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Optimal Constrained Linear Inverse Method . 

Abstract 

Magnetic source imaging is the reconstruction of the current distribution inside an 
inaccessible volume from magnetic field measurements made outside the volume. If the 
unknown current distribution is expressed as a linear combination of elementary current 
distributions in fixed positions, then the magnetic field measurements are linear in the 
unknown source amplitudes and both the least square and minimum mean square re­
constructions are. linear problems. This offers several advantages: The problem is well 
understood theoretically and there is only a single, global minimum. Efficient and reliable 
software for numerical linear algebra is readily available. 

\ 

If the sources are localized and statistically uncorrelated, then a map of expected power 
dissipation is equivalent to the source covariance rnatrix. Prior geological or physiological 
knowledge can be used to determine such an expected power map and thus the source 
covariance matrix. 

The optimal constrained linear inverse method (OCLIM) derived in this paper uses 
this prior knowledge to obtain a minimum mean square error estimate of the current 
distribution. OCLIM can be efficiently compute~ using the Cholesky decomposition, taking 
about a second on a workstation-class computer for a problem with 64 sources and 144 
detectors. Any source and detector configuration is allowed as long as their positions are 
fixed a priori. Correlations among source and noise amplitudes are permitted. 

OCLIM reduces to the optimally weighted pseudoinverse method of Shim and Cho if 
the source amplituqes are independent and identically distributed and to the minimum­
norm least squares estimate in the limit of no measurement noise or no prior knowledge 
of the source amplitudes. In the general case, OCLIM has better mean square error than 
either previous method. r 

OCLIM appears well suited to magnetic imaging, since it exploits prior information, 
provides the minimum reconstruction error, and is inexpensive to compute. 
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Summary of Symbols Used 

A = E qqT. The a priori covariance matrix of the source amplitudes. 

A = E(q - Eq)(q - E'q)T. The a posteriori covariance matrix of the source ampli­
tudes. 

ak = vI q. The component of q in the direction of the kth right singular vector of 
F. 

CX;j = E qiqj' The a priori cross-covariance of source amplitudes qi and qj. The (i,j)th 
entry of A. 

O:;j = E cliqj. The a posteriori cross-covariance of the estimated source amplitudes qi 
and qj. The (i,j)th entry of A. 

Q~ = E a~ = E IlvI q112. The variance of ak. 

B(r) Magnetic field as a function of position. 

Bn(f') Magnetic field due to the nth source. 

bm Magnetic field measurement (including noise) at the mth detector. 

b The vector of field measurements bm . 

B = E bbT = FAFT + Fr + rTFT +:E. The covariance of the measurement vector 
b. 

Ck The kth weighting coefficient in the weighted pseudoinverse. 

X2 = (b - Fq)T:E-1(b - Fq). The residual difference between the measured and 
reconstructed magnetic fields. . 

E Expectationof.a random variable or a random vector. 

e = q - q. The difference between the true andreconstructed current distributions. 

e2 = IIel12 =llq - qll2. The reconstruction error, defined as the squared difference 
between the true and reconstructed curren,t distributions. 

172 = E IIell2 = E IIq - qll2. The mean reconstruction error. 

Fmn = obm/oqn. Coefficient relating the field measurement bm to the source amplitude 
qn· 

F The matrix with entries Fmn = obm/oqn relating the field measurement vector 
b to the source amplitude vector q. 
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Ft The Moore-Penrose inverse of F. 

r The cross-covariance of the source amplitude vector q and noise amplitude vector 
w. Its entries are 'Yij = EqiWj' 

'Yij = E qiWj' The covariance of the source amplitude qi and the noise amplitude Wj. 

H A matrix representing a linear estimator of q. 

J(r) Current density as a function of position. 

JnCr) Current density contributed by the nth source. 

J( Rank of F. 

J(' The lesser of M and N; the maximum possible rank of F. 

k Index over the singular vectors of F. 

L LLT is the Cholesky decomposition of B. 

Ak' _ The kth singular value of F. 

M Total number of detectors used. 

m Index over detectors. 

J-lO Magnetic permeability of vacuum. 

N Total number of current sources in model. 

n Index over the current sources. 

p Position. 

qn Amplitude of the nth source. 

q The vector of source amplitudes qn. 

q = Hb. An estimate of the source amplitude vector q. 

per) Resistivity as a function of position. 

p2 = qT A -1&. Surprise, defined as the goodness of fit between the reconstruction 
and the priors. 

r Position. 
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Position of the mth detector. 

RRT is the Cholesky decomposition of Ao 

Unit vector in direction of the field component sampled by the mth detector. 

SST is the Cholesky decomposition of~. 

= uT w. The component of w in the direction of the kth left singular vector of 
F. 

= E wwT . The covariance matrix of the noise amplitude vector w. 

= EWiWj. The covariance of noise amplitudes Wi and Wj' The (i,j)th entry of 
~. 

= E s~. The variance of S k. 

The kth left singular vector ~f F. 

The kth right ~igular vector of F. 

Noise amplitude in the mth detector. 
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Optimal Constrained Linear Inverse Method 

Background 

The central goal of magnetic source imaging is to reconstruct the current distribution inside 
some inaccessible volume from magnetic field measurements made outside that volume. It 
is an example of an inverse problem, as opposed to .the forward problem of determining 
the magnetic field measurements from a known current distribution. The applications of 
magnetic source imaging include functional imaging of the brain and heart [1, 2, 3, 4, 5], 
and geophysical imaging [6, 7]. 

A variety of reconstruction algorithms have been used for this problem. One approach 
is to model the unknown current distribution as one or more current dipoles with unknown 
position; orientation, and magnitude and then to find the unknown parameters by a least 
squares fit to the observed measurements [8]. This method is computationally expensive 
because it is nonlinear in the unknowns and iterative solution is required. Worse, the 
method is often numerically unstable for two or more dipoles. Singh et al. [9] have 
superimposed such dipole solutions on magnetic resonance images, allowing the user to 

. relate dipole locations to anatomic features. 

A more recent approach models the unknown distribution as an array of dipoles with 
fixed positions but unknown magnitudes [10, 11, 12, 13, 14]. Then the magnetic field 
measurements b can be written as a linear function b = Fq + w of the unknown current 
distribution q and measurement noise w. The response matrix F is determined by solving 
the forward problem for unit sources. The inverse problem in this form can be solved 
directly, without iteration. 

The reconstruction problem of emission tomography can be written in th~ same lin­
ear form; the unknown distribution is radionuclide concentration. Emission tomography 
and magnetic source imaging both provide functional information (tracer concentration or 
neural activity) but the resolution and accuracy ~e limited by the poor signal-to-hoise 
ratio. 

Transmission tomography and magnetic resonance imaging have higher resolution but 
generally provide anatomic rather than functional images. 

A major· theme of this paper is the use of prior information, obtained by anatomic 
imaging or other methods, to improve the resolution and accuracy of functional imaging 
by constraining the set of possible solutions. 

At minimum, prior knowledge must define the possible spatial locations of the sources 
and the locations of the detectors. This provides sufficient information to solve the forward 
problem and define the matrix F. Given only this much prior information, the natural. 
method for the inverse problem is the least-squares or minimun-normleast-squares (MNLS) 
method [12, 13]. This method (also known as Moore-Penrose inverse or pseudoinverse 
method) finds the current distribution that mlnimizesthe squared difference between the 
measured fields and the fields generated by the reconstructed current distribution. 
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. If the statistics of the measurement noise are available, maximum-likelihood (ML) 
methods are appropriate [15]. These methods maximize the likelihood of obtaining the 
measured fields given the reconstructed currentclistribution; if the noise is jointly Gaussian, 
they also minimize the squared difference between the measured and reconstructed fields., 
weighted to reflect the a priori noise variance. 

If prior anatomical information is available from transmission tomography or magnetic 
resonance imaging, then it may be possible to define the a priori source variance as a func­
tion of position. Then minimum mean-square error (MMSE) methods are appropriate; 
they minimize the mean (average) squared difference between the true and reconstructed 
current distributions. Shim and Cho [16] have developed methods using a weighted pseu­
doinverse but their methods are optimal and useful only when the a priori source variance 
is constant. Helstrom [17] has developed and applied an MMSE method for image restora­
tion; Smith et al. [18] have developed and tested an MMSE method for magnetic source 
imaging with general a priori source variances. 

The present paper presents a unified development of the MNLS, ML, weighted pseu­
doinverse, and MMSE methods and shows that the weighted pseudoinverse, maximum 
likelihood, and MNLS methods can all be obtained as special cases of the MMSE method 
by an appropriate choice of priors. Formulas for the mean reconstruction error, mean resid­
ual, and a posteriori variance (or confidence limits) are derived. The paper also discusses 
efficient computer algorithms for the MMSE method and presents simulation results. 

Oh et al. [19] have taken a different approach to the use of prior information by using 
the method of alternating projections to obtain "line-like" or filamentary reconstructions 
consistent with the measurements. 

Most of the examples in this paper are taken from magneto encephalography, but the 
methods should apply to magnetocardiography and geophysics as well. Furthermore, the 
methods should generalize to other reconstruction problems including positron emission 
tomography (PET) and single photon emission computed tomography (SPECT). 

An Approach to the Problem 

The choice of the mathematical model used to represent the prior knowledge is a compro­
mise between several desiderata: First, the model should lead to an analytical or numerical 
solution method for the inverse problem; second, the parameters of the model should be 
physically meaningful, so that the user has some intuition of their meaning; third, the 
required parameters should be directly measureable (at least in principle) by some calibra­
tion experiment; fourth, the method should involve an objective criterion for correctness or 
optimality; and fifth, the solution method should admit some statistical test of goodness 
of fit between the model found and the measurements made. This paper considers one 
particular model that satisfies these requirements .. 

It is useful to exploit the fact that the magnetic field is a linear function of the current 
distribution. That is, the field due to a weighted sum of current sources is equal to the same . 
weighted sum of the fields due to the individual sources. Thus, it is convenient to represent 
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the unknown current distribution as a weighted sum of elementary sources. The sources 
are chosen in advance to reflect a priori knowledge as to the location and orientation of the 
source currents; the weights are to be found by the inverse computation. If there is some 
prior information as to the magnitude of each source, it can be expressed as a probability 
distribution on the corresponding weight. As we will see, the prior information can also 
be expressed as a map of expected power density. 

For example, in magnetoencephalography a set of current dipoles may be chosen as 
the elementary sources. The position and orientation of these dipoles are chosen to match 
the anatomy determined by magnetic resonance imaging. The volume currents induced 
by these dipoles may be included or ignored in computing the magnetic field due to each 
dipole. . 

More generally, a detailed electromagnetic finite element model [20, 21] of the brain 
and head could be used, choosing as the elementary sources a dipole current. in each 
element that might contribute to the field. The volume currents are computed with the 
finite element model, as are the magnetic nelds due to the elementary source and volume 
currents. 

The measurements of the generated magnetic field will not be exact but will contain 
some measurement noise. We will assume that this noise has mean zero and that its 
covariance matrix is known. 

Thus the prior knowledge used to constrain the reconstruction is expressed as (1) a set 
of elementary current sources which are consistent with the known anatomy and physiology 
(or geology); (2) a probability distribution for the source amplitudes; and (3) a probability 

. distribution for the detector noise. 

This approach provides both strong and weak constraints on the sources. The strong 
constraint is that the reconstruction will use only the selec~ed set of elementary sources. 
The weak constraint is that the reconstruction will put most of the power into the more 
probable sources, unless the measurements clearly indicate that a less probable source is 
responsible. That is, a strong constraint will never b~ violated by the reconstruction, but 
a weak constraint will be, if the data support the violation. 

The remainder of this paper divides roughly into three parts. The first part defines 
the source model and prior information and shows 'how to solve the forward problem of 
determining the field measurements from the source amplitudes: The second part defines 
several criteria for choosing the "best" ap'proximate reconstruction for given measurments, 
derives the reconstruction methods corresponding to the different criteria, and investigates 
the relationships between the methods. The last part of the paper discusses the computer 
implementation of the methods and includes the results from a Monte Carlo simulation 
study. 

Source Model 

We choose to model the unknown current distribution J (r) as a weighted sum of N known 
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elementary sources JnCr) to 6btrun. 
N 

J(r) = L qn In(r) (1) 
n=l 

Each elementary source In(r) is a vector-valued function giving the vector current density 
at any position r. Note that the sources are at positions fixed a priori; their positions are 
not free parameters to be estimated. Only the source amplitudes are unknown and must 
be estimated. 

There are many possibilities for the set of elementary sources In(r), depending on the 
assumption~ made about the uriknown distribution JW). 

If the unknown distribution is assumed to be well-described by a few localized sources, 
then it is reasonable to use a few current dipoles whose positions, magnitudes, and orien­
tations are to be determined. The magnetic field measurements are nonlineru.' functions of 
the source positions and iterative solution is generally necessary. The methods described 
in this paper assume positions fixed a priori and are not directly useful; they could possibly 
be used to find optimal source amplitudes at each step of an iterative scheme for improving 
the source position estimates. If, however, the source locations are known a priori and only 
the amplitudes are unknoyvn, then the methods of this paper would be applicable. 

If the unknown distribution is assumed to be smooth, then it is reasonable to expand 
it in a set of basis functions; these basis functions are the elementary current sources. 
A grid of current dipoles or a finite element mesh [20, 21] define localized elementary 
sources; lead fields [12], multipole expansions [22], or Fourier basis functions d~fine non­
localized elementary sources. Provided that the sources have fixed positions, the magnetic 
field measurements are linear functions of the source amplitudes and the linear methods 
developed in this paper can be used to solve the inverse problem. Any of the above basis 
functions could be used, though this paper considers only current dipoles in detail. 

The vector q of source amplitudes qn is assumed to be a random vector with mean zero 
and covariance matrix A = E qqT with entries·afj = E qiqj. If the expected amplitudes 
are not zero-mean, the shift~d vector q = q - E q is zero-mean and can be used instead. 
Since A is a covariance matrix, it is symmetric and positive semidefinite. 

Suppose that p(r) is the resistivity as a function of position r. If we normalize each 
source such that 

f p(r) I I n (r) 12 d3r = 1 iR3 
then the expected (or average) power dissipation of the nth source qn I n is 

Pn = E r p(r)lqn In(:r) 12 d3r iR3 . 
= (E q~) f p(r')IJn(r) 12 d3:r .JR3 

2 = ann 
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Optimal Constrained Linear Inverse Method 

Thus each diagonal entry Q~n of Ais the expected power dissipation of the nth source 
acting alone. 

The F~rward Problem 

Using the Biot-Savart Law [23], the magnetic field due to 1 is 

B(r) = PO { 1(p) x (r - F) d3-> 
r 471" JR3 IW _ FI13 P 

= L [PO { 1n(P) x (r - P) d3-] 
n qn 471" JR3 IW - FI13 . p 

=·LqnBn(?) 
n 

where 

(4) 

(5) 

is the magnetic field at position r due to the nth source. It is assumed that the permeability 
is constant and equal to the permeability of vacuum /-LO = 471" x 10-7 Him. 

Now suppose that there are M detectors, the mth of which measures the component 
of the field in direction 8m at position rm. Furthermore, the measurement is contaminated 
by some noise wm.· Then that measurement bm can be written as 

bm = 8m· B(rm) +wm 

= L qn 8m· Bn(rm) + Wm 
n 

_ '" [f-l0 {8m· In(P) X (rm - p) d3-] + 
-~qn 471"JR3· IWm-FI13· p Wm 

= LFmnqn+wm (6) 

/ n 

where 

(7) 

is the response of the mth detector to the nth source. The response Fmn can also be 
regarded as the lead field of the mth detector integrated over the current distribution of 
the nth source. 

Rewriting tl;lese equations for bm in matrix form yields 

b=Fq+w (8) 

The noise vector w is assumed to be a random. vector with mean zero and covariance 
matrix:E = E wwT with entries (J-Tj = E WiWj. Each diagonal entry a~m is the expected 
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noise power of the mth detector. Since ~ is a covariance matrix, it is symmetric and 
positive semidefinite. If the noise is uncorrelated between sensors, then ~ is diagonal. 

The cross-covariance between the source and noise amplitude vectors is r = E qwT 

with entries /'nm = E qnWm. In many applications, there will be no source-n~ise correlation 
and r will be zero. 

Given these definitions, the measurement covariance is 

(9) 

In the case that r = 0, this simplifies to B = FAFT +~ in which FAFT is the variance 
(or power) due to the sources and ~. is the variance due to the noise. Thus we may define 
the signal-to-noise ratio as 

SNR = Tr(FAFT) 
. Tr(~) 

(10) 

Note that the only assumptions made about the elementary sources I n are that the 
I 

sources are fixed in position a priori and that the superposition principle of electromagnetics 
holds. 

Dipole Sources: In the particular case that each source I n is a current dipole with 
moment qn at position Pn (and ignoring the volume currents), the field is 

(11) 

and the response matrix has entries 

Po _ J-lO • 8m . qn X (rm - Pn) 
mn - 4 11--+ --+ 11 3 7r 'I'm - Pn 

(12) 

• 
A "rotating" dipole of unknown orientation at a given position may be represented 

as two or three orthogonal fixed dipoles. The fixed dipoles may be oriented along the 
coordinate axes; normal and tangential to the cortical surface; or along the principal axes 
of the assumed probability density for the rotating'dipole. In the last case, the fixed dipoles 
will be uncorrelated. 

In magnetoencephalography, a dipole source will ordinarily be oriented normal to the 
cortical surface and the direction of of J n may be chosen to match. If the surface is strongly 
curved, a normal dipole with large expected amplitude and two tangential dipoles with 
smaller expected amplitude may be used. 

Assumption A: We pause here to introduce a technical assumption-to be called 
assumption A-that will useful later . Precisely stated, we will assume hereafter that that 
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none of the source amplitudes qn or the noise amplitudes Wm is almost surely equal to a 
linear combination of the remaining source and noise amplitudes. That is, every source 
and noise amplitude has some non-zero residual variance even after the effect of every other 
source and noise amplitude has been accounted for. 

Assumption A is unlikely to be an issue in practice. About the only way to violate 
it is to set some a priori source variance to zero or to use some field measurement twice; 
the problem is easily fixed by omitting the source with zero variance (since it is known a 
priori), choosing a nonzero variance, or omitting the redundant measurement. 

The value of assumption A is mathematical; it authorizes some algebraic manipula­
tions that would otherwise be questionable. Specifically, Appendix A derives the following 
consequences to be used later: 

1. The covariance matrices A = E qqT,:E . E wwT, and B = E bbT are all invertible, 
symmetric positive definite, and have Cholesky decompositions in the forms 

·A-RRT 
- , (13) 

where R, S, and L are all lower triangular and invertible. Furthermore, expressions,of the 
form R-1 X, S-l X, or L -1 X can be efficiently computed by forward substitution [24, 25] 
without explicitly computing the matrix inverse. 

2. The form E IIDbl12 is strictly greater than zero for every non-zero matrix D. 

Special Priors. 

In the general case, which will be called "correlated priors," different sources have known 
expected power and known correlations but the covariance matrices A, :E, and r have no 
special structure. For example, a subject reading text might be expected to have neural 
activity concurrently in different parts of the primary and secondary visual cortex. More 
generally, electrical activity in the (normal) heart is highly correlated in patterns that 
depend on the phase of the cardiac cycle. 

There are two special cases in which the prio~s take special forms leading to simplified 
problems. 

Independent Priors: In the case of "independent priors," different sources are known 
(or assumed) to have different expected power but are assumed to be independent; the 
noise amplitudes are assumed to be independent of each other and of the sources. Then 
the source covariance A and noise covariance :E are diagonal; the cross-covariance r is 
zero. The expected total power dissipation is L:n a~n = Tr A. 

If in addition each source is localized to some small volume, then most of the power 
dissipated by that source is contained in that volume. Computing the power density by 
dividing the expected power by the volume and plotting as a function of position yields a 
map of expected power density. 
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Conversely, suppose that a map ·of expected p0werdensity 'can bedeiived 'frornphys­
iological principles. Then dividing this 'map into small regions ·of .approximately :constant 
power density and assigning a singleton, pair, ·or triplet ·.of orthogonal ,dipoles to :each .re­
gion yields a set of dipoles to model the unknown .source distribution. The ;orientation 
of the dipole triplet should be chosen to match the prinCipruaxes of the most plausible 
a priori distribution; if the distribution is spherical, then the orientation does not matter 
and may be chosen for convenience (e.g. to match the coordinate axes). The integrated 
power density in each region defines the total expected power or a priori variance for the 
corresponding triplet (or pair or singleton); if physiology does not suggest a reasonable 
subdivision over the members of the triplet, equal variances seem as plausible as anything 
else. Then the source variances taken together define the diagonal of the a priori source 
covariance matrix A. 

For example, sources located in the grey matter (as determined by magnetic resonance 
imaging) might be oriented normal to the cortex and assigned twice the expected power 
of sources in the white matter or cerebrospinal fluid; sources outside the head would be 
omitted entirely. I 

Uniform Priors: In the case of "uniform priors," the approximate amplitude of 
the elementary sources is known but there is no basis for believing that anyone is more 
active than any other; and the same is true of the noise amplitudes. That is, the source 
amplitudes are independent and identically distributed; so are the noise amplitudes. Then 
every source has the same expected activity a 2 ,the covariance matrix A takes the form 
a 2I, and the map of expected activity is uniform; the noise covariance ~ takes the form 
a 2I and the cross-covariance r is zero. 

The Inverse Problem 

The inverse problem is to find a "best" estimate q of the unknown source amplitude vector 
q from given values for the response matrix F, the field measurements b, and perhaps other 
information such as the noise covariance :E and the source covariance A. 

This paper considers only linear inverse methods. That is, the best estimate q is always 
computed in the form 

q=Hb (14) 

where H is a linear operator possibly depending on A, :E, r, or other prior information. 

The simple solution q = F-1 b does not work in general for inverse problems; F is rarely 
invertible and usually rectangular. The inverse problem is often both overdetermined in 
the sense that no ·s~lution it exactly solves Fq = b and underdetermined in that many 
different values of q provide equally close approximations. Different criteria for the "best" 
approximation lead to different inverse methods. 

The least squares (LS) criterion [26] is to minimize the residual 

(15) 
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which is a measure of the discrepancy between the measured and reconstucted field values. 
The least squares solution is not necessarily unique; there may be many different solutions 
that achieve the minimum c2. The minimum-norm least squares (MNLS) criterion chooses 
from all these minimum-residual solutions the unique solution with smallest norm Ilqll2. 
No prior information is necessary and the value of c2 can be computed for any given b. 

The maximum likelihood (ML) criterion [26] is, assuming that w is jointly Gaussian, 
to minimize the weighted, residual 

(16) 

which is a measure of the discrepancy between the measured and reconstructed field values, 
weighted by the a priori noise variance. As with least squares, the solution is not necessarily 
unique. Noise statistics are required but source statistics are not. 

If the noise amplitudes are assumed to be inde~endent and identically distributed 
(:E = a 21), then the MNLS solution minimizes the X statistic and is also the maximum 
likelihood solution. 

The residual X2 can also be evaluated in terms of the given measurements b for any 
estimator H: 

x2 = (b - Fq)T:E-l(b - Fq) 

= (b - FHb)TS-T S-1(b - FHb) 

= IIS- 1(1 - FH)b112 (17) 

which is a convenient form for computer implementation. The mean value E X2 of the 
residual reveals how closely a reconstruction matches the given measurements on average 
and is useful as a figure of merit for a reconstruction filter H. It can be computed as 

EX2 = E IIS-1(1 - FH)b11 2 

= Tr(S-l(1 - FH)B(I - FH)TS-T) 

= Tr((S-l(1 - FH)L)(S-l (I - FH)L)T) 

= IIS- 1(1 - FH)LII} 

where the Frobenius norm of a general matrix G is defined by 

IIGII} = L g;j = Tr(GGT
) 

ij 

(18) 

The minimum mean square error (MMSE) or mean square (M.S.) criterion [27] is to 
minimize the average reconstruction error 

(19) 

which is a measure of the discrepancy between the re.constructed and the true current 
distributions. The error e2 = Ilq - ql12 depends 0n the true distribution and thus cannot 

14 



Optimal Constrained Linear Inverse Method 

be computed for any specific hj only its mean value 1]2 can be determined. The mean 
square error 1]2 depends on the source and noise statisti~s, so both of these must be known 
(or assumed) a priori. 

For a given filter H, the mean square error takes the form 

1]2 = E IIH(Fq + w) _ ql12 

= E II(HF - I)q1l2 + E IIHwll2 + 2 E(Hw)T (HF - I)q 

= Tr((HF - I)A(HF - I)T + H:EHT + 2(HF - I)rHT) 

Also of interest is the function 
2 ATA -1 A P =q q, 

(20) 

(21) 

which is a measure of the goodness of fit between the reconstructed current distribution 
and the a priori current distribution. Since p2 increases as the reconstruction becomes less 
likely relative to the priors, it will be called the "surprise." For given b and H, it has the 
value 

2 ATA -1 A 
P =q q 

= (bTH TR-T)(R-1Hb) 

= IIR-1HbIl 2 . (22) 

The mean surprise indicates to what extent the reconstruction filter uses the prior infor­
mation rather than the given measurements; it has the value 

Ep2 = E IIR - 1H b Il2 

= Tr(R-1HBHTR-T) 

= Tr((R-1HL)(R-IHL)T) 

= II(R-1HL)II} 

Minimum-Norm Least Squares Method 

(23) 

The Moore-Penrose generalized inverse (sometimes known simply as the pseudoinverse) 
is a generalization of the matrix inverse to arbitrary rectangular matrices. It was first 
reported by Moore [28] in 1920 as the unique matrix satisfying certain algebraic conditions 
not relevant here, and rediscovered by Penrose [29] in 1955 using different but equivalent 
algebraic conditions. Of importance to the present paper is the fact [30] that it computes 
the MNLS solution. 

The Moore-Penrose inverse can be easily computed from the singular value decompo­
sition (SVD) [24,25] of the response matrix F. To fix notation, the SVD theorem states 
that the M x N response matrix F can be decomposed in the form 

J{ 

F = UAVT = L Ak ukvk (24) 
k=l 
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where K ~ K' = min(M, N) is the rank ofF; U is an orthogo'nal matrix with orthonormal 
columns Uk; V is an orthogonal matrix with orthonormal columns Vk; and A is an M x N 
diagonal matrix with diagonal entries Al > A2 2:: ... 2:: AK > AK+l = ... = AK' = O. The 
values Ak for k = 1, ... ,K are called the singular values of F; the vectors Uk and Vk for 
k = 1, ... ,K are respectively called the left and right singular vectors of F. The additional 
vectors uk, k = K + 1, ... , M, span the complement of the range space of F; the additional 
vectors vk., k.= K + 1, ... , N, span the null space of F. 

The Moore-Penrose inverse of F is then 

(25) 

and is equal to the ordinary matrix inverse if F is non-singular. IfF is singular, the system 
. Fq = b is ill-posed and has infinitely many possible solutions q; q = Ftb is the particular 

solution with the smallest norm, or the minimum-norm least squares (MNLS) solution. 

The Moore-Penrose inverse in its pure form is not generally.suitable for inverse prob­
lems with measurement noise .. Suppose that b = Fq + w and consider the estimate 
q = Ftb = FtFq + Ftw . The error due to noise is 

Ftw = L X;;I(uI W)vk (26) 
AklO 

which grows·without bound as the singular values Ak decrease toward zero. The error in 
q is roughly proportional to the reciprocal of the smallest singular value and can easily 
swamp the correct answer. 

One simple cure is to drop all singular values less than a threshold €, defining a trun­
cated pseudoinverse 

F£ = L A;lvkUI (27) 
Ak>£ 

Wang, Williamson, and Kaufman [12, 13] have used a truncated pseudoinverse for mag­
netic source imaging, although they do not state their truncation criterion. Choosing 
the threshold € can be problematic; the weighted pseudoinverse method discussed below 
provides one systematic approach. 

, 
Weighted Pseudoinverse Methods 

To avoid these numerical problems, Shim and Cho [16] have modified the MNLS by defining 
a weighted pseudoinverse (which they call the stochastic SVD pseudoinverse) 

(28) 

where the weights Ck are chosen to yield the minimum mean square error. Restricting the 
weights to zero and one yields a truncated pseudoinverse. Their derivation and results un­
fortunately contain some typographical errors; the following derivation hopefully corrects 
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. 

those errors without introducing any new ones, and generalizes their result by allowing 
correlations between noise and source amplitudes (r f=. 0). 

Shim and Cho have applied the optimal truncated pseudoinverse method (OTPIM) and 
optimal weighted pseudoinverse method (OWPIM) to PET reconstruction; Jeffs, Leahy, 

- and Singh [11] have used the optimal truncated pseudoinverse for magnetic source imaging 
of the brain. 

To determine the optimal q, write the source and noise vectors in terms of the singular 
vectors of F to obtain 

and (29) 

Note that ak = vk q and Sk = uk w, so that E ak = 0 and E sic = O. Define the covariances 

2 E 2 T cxk= ak =vkAvk 

a~ = E S~ = Ur}JUk 

Ik = Eaic sk =VkrUk 

k=l, ... ,N 

k = 1, ... , M ; and 

k.= 1, ... ,K' (30) 

which are the diagonal entries of -the rotated covariance matrices yT AV, UT:EU, and 
yTrU respectively. The notation here may be a bit confusing; the symbols atj' ali' and 
lij with two subscripts denote the entries of the unrotated covariance matrices A, :E, and 
r. 

The optimal estimate of q is q = FWb with error 

e = q - q = FWb - q = FW(Fq+ w) - q 

= FWFq - q + FWw 
- N N M 

= FWF L akvk - L akvk + FW L skuk 
k=1 k=1 k=1 

and since vK+b"" VN are in the null space of F and uK+b"" UM are in the null space 
ofFw, 

K N f{ 

e = FWF Lakvk - Lakvk +FwLskUk 
k=1 k=l k=1 

= t reCk -l)ak + C~:k 1 vk - f. akvk 
k=1 k=f{+1 

(31) 

Then the mean square error is 

K N 
7]2 = EeT e = L [(Ck -1)2a~'+ 2Ck(Ck -lhk/Ak + c~a~/A~] + L a~ (32) 

k=1 k=I<+1 
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Finding the minimum by the usual procedure yields the c<;>effl'cients 

k = 1, ... ,K (33) 

for the optimal weighted pseudoinverse of F. 

Note that the off-diagonal covariances E akal, E SkSl, and E aksl with k =1= l do not 
appear in the above eX,fression. In effect, the~ are assumed to be zero. EquiValently, the 
covariance matrices V AV, UT~U, and V ru are assumed to be. diagonal. This is 
called the case of "coaxial" priors and will be discussed later. 

If the weights are restricted to Ck = 0 or Ck = 1, the weighted pseudoinverse becomes 
a'truncated pseudoinverse. Thus, any truncated pseudoinverse is a special case of the 
weighted pseudoinverse and will, in general, have a larger error than the optimal weighted 
ps~udoinverse. 

To obtain the optimal truncated pseudolnverse, consider the kth error term 

(34) 

The minimum error is achieved when the smaller of the two possible values is taken; that 
is, the kth term should be retained if a~/A~ < a~ {::} Ak > akiak and dropped otherwise. 
Thus the optimal truncated pseudoi'nverse is 

(35) 

Setting a~1 A~ = a~ in equation (33) yields Ck = ~, so rounding Ck to 0 or 1 in the optimal 
weighted pseudoinverse yields the optimal truncated pseudoinverse. 

. The figures of merit r?, E X2 , and E p2 take special forms for the weighted pseudoinverse. 
The reconstruction error 1]2 is most easily computed using the formula (32) given above 
for coaxial priors or formula (20) for general priors. The mean residual is E X2 = II S -1 (I -
FH)LII} where 

M 

1- FH = 2:(1 - Ck)UkUk (36) 
k=1 

Substituting yields 

M 
2 

E X2 = 2:)1 - Ck)(S-l uk )(LT Uk)T (37) 

k=1 F 
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The mean surprise is 

]{ 

L Ck A;;1(R-1Vk),(LT Uk)T 
k=l 

Optimal Constrained Linear Inverse Method 

2 

F 
2 

F 

(38) 

The Shim-Cho weighted pseudoinverse is optimal (in the MMSE sense) over all possible 
weighted pseudoinverses but is not, in general, optimal over all possible linear estimators· 
of the form ft = Hb.· 

The optimal constrained linear estimator is given by the matrix H that minimizes 

772 = E 11ft - ql12 = E IIHb _ qll2 

= E IIH(Fq + w) ~ qll2 

= E II(HF - I)q + Hwl12 

Now consider ayariation H + €8H where € is a scalar and 8H is a matrix to obtain. 

772 = E II(HF + €8HF - I)q + Hw + €8Hw1l2 

= E II(HF - I)q + Hw + €8H(Fq + w)1I2 

: = E II(HF - I)q + Hwl12 

+ 2€ E(Fq + w)T 8HT [(HF - I)q + Hw] 

+ €2 E 118H(Fq + w)1I2 

= CO+CI€+C2€2 

for scalars co, C1, and C2 which depend on 8H. 

(39) 

(40) 

Now H can minimize 772 only if CI is zero for any value of 8H. To see this, assume 
on the contrary that there is some non-zero 8H such that CI is not zero. Assumption 
A ensures that the constant C2 = E 118H(Fq + w)112 is positive whenever 8H is not zero. 
Then 772 has a unique minimum at €min = -CI/(2c2). But this means that 772 is smaller 

. for H + €min 8H than for H. Thus, contrary to our assumption, H is not the miriimum. 
Therefore, CI must be zero for every 8H. 

The positivity of C2 also guarentees that 172 has a minimum rather than a maximum. 
Furthermore, since 172 is quadratic in €, the minimum is unique and there is no maximum .. 
That is, the optimal H exists and is unique. 
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Now observe that, for random vectors x and y, the expection E xTDy is zero for all D 
only if E xyT = o. (Consider the set of matrices D in which one entry t-a.kes the value one 
and all the other entries are zero.) Then the scalar q can be zero for arbitrary oH only if 

o = E [(HF - I)q + Hw](Fq + w)T 

= E HFqqTFT - E qqTFT + E HwqTFT + E HFqwT - E qwT + E HwwT 

= HFAFT - AFT + HrTFT + HFr - r + HE (41) 

which can be solved to yield 

(42) 

\ where assumption A guarentees the existence of theinverse. 
~ 

The mean residual, mean square error, and mean surprise can be computed from the 
formulas (18), (20), and (23) given above for a generic linear estimation. 

Useful Special Cases 

There are several special cases in which the OCLIM filter takes simpler forms. 

Noise Uncorrelated with Sources: If ~he noise is uncorrelated with the sources, 
then r = 0 and the filter simplifies to 

(43) 

This mean square estimator has been previously used by Helstrom [17] and others [31] for 
image restoration and by Smith et al. [18] for magnetic source imaging. 

It is also related to the backprojection of filter:ed projections algorithm for emis­
sion tomography [32], also called the filtered backprojection algorithm [33]. The factor 
(FAFT + ::E)-1 filters the projections b, the factor FI: backprojects, and A weights the 
result according to the a priori probabilities. 

Furthermore, observe that 

FT + FT ::E-1FAFT - FTE-1FAFT + FT (44) 

¢:} (A -1 + FT :E-1F)AFT = FTE-1(FAFT +::E) 

¢:} AFT(FAFT + ::E)-1 = (A -1 + FTE-1F)-1FT::E-1 

Thus the optimal filter ~an also be written in the form 

(45) 

This form represents a variant backprojection algorithm in which filtering is done after· 
backprojection; Budinger at al. call this the "filter of the backprojection algorithm" [32]. 
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The factor :E-1 corrects for noise variance in the projections, FT backprojects, and (A -1 + 
FT :E-1 F)-1 filters the backprojected image. 

Using the fact that 

. HF - I = (A -1 + FT :E-1F)-1FT :E-1F - I 

= -(A -1 + FT :E-1F)-1 A-I 

and substituting into (20) yields the mean square error 

. r? = Tr((A-1 + FT :E-1F)-1 A-I AA-1(A -1 + FT :E-1F)-1 

+ (A -1 + FT:E-IF)-lFT:E-l:E:E-1F(A -1 + FT:E-lF)-1) 

= Tr((A -1 + FT:E-1F)-1) 

= Tr(A - AFT(FAFT + :E)-lFA) 

= Tr(A - (L -1FA)T(L -lFA)) 

(46) 

= Tr(A) -ilL -1 FAII} . (47) 

Alternatively, 1]2 can be computed from the a posteriori variance A discussed later. 

and 

To find the mean residual and mean surprise, first observe that 

H = AFT(FAFT + :E)-1 

= RRTFTL -TL -l 

1- FH = 1- FAFT(FAFT + :E)-l 

= :E(FAFT + :E)-.l 

= SSTL-TL-l 

It then follows from (18) and (23) that 

EX2 = IISTL-TII} = IlL -lSIl} 

and 

(48) 

(49) 

(50) 

(51) 

Coaxial priors: Suppose that the covariance matrices A, :E, and r all become diag­
onal when they are rotated into the U and Y coordinates defined by the sin~lar vectors 
of F. That is, suppose that the rotated matrices yT AY, UT:EU, and Y ru are all 
diagonal. Then the matrices F, A, :E, and r can all be written in terms of the singular 
vectors Uk and Vk defined by the singular value decomposition of F. That is, 

/{ 

F = L AkUkVk , 

k=l 
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N 

A ""' 2T = ~O'.kVkVk 
k=l 
M 

~ = La~uku[ 
k=l 
J(' 

r = L I'kV k U [ 

k=l 

and 

(52) 

In other words, these matrices all share the same singular axes; this may be called the 
case of "coaxial priors." Since A and ~ are positive definite, 0'.% > 0 for k = 1, ... ,N, and 

af > 0 for k =J,.,. ,M. Recall that ]( = rk(F) ::;](1 = min(M,N). 

Then the OCLIM filter can be expressed in the same axes as 

(53) 

which is exactly the optimal weighted pseudoinverse of F. That is, the optimal weighted 
pseudoinverse is obtained as a special case of the optimal constrained linear filter when the 
covariance matrices are coaxial with the response matrix; it is inferior to OCLIM otherwise. 

The case of coaxial priors follows naturally from the assumption of uniform priors, 
so the optimally weighted pseudoinverse yields the minimum mean-square solution for 
uniform priors. Except for this special case, however, coaxial priors seem unlikely to occur 
in practice. 

_ The truncated pseudoinverse can also be obtained as a special case, although the 
assumptions required are rather perverse. 

Uniform Priors: The assumption of uniform priors means that A ~ 0'.21, ~ = a 21, 
r = 0, and all are coaxial with any F. Then the OCLIM filter simplifies to 

(54) 

where we have used the fact that Ak = 0 whenever k > ]( to reduce the upper limit from 
](1 to K. Since FFT is positive semidefinite, the indicated matrix inverse exists whenever 
a 2/0'.2 > o. The only prior knowledge required is the ratio 0'.2/a2; thus this special case 

22 



Optimal Constrained Linear Inverse Method 

is useful for noise-tolerant reconstruction given only rough estimates of source and noise 
amplitude. I 

This form can be regarded as a Marquardt [34, 351 or Tikhonov [36] regularization 
of the pseudoinverse Ft =FT (FFT) -1. One important difference is that the value of 
the regularization parameter is determined by the given value of 0-

2/ 012 and need not be 
determined by experiment. 

No Prior Information: The case of "no priors" may be approached by letting 0:2 

go to infinity. In this case, the OCLIM filter goes to the limit 

K 

H = L A;;l VkUr (55) 
k=l 

which is just the Moore-Penrose inverse or the MNLS estimator. Taking the limit as the 
noise goes to zero ((12 -+ 0) yields the same result. 

A Posteriori Variance arid Confidence Limits 

Given the additional assumption that q and w are jointly Gaussian, it is possible to 
determine the a posteriori variance and hence confidence limits on the estimate q. 

Papoulis gives. the following result, which has been restated in matrix form [27]: Sup­
pose that x and y are zero-mean, jointly Gaussian random vectors with covariance ma~ 
trices Exx and Eyy and cross-covariance ~xy = ~~x' Then, for given y, x is normally 
distributed with mean 

and variance 

":"'1 
J.lxlY = Exy Eyy y 

In the present problem, b is given and q is sought. T~us, we evaluate 

Eqq = EqqT = A 

Eqb = Eq(Fq + w)T = AFT + r ; and 

Ebb = E(Fq + w)(Fq + w)T = FAFT + Fr + rTFT + E 

Then the mean of q given b is 

q = J.lqlb = ~qbEb~b 
= (AFT +r)(FAFT +Fr+rTFT +~)-lb , 

(56) 

(57) 

(58) 

(59) 

which is exactly the MMSE estimate derived above for q and w with arbitrary distributions. 
Furthermore, the variance of q given b is 

A = Eqlb 

= Eqq - Eqb~b~Ebq 
= A - (AFT + r)(FAFT + Fr + rTFT + E)-l (AFT + r)T (60) 
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If the noise is u1).correlated with the sources, then r = 0 and the a posteriori variance 
becomes 

(61) 

Note that the a posteriori variance does not depend on the actual measurements b and 
thus can be computed in advance. 

Each diagonal entry a~n of A is the a posteriori variance of the corresponding estimate 
qn; hence each qn has a standard error equal to ann, from which confidence limits can be 
computed for any desired probability [26]. 

Furthermore, the a posteriori variance is, by definition, 

which implies that 

A = E(q - Eq)(q - Eq)T 
= E(q _ q)(q _ q)T 

n 

which is an alternative way to compute r-,2. 

Computer Implementation 

(62) 

The four reconstruction methods discussed in this paper have been implemented in FOR­
TRAN 77 for noise uncorrelated with sources (r = 0) and independent priors (A and 
E diagonal) .. The LAPACK library [37] was used for linear algebra computations. All 
computations were done in double precision. 

Some tricks were used in the implementation of OCLIM to improve performance; no 
implementation tricks are known for the other methods. The problem in OCLIM is to 
compute 

(63) 

. for one or more vectors b, given F, A, and :E. Since A is diagonal, the expression FAFT 
may be written in the simple form 

FAFT = L a~n fn fif (64) 
n 

where fn is the nth column of F. Since:E is diagonal, adding it to FAFT requires little 
additional work. 

Nor is it necessary to compute the matrix inverse explicitly. Define p = (FAFT + 
E)-lb. Then p can be cornputed by solving the system (FAFT + :E)p = b. Furthermore, 
B =. FAFT + E is symmetric positive definite and has a Cholesky decomposition LLT 
with L lower triangular; using this is more efficient than inverting the matrix or using the 
LU decomposition [24, 25]. A suitable computational procedure thus proceeds as follows: 
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1.1 Form the matrix B = I: + L:n (X~n fn fl using O(M2 N) flqps. 

1.2 Compute the Cholesky decomposition LLT of Bin O(M3) flops. 

2.1 Solve the system LLT p = b using the Cholesky decomposition in O(M2) flops. 

2.2 Compute the solution q = AFT pin O(MN) flops. 

Steps 1.1 and 1.2 do not involve b and need be done only once for any specified 
configuration; steps 2.1 and 2.2 must be done for each measurement vector b. Assuming 
that M and N are of the same order, setup (steps 1.1 and 1.2) costs O( N3) flops and each 
estimated source vector costs O(N2 ) flops. . 

It is also useful to compute at least the diagonal of the a posteriori source covariance 

A = A - AFT(FAFT + I:)-lFA 

= A - AFTL -TL -IFA 
~ A - (L -lFA)T(L-IFA) (65) 

I:et X, = L -IFA. Then LX = FA, which may be solved by forward substitution, arid 
A = A - XTX, which may be computed directly. Note that since A is diagonal, computing 
FA simply requires multiplying each column of F by the appropriate diagonal entry of A. 
Thus, a suitable procedure is as follows: 

1.3 Form the product FA in O(MN) flops. 

1 A Solve LX ..:.- FA by multiplication and forward substitution in O( M 3 ) flops. 

1.5 Compute A = A - XTX directly in O(N3) flops. 

All of these steps are independent of b and can be done as part of the setup; the total 
time required is O(N3) flops. ' .. 

Simulation Results and Discussion 

The computer implementation just described was used in a Monte Carlo simulation to 
compare'the four inverse methods. All sources were modelled as current dipoles. In the 
MNLS method, all singular values less than 10-10 times the largest singular value were 
forced to zero. 

Three different source configurations were used and are shown in Figures 1, 2, and 3. 
The same detector configuration was used for all cases and is shown in Figure 4. Each 
source/detector configuration was tested for five different Values of source and noise vari­
ance. Theoretical values of the mean reconstruction error 7]2, mean residual E X2, and 
mean surprise E p2 were computed for each combination of geometry and statistics from 
the equations given previously. Then ten thousand source distributions were generated, 
projected, and reconstructed for the same combination. Experimental mean values and 
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standard errors for TJ2, E X2, and E p2 were computed from the ten thousand test distribu­
tions. 

In configuration 1, the sources are arranged in a 4 x 4 cm2 planar array perpendicular 
to the detector plane, and centered below that plane with its nearest edge 1 cm away. The 
source plane contains an 8 x 8 array of perpendicular current dipoles. The 28 sources in 
the central cruciform region are assigned a source variance a~; the remaining sources are 
assigned a (possibly different) source variance a1. 

In configuration 2, the sources are arranged in a 5 x 5 cm2 planar array parallel to the 
detector array and centered 3 cm below it. The source array is a 5 x 5 grid of sources; each 
source is a pair of dipoles parallel to the sides of the array. This configuration allows each 
source to take any orientation in the source plane. The 9 sources in the central cruciform 
region are assigned a source variance a~; the remaining sources are assigned a (possibly . 
different) source variance a1. 

In configuration 3, the sources are arranged in a 4 x 4 x 4 cm3 cube centered 2 cm 
below the detector array. This cube contains a 4 x 4 x 4 grid of sources, each of which is 
a pair of dipoles parallel to the detector plane. All sources are assigned the same variance 
a 2. 

All test configurations used the detector array shown in Figure 4. This array has a 12 
x 12 cm2 planar array of 144 detectors arranged in a 12 x 12 grid. Each detector measures 
the magnetic field perpendicular to the plane of the array. Noise amplitudes taken from 
independent normal distributions with mean zero and variance (72 are added to each field 
measurement. 

Table 1 shows the theoretical and experimental results for configuration 1 with uniform I 

priors (a~ = a1) at several different signal-to-noise ratios. Note that the theoretical and 
experimental values all agree within 2 standard errors. 

As predicted, OCLIM and OWPIM show identical results for uniform priors. OTPIM 
typically has slightly larger values of TJ2, E X2, and E p2 than either. MNLS has better E X2 
values than any of the other methods but its error is orders of magnitude worse. The mean 
error TJ2 and mean residual E X2 both increase as the noise increases; the mean surprise 
E p2 decreases. 

The knowledge of the approximate source and noise amplitudes provided by the priors 
has allowed OCLIM, OWPIM, and OTPIM to generate much better solutions than MNLS. 
That is, even if there is no prior information on the expected source patterns, knowing the 
expected signal and noise amplitudes regularizes the pseudoinverse and tames an otherwise 
ill-conditioned problem. 

Table 2 shows the theoretical and, experimental results for configuration 1 with non­
uniform priors (a~ ::j:. a1) at several different signal-to-noise ratios. The theoretical and 
experimental values again agree within 2 standard errors. Most of the other observations 
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on Table 1 remain true. The big change is that OCLIM now has a smaller mean error 
ry2 than any of the other methods. The difference is largest when the noise is small and' 
decreases to insignificance when the noise is large enough. 

Computations for configurations 2 and 3 are shown in Tables 3 and 4; the results ru.'e 
similar. 

For any 'of these configurations, the initialization (steps 1.1-1.5) and reconstruction 
(steps 2.1-2.2) for a hundred data sets take about a second on a workstation class computer. 
There are only minor differences in the execution time required for the four different 
reconstruction methods. 

The same reconstruction software was used to produce the images shown in figures 5 
and 6. Configuration 1 was used with non-uniform priors; specifically, a~ = 1, a~ = 0.01, 
and (72 = 10-16 . A single source dipole was active with amplitude 8 and <ill other sources 
were zero. The lefthand plot of each pair was reconstructed with OCLIM; the righthand 
plot with OWPIM. The dipole is at the position indicated by the dot and is pointing out 
of the page. Grey shading indicates areas of current flow into the page. 

Figure 5 shows three reconstructions of sources consistent with the priors (that is, 
sources in region A). The peak produced by OCLIM is consistently higher and narrower 
than the one produced by OWPIM. For both methods, the peak gets broader and lower 
as the source gets further from the detector array. 

Figure 6 shows two reconstructions of sources inconsistent with the priors. In the first 
pair, the true source is close to a plausible source and OCLIM maps the true source into 
a plausible source with substantial artifacts in form of spurious peaks elsewhere., OWPIM 
finds the true location of the source. In the second pair, the true source is well separated 
from any plausible source. Both OCLIM and OWPIM find the true source but OCLIM 
generates several spurious ridges. 

Conclusions 

If the unknown current distribution is expressed as a linear combination of elementary 
current distributions in fixed positions, then the magnetic field measurements are linear 
in the unknown source amplitudes. ,If, in addition, the cost function to be minimized is 
either the mean square error (reconstructed minus true currents) or the square residual 
(measured minus reconstructed fields), then the unknown source amplitudes may be found 
by solving a linear problem. This offers several advantages: The problem is well understood 
theroretically and software for its solution is readily available. There is only a single, global 
minimum. Efficient and reliable computer codes for linear algebra are readily available. 

If the sources are localized and statistically uncorrelated, then the prior knowledge 
of the current distribution can ,be interpreted as a map of expected power dissipation or 
current density as a function of position. Conversely, such a map der.ived from geological 
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or physiological principles determines the diagonal of the source covariance matrix; the off- . 
diagonal entries are all zero. Correlations between sources, if present, appear as non-zero 
off-diagonal entries of the covariance matrix. 

The minimum-norm least squares (MNLS) method, also known as the Moore-Penrose 
inverse and the generalized inverse,provides a lower residual than any other method but 
does not exploit prior knowledge. But if the problem is poorly conditioned and there is 
measurement noise, its reconstruction error can be orders of magnitude larger than the true 
current distribution~ Magnetic imaging is both noisy and poorly conditioned, so MNLS is 
not generally suitable. . 

The weighted pseudoinverse developed by Shim and Cho generalizes MNLS by includ­
ing an arbitrary weight in each term of the outer product or spectral expansion of the 
Moore-Penrose inverse; a truncated pseudoinverse is obtained by restricting the weights to 
zero and one. Choosing the weights to minimize the mean square error yields an optimally 
weighted pseudoinverse method (OWPIM) or optimally truncated pseudoinverse method 
(OTPIM); the source and noise covariance matrices determine the optimum but only the 
diagonal entries are used. Prior knowledge of the source and noise covariance is required 
but non-uniform priors are permitted only in special cases. OWPIM and OTPIM generally 
have mean square error larger than OCLIM and residuals larger thanMNLS. 

The optimal constrained linear inverse method (OCLIM) derived in this paper uses 
prior knowledge to obtain a minimum mean square error estimate of the current distri­
bution; OCLIM can be efficiently computed using a Cholesky decomposition. Any source 
and detector configuration is allowed as long as their positions are fixed a priori. Any 
correlations between source and noise amplitudes are permitted. OCLIM locates point 
sources more precisely than OWPIM but is prone to artifacts when the true sources are 
inconsistent with the priors. 

OCLIM reduces to the optimally weighted pseudoinverse method when the source 
amplitudes are independent and identically distributed and to the minimum-norm least 
squares estimate in the limit of no measurement noise or no prior knowledge of the source 
amplitudes. 

All four methods are fast to compute, taking about a second on a workstation for a 
problem with 64 sources and 144 detectors.-

Of these methods, OCLIM appeal'S the best suited to magnetic imaging, since it ex­
ploits prior information, provides the minimum reconstruction error, and is no more ex­
pensive to compute than the others. 

Acknowledgements' 

I am grateful to Prof. Thomas F. Budinger for suggesting the problerri of using prior 
information in magnetic source imaging and to Dr. James G. Berryman to pointing out the 
connections to Marquardt regularization and iterative rionlinear reconstruction algorithms. 

28 



Optimal Constrained Linear Inverse Method 

References 

, [1] lliitta Hari and Risto J. Ilmoniemi. Cerebral magnetic fields. CRC Crit. Rev. Biomed. 
Eng., 14(2):93-126, 1986. . 

[2] Jukka Sarvas. Basic mathematical and electromagnetic concepts of the biomagnetic 
inverse problem. Phys. Med. Biol., 32(1):11-22, 1987. 

[3] Susumu Sato, Marshall Balish, and Robert Muratore. Principles of magnetoen­
cephalography. J. Clin. Neurophysiol., 8(2):144-156, April 1991. 

[4] A. van Oosterom. History and evolution of methods for solving the inverse problem. 
J. Clin. Neurophysiol., 8(4):371-380, October 1991. 

[5] Gerhard Stroink. Cardiomagnetic imaging. In Barry L. Zciret, Leon Kaufman, Alan S. 
Berson, and Rosalie A. Dunn, editors, Frontiers in Cardiovascular Imaging, chap­
ter 11, pages 161-177. Raven Press, New York, 1993. 

[6] J. S. Kallman and J. G. Berryman. Weighted least-squares criteria for electrical 
impedance tomography. IEEE Trans. Med. Imaging, 11(2):284-292, June 1992. 

[7] J. G. Berryman and R. V. Kohn. Variational constraints for electrical impedance 
tomography. Phys. Rev. Lett., 65(3):325-328, 16 July 1990. 

[8] B[ernd] Liitkenhoner, K. Lehnertz, M. Hoke, and C. Pantev. On the biomagnetic 
inverse problem in the case of multiple dipoles. Acta Oto-Laryngologica, SuppI491:94-
105, 1991. 

[9] Manbir Singh, R. Richardo Brechner, and Victor W. Henderson. Neuromagnetic local­
ization using magnetic resonance images. IEEE Trans. Med. Imaging, MI-11(I):129-
134, March 1992. 

[10] M. Singh, D. Doria, V. W. Henderson, G. C. Huth, and J. Beatty. Reconstruction 
of images from neuro-magnetic fields. IEEE Trans. Nuclear Sci., NS-31(1):585-589,i 
1984. 

[11] Brian Jeffs, IPchard Leahy, and Manbir Singh. An evaluation of methods for neu­
romagnetic image reconstruction. IEEE Trans. Biomed. Eng., BME-34(9):713-723, 
September 1987. 

[12] Jia-Zhu Wang, Samuel J. Williamson, and Lloyd Kaufman. Magnetic source images 
deter~ined by a lead-field analysis: The unique minimum..:norm least-squares estima­
tion. IEEE Trans. Biomed. Eng., BME-39(7):665-675, July 1992. 

[13] Jia-Zhu Wang. Minimum-norm least-squares estimation: Magnetic source images for 
a spherical model head. IEEE Trans. Biomed. Eng., BME-40(4):387-396, April 1993. 

[14] Ceon Ramon, Michael G. Meyer, Alan C. Nelson, Francis A. Spelman, and Jeff Lamp­
ing. Simulation studies of biomagnetic computed tomography. IEEE Trans. Biomed. 
Eng., BME-40(4):317-322, April 1993. 

29 



Optimal Constrained Linear Inverse Method 

[15] L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomogra­
phy. IEEE Trans. Med. Imaging, MI-1(2):113ff, October 1982. 

[16] Y. S. Shim and Z. H. Cho. SVD pseudoinversion image reconstruction. IEEE Trans. 
A SSP, ASSP-29(4):904-909, August 1981. 

[17] Carl W. Helstrom. Image restoration by the method of least squares. J. Opt. Soc. 
Am., 57(3):297-303, 1967. 

[18] Warren E. Smith, William J. Dallas, Walter H. Kullman, and Heidi A. Schlitt. Linear 
estimati()n theory applied to the reconstruction of a 3-D vector current distribution. 
Appl. Opt., 29(5):658-667, February 1990. 

[19] Seho Oh, Ceon Ramon, Robert J. Marks II, Alan C. Nelson, and Michael G. Meyer. 
Resolution enhancement of biomagnetic images using the method of alternating pro-
jections. IEEE Trans. Biomed. Eng., BME-40(4):323~328, April 1993. . 

[20] Christine E. Miller and Craig S. Henriquez. Finite element analysis of bioelectric 
phenomena. CRC Crit. Rev. Biomed. Eng., 18(3):207-33, 1990. 

[21] M. Thevenet, O. Bertrand, F. Perrin, T. Dumont, and J. Pernier. The finite element 
method for a realistic head model of electrical brain activities: Prelimimiry results. 
Clin. Phys. Physiol. Meas., 12(Suppl A):89-94, 1991. 

[22] A. van Oosterom. Mathematical aspects of source modeling. Acta Oto-Laryngologica, 
Suppl 491-:70-79, 1991. 

[23] John D. Kraus. Electromagnetics.McGraw-Hill Book Company, Inc., third edition, 
1984. 

[24] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins 
Unversity Press, second edition, 1989. 

[25] David S. Watkins. Fundamentals of Matrix Computations. John Wiley & Sons, 1991. 

[26] Paul G. Hoel, Sidney C. Port, and Charles J. Stone. Introduction to Statistical Theory . . 
Houghton Mifflin Company, 1971. 

[27] Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes. 
McGraw-Hill, third edition, 1991. 

[28] E. H. Moore. On the reciprocal of the general algebraic matrix. Bull. Am. Math. "Soc., 
26:389 and 394-395, 1920. 

[29] R. Penrose. A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51:406-
413,1955. 

[30] S. L. Campbell and C. D. Meyer, Jr. Generalized Inverses' of Linear Transformations . 
. Dover Publications, Inc., 1991. 

[31] Harry C. Andrews and B[obby] R[ay] Hunt. Digital Image Restoration. Prentice-Hall, 
Inc., 1977. 

30 



Optimal Constrained Linear Inverse Method 

[32] Thomas F. Budinger, Grant T. Gullberg, and Ronald H. Huesman. Emission com­
puted tomography. In Gabor T. Herman, editor, Image Reconstruction from Projec­
tions, volume 32 of Topics in Applied Physics, chapter 5, pages 147-246. Springer-
Verlag, 1979. . 

[33] Avinash C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imag­
ing. IEEE Press, 1988. 

[34} Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear param­
eters. J. Soc. Indust. Appl. Math., 11(2):431-441, June 1963. 

[35] Donald W. Marquardt; Generalized inverses, ridge regression, biased linear estimation:, 
and nonlinear estimation. Technometrics, 12(3):591-612, August 1970. 

[36] Andrei Nikolaevich Tikhonov and Vasiliy Y. Arsenin. Solutions of fll-posed Problems. 
Halsted Press, 1977. 

[37] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, 
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorenson. LAPACK Users' 
Guide. Society for Industrial and Applied Mathematics, Philadelphia, 1992. 

31 



Optimal Constrained Linear Inverse Method 

Appendix A 

Assumption A states that that none of the source amplitudes qn or the noise amplitudes Wm 

is almost surely equal to a linear combination of the remaining source and noise amplitudes. 
That is, every source and noise amplitude has some non-zero residual variance even after 
the effect of every other source and noise amplitude has been accounted for. This appendix 
derives certain useful consequences of that assumption. 

Definition: A set of random vectors Xl, ... ,Xn is linearly d1.endent if there exist 
constant vectors ul,· ... , Un, not all zero, such that uT Xl + ... + unxn = 0 almost surely. 
If the set Xl, ... ,Xn is not linearly dependent, it .is linearly independent. 

Proposition: Assumption A implies that the set {q, w} is linearly independent. 

Proof: Suppose that q and w are linearly dependent. Then there exist vectors u and 
v, not both zero, such that u T q + v T w = Li uiqi + Lj VjWj = 0 almost surely. But at 
least one component of u or v is non-zero. Say that component is Ui. Then solving for qi 

yields an linear expression in the remaining components that is almost surely equal to qi. 

Thus assumption A must be false. 

Propo$ition: Suppose that a set of random vectors is linearly dependent. Then adding 
any additional random vector to the set yields a linearly dependent set. 

Proof: Set the coefficient of the added vector to zero. 

Corollary: Any subset of a linearly independent set is linearly independent. 

Corollary: The vector q is linearly independent. So is w. 

Proposition: The measurement vector b = Fq + w is linearly independent. 

Proof: Suppose that b is linearly dependent. Then there exists a non-zero constant u 
such that uTb = 0 almost surely. But this implies that uTFq + uT w = 0 almost surely. 
Thus q and w must be linearly dependent. 

Proposition: Suppose that the random vector X is linearly independent. Then the 
correlation matrix :Ex = E xxT is nonsingular. 

Proof: Suppose that :Ex is singular. Then there exists a constant u =1= 0 such that 
uT:Exu = O. But uT:Exu = uT E(xxT)u = E(uT xxT u) = E IluT xl12 which can be zero 
only if uT X = 0 almost surely. But this implies that X is linearly dependent. 

Corollary: The covariance matrices A = EqqT, :E =' EwwT , and B = EbbT a£e all . 
invertible. 
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Corollary: Since all covariance matrices are symmetric and positive semidefinite, A, 
:E, and B are symmetric positive definite and have Cholesky decompositions in the forms 

(66) 

where R, S, and L are all lower triangular and invertible. 

'Proposition: If x is linearly independent, then E IIDxll2 > 0 for every matrix D -;. o. 

Proof: Suppose that E IIDxl12 = O. Then, almost surely, IIDxll = 0, which implies that 
Dx = 0, which implies that x is linearly dependent. 
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Table 1.. This table shows how the reconstruction quality varies with noise level when the four different 
_ methods are used on configuration 1 with uniform priors. 

OCLIM OWPIM OTPIM MNLS 

Configuration 1 with (J"2 = 1.000 X 10-2°, U~ = 1.000, U1 = 1.000, SN R = 254.9 db, and 10000 data sets: 

rl theo 18.193 18.194 19.543 2.417 x 105 

expr 18.157 ± 0.059 18.157 ± 0.059 19.533 ± 0.062 (2.391 ± 0.021) x 105 

thea 
expr 

thea 
expr 

98.187 
98.012 ± 0.140 

45.807 
45.919 ± 0.094 

98.191 
98.006± 0.140 

45.806 
45.918 ± 0.094 

99.144 
98.986± 0.143 

47.543 
47.636 ± 0.099 

84:999 
84.797 ± 0.130 

2.417 x 105 

(2.391 ± 0.021) x 105 

Configuration 1 with (J"2 = 1.000 X 10-16, u~ = 1.000, u1 = 1.000, SNR = 174.9 db, and 10000 data sets: 

1J2 theo 30.762 - 30.762 31.860 2.417 x 109 

Ex2 

Ep2 ' 

expr 30.729 ± 0.077 30.729 ± 0.077 31.862 ± 0.079 (2.391 ± 0.021) x 109 

thea -110.762 
expr 110.666 ± 0.148 

theo 33.238 
expr 33.352 ± 0.080 

110.762 
110.666± 0.148 

33.238 
33.352 ± 0.080 

112.324 85.000 
112.254 ± 0.151 84.797 ± 0.130 

33.860 2.417 x 109 

33.983 ± 0.083 (2.391 ± 0.021) x 109 

Configuration 1 with (J"2 = 1.000 X 10-12, u~ = 1.000, u1 = 1.000, SN R = 94.9 db, and 10000 data sets: 

1J2 theo 43.890 43.890 45.4522.417 x 1013 

expr 43.918 ± 0.092 43.918 ± 0.092 45.503 ± 0.094 (2.391 ± 0.021) x 1013 

E x2 theo 123.890 123.890 125.658 85.000 
expr 123.730±0.157 123.730±0.157 125.476±0.160 84.797±0.130 

E p2 theo 20.110 20.110 21.452 2.417 x 1013 

expr 20.135±0.061 20.135±0.061 21.454±0.069 (2.39t±0.021) x 1013 ' 

Configuration 1 with (J"2 = 1.000 X 10-8 , u~ = 1.000, u1 = 1.000, SN R = 14.9 db, and 10000 data sets: 

1J2 ,thea 56.880 56.880 57.803 2.417 x 1017 

expr 56.878 ± 0.105 56.878 ± 0.105 57.824 ± 0.107 (2.391 ± 0.021) x 1(j17 

E X2 thea 136.880 136.880 137.989 85.000 
expr 136.667 ± 0.165 136.667 ± 0.165 137.739 ± 0.167 84.797 ± 0.130 

thea 
expr 

7.120 
7.161 ± 0.035 

7.120 
7.161 ± 0.035 

7.803 2.417 X 1017 

7.883 ± 0.043 (2.391 ± 0.021) x 1017 

Configuration 1 with (J"2 = 1.000 X 10-4, u~ = 1.000, u1 = 1.000, SN R = '-65.1 db, and 10000 data Sets: 

1J2 theo 63.923 63.923 64.000 2.417 x 1021 

expr 63.995 ± 0.113 63.995 ± 0.113 64.068 ± 0.113 (2.391 ± 0.021) x 1021 

Ex2 thea 143.923 143.923 144.080 85.000 
expr 143.651 ± 0.170 143.651 ± 0.170 143.806 ± 0.170 84.797 ± 0.130 

Ep2 theo 0.077 0.077 0.000 2.417 x 1021 

expr 0.076 ± 0.001 0.076 ± 0.001 0.000 ± 0.000 (2.391 ± 0.021) x 1021 
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Table 2. This table shows how the reconstruction quality varies with noise level when the four different 
methods are used on configuration i with non-uniform priors. 

OCLIM OWPIM OTPIM MNLS 

Configuration 1 with (j2 = l.000 X 10-20, a~ = l.000, a1 = 0.010, SN R = 245.8 db, and 10000 -data sets: 

rp theo 4.486 10.72711.419 2.417 x 105 

expr 4.456 ± 0.025 10.709 ± 0.041 11.400 ± 0.043 (2.391 ± 0.021) x 105 

E X2 theo 101.352 98.999 100.316 84.999 
expr 101.172±0.141 98.809±0.140 100.117±0.143 84.797±0.130 

Ep2 theo 42.651 23l.248 256.449 8.441 x 106 

expr 42.763 ± 0.090 232.159 ± 0.821 257.459 ± 0.943 (8.395 ± 0.081) x 106 

Configuration 1 with (j2 = l.000 X 10-16, O'~ = 1.000, 0'1 = 0.010, SN R = 165.8 db, and 10000 data sets: 

'r/2 theo 10.209 17.039 17.519 -2.417x109 

expr 10.205 ± 0.041 17.002 ± 0.054 17.492 ± 0.05
c
5 (2.391 ± 0.021) x 109 

EX2 theo 114.253 11l.774 111.585 85.000 
expr 114.161 ± 0.150 111.688 ± 0.149 111.483 ± 0.150 84.797 ± 0.130 

Ep2 theo 29.747 225.663 257.338 8.443 x 1010 

expr 29.747 ± 0.075 225.201 ± 0.775 257.600 ± 0.927 (8.395 ± 0.081) x 1010 

Configuration 1 with (j2 = 1.000 X 10-'-12, O'~ = l.000, 0'1 = 0.010, SN R = 85.8 db, and 10000 data sets: 

'r/2 theo 17.366 22.307 22.939 2.417 x 1013 

expr 17.403 ± 0.057 22.313 ± 0.064 22.936 ± 0.065 (2.391 ± 0.021) x 1013 

EX2 theo 128.069 125.447 126.082 85.000 
expr 127.872 ± 0.159 125.267 ± 0.158 125.880 ± 0.160 84.797 ± 0.130 

Ep2 theo 15.931 169.524 211.813 8.443 x 1014 

expr 15.905 ± 0.053 168.929 ± 0.697 211.027 ± 0.971 (8.395 ± 0.081) x 1014 

Configuration 1 with (j2 = 1.000 x 10'-8, 0'1 = 1.000, 0'1 = 0.010, SN R = 5.8 db, and 10000 data sets: 

'r/2 theo 24.393 26.655 27.093 2.417 x 1017 

expr 24.404 ± 0.069 26.644 ± 0.072 27.089 ± 0.073 (2.391 ± 0.021) x 1017 

EX2 theo 139.623 138.394 141.165 85.000 
expr 139.386±0.167 138.158±0.166 140.937±0.170 84.797±0.130 

theo 4.377 74.427 88.174 8.443 X 1018 

expr 4.327 ± 0.027 73.841 ± 0.430 87.658 ± 0.622 (8.395 ± 0.081) x 1018 

Configuration 1 with (j2 = 1.000 X 10-4,0'1 = 1.000, 0'1 = 0.010, SN R = -74.2 db, and 10000 data sets: 

'r/2 theo 28.333 28.349 28.360 2.417 x 1021 

expr 28.303 ± 0.075 28.320 ± 0.075 28.331 ± 0.075 (2.391 ± 0.021) x 1021 

Ex2 theo 143.973 143.973 144.028 85.000 
expr 143.704±0.170 143.705±0.170 143.760±0.170 84.797±0.130 

Ep2 theo 0.027 0.653 0.000 8.443 x 1022 

expr 0.027 ± 0.000 0.649 ± 0.008 0.000 ± 0.000 (8.395 ± 0.081) x 1022 
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Table 3. This table shows how the reconstruction quality varies with noise level when the four different 
methods are used on configuration 2 with non-uniform priors. 

OCLIM OWPIM OTPIM MNLS 

Config~ration 2 with (72 = 1.000 X 10-2°, fr~ = 1.000, fr1 = 0.010, SN R = 265.9 db, and 10000 data sets: 

1]2 theo 2.158 6.040 6.0ltO 6.040 x 10° 
expr 2.141 ± 0.020 6.024 ± 0.029 6.024 ± 0.029 (6.024 ± 0.029) x 10° 

E X2 theo 103.884 104.010· 104.010 104.010 
expr 104.010 ± 0.145 103.987 ± 0.145 103.987 ± 0.145 103.987 ± 0.145 

E p2 theo 40.000236.020 236.020 2.360 x 102 

expr 39.930±0.090 235.748±1.024 235.748±1.024 (2.357±0.01O) x 102 

Configuration 2 with (72 = 1.000 X .10-16, fr~ = 1.000, fr1\= 0.010, SNR = 185.9 db, and 10000 data sets: 

112 . theo 2.164 ·6.046 6.040 6.046 x 10° 
expr 2.147 ± 0.020 6.031 ± 0.029 6.031 ± 0.029 (6.031 ± 0.029) x 10° 

theo 104.271 104.033 104.000 104.000 
expr 104.258 ± 0.145 104.020 ± 0.145 103:987 ± 0.145 103.987 ± 0.145 

theo 39.729 236.254 236.326 2.363 x 102 

expr 39.656 ± 0.089 235.975 ± 1.025 236.048 ± 1.025 (2.360 ± 0.010) x 102 

Configuration 2 with (72 = 1.000 X 10-12, fr~ = 1.000, fr1 = 0.010, SNR = 105.9 db, and 10000 data sets: 

1]2 theo· 2.495 7.765 8.106 7.084 x 101 

expr 2.478 ± 0.020 7.731 ± 0.031 8.070 ± 0.032 (7.037 ± 0.062) x 101 

E X2 theo 114.023 110.680 109.840 104.000 
expr 113.974 ± 0.151 110.665 ± 0.149 109.834 ± 0.150 103.987 ± 0.145 

theo 
expr 

29.977 
29.890 ± 0.076 

281.677 306.829 . 3.298 X 103 

280.733± 1.087 305.460± 1.173 (3.282 ± 0.028) x 103 

Configuration 2 with (72 = 1.000 X 10-8 , fr~ = LOOO,n1 = 0.010, SN R = 25.9 db, and 10000 data sets: 
\ 

1]2 theo 7.460 12.532 13.433 6.480 x 105 

expr 7.434 ± 0.034 12.494 ± 0.044 13.374 ± 0.047 (6.435 ± 0.062) x 105 

theo 
expr 

theo 
expr 

129.024 
128.948 ± 0.159 

14.976 
14.928 ± 0.050 

126.412 129.758 104.000 
126.333 ± 0.158 129.683 ± 0.164 103.987 ± 0.145 

186.464 207.953 3.062 x 107 

186.283 ± 0.775 207.488 ± 1.001 (3.047 ± 0.028) x 107 

Configuration 2 with (72 = 1.000 X 10-4 , fr~ = 1.000, fr1 = 0.010, SN R = -54.1 db, and 10000 data sets: 

1]2 theo ,18:065 18.219 18.320 6.480 x 109 

expr 17.965±0.059 18.117±0.059 18.215±0.059 (6.435±0.062) x 109 

EX2 theo 143.737 143.729 144.285 104.000 .'. 
expr 143.679 ± 0.169 143.668 ± 0.169 144.224 ± 0.169 103.987 ± 0.145 

E p2 theo 0.263 5.804 0.000 3.062 x 1011 
expr 0.262 ± 0.002 5.834 ± 0.042 0.000 ± 0.000 (3.047 ± 0.028) x 1011 
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Table 4. This table shows how the reconstruction quality varies with noise level when the four different 
methods are used on configuration 3 with u;niform priors. 

OCLIM OWPIM OTPIM MNLS 

Configuration 3 with (12 = 1.000 x 10-2°, a 2 = 1.000, SN R = 251.0 db, and 10000 data sets: 
1]2 thea 26.490 26.499 28.702 9.029 x 105 

expr 26.471 ± 0.069 26.471 ± 0.069 28.680 ± 0';074 (9.140 ± 0.071) x 105 

Ex2 thea 42.533 42.483 42.017 20.997 
expr 42.414 ± 0.089 42.431 ± 0.089 41.951 ± 0.093 20.939 ± 0.065 

Ep2 thea 101.510 101.491 106.684 9.014 x 105 

expr 101.304 ± 0.140 101.284 ± 0.140 106.510 ± 0.149 (9.141 ± 0.071) x 105 

Configuration 3 with (12 = 1.000 X 10-16 , a 2 = 1.000, SN R = 171.0 db, and 10000 data sets: 

1]2 thea 54.663 54.663 57.426 9.029 x 109 

expr 54.655 ± 0.102 54.655 ± 0.102 57.386 ± 0.106 (9.140 ± 0.071) x 109 

Ex2 thea 70.663 70.662 72.235 21.000 
expr 70.540 ± 0.116 70.540± 0.116 72.050 ± 0.123 20.939 ± 0.065 

Ep2 thea 73.337 73.337 77.426 9.029 x 109 

expr 73.100 ± 0.119 73.100± 0.119 77.242 ± 0.129 (9.140 ± 0.071) x 109 

Configuration 3 with (12 = 1.000 X 10-12, a 2 = 1.000, SN R = 91.0 db, and 10000 data sets: 

1]2 thea 86.192 86.192 89.808 9.029 x 1013 

expr 86.165±0.128 86.165±0.12889.745±0.132 (9.140±0.071) x 1013 

Ex2 thea 102.192 102.192 105.511 21.000 
expr 102.047±0.139 102.047±0.139 105.360±0.147 20.939±0.065 

Ep2 thea 41.808 41.808 45.808 9.029 x 1013 

expr 41.632 ± 0.087 41.632± 0.087 45.619 ± 0.101 (9.140 ± 0.071) x 1013 

Configuration 3 with (12 = 1.000 X 10-8 , a 2 = 1.000, SN R = 11.0 db, and 10000 data sets: 

1]2 thea 117.197 117.197 119.933 9.029 x 1017 

expr 117.049±0.151 117.049±0.151 119.771±0.154 (9.140±0.071) x 1017 
Ex2 thea 133.197 133.197 137.076 21.000 

expr 133.137±0.160 133.137±0.160 137.034±0.167 20.939 ± 0.065 

Ep2 thea 10.803 10.803 11.933 9.029 x 1017 

expr 1O.760±0.040 1O.760±0.040 11.859±0.054 (9.140±0.071) x 1017 

Configuration 3 with (12 = 1.000 X 10-4 , 0'2 = 1.000, SN R = -69.0 db, and 10000 data sets: 

1]2 thea 127.950 127.950 128.000 9.029 x 1021 

expr 127.710±0.159 127.710±0.159 127.760±0.159 (9.140 ± 0.071) x 1021 

Ex2 thea 143.950 143.950 144.051 21.000 
expr 143.904 ± 0.168 143.904± 0.168 144.004± 0.168 20.939 ± 0.065 

Ep2 thea 0.050 0;050 0.000 9.029 x 1021 

expr 0.050 ± 0.000 0.050 ± 0.000 0.000 ± 0.000 (9.140 ± 0.071) x 1021 
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Figure 1. Test configuration 1. The source plane is perpendicular to the detector plane 
and contains 64 dipoles perpendicular to the source plane. The dipoles in region A have higher 
expected power. 
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Figure 2. Test configuration 2. The source plane is parallel to the detector plane and contains 
25 dipole pairs parallel to the dete'ctor plane. Dipoles in region A have higher expected power. 
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Figure 3. Test configuration 3. The source volume contains a cubical grid of 64 dipole pairs 
parallel to the detector plane. All dipoles have the same expected power. 
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Figure 4. The detector grid contains a 12 by 12 array of sensors that sample the field 
perpendicular to the array. 
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Optimal Constrained Linear Inverse Method. 

Figure 5. Reconstruction of sources consistent with the prior knowledge. The lefthand image 
of each pair shows the reconstruction using OCLIM with prior information; the righthand image 
shows the reconstruction using OWPIM with uniform· priors. The true distributi~n is a single 
dipole out of the page at the position indicated by the dot. Grey shading indicates areas of 
current flow into the page. 
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Optimal Constrained Linear Inverse Method 

Figure 6. Reconstruction of sources inconsistent with the prior knowledge. Thelefthand 
image of each pair shows the reconstruction using OCLIM with prior information; the ;righthand 
image shows the reconstruction with uniform priors. The true distribution is a singledipdle out 
of the page at the position indicated by the dot. Grey shading indicates areas of current flow 
into the page. . 
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