirable to have
a more abstract geometric or group-theoretic descripfion. Such a description might well
involve rela,tihg these vertex operators more directly to the associated field theory and the

action arising from the coadjoint orbit.

¢ Coset models o
Another interesting question is whether the class of coset conformal field theories

has a natural descnpt1on in the language of coa.dJomt orbit representa.tlons Some work .

has been done using the free field representations of affine algebras to construct the repre-

sentations associated with a coset theory (see for instance [18]). Due to the complications
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involved with the associated two-sided resolutions, howevér, there are some difficulties with
this construction. Hopefully, using the one-sided resolutions of dual Verma modules could

simplify this construction.

e Other groups

- A natural extension of this work would be to consider a larger class of groups
and algebras, such as the super algebras and W-algebras.- Just as free ﬁeld W-algebra
representations can be constructed through the process of Hamiltonian reduction ﬁom an
affine é.lgebra using free field realizations {16}, and W-algebra actions can be constructed
from coadjoint orbits, one might expect to find similar constructions using the coadjoint
orbit dual Verma modules. |

5.4 Conclusion

In conclusion, we have constructed a.n .alternative approach. to conformal field
theory based on fundamental principles 6f geometfy and group symmetry. This construction
unifies the coadjoint orbit structure associated with a group and the description of vertex
~ operators through their action on algebraic resolutions. The main problems remaining,with
‘this construction are the connection with a field theory and the challenge of finding a more
convenient geometric description of the vertex operators. This construction may provide a
link between the construction of field theory actions using coadjoint orbits and the physms_

of the assoc1a.ted ﬁeld theory which is described in terms of correla.txon functlons
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