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The Differential Method For Grating Efficiencies Implemented In Mathematica™
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Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory,
University of California, Berkeley, CA 94720 -
Christopher Palmer
Milton Company, Gratings Business Unit, Roy Analytical Products Division, 8§20 Linde’n Ave, Rochester, N.Y., 14625 -
ABSTRACT | |

In order to facilitate the accu‘rate calculation of diffraction grating efficiencies in the soft x-ray

region, we have implemented the differential method of Neviére and Vincent in Mdthematica [1]. Th'is

' simplifies the 'programming to maximize the transparency of the theory for the user. We alleviate some
of the overhead burden of the Mathefnz{tica program by coding the time-consuming numerical
integration in C subprograms.

We recall the differential method directly from Maxwell"s equations. The pseudo-periodicity of the
grating profile and the electromagnetic fields allows ﬁs to use their Fourier series ‘expansions to
formulate an infinite set of coupled differential equations. FA finite subset of the equations are then
numerically integrated using the Numerov method for the transverse electric (TE) case and a fourth-
order Runge-Kutta algorithm for the transverse magnetic (TM) case.

We have tested our program by comparisons with the scalar theory and with published theoretical

results shown in Topics in Current Physics, Vol. 22, chapter 6 for the blazed, sinusoidal and square wave

profiles. The Reciprocity Theorem has also been used as a means to verify the method. We have found
it to be verified for Several cases to within the computational accuracy of the method. |
1. THE MATHEMATICAL PROBLEM

We want to calculate the efficiency of a surface whose profile can be deséribed by a periodic
function (i.e., a grating) using the expansion of the periodic functions into their Fourier series.
Maxwell's equ'atigns give us a set of coupled ODE:s for the spatial region complétely containing ihe
periodic profile. / Numerical integration of a finite subset‘of this set of equations gives us the field
amplitudes aty = a (see figure 1). |

We make the following assumptions: the incident radiation is a single plane wave with a TE or a TM
field; ho conical diffraction; the surface ié pseudo-periodic (in x) with periodicity d, the grating constant;

the grating is of infinite extent in the x directions; the substrate has a known index of refraction; forall y
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< 0, there exists only the homogeneous substrate; both media are isotropic: the permeability and the
permittivity are constants in each medium; both media (y < 0 and y 2 a) have zero net charge; and the
permittivity does not vary significantly so we assume it to be a constant equal to that in vacuum, m, .
2. THEORY

From Maxwell's equations, we find the propagation equétion for a TE field is:

V2E +[i Ol 0+ W2Ho €] E=0. _ 2.0)

With £(r) = 02} [i 6/0 + €(r)}, we can write: |
| | V2E(r) + 0?10 E(r) E(r) = 0. | (2.1)

Similarly, for the a TM field, we have _ » ,
V2H (r) + o)?up e(r)H(r) =0. 2.2)

- Let U(r) = E(r) for the TE case and U(r) = H(r) for the TM case. In each case, we work with the
field 'polarized‘parallel to the z axis (and ;he grooves). Since the field amplitude is not a function of z
but is parallel to Z, U(r) = U(x, y) Z.

The permeability varies only with‘ medium, therefore E(r).becomes e(x, y). Relating the wave
number k, the permeability e, and the (complex) index of refraction n, we write:

| k2(x,y) = 02 o & =k2 if y > g(x, y) (in vacuum)

K(x,y) =l e = k2 - 72 k,2 if y <g(x, yj (in the substrate) (2.3)
where g(x,vy) describes the interface be;ween thé media. With thése results, we can write the
propagation equation for both c_ﬁses as: _ | |

| | V2U(x, y) + K2(x,y) U(x,y) =0. (2.4)
3. CONTINUOUS QUANTITIES ACROSS THE BO._UNDA RY

Continuity is crucial in order 10 match the solutions at the boundaries. Regardless of the
polarization, the fields E and H are continuous across the boundary between the media. -

For the TE case, the derivatives of the electric field are continuous across the boundary. In the TM

case, the derivative of the magnetic vector is not continuous across the boundary because of the change
. . . . . JH(r
in the permeability with the change in medium; however, ,.(1—) 8£ )

&(r n

is continoous across the boundary,

n being the unit normal to the boundary g(x, y). We will use this quantity to determine the valid

~

propagation equation in [0, a] for the TM case.



4. THE PROPAGATION EQUATIONS
For each region in the TE case, we have: |

Fory<0: V2E(x,y)+ ko2 E(x,y)=0 : 4.0

ForO<y<a: V2E(x,y)+ K2 (x,y) E(x,y)=0 __ @D
Fory>a V2E(x; y) + k12 E(x,y)=0 I “4.2) .

For each region in the TM case, we have:

Fory<0: V2H(x,y) + k2 Hx, y)=0 @3
ForO<y<a: V-{(k’%’(x, y)!grad H(x, y)}+ H(x, y) =0 “4.4)
~Forya: V2H(x,y) + k2 H(x,y)=0. - ' ' (4.5)

5. THE FOURIER SElRIES FOR THE FIELDS
The incident radiation (of unit amplitude) may be descnbed by U(x, y) expli k,.r]. If this radiation
propogates isotropically with mcxdence angle 0 (measured counterclockwme from the +y axis), then k;
' =k sin@1 - k, cosOJ ‘and thus U(x, y) =exp[i 0 x - i By, Y], Where a, = k| smB and b,, =k, cos0
To account for the radiation from reflection at y = a, each diffracted order n has an associated plane
wave given by | | | ’ |
- Un(x, y)= Anexpli k,' (x sin 95 +ycos 6y)], | . | | (5.0
where 6y is the diffraction angle and Anq is the field amplitude for the d-th order. Using the grating
~equation to ﬁnd'Bh, nl/d=sinb, - Sine, (withky = 27n/] andK=27/d), equation_(s_.()) becdmes:
Un(x, y) = An éxp[i ky sin 8n x + 1 k; cos Op y )] = A expli o x +i Bin y). (5.1)
In genéral there are numerdus diffracted orders so the total field can be eXpressed as the sum of
plane waves in all possible orders. . Includmg all possible orders, and semng An =0 for nonex1stentv

orders, the total field can be described by:

Ux,y) = S Anexplion x +iBu vl = 3, Uny) explionxl. y (52)

n= -co n=-oco
‘which is a Fourier series’With basis vectors being {eXp[i on x]}.

6. SOLVING THE PROPAGATION EQUATIONFORy>a ANDy< 0

For y>a, V2U(x y)+k2U(x y)=0=
2
(8 2 Un(y)exp[locnx]+k2 2 Un(y)exp[lanx]—()—>

8x2 ay =
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Y (E) 620,y + k2 Uny)) expliomx] =0,

- 0y? | ‘
Vo, 3_25%3_’)_ + [k,2 - 0q2] Un(y) =0. Letting B, 2= [k,2 - o2,
V n, 92Un(y) +- B, 2En(y) =0. The solution is:
dy? "
Uny) = AaDexp-i B, y)+Ba(D exp By, y) ©.0)
UGy =Y, (AdDexp(-iB,, y+BaWexpli By, lexplionxl, y>a.  “6.D)

n=-oo

" Fory < 0, the solution is analogous to that for y > a, excépt that k =k, and B,.2= [k22 - o2
Un () = Ay @ exp(-i B, y) + Ba@) exp(i B,, ). (62 -
Since we are assuming medium 2 extends homogeneously to y = -oo, there are no other

. discontinuities for y < 0 that would cause reflections, so Bn(z) =0 and the field is given by: ¢
1.

U, y) = 2 An(z) exp(-i B,  y) exp[‘i on x], y<O. : f - (6.3) |

n = oo
7. THE TE CASE:0<y < a
For 0<y<a, V2 E(x,y) + k2(x, y) E(x Y =0=>

4 f(a_ifz. 5 Z Eny) expli ot X] + k2(x, y) Z Em(y) expli O X] = ERCAY)

Because k2(x, y) is pseudo-periodic (with periodicity d),with K=2r /d, we can write:

K2(x,y) = Y, k% (y) explin2nx/d] = 2 K2, (y) expli n K x] and (7 0) becomes

n=-eo n= -oo
3 (0. 2B xpls o) K yexplink] Z Ba(y) expliCiormi) =0
N =-oo . m= -
Doing a change of index from n to (n- m) to combine the product of the infinite sums => _

Z ({ o2 E"(Y) -anZEn(y)} expli ot x]

n=-oo

C o+ 2 k24.m(y) Em(y) exp[1(n m)K x] expli (ot mK) x]) = () =>

m=-co )

Z (& E“(Y) -0t 2En(y) }explicnx]+ Z K En)expli@otmK nK-mK)x]) =0

m=-co

oo

Z 02 Eﬂ(Y) n_2 En(y)' + Z | an_m(y) Em(y) ) expliogyx] =0

n=-oo ms=-co
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32§;§y) = >an2 En()') 2 k2n_m(y) Em()’) O Vv n (7.1)

We want to solve for Ap(1) and B,(1), the amplitudes of the field at y = a (see (5.2)). Numerical
integration of (7.1) yields En(y=a), where the boundary conditions to start off the integration aty = 0
come from the solutions to the propagation equation for y <0: |
Eay) = Ac® expiBon y) => E0)= A® and
dEy(y)dy = -iPBon An@ exp-iPam y) => d.E,,(O)/dy = -1iPBon A2, see (6.2).

The »continuily»ot" the electric field and its first derivative across the discontinuity of the boundary
provide us with two equations for the two unknowns A,D anden(l) (see §9).

8. THETM CASE: 0< y <a
For 0<y<a, div{-

grad H(x, y)}+ H(x, y) =0 =>
k2 (x y)

1 0H(x, y) 18H(x | ' '
I S

To match the solutions at the boundarles we work with the continuous quantities in (8.0). Let E=
1 0H(x, y)

, Where
k2 Oy .
‘ AT e _10H&x,y) _ |
VxHX, y)z=[s-iwe()] E(r)‘-->k2 oy CiomL E(r).i = YT Ex | 8.1)
Substituting E in to (8.0),
| HK.Y) _ o (8.2)
dy _ . :
4 9E __ 3 (19H(x, y)‘)_ o
ay ox\g2 oJx Hx, y_) | ' ®.3)

We can write a Fourier series for our new function E because it is related to E by a constant quantity.

~The Fourier series expansions for the fields and the wave number are:

oo

Ex,y)= Y, Euy) expli g x ). Hix, y) = 2 Hy(y) expl i oy x]

n=-oo 1 = -

- _ < . “ 1 _ inK
k2(x, y)—ng; k2, (y) exp[inKx] and e y) = n_zw (k ) )exp[ln x]

Inserting the appropriate expansions into (8.2), we have:

a%—z Ha(y) expli o x1 5 D, kA(y) expli X])( Y. Enly) expli oty x])

n=-co n=-oo

m=-co



A change of index from m to (n-m) to combine the product of the infinite sums gives us:

) a%"y(y) explictaxl= 2, Y, K2m(y) Em(y)expli (0tn.m+Oun) X]

n=-co N = oo [N = -co
where O, 0L =0+ (Mm-MK + 0+ mK=0,+nK=0q,,

e 2 K2 m(¥) En). V. @4

Inserting the’appl_‘opriate expansioné intb (8.3), we have:

oo

% S Baly) expli 0 ] =

n=-oo

x kZ(Y) n

n=-oo ms=-oo

5’—( Y (G exp[inleaa)( D, Huly) expli o x])) Z Hy(y) expli o, x]

> ( L )CXD[anX]( > iOm Hu(y) e><p[1amx]))

OEn(y)
2 ( + Hn(y)) expli o, x] = ax

. N=-c0 n=-oo

k2(y)

ms=-oo

Differentiation and a change of index from n to (n-m) on the product of the infinite sums yields: -

E.(y) .
2 (—83,1—4'?1,.()')) explio, x] = — ( Z Z (k 2 )) H(y) expli o, X])

n=-oo N =-oo=-oco

b

aEn( ) _ = v |
’ Z (kz(y)) Hp(y) - H(y). Vn (85)

Numerical integfation of (8.4) and (8.5) yields H,(y=a); §9 shows us how to solve for A,,(l) and
Bo(1). The bounciary conditions fo start off the integration at y = 0 come from the solutions to the
propagation equatidn fory < 0 (see (6.3)): | »

1 9H,(0) _

2
K 9y

H(y =0) = A, and E(y=0)= Siby A, /K2, (8.6)

~ ) ) oH,(0)
where E(y = 0) in (8.2) gives us T

9. 'MATCHING SOLUTIONS
The numerical integration yields Un (a). Matchi;lg this with the solution fory > a:
| Un(@) = Ax{D exp(- i B 2) + Bo(D) exp(i Biq a) (9.0)
‘ dUn(a)/dy = - i B AnD) exp(-i Byna) +1i Bh, B,,( ) exp(i Bina) - (9.1)
Then solving these for An(l) and B.,(l)



AaD = 2{Un(@) + (1/i B1a } dU(@/dy Jexp(-i Brna) (9.2)
B, (1) = L{Un(@) - (Vi Bia} dUn(a)/dy J exp(iBrna) 9.3)

10. THE LINEAR ALGEBRA PROBLEM
' We have assumed that the A,(2), the transmitted field amplitudes, are known. We have ignored the
fact that we have an infinite set of coupled ordinary differentjal equations. We truncate the sum to +N.
We now have a finite basis (and sum) with dimension 2N+1; we choose a set o‘f basis véctors, {exp[i on
x]}, that completely spans our finite space. Each basis vector corresponds to a unique diffraction order.
Once we find how this basis transforms under transmission and refleéction, we can generate a matrix that
will tell us how any vector in that space will be transformed.
Define the foll‘owing column vectors: the n-th element _is lhe n-th order field amplitude:
WA(D (incoming plane waves) = {A-N(lv) AN, LAl L AND )
wa(D) (diffracted plane waves) = (B.y(D), B-n+1)(D, .., BoD, ., BN(D )
| ¥ A(2) (transmitted plane waves) = {A.ND) , Aney@) , ..., A0(2) | ..., ANP) )
Our basis vectors are: {‘P(j)A(Z) = {S_N,j; 8(N+1);j, wes D0, jo +-» ON-1, > ON, j}: j € [—N, N]}.
See figure 2 for.Neviére illustration of the problem. Define the square transformation matrices Ma
and Mp with (2N;|-1) ’roWs and éolumns as follows:
WA = MyAWAD)
| Y1) =Mp-¥A?)
There exist;c, some matrix R such that ‘PB( 1) =R ‘{’A( 1) ‘
R ‘I’A(l) = R Ma ‘PA(?—) => Mg ‘PA(Z) =R Ma ‘I’A(Z) => R=Mp (Ma )!
For the transmission matrix, T: ‘PA(Z) = (Mp ) lwa(l) = T-= - (Ma )1
The columns of Mp are ‘PA(I) the incoming images of the ‘P(])A(z) The columns of MB are
wg(1), the outgoing images of the ‘P(])A(z) where j ranges from -N to +N.
11. THE CALCULATION OF THE GRATING EFFICIENCIES
* The diffraction efficiency of the éurfzice is the ratio of the reflected energy to the incident enefgy.

We begin with the average of the Poynting vector [2] for time-harmonic radiat-ion, denoted by <S>. Let

-1 denote incident radiation and r denote reflected radiation.

<S> =Re[ (E)* xH;] and <S,>=Re[ (E)* x H]]

\ . -7-



i_,et envdenote n-th order efficiency. The efficiency, looking down in -y, is given by e, = <S>-(dA), /

<Si>(dA);, where (dA); =- dAY and (dA), =dAT give us: -
en= -S>y / Ip-y (11.0)

The fields are U; = exp[i 0ox +1i B1o y] Z and (Un); = Ba(1) explictn x+1Biny] . |

Starting with the TE case,

T VL = Ref (B g1 g -1 S p o
<S;> =Re[ (Ej)” x Hj] = Re[ (E;) Ximuo V x Ej] ok Re[ oo X - Bioy ]

<Si>‘.3’\. =- 0)1“0 Bio= /-—O)l—uokl Cos 0.

<S> =Re[ (E)* x H] = Re[ (B)" x; O}UO V x E;] = B2 mlpo (X +Bin ¥)

<S> 5 =B mluo Re[Bin ] = By(L2 (;)k:lo Re[Cos 6,]

en (TE) = IB(DR2 Re[Cos 6,]/ Cos 6. (11.1)

" For the TM case, we write the Poynting vector in terms of H:

' <8;>=Re[ (Ei)* x H;] = Re[ (6—11—5-5) *(V x H)*x H;] =Re[ 612 (00X - B1o¥)], where in vacuum,
the conductivity is zero and the permittivity is a real number, _
<§i}~§ =-L Bo=- BIE Cos8

WE
<S> = Re[ (E)*x H] = Rel (—1—]"(V x H)* x H] = - By(DPRe[0n X + P1n 7]
<S> ¥ =L B2 Re[B1o]

ea (TM). = IBp(R Re[Cos 6,]/ Cos6. , (11.2)
We have assumed an incident plane wavo of unit amplitude, expli 0 X - i B1o y]. In our Fourier
basis of {exp[i an x]}, ii is represented as {0, O, ..., 0, 1, O, ..., 0}, where the 1 is in the space
corresponding ton = 0, denoted by v;. Let v, denote the vector of reflection. Then v, = R.v; and v, is
now a column vector: the n-th element is B,(1), the field ampiitude for the n-th diffracted order. To
calculate the reflection efficiencies for.all orders in [-N, N], we use the following for both polarizations:
e= |v.12 Re[Cos6,] / Cosb , (11.3)
where e has 2N+1 elements, the n-th element being the n-th order efficiency.
12. NUMERICAL METHODS
For the TE case, we want to solve (7.1), for each n (from -N to +N). Write the set of 2N+1 equations

in terms of matrices by making the following definitions to arrive at (12.0):

-8-



‘f’(y) = {En(), E. (N+1)(Y) - Edy), .. E(N (¥, EN(Y) and
V(y) is a square matrix of dimension 2N+1 V(n, m) = 0,2 8y - K2y m(y).

| 82:'(2” Viy)¥(y) (12.0)

(12.0) is a second order ODE which Neviere solves using the Numerov([3] method.

Let  &(y)='¥(y)- {ﬁa:'?) ¥(y) - h—2V(y)-\P(y)->&<y)—[1-—V<y)1Wy)(lz1) wherel

1svan 1dent1ty matrix of the same dimensions as the matrix V(y), h is the mtegrauon step size and both
E(y) and ¥(y) are column vectors The Numerov mtegratlon formula is: v :
&y +h) =[21+02 V(y) V)V E() -E(y - 1) + ORS)  (122)
- We need E,(O) and é(h) to start the numerical integration; these are calculated with a second order Runge-
Kutta algonthm and then (12 1) nges us &(h) |
(h) = [+I2V(0) +EV(h)+ 22 V(0)-V(h)]¢(0)+h{ 1412 V()] D a“’“’) +O(RS)(12.3

Then (12.2) gives us E(a). To compute ‘P(a) where 1>> 1‘2 am(Y)s V n, m, we invert (12.1) and use a .

binomial expansion:

¥(a) = [1- £ V(@)1 8(a) => ¥(a) = o +—V(a> +1‘;4

V(a) V(a)] §(a) (12 4)'_ |
Equations (9.2) and (9.3) also require the first derivative of the electric field at y = a. Using the Raynal

[4] method:
Jd¥(a)
dy

+ 3740 x(a-2h) - 3150 x(a-h) - 360 x@)] / (720 h) + 147 Y@@/ (60 h) + O(h®)  (12.5)

= [ 10 &(a - 7h) + 28 E(a-6h) - 485_&'(a-_5h) +1778 E(a-4h) - 3325 E(a-3h)

We now have all we need to solve for the grating efficiency for TE polarization.
For the TM case, we want to éolve two sets of coupled ODEs, (8.4) and (8.5). We define the column
vee‘tor Y(y) and the square matrix V as follows: |
¥(¥) = (En. Eqen®): - Eo®)r - En(y), Hn(y), H.ven) - Ho(y). .. Hy(y))
| Van=k%p.m for 1 <n, m < 2N+1 and |

Vin = Olp Oy (H - 8um for2N+2<n,m< 22 N+l).

‘P(y) has 2(2N+1) elements and V has dimension 2(2N+1) We can rewrite (8. 4) and (8.5) as:
a‘*'(y’ = V(y)¥(y) (12.6)
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Numerical integration of (12.6) using a fourth order Runge-Kutta algorithm gives ¥ (a). 'i‘he last
2N+1 eiements of W¥(a) are the amplitudes, Hy(a). 'i‘he first 2N+1 elements of ¥(a) are the E,,»(a), which
give us dH,(a)/dy. Then (9.2) and (9.3) give us the field amplitudes for TM polarization.

13. THE RECIPROCITY THEOREM |

We are using substrates with finite conductivity. The differential method does not allow for an
accurate calculation of the energy llost to'Joule heat in the modulated region, which means that we
cannot use energy conservation to check our results. However, we can use the Reciprocity Theorem [5],
which says that _the efficiency for radiation incident at 6 and diffracted at 8, is th_e same as the efficiency

for radiation incident at -0, and diffracted at -6.

We verified the Reciprocity Theorem for the cases done by Neviere et. al. in To.nics in Current
Physics, page 208. See tables 1 and 2. o | ' | ‘
14. PROGRAMMING ' |

The prograrnming was done with a Mathematica front end and a remote kernel on a RISC 6000. The
front end links with ANSI-C programs sitting on the RI-SC to do the numerical integrations. The
programs also cempute the scalar theory predictions for'the efficiencies in the case of svmmetrical
square waves. Figure 3 is a flowchart of the program

Figures 4- 7 compare our results with those of Nevigre. Our main concerns were: (1) makmg sure we
agreed with Nevrere (2) minimizing the computanonal time (see flgUle 8 for the relationship of the time-
and the number of diffracted orders); and (3) observmg the effects of the variation of the results as we
change_d the total number of diffracted orders as well as the number of evanescent waves (see figure 9).
- We recemmend that you choose a vvaVelength (or energy) with fairly predictable efficiency (in the case

of a blazed profile, we chose the blaze wavelength),and choose a computational time that gives you a
desirable accuracy. Figure 10 Shows how the efﬁciency begins to converge'with increasing number of
orders Note that for comparisons of efficiencies to have meamng the same number of orders, 2N+1, as-
| well as the same number of evanescent orders, must be used for the different cases. However, figure 9

shows that varying the number of evanescent orders has a larger effect than varying 2N+1, the total

number of orders. It is interesting to note that as we move further from the zero-th order, we are in

-10-



effect varying the number of evanescent orders used in the calculations which in turn effects the

symmetry of the»calculation and we find that the ratio e(p)/e'(p) moves away from 1.

{11 Wolfram, Stephen, Mathematica, Addison-Wesley Publishing Company, 1991.

[2] Stern, Frank, Elementary Theory of Optical Properties of Solids, Chapters I and I, Solid States Physics, Volume 15,
Academic Press, 1963.

{31 Melkanoff, Michel, Sawada, Tatsuro and Raynal, Jacques, N_us;lgar_QmmaLMml_cLCalgﬂanQns pg 15.

(41 Raynal, Jacques, Seminar Course on Computing as 3 Language of Physics, ICTP, Trieste, August, 1971.

[5] Petit, R., A Tutorial Introduction, Topics in Current Physics, Volume 22, pg 12. :
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FIG. 4. Results from mmgjnﬁumms,'MaySUe, Petit and Nevigre, Vol. 22, p. 208.
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FIGS. 5-7 are the same case as in figure 4, where Neviere uses a Gold substrate with an incidence angle of 85 degrees, all.
of which have 600 lines per mm. The solid lines are for TE and the dotted liie are for TM.
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FIG. 10. The behavior of the efficiency (first inner
-order) for the blazed profile of fig. 5, at A= 108.972
Angstroms. The efficiency begins. to converge as we
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o TABLE 1 »
TE: VERIFICATION OF RECIPROCITY

TE Efficlency

Sinusoidal, Max[g(x.’ )} = 302 Angstroms

IR
HANANN

0.15 tle: 3
I \\ N ! aeders
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0.05 orders -
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FIG. 9. Comparison of the TE efficiency for the -1
order of the sinusoidal profile shown in fig. 6. The
lower values for the efficiency use 3 evanescent orders
for calculations, while the higher values use 11.

BLAZED @1.624 Degrees, Gold Substrate, 600 gr per mm

p © 6p- e(p)
0 85. 85 0.212621
-1 85 81.752 0.45052
- -2 85 79.4571  0.103649
-3 85 77.5753 0.009950
o TABLE 2 : .

TM: VERIFICATION OF RECIPROCITY

BLAZED @1.624 Degrees, Gold Substrate, 600. gr per mm

p 0 op

e(p)

0 85 85 0.221448
‘-1 85 61.752 0.45929
-3 85 . 79.4571  0.072868
-3 85 77.5753  0.014743

e op* e'(p) e(p)/e' (p)
-85 85 0.212906 0.998661
-81.752. 85 0.438741 1.026847
~79.4571 85 0.105 0.987
-77.5753 85 0.009805 1.014815
e op* e'(p) ‘e(p) /e' (p)
-85 - 85 0.221451 © 0.999986
-81.752 85 0.455943 1.007341
-79.4571 85 0.070964 1.026831
1.052470

-77.5753 85
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