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. . 
One way to estimate the hydrologic properties of heterogeneous geologic media is to invert 

well-test data using multiple observation wells. Pressure transients obs~rved during a well test 

are compared to the corresponding values obtained by numerically simulating the test using a 

mathematical model. The parameters of the mathematical model are varied and the simulation 

repeated until a satisfactory match to the observed pressure transients is obtained, at which point 

the model parameters are accepted as providing 'a possible representation of the hydrologic pro­

perty distribution. Restricting the search to parameters that represent self-similar (fractal) hydro­

logiC property distributions can improve the inversion process. Far fewer parameters are needed_ 

to describe a hierarchical medium, improving the efficiency and robustness of the inversion. 

Additionally, each parameter set produces a hydrologic property distribl!tion with a hierarchical 

structure, as is often seen in natural geological media. The parameters varied during the inver­

sion create fractal sets known as attractors, using an iterated function system (IPS). An attractor 

is mapped to a distribution of transmissivity and storativity in the mathematical model. Thus the 

IFS inverse method searches for the parameters of the IPS (typically lO's of parameters) rather 

than the values of the hydrologic property distribution directly (typically 100's to 1000's of 

parameters). Application of the IFS inverse method to synthetic data 'shows that the method 

works well for simple heterogeneities. Application to field data from a sand/clay sedimentary 

sequence and a fractured granite produces reasonable results. 

1 Also at Department of Mathematics and Statistics, Utah State University, Logan 



INTRODUCTION 

MOTIVATION 

- 2-

An understanding of fluid flow and solute transport through porous or fractured geological 

media is necessary to . address many current environmental problems, such as toxic chemical 

spills, leaking gasoline storage tanks; and long-term radioactive waste disposal, as well as to 

optimize energy extraction from petroleum or geothermal reservoirs. Mathematical modeling of 

the flow and transport processes is one means to gain such understanding. For realistic modeling, 

a description of the spatial distribution of the hydrologic properties of the medium (Le., a hydro­

logiC model) is needed, but the restricted view of the subsurface available through boreholes cou­

pled with the extremely heterogeneous nature of most geologic media makes this difficult to 

obtain. 

With the widespread use of computers over the past twenty years, numerous techniques for 

characterizing heterogeneous hydrologic property distributions have been developed. These tech­

niques can be broadly divided into two groups, depending on whether' they use a forward or . 

inverse approach. In the forward approach, the hydrologic model is developed using information 

gained from basic studies of the site, including geological observations and geochemical, geophy­

sical, petrophysical measurements. In the inverse approach, the general form of the hydrologic 

model is specified,a priori, based on information from these basic studies, but the details of the 

model are determined by matching the predictions of the model to observed hydrologic behavior. 

Although both methods have advantages, each has drawbacks as well. In the present approach 

we try to incorporate some of the strengths of a geologically-based forward approach within the 

context of an inverse method. 

ALTERNATIVE APPROACHES FOR CHARACTERIZATION OF HETEROGENEOUS MEDIA 

In principle, any hydrologic model that contains adjustable parameters. can be incorporated 

into an inverse method. A series of forward simulations are made with the model using different 

parameter values, then results of each simulation are compared to field observations. Parameters 

are chosen which give the best match between simulated and observed data. In practice, some 

models are more amenable to this process than others. In the paragraphs below, we outline 

several forward approaches to developing hydrologic models of heterogeneous geologic media 

and discuss their suitability for inclusion in an inverse method. Following this, we discuss some 

of the inherent strengths and weaknesses of the inversion of hydrologic data. 

" 
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Before the widespread use of,computers made numerical methods practical for solving sub­

surface fluid flow and solute transport problems, a vast number of analytical solutions were 

developed and adapted from other disciplines. With only a few parameters and very short times 

required for calculation, analytical solutions are well suited to inversion. However, the hetero­

geneities that can be treated with analytical solutions are limited to geometrically regular features 

such as linear vertical boundaries, horizontally layered media, and equally spaced fractures. Such 

simple geometries can only represent highly idealized models of geological media; to solve prob­

lems with heterogeneities that resemble the geometric irregularity observed in the field, numeri­

cal modeling is needed. 

In a numerical model of a geologic medium, space can be discretized into irregularly 

shaped regions with different hydrologic properties. Both the number of parameters to be deter­

mined and the computational time for each forward simulation of the model increases drastically 

(typically br several orders of magnitude) compared to inversions using analytical solutions. 

Hence, inverse methods based on numerical forward calculations must be carefully designed to 

make use of computer time efficiently. The multiplicity of scales on which heterogeneities are 

observed in the field complicates the discretization, and at some scale heterogeneities cannot be 

treated individually but must be modeled as an· effective medium. In an effective medium 

approach, a homogeneous region is used to represent a heterogeneous one by assigning hydrolo­

giC properties that incorporate the effects of the heterogeneities. The level of discretization 

needed depends on the.~ount of heterogeneity present and the problem at hand. 

In contrast to the deterministic treatment of heterogeneities based on large-scale geological 

observations described above (e.g., clay layer o~erlying aquifer, permeable fracture zone separat­

ing intact blocks of low-permeability rock), geostatistics provides an alternate way to construct a 

hydrologic model. In geostatistics, the spatial distributions of hydrologic properties are described 

as spatially correlated random fields. A large number of (usually small-scale) measurements are 

made to determine the statistics of the distributions of the random fields, then a hydrologiC model 

is constructed by drawing a realization from the distributions. For incorporation into an inverse 

method, geostatistics has the advantage that relatively few parameters need to be determined 

[Kitanidis andVomvoris, 1983]. A disadvantage is that the small scale features being measured 

may not be relevant for large-scale flow, or may have an unknown cumulative response. 

Another basis for creating a hydrologiC model is to model the mechanisms involved in the 

creation of the geological medium, rather than to merely make observations or measurements of 
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the medium itself. Such mechanistic models are generally very computationally intensive [e.g., 

Koltermann and Gorelick, 1992], making them ill-suited to incorporation in a hydrologic inver­

sion in which the forward model must be run many times. Recently however, several investiga­

tors have developed inexpensive mechanistic-based models by retaining only the key aspects of 

the physical mechanisms in a simple statistical way [Long et al., 1993; Webb, 1992]. Such 

models would be amenable to incorporation in an inverse method by creating a series of realiza­

tions of 1he physical process, and testing each one to see how well it reproduces the hydrologic 

behavior. An optimization process would therefore find realizations which ·both match the hydro­

logic data and honor the physical process. 

The principle advantage of using hydrologic inverse methods is that field-scale fluid flow 

(the well test) is used to develop a model that will ultimately be used to predict field-scale fluid 

flow (contaminant clean-up, geothermal fluid production, etc.), rather than observing another 

parameter such as geological facies or seismic-wave velocity and attempting to relate it to per­

meability. The method inherently emphasizes features that are important for flow and disregards 

the rest. In effect we develop equivalent media that do not have all the details of reality, but pro­

duce the same hydrologic response. 

The principle disadvantage of using inverse methods for hydrologic characterization is that 

the fluid flow equation.is a diffusion equation, and as such cannot be uniquely inverted to deter­

mine model parameters. One way to address non-uniqueness is to condition the inversion on 

additional information, such as prior estimates of model parameters [Carrera and Neuman, 

1986a, 1986b, 1986c] or other geological or geophysical observations. Another approach is to do 

multiple inversions and study the statistics of the ensemble of results, such as the mean permea­

bility distribution and its variance. A further practical disadvantage is that inverse methods tend 

to be computationally intensive, effectively precluding use of very complicated forward models. 

This should not be considered a fundamental limitation of the method, however, as rapid 

developments in both computer hardware and software make more and more complicated for­

ward models usable in inverse methods. 

THE PRESENT APPROACH 

Our approach to the hydrologic characterization of heterogeneous geologic media involves 
"' 

the inversion of well-test data, because we believe using flow information to create a model that 

will ultimately be used to predict flow is a powerful technique. A numerical model is used to cal­

culate head distribution and fluid flow in the forward problem. The model parameters that are 

.. , 

• 
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varied during the inversion determine the spatial variation of hydrologic properties. We restrict 

the search for model parameters to those which represent self-similar (or hierarchical) hydrologic 

property distributions. Thus we specify the nature of the overall geometry of the hydrologic pro­

perty distribution, not the detailed physical processes leading to its formation. 

The . model parameters considered during the inversion process are generated using an 

iterated function system (IFS). The IPS's we use are composed of two to four affine transforms. 

An affine transform is a function which may rotate, reflect, deform, contract, and translate a set of 

points. Wheri multiple transforms are applied iteratively, a set of points with a fractal geometry, 

known as an attractor, results. The attractor can be mapped to a distribution of transmissivity or 

storativity in a mathematical model. We then use the mathematical model to simulate the well 

test and compare the calculated heads to those observed during the test. If the match is not satis­

factory, the parameters of the IFS are varied, ,and the simulation is repeated. This procedure con­

tinues until the IPS creates an attractor which yields a hydrologic property distribution that pro­

duces a good match to observed heads. A variety of optimization algorithms may be used to vary 

the parameters of the IPS during the course of the inversion; we primarily use one known as 

simulated annealing. 

One of the primary strengths of the IFS inversion compared to other inverse methods is that 

far fewer parameters are needed to describe a self-similar medium than a medium with unstruc­

tured heterogeneities; making the inversion more efficient and more robust. Equally important is 

that the final parameter set produces a hydrologic property distribution with a hierarchical struc­

ture, as is often seen in natural geological media. In fact, by limiting the variation of parameters 

of the IFS, we can restrict the shape of the trial attractors to resemble observed hydrogeological 

features. 

In the sections that follow, we first present the mathematical basis of IPS's and describe 

some practical features of the IFS inversion method. We then apply the method to synthetic data 

to study its strengths and weaknesses, and to field data from a sand/clay sedimentary sequence 

and a fracturoo granite. 

.tt: 



- 8-

IBlll + IB121 < 1 (7) 

For convenience, we then restrict b so that theattractor is confined to the unit square ° < x < I, 

° < y < 1. The constraints on b = (b l,b 2) depend on the entries of B , and may be written as 

-min(O, B 11) - mineO, B 12) < b 1 < 1 - max(O, B 11) - max(O, B 12) (8) 

-min(O, B 21) - nun(O, B 22) < b 2 < 1 - max(O, B 21) - max(O, B 22) . 

Note that under no conditions may the components of b lie outside the range zero to one. 

During an inversion many different values of Pare used in the forward model. Alternative 

optimization algorithms primarily differ in the way that they choose new values of P, so it is 

important to understand what effect making different changes to P has on the attractor. Figure 4 

shows the attractors generated by a sequence of IFS's with k = 3. These are f 1'/2, ... ,f 6, 

where f 1 is the Sierpinski's gasket, and for frames m = 2,6 every parameter of f m differs from 
./ 

the corresponding parameter of f m-I by a small increment: 

(9) 

The components of g are random numbers drawn from a uniform distribution, normalized so 

that the magnitude of g, I L\P I (the square root of the sum of squared components of g), 

equals 0.2. The continuous small change in P from frame to frame is manifested as a continuous 

gradual change in the attractors: A larger value of I L\P I would produce a more rapid variation in 

attractors. 

The most general affine transforms that operate in two . dimensions have four arbitrary 

entries in each B j matrix, and two arbitrary values in each bj vector, which makes P an n = 6k 

dimensional vector for an IFS composed of k affine transforms. By holding some components of 

P fixed or limiting their variation we can produce attractors that have desired properties. As well 

as making the inversion procedure more efficient by- reducing the extent of the parameter space to 

be searched, these constraints make the inversion more robust by conditiOning it on known geo­

logical conditions. Formally, P is,defined as the vector composed of all the parameters character­

izing the IFS, but in practice we use P to denote only those parameters that can be varied during 

the inversion. 

An IFS with k = 2 which has constant matrices of the form 

B 1 = B 2 = [Kg 8:~J = 0.5 I (10) 
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and variable vectors b i and b2 produces a vector P which has only four components. All the 

attractors produced by such an IPS are line segments, with endpoints determined by the values of 

b i and b2. For the first frame of Figure Sa, b i = (0.0, 0.5) andb2 = (0.5, 0.0); for the other 

frames, b i and b2 are incremented by random numbers drawn from a uniform distribution. For 

Figure 5, in contrast to Figure 4, the original value of P and different vallle of ~P is used tor each 

frame: 

(11) 

For each frame ofHgure Sa, the magnitude of the vector of random increments, 1M m I, equals 

0.6. 

If both the 8's and b's are allowed to vary, curvilinear attractors are formed, as shown in 

Figures 5b 'and 5c. For the small value of I ~P m I = 0.2 used in Figure 5b, all the attractors look 

similar to the original one: This would be a useful constraint if the attractor represented a region 

of enhanced permeability whose orientation was known a priori, such as· a regional fracture set or 

buried stream channel. In Figure 5c, the variation in parameters is larger, I ~P m I = 0.6. Despite 

the large variability between the attractors, they all share ,the, characteristic of being rather 

'stringy', that is, they do not fill up the plane very well. This characteristic is quantified by a 

measure known as the fractal dimension. A straight line has a fractal dimension of one, whereas 

a curve that doubles back on itself so much that it covers the entire plane has a fractal dimension 

of two. Figures 5d and 5e show attractors created by IPS's with k = 3 and k = 4, and lai:ge varia­

tions in parameters (I M m I = 0.6). Although there is a large variability amongst the attractors, 

they tend to be more 'blocky' and less stringy as k increases, that is, fractal dimension tends to 

increase with k . 

As an alternative to considering each 8 i as composed of four independent entries, one can 

construct 8 i as a rotation matrix 

[
COS a· -sin a'J 

8 i = Ci sin a: cos ai' , (12) 

where Ci is a contractivity factor (0 < Ci < I) and a i is a rotation angle. This formulation 

reduces the dimension of P from six to four per affine transformation, but still allows a great 

variety of attractors, as illustrated in Appendix A. 
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FEATURES OF THE IFS INVERSION 

Mapping the Attractor to a Hydrologic Property Distribution 
. 

To use the IFS attractors in a hydrologic inversion we need to prescribe how the attractor 

determines the spatial distribution of hydrologic properties in the mathematical model used to 

simulate the well test, which is called TRINET [Karasaki, 1987]. TRINET is a firiite element 

model which calculates fluid flow in a lattice of one-dimensional firiite elements (Le., pipes) of 

porous or fractured medium. Although TRINET was originally developed to study fracture net­

works [Long et al., 1991], it can also model porous media, as described in Appendix B. TRINET 

is well sUited for use in a hydrologic inversion for several reasons: 

• the one-dimensional finite element formulation is efficient computationally, enabling many 

forward calculations to be done, 

• the lattice structure can be used effectively to represent highly channeled flow typical of 

strongly heterogeneous porous media, 

• with the mapping from attractor points to hydrologic property distributions, described 

below, forward calculations for a tremendous variety of hydrologic settings can be done 

without changing the underlying lattice. 

According to Equation (2) an attractor is formed by an infinite number of iterations, so it 

contains an infinite number of points. In practice we can only treat a finite number of pOints, so 

we take only a finite number of iterations I in Equation (2). If the starting set A 0 contains just 

one point, then the number of attractor points is M 0 = e. For typical applications M 0 ::: 1000 is 

large enough to resolve attractors adequately, implying that for k =4, I = 5 is a sufficient number 

. of iterations. 

The attractor is defined on the unit square: 0 < x < I, 0 < Y < I, and we need to choose a 

scale factor to map the unit square to the spatial domain where hydrologic-property variations 

affect the well-test response, tha,t is, the region near the wells. W ethen superimpose the attractor 

on the TRINET lattice and modify the hydrologiC properties (transmissivity T and storativity S) 

of the lattice elements adjacent to each attractor point, as illustrated in Figures 6 and 7. 

The transmissivity and storativity that are unaffected by any attractor points are refe~ed to 

as the base values To and So. The effect of attractor points can be additive or multiplicative. If 

M attractor points are closest to a given lattice element, the additive algorithm gives 

T = To + MilT S = So + M b.S , (13) 

.. 
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and the multiplicative algorithm gives 

(14) 

where ll.T and IlS are the contribution for each attractor point. With the additive algorithm, 

choosing a positive value of ll.T or IlS means that the attractor pOints increment T or S, whereas 

choosing a negative value means that attractor points decrement T or S. With the multiplicative 

algorithm, a value of ll.T or IlS greater than one increments T or S, and a value less than one 

decrements T or S. The choice of additive or multiplicative algorithm and the sign and magni-

. tude of ll.T and M are arbitrary, but may be used to incorporate features of the geological setting 

in the mathematical model. For example, for a fractured rock T and S generally increase or 
'" 

decrease together, along with fracture aperture. In contrast, for a sand/clay aquifer system, 

. increases in S are accompanied by decreases in T, as clay content increases. Furthermore, using 

the multiplicative algorithm for a parameter is equivalent to using the additive algorithm for the 

log of the parameter, making the additive algorithm for S and the multiplicative algorithm for T 

a natural choice for typical geologic media in which the variability of T is greater than the varia­

bility of S ~ Note that the va~ue of M for each lattice element is proportional to M 0, the total 

number of points in the attractor. The value M 0 must be large enough to allow sufficient resolu­

tion of the attractor on the lattice, but it is preferable to give attractor points greater impact by 

increasing ll.T and IlS rather than M 0 because the mapping of attractor points to lattice elements 

is computatioIially intensive. 

For a variable~density lattice, the contribution of an attractor point to the overall hydrologic 

property distribution tends to be greater in coarse regions of the lattice than iIi fine regions. Thus, 

a given attractor will not produce the same hydrologic property distribution for two different lat- . 

tices. This does not cause a problem in the inversion because only one lattice is used, but it 

means that a picture of the attractor provides only a qualitative representation of the hydrologic 

property distribution and a quantitative measure must come from the T or S distribution itself, 

such as is shown in Figure 7b. 

An extension of the mapping algorithm has, been developed in which some attractor points 

increment hydrologic properties, while other points decrement them, in contrast to the algorithms 

described by Equations (13) and (14) in which all attractor points act in the same manner. This 

approach; which we call the plUS-minus algorithm, has the advantage that the base values To and 

So can represent average values of transmissivity and storativity, while the attractor points create 

fluctuations around the average. The plus-minus mapping algorithm is based on ideas from 
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Bamsley [1988, chap. 9] where a method for constructing a measure on an IFS attractor is given. 

First, each of the affine transforms which comprise the IFS is labeled either positive or negative. 

A Point on the IFS attractor is then labeled positive or negative according to which affine 

transform was used last in its generation. If the attractor point is labeled posi.tive, then Equation 

(13) or (14) is used as written to modify T and S; ifit is labeled negative, then Equation (13) uses 

-!J..T and -!J,.S, and Equation (14) uses !J..T-1 and !J,.S-l. For an IFS composed of k affine 

transforms, the plus-minus algorithm tends to produce k discrete regions of high or low transmis­

sivity and storativity. Several attractors produced by this procedure are illustrated in the applica­

tion section of the paper. 

An alternative approach for enabling both incremented and decremented hydrologic proper-
/ 

ties would be to use two completely iIidependent attractors, one with points that increment pro-

perties and the other with points that decrement properties. Although this approach would double 

the number of parameters needed, it could greatly increase the applicability of the inversion 

method to different geological settings. A natural extension would be to use independent attrac­

tors to represent transmissivity and storativity distributions, if the geological model did not pro­

vide any information on the relation between these properties. 

Construction of an Objective Function 

The objective function, which quantifies the mismatch between the calculated and observed 

drawdowns for a given value of P, is called the energyE and is given by 

(15) 

where he and ho are calculated and observed drawdowns, respectively, N is the number of obser­

vations available, and No = 100 is a constant introducedlo make the energy a convenient magni­

tude. Based on the physics of the flow problem, 199 drawdown is a more appropriate variable to 

include in Ethan drawdown itself. Mathematically, if we assume independent identically distri­

buted Gaussian random errors in the lnho measurements, E is directly proportional to the log 

likelihood of the well response. Hence minimization of E corresponds to the statistical procedure 

of maximum likelihood estimation. See Carrera and Neuman [1986a and 1986b] for a discus­

sion of these ideas and a more general formulation of E as a quadratic form based on the correla­

tion structure of the, measurement errors. The sum from I to N in Equation (15) runs over all' 

observation wells (including the pumping well if drawdown is measured there) and all 

," 
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observation times for a transient well test. For a steady-state well test, there is just one observa­

tion per well and all dependence on storativity drops out, leaving the transmissivity distribution 

as the only unknown to be determined by the inversion. 

If the flow rate is held constant at the pumping wen, the base values of transmissivity. To 

and storativity So in the lattice can be inferred from the matching procedure, in much the same 

way as transmissivity and storativity for a unifonn medium can be detennined by matching draw­

downs to a Theis type curve. In the calculation of the energy E, the drawdbwn curves calculated 

with trial values of To and So (and the contribution from the attractor) are shifted along the In t 

axis by an amount ~l and along the In h axis by an amount ~2' with ~l and ~2 chosen to minim­

ize E. Then multiplying the'trial value of To by et:.z yields the best-fit base transmissivity, and 

multiplying the trial value of T ciS 0 by et:.l yields the best-fit value of that ratio. Finally, multiply­

ing the trial value of So by et:.z-t:.l yields the best-fit base value of storativity. For steady-state 

drawdowns arising from a constant-flow test, a shift of the Inh values may be used to determine 

To· 
. . 

In typical analyses of transient well testS, the observed drawdowns that are included in the 

energy for"each well are unifonnly distributed in log time, but the fOnTI of Equation (15) makes it 

easy to account for a variety of special conditions. For example, if early-time drawdownsare, 

thought to be controlled by well-bOre effects or late-time draw downs by distant boundaries not' 

included in the model, they can simply be eliminated from the sum. If some observed data points , 

are deemed more reliable than others due to differences in instrumentation, the energy can be 

weighted in their favor by including only a fraction of the less reliable points. Similarly, if cer­

tain responses are presumed to illustrate a key system feature, the inversion can be encouraged to 

find· it by increasing the number of such observation points. Such weighting of different data 
. . 

points can also be accomplished fonnally with an energy function based on a quadratic fonn, as 

mentiomid above .. 

In principle, the sum in Equation (15) could include drawdowns from multiple steady-state 

or transient well tests, a procedure we call co-inversion, but so far we have just analyzed Single 

tests. Furthermore, for a well test in which the head is prescribed at the pumping well, the 

observed and calculated flow rates at the pumping well could also be included in the energy func­

tion. In this case, the prescribed head boundary condition eliminates the possibility of curve­

shifting along the Inh axis to match observed data. Finally, the energy could include a com­

parison of model hydrologic properties and prior estimates of hydrologic properties, arising from, 
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for example, well tests not included in the inversion or from non-hydrologic work such as core 

measurements or geophysical surveys. The ability to tailor the objective function to include all 

available data is one of the strengths of the inverse method. 

Optimization Algorithm 

The term 'optimization algorithm' describes how new trial values of the n-dimensional 

vector P are chosen during the IPS inversion. Several· optimization algorithms from standard 

numerical libraries have been used, and a more systematic study of -their strengths and 

weaknesses is planned for future work, thus little emphasis is given to choices regarding their use 

in the applications presented in the following section. For all the optimization algorithms, the 

inversion is halted when the energy £ drops below a specified value £ nUn. Theoretically, the 

choice of £ nUn could be made to reflect the preCision of drawdown measurements, but in practice 

oversimplification of the conceptual and numerical models usually contributes greatly to the 

discrepancy between modeled and observed drawdowns. Hence £ nUn is generally chosen rather 

heuristically, by requiring that the corresponding match between model and obserVed drawdowns 

is deemed "good enough." 

The downhill simplex and direction set methods [Press et al., 1986] both choose new values 

of P by interpolating or extrapolating toward lower values of £. In the downhill simplex method 

an (n + I)-dimensional 'amoeba' flows across the n -dimensional parameter space until it finds a 

miilimum value of £ (P). In the direction set method a set of n orthogonal directions that span 

the n -dimensional parameter space is_chosen randomly, then successive one-dimensional miilimi-: 

zations are done along each direction. For both these methods, computation time increases 

dramatically as the the number of unknown parameters n increases. 

In contrast to the above methods, which make 'intelligent' choices for the values of P to try, 

simulated annealing [Metropolis et ai., 1953] tries new values of P randomly. - The energy £' 

obtained using parameters P' = P +~P, where~P is a random vector, is compared to the energy 

£ obtained with the original P. If £'.< £, then P' replaces P as the current best set of parame­

ters, another random M is chosen and the procedure is. repeated. If £' >, £ , the P' might replace 

P, with the probability of replacement given by 

e(E -E'Yt , (16) 

where 't is a par~eter known as the temperature, which determines how difficult it is to accept 

an increase in energy. Both I M I and· 't start large and decrease during the course of the 

v 
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inversion. Thus early in the inversion, highly varied attractors are tested and it is easy to get out 

of local minima of the energy function. Later, when E is smaller, subtle changes in attractors are 

tested, and minima are not escaped easily. 

Simulated annealing seems to wolk: well for hydrologic inversions, and it has an advantage 

over the previously described methods in that computation time does not directly increase with 

dimension n. However. as energy Edecreases. more and more unaccepted values of P are tried. 

making the method inefficient An approach known as simplex annealing [Press and Teukolsky, 

1991] combines fearures of the downhill simplex and simulated annealing, in an effort to improve 

efficiency by making more iritelligent choices for new values of P while at the same time includ­

ing a random component to maintain the ability to jump out of local' minima. This method 

appears very promising. 

To ensure that an IFS converges to a finite attractor all of whose points lie within the unit 

square, the restrictions on the components ofP given in Equations (7) and (8) are imposed. This 

is easily done when simulated annealing is used, by simply rejecting any trial P' that does not 

satisfy Equations (7) and (8) and using a different random M» to create another trial P'. This 

rejection algorithm cannot be so easily accommodated in the other optimization algorithms 

because trial values of P are chosen intelligently rather than randomly. Instead of rejecting a trial 

value of P entirely, the components of P violating Equations (7) or (8) are set to the bounding 

values. This approach has not been totally satisfactory, because the optimization algorithm tends 

to get stuck in comers of parameter space (especially for artificially simple synthetic problems). 

Further studies are planned to improve this procedure. because the addition of intelligence to the 

choices of P isa highly desirable feature. 

. , 
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APPLICA nON OF THE METHOD 

It is apparent from the previous section that to use the IFS inversion method· one must 

specify a number of parameters that are not modified during the course of the inversion, but rather 

control the way in which the inversion operates. These parameters, known as control parameters, 

include such choices as the density and nesting of the lattice, the scale factor to map the attractor 

to the lattice, the number of affine transforms k , which components of the affine transforms may 

vary, the total number of attractor points M 0, and the size and type of property increments t:.T 

and 1lS. ChOOSing the control parameters provides an opportunity to condition the inversion on 

geological or other additional information, so that it will produce a model that is consistent with 

all known information about the system, as well as matching the hydrologic ,response. Addition­

ally, one must specify the parameters that control the optimization algorithm, such as the tem­

perature and increment schedules for simulated annealing; these choices affect the efficiency of 

the inversion. 

INVERSION OF SYNTHETIC DATA 

The only direct way to check if a hydrologic inverse method works is to generate synthetic 

well-test data from a known model and see if the inversion recovers the hydrologic property dis­

tribution of the model. It is desirable to start with simple synthetic data, to clearly illustrate what 

the inversion is doing, but it is necessary to also use realistic synthetic data (Le., data including 

noise, models representing geologically realistic heterogeneities) to fully test an inversion 

method. The present studies are quite simple, and further work remains to be done. 

Linear High-Transmissivity Feature 

The first synthetic problem is a well test conducted in an aquifer with a single highly 

permeable linear feature, which might represent a buried stream cbannel or the trace of a conduc­

tive fault. The transmissivity of the linear feature is about 500 times greater than the background 

value and its storativity is unchanged from the background value. The transmissivity distribution 

and the lattice used for the calculations are shown in Figure 7b. 

As described in the previous section, a linear heterogeneity can be described by an IFS with 

k =2 of the form 

f (A ) = g 1 (A ) u g z(A ) , (17) 

where 

.. 
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gj (x) = 0.51 x + b j • (18) 

1bis IFS has only four parameters; the two components of b l ·andb2, which determine the length 

and orientation of the line segment. The linear feature shown in Figure 7b was created using an 

IFS with P given by Equation (18) and b l = (0.35,0.45) and b2 = (0.19,0.19), a total of M 0 = 1024 

attractor points, and the additive algorithm with !J.T = lOT o. The attractor itself is shown in Fig­

ure 7a. During the well test, a central well was pumped at a constant rate and transient draw­

downs were calculated for four surrounding observation wells. The head was held constant at the 

outer boundary of the lattice. Well locations are marked by solid circles in Figure 7. Figure 8 

shows the transient drawdowns calculated for this transmissivity distribution (the synthetic data), 

and the drawdowns that would occur for a uniform medium, for comparison. The effect of the 

high-transmissivity feature is clearly seen in the earlier, larger response of the upper well in Fig­

ure 8. 

Because the synthetic hydrologic data was created using an IFS, it is straightforward to 

specify a very 'easy' problein for the IFS inversion: use the same values of the control parameters 

(To, So, !J.T, !J.S, M 0, k, n, etc.) as were used to create the data, then, if the inversion can find the 

correct values of P, the resulting model will be identical to that used to create the synthetic data, 

and E will be identically zero. Table 1 summarizes the results of six inversions done using simu­

lated annealing with different random seeds. In all cases, the initial annealing temperature was 

1: = 3.6, the initial increment in parameters was I!J.P I = 0.6, 1: and I!J.P I were decreased 1 % each 

time a trial attractor was accepted, and the inversion was halted when E ~ E min = 3.6. For com­

parison, the energy for a uniform medium with no attractor is E = 46 and the energy for the first 

attractor tried, a horizontal line segment through the center well, is E = 860. Figure 9 shows the 

energy variation over the course of the inversion for case IE. The energy decline for accepted 

iterations is far from monotonic, reflecting the relatively large value of 1: being used. Figure 8 

shows the calculated drawdowns versus time for the final iteration of Case lE, which yields an 

energy E = 1.7; the agreement with the synthetic data is very good, in effect justifying the choice 

of Emin. The attractors found for the six cases are shown in Figure 10. Four of the six closely 

match the input attractor (Figure 7a), whereas 1Aand IF differ somewhat, illustrating the varia­

bility in transmissivity distribution that yields eSsentially the same well-test response. 

The two attractors that least resemble the correct transmissivity distribution (lA and IF) are 

in fact the two with the highest energy, suggesting that specifying a smaller value of E min would 

yield a more unique attractor. While this is true in the present caSe, using an overly small a value 



- 18 -

of E min can be problematical. For real-world problems, in which the mathematical model is gen­

erally an extremely simplified representation, of reality and well-test data contains noise, using a 

relatively large value of E min ensures that effort spent during the inversion is used to match the 

main features of the drawdown curves, rather than small variations which may not reffect the 

overall hydrologic behavior of the system. For synthetic data, instrument noise and conceptual­

model errors can be eliminated, but computer round-off error cannot, so even in this case an 

overly- small value of E min can be counterproductive. For example, an attractor given 'by 

P = (0.19,0.19), (0.35,0.45), which is mathematically identical to the correct attractor 

P = (0.35,0.45), (0.19,0.19), yields an energy E = 1.1, because a few attractor points located 

nearly. midway between lattice elements are mapped to different elements. Hence, specifying a 

value of E min < 1.1 would require that effort be spent during the inversion to reproduce round-off 

errors rather rather than hydrologic behavior. 

For a less constrained. inversion, we allow all entries of the affine transforms to vary, 

increasing the dimension of the parameter space from 4 to 12. As shown in Figures 5b and c, the 

trial attractors are no, longer constrained to be line segments. As before, six i~versions were done 

using simulated annealing with E min = 3.6, using different random seeds. The range of computer 

times used was about the same as before; the final attractors are shown in Figure 11. In contrast 

to the previous case (Figure 10), there is now significant variability among the attractors. All the 

attractors succeed in identifying a high-transmissivity channel between the middle and upper 

wells, but most show fictitious high-transmissivity channels elsewhere as well. A careful exami­

nation of Figure 11 indicates that none of the spurious high-transmissivity channels are located 

along pathways connecting the pumping well and the observation wells. The model can include 

these spurious high-transmissivity channels and still yield a low energy because the observation­

well drawdowns ,are not v~ry sensitive to these regions of the model. This insensitivity is a com­

mon problem when analyzing well tests involving a single pumping well and a limited number of 

observation wells, and doing multiple inversions is a powerful technique for identifying regions 

for which the well test provides no information. Rather than indicating a failure of the inversion 

method, non-uniqueness illustrates the limited nature of the information contained in the well-test 

response. 

If we visually filter out those features not common to all the attractors in Figure 11, we 

begin to obtain a reasonable representation of the actual high-transIlJ.issivity feature. This visual 

filtering operation can be formalized by looking at the mean transmissivity distribution. Figure 

12 shows the transmissivity distributions for each of the six inversions, corresponding to the 

.. 
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attractors shown in Figure 11. Figure 13 shows the mean transmissivity distribution, formed by 

calculating the transmissivity of each lattice element as the mean over the six inversions. The 

mean transmissivity distribution compares favorably with the actual distribution (Figure 7b), 

although the spurious high-transniissivity channels are still apparent. If the spurious channels 

represent random errors, averaging over more inversions should minimize their effect. The aver­

age transmissivity distribution for 30 inversions, also shown in Figure 13, better replicates the 

synthetic data, supporting this hypothesis. 

A more basic way to eliminate spurious attractor points is to analyze well-test data that is 

sensitive to larger areas of the aquifer, which can be accomplished by using more observation 

wells, since Figure 11 indicates that the response at an observation well is most sensitive to the 
. . 

region directly between the pumping well and observation well. Unfortunately, drilling many 

wells maybe economically or physically impoSSible. An alternative approach is to do a series of 

flow tests using different wells as the pumping well, as shown schematically in Figure 14, then 

combining all the drawdown responses in the energy. 

Square Zone of Contrasting Transmissivity and Storativity 

The second synthetic problem considers an aquifer with a central square region whose 

transmissivity and storativity are either 100 times greater ('high anomaly') or 100 times less 

('low anomaly') than the values of the surrounding area, Six wells surround the anomaly, as 

shown in Figure 15. One well is pumped and transient draw downs are measured in the other five. 

Head is held fixed at the outer boundary of the lattice. Figure 16 shows the transient drawdowns . 

at the observation well locations for the high and low anomalies, and for a uniform medium. 

Compared to the uniform medium, response, the high anomaly strongly affects the drawdown 

curves at all observation wells, whereas the low anomaly primarily affects the wells across the 

anomaly from the pumping well. 

Table 2 summarizes the results of three inversions withk = 3 done for the high anomaly, 

using simulated annealing with different random seeds. In each case, the additive algorithm was 

used with t::..T = IOTo and t::..S = 10So, and E min = 1.6. The energy for a uniform medium with no 

attractor is E = 92, t!Ie energy for the first attractor tried, the Sierpinski Gasket shown in Figure 

17, is E = 85. The drawdowns for Case 2A are shown in Figure 18; the agreement with the syn­

thetic data is very good. The attractors for each case, shown in Figure 19, all succeed in concen~ 

trating points within the anomaly. 
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1bree inversions with k = 3 were also done for the high anomaly using attractors that decre­

ment transmissivity and storativity. For decremented transmissivity and storativity, an ideal 

attractor would have points uniformly distributed around the outside of the anomaly. Although 

the energies for these inversions (E = 47 to 58) are only about a factor of two lower than the 

energy for a uniform medium, the attractors, shown in Figure 20, all succeed in concentrating 

points outside the anomaly. 

By construction, an attractor is anchored to the k points found by iterated application of 

each of thek affine transforms that make up the IFS (e.g., the lower left corner point of the Sier­

pinski Gasket shown in Figure 17 results from repeated application of g = 0.5 I + (0,0) the upper 

right comer from g = 0.51 + (0.5,0.5), and the upper left comer from g = 0.51 + (0,0.5». This 

k -fold anchoring is consistent with the increase in attractor fractal dimension with k observed in 

Figure 5, and implies that the attractors tend to contain k-fold features. Generally, higher values 

of k should be used to mimic more complicated structures. In particular, it is natural to try to 

outline a square anomaly using an IFS with k = 4. The attractors for two such inversions using 

the multiplicative algorithm with !1T =!!.S = 0.5 are shown in Figure 21. Despite the appealing 

shape of the attractors, the energies are still rather high (E = 38 for both cases) reflecting only· a 

qualitative match to the drawdowns, as shown in Figure 22. 

Several inversions using the plus-minus algorithm were also done for the high anomaly, 

using an IFS with k = 4. Not surprisingly, the returned energies (E = 6~20) were better than for 

the decrement-only inversions, but worse than for the increment-only inversions. The attractors 

tend to COncentrate the incrementing points within the anomaly, while putting the decrementing 

points outside it, as is illustrated in Figure 23. 

Table 3 summarizes the results of three inversions with k = 3 for the low anomaly, with 

attractorpoints that decrement properties. The multiplicative algorithm was used, with 

!1T =!!.S = 0.5. Although the energies (E = 4-8) are not as low as for the high-anomaly inver­

sions with incremented properties (Table 2), the drawd~wns, shown in Figure 24 for Case 2L, . 

reproduce the main features of the synthetic data reasonably well. Because the energies never 

reached the specified value of E min = 1.6, an alternate stopping criterion was used, in which an 

inversion was halted when E did not decrease after many (usually several thousand) iterations. 

The attractors, shown in Figure 25, all succeed in concentrating the points within the anomaly. 

In order to investigate the sensitivity of the inversion process to well location, inversions 

with k = 3 were done considering wells located inside and outside the anomaly, in both regular 
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and irregular patterns, as shown in Figure 26. Table 4 summarizes the results of the inversions 

and indicates that iIi all cases the IFS inversion methQd matches the hydrologic response. The 

. high-anomaly inversions use an attractor which increments properties using the additive algo­

rithm and !!.T = lOT 0 and M = lOS o. The lOw-anomaly inversions use an attractor which decre­

ments properties using the multiplicative algorithm and !!.T = M = 0.5. The attractors (not 

shown) successfully concentrate points within the anomaly. Intuitively, one wouldexpect that if 

an anomaly produces a small signal in the drawdown curves (for example, because it has similar 

properties to the surrounding area, or is of very small or very large spatial extent compared to the 

dimensions of the well field), the IFS inversion method would have less success identifying it. 

Studies to quantify this notion are underway. 

INVERSION OF REAL DATA FOR A POROUS MEDIUM - KESTERSON RESERVOIR 

A variety of well tests have been conducted on a shallow aquifer system composed of inter­

bedded sands, silts, and clays at Kesterson Reservoir, located in the San Joaquin Valley in central 

California [Yates, 1988). The hydrologic properties of the aquifer/aquitard system are needed in 

order to study the transport of various forms of selenium and other salts between surface waters 

and underlying aquifers. The aquifer studied in the present example is about 18 m thick, and is 

underlain by an impermeable clay layer and overlain by a leaky aquitard. A multi-well transient 

test was analyzed to infer the spatial distribution of transmissivity in the aquifer. Both steady­

state and transient single-well tests and multi-well pulse tests have also been conducted at the 

site. 

In the test under consideration, a central well was pumped at a constant rate of 6xlO-3 m3/s 

and transient drawdowns were measured at eight observation wells located 15 to 107 m away 

from the pumping well. All the wells were screened over the middle third of the aquifer thick­

ness. The teSt lasted 5 hours, with the first observations made about 5 seconds after pumping 

commenced. 

Quasi-three-dimensional Analysis 

Initial studies used the two-dimensional nested lattice shown in Figure 27 to represent the 

aquifer. . The well-field is shown by the solid circles, with the pumping well at the center 

(x = 0, y = 0). The nested lattice design is practical for modeling .flow in porous. media, where 

fine resolution is needed to represent flow near wells adequately, but the lattice must extend far 

beyond the well field to realistically implement pressure boundary conditions. Fine resolution is 

. undesirable beyond the well field, because it greatly increases the size of the calculation without 
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improving the ability of the model to predict flow or pressure at the well field. At the outer boun­

dary of the lattice the head was held constant, with the extent of the lattice chosen so that the 

cone of depression would not reach the boundary during the duration of the well test. 

Use of a two-dimensional lattice requires that the wells be modeled as fully penetrating and 

that the upper and lower confining layers be considered impermeable. The late-time slopes of the 

drawdown versus time curves calculated by this model were consistently steeper than observed 

slopes. Because geological information and other hydrologic inversion studies [Yates, 1988] sug­

gested that leakage occurred through the upper confining layer, it was decided to use a quasi­

three-dimensional model in which leakage from an overlying aqui'tard could be included in an 

approximate way, as described in Appendix B, which required the addition of approximately 700 

nodes and elements to the lattice shown in Figure 27. The ratio of the aquitard vertical permea­

bility to the base value of the aquifer horizontal, permeability was estimated to be 10-3 by match­

ing the slopes of the late-time portion of the drawdown curves to observed values. The specific 

storage of the aquitard was assumed to correspond to the base value of storativity of the aquifer. 

These parameters did not vary during theinversion (Le., they were unaffected by the location of 

attractor points). Vertical flow within the aquifer itself was not included in this model, so partial 

penetration effects were not accounted for. 

Figure 28 shows the observed drawdown ve(sus time curves and those calculated assuming 

a medium with uniform transmissivity and storativity (no attractor). The energy of the uniform­

medium solution is E = 25. Note from Figure 27a that the observation wells are divided into two 

groups: four 'inner' wells are located between 14 and 16 m away from the pumping well, and 

four 'outer' wells are located between 60 and 107 m away. Figure 28 shows that the worst match 

between the uniform medium calculation and the observed data is for the outer well on the left, 

and among the inner wells the worst matchis again found for the well on the left. These qualita­

tive observations suggest that the attractor might show some special characteristics on the left 

side. 

The attractor was scaled to lie in the region of the lattice given by -150 < x < +150 m and 

-150 < Y < +150 m. GeologiCal information and previous well-test analysis [Yates, 1988] indi­

cate that storativity is far less variable than transmissivity in the Kesterson setting, so attractor 

points represent changes in transmissivity only. Table 5 summarizes the results of three inver­

sions with k = 4 with decremented transmissivity. The multiplicative algorithm was used, with 

AT =0.5. Case Kl used simplex annealing with n :: 12 parameters (the rotation form of the B 

.. 
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matrix given by Equation (12), with only e's and b's variable) for most of the inversion. The 

inversion stopped at E = 1.7 and was restarted with all parameters variable (n = 16). Cases K2 

and K3 used simulated annealing withn = 12 and n = 16, respectively. The drawdowns calcu­

lated for Case K3 are shown in Figure 28, the a~reement with the observed drawdowns is very 

good. 

Figure 29 illustrates the attractors for CasesKI, K2, and K3. Although they by no means 

produce a unique picture of the transmissivity distribution, they do show a number of features in 

common. The attractors are all relatively compact structures overlying the inner observation 

wells. 'In each case there is a point-free region between the pumping well and the inner leftobser­

vation well, providing a high-permeability path between them, which accounts for the large, early 

response of that observation well. Additionally, each case shows a strong concentration of points 

between the inner and outer wells on the left side, which accounts for the small, late response of 

the outer left observation well. 

Because of the nested nature of the lattice used for the calculations the attractors themselves 

provide only a qualitative picture of the transmissivity distributions. Two quantitative represen­

tations are shown in Figure 29. The first displays the central portion of the lattice with the thick­

ness of each element proportional to the transmissivity of that element. This is a straightforward 

representation of the transmissivity distribution used for the flow calculation, but the increase in 

element transmissivity that occurs as the lattice gets coarser tends to overshadow the variations in 

transmiSSivity caused by the attractor points, making the pictures cumbersome to interpret. The 

final display in Figure 29 attempts to alleviate this problem, by eliminating the lattice from the 

picture and plotting the effective trarismissivity of the aquifer that the lattice represents. For each 
I 

element in the lattice, transmissivity T is divided by element length L to give effective transmis-

sivity i, as described.in Appendix B. Then a square centered on the element is filled with a dot 

pattern whose density is proportional to T. 

It turns out,that for the mapping algorithm used, attractor points have a greater effect on 

,transmissi vity in the coarser regions, of the lattice than in the finer central region around the inner 

wells. Thus eachattractor yields a transmissivity distribution with an annular low transmissivity 

region between the inner and outer observation wells. Some inversions using incremented 

tranSmissivity were also done. These yielded higber energies th~n the' decremented­

tr~smissivity inversions for comparable numbers of forward calculations, suggesting that a geo­

logical model consisting of local low-permeability features (e.g., clay lenses) embedded in a 
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high-permeability background may be more appropriate than local high-permeability features 

(e.g., gravel bars) embedded in a low-permeability background. Figure 30 shows the three attrac­

tors that yielded the lowest energies (E == 9) of the incremented-transmissivity inversions. For 

the most part, attractor point locations are complementary to those for the decremented­

transmissivity inversions, yielding a consistent picture of the aquifer transmissivity. distribution, 

with a low-permeability region just beyond the inner observation wells, and a high-permeability 

region further away. 

Comparison with Previous Analysis 

Yates [1988] used a two-dimensional axisymmetric porous medium model to analyze the 

interference test considered here. Her model differed from the present one by accounting for well 

partial penetration, allowing vertical variations in permeability in theaquifer, and requiring hor­

izontal permeability variations to be radially symmetric and centered at the pumping well. She 

did not use a formal optimization algorithm, but ran repeated forward simulations of the interfer­

ence test with different permeability distributions chosen by hand. using results of a series of 

single-well tests to guide the choices. Her best match to the observed drawdown curves is com­

parable to that shown in Figure 28, and was obtained using a composite aquifer model with a 

high-permeability zone in the vicinity of the inner wells, with a permeability about ten times that 

of the rest of the aquifer. Our results are consistent with this model in the vicinity of the inner 

wells. Yates used a ratio of aquitard vertical permeability to inner-zone-aquifer horizontal per­

meability of about 2xlO"-3, twice as large as that used for the present study. The additional leak­

age provided by the higher permeability of the aquitard may eliminate the need for the high­

permeability outer zone found in the present study. 

Possible Further Studies 

The Kesterson Reservoir site provides several opportunities for further development and 

testing of the IFS inversion method. To rigorously analyze the present interference test, we 

should use a fully three-dimensional model in which the transmissivities of both the aquifer and 

leaky aquitard vary. The IFS inversion method could be applied to three-dimensional problems 

with only niinor modifications, but the computational effort of an inversion would be greatly 

increased. Not only will the forward calculations require far more computational time due to a 

larger lattice, but a three-dimensional attractor has 12 parameters for each affine transformation, 

compared to 6 for a two-dimensional attractor, doubling the dimension of the parameter space 



- 25 -

that must be searched by the inversion .. One possibility would be to use a three-dimensional lat­

tice to properly account for vertical flows arising from well partial penetration, but to limit the 

attractor and corresponding transmissivity variations to two-dimensional structures within the 

aquifer to minimize the number of parameters. Before embarking on three-dimensional inver­

sions we need to streamline all aspects of the inversion code. 

It would be very interesting to condition the inversion of the interference test by the results 

of the single-well tests, as was done by Yates [1988] .. Such conditiOning could be done in a 

straightforward way by CO-inverting all the available well tests, however, this would be computa­

tionally intensive as each forward calculation would have to include the interference test and all 

the single-well tests. A more efficient approach might'be to simulate just the interference test but 

to add a penalty term to the objective function if the transmissivity in the neighborhood of a well 

contradicted the value inferred from that wells individual well test. 

One of the appealing features of a fractal model for a hydrologic property distribution is its 

. ability to scale up the model from a relatively small-scale weB test to a large-scale regional 

model, which arises naturally from the self-similar nature of fractals.' A second interference test 

was done at Kesterson, studying the saine aquifer/aquitard system at a nearby well field. It could 

be wO,rthwhile to invert this second test independently of the present work, and then co~invert 

them both, using a larger lattice encompassing both well fields, to determine whether a fractal 

model of the transmissivity distribution is appropriate at this larger scale. 

INVERSION OF REAL DATA FOR A FRACTURED MEDIUM - STRIPA 

At the Stripa mine in Sweden, we have been investigating the hydrology of a subvertical 

fracture zone called the H-zone within a 150 m x 100 m x 50 m block 'of rock. A series of seven 

boreholes (Ct, C2, C3, C4, C5, WI, W2) penetrate this zone. Each of these boreholes was fitted 

with packers that isolate a test interval in the H-zone. An interference test, called the Cl-2 test, 

was conducted in these holes. In this test, the C 1 hole was pumped at a constant rate from a 

packed-off interval in the H-zone. Responses were measured in the other holes in intervals 

packed-off in the H-zone. A second experiment, called the Simulated Drift Experiment (SDE), 

measured the steady-state flow rate from the H-zone into six parallel holes drilled within aIm 

radius (the D-holes), which were held at a constant dtawdown. The entire data set is described in 

Olsson et al. [1989] and Black et al. [1991]. An inversion of this data using simulateQ annealing 

is given in Long et'al. [1991]. 
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Here we present results of three IFS inversions based on the CI-2 interference test. The 

models produced by the inversions were subsequently used to predict the flow rate into the D­

holes in the SDE. We treat the H-zone as a two-dimensional feature, so the C-, D-, and W­

boreholes appear as points where they penetrate the plane of the H-zone. A two-dimensional 

variable-density lattice, shown in Figure 31, was used to model the H-zone, in order to maximize 

detail in the vicinity of the D-holes, provide a large enough lattice to prevent the transients from' 

reaching the boundary too soon, and minimize the number of elements and bandwidth. The finest 

lattice spacing is-1.5 m and the lattice extends 400 m from the center of the well field. The outer 

boundary conditions in the model were chosen to represent the estimated equilibrium head 

values. 

CJ-2 Interference Test 

Figure 32 shows the observed drawdown versus time curves and those calculated assuming 

the H-zone has uniform transmissivity and storativity (no attractor). Three general featUres indi­

cate the need for a heterogeneous description of the H-zone: The predicted drawdown at borehole 

W2 is much too large, the predicted drawdowns at boreholes C4, C2, and C5 are too small, and 

the predicted drawdowns at boreholes WI and C3 are too big at early times but about right at 

later times. The drawdowns calculated using a uniform-medium model correspond to an energy 

ofE =51. 

All three C 1-2 inversions used IFS' s with k = 4 in which all 24 parameters varied indepen- -

dently and the multiplicative mapping algorithm. For Case SI, in which the lowestenergy was 

E = 10, the attractor points either incremented or decremented the transmissivity and storativity 

using the plus-minus algorithm, in Case S2 (E = 9) the attractor points incremented the transmis­

sivity and storativity, and Case S3 (E = 19) the attractor points decremented transnlissivity and 

storativity. The results of the three inversions are summarized in Table 6. Each inversion was 

halted after E had not decreased for many iterations. Figure 32 shows the drawdown curves and 

Figure 33 shows the energy variation over the course of the inversion for Case S1. Results for 

Cases S2 and S3 (not shown) are similar. Figure 34 shows the attractor which yields the lowest 

energy for each case and the corresponding hydrologiC property distribution. -The background 

values of transmissivity and storativity for the three inversions differ, because although each 

inversion started with the same value of To and So;. the amount the drawdown curves were shifted 

to yield the minimum energy, Ll} and ~2' differed from case to case. The middle and lower rows 
, 

of Figure 34 show the transmissivity distributions with the different shifts taken into account by 

'i 
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plotting Te 62
• These plots also represent the spatial variability of storativity, but not its absolute 

value, which would require plotting Se 62
-

61
• 

Figure 34 shows that each inversion creates a hydrologic property distribution in which 

transmissivity and storativity are larger in the region ot-the H-zone around boreholes Cl, WI, C3, 

and C4 than elsewhere. This results in an improvement in all the predicted draw down curves: the 

drawdown at borehole W2 is decreased by isolating W2 in a low-permeability region; the draw­

downs at boreholes C2, C4, and C5 are increased because of the high-permeability region 

between boreholes Cl and C4; and for Cases SI and S2 the response at boreholes WI, C3,and 

C4 is delayed by increasing storativity in their vicinity, whereas for Case S3the response is 
. ' 

delayed by an isolated low-permeability streak. The overall consistency between the hydrologic 

property distributions created by inversions in' which attractor points have sharply contrasting 

effects is encouraging. 

SDE Flow Rate Prediction 

To use the models developed by inverting the CI-2 data to predict the flow rate into the D­

holes during the SDE, we first shut in well Cl and allowed a steady-state head distribution to 

develop in each model. A drawdown of 220 m was then applied at the D-holes, and the steady-
I 

state flow rate into the D-holes was cal~ulated. The calculated SDE flow rates range from 

0.13xlO-6 m3/s for Case S2 to 0.22xlO-6 m3/s for Case SI to to 0.38xlO-6 m3/s lmin for Case S3, 

whereas the actual flow rate to the D-holes from the H-wne during the SDE was estimated to be 

about O.2xlO-6 m3/s; The models created by the inversions with the lowest energies (Cases SI 

and S3) best matched the SDE flow rate, whereas the model created by Case S3, with about dou­

ble the energy, did no better than a uniform-medium model. Overall, we consider the perfor­

mance of the IFS inversion on the Stripa data successful. 
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SUMMARY AND CONCLUSIONS 

We have developed an inverse method to estimate hydrologic properties based on the 

analysis of hydrologic well tests. The trial hydrologic property distributions considered during 

the inversion process are generated using iterated function systems (lFS's), and are constructed to 

have self-similar or fractal geometry. Fewer parameters are needed to describe a self-similar 

geometry than a general heterogeneous geometry, improving the efficiency and robustness of the 

inversion. Equally impo!lant is that the final parameter set produces a hydrologic property distri-

. bution with a hierarchical structure. as is often seen in natural geological media. Constraining the 

parameters of the IPS during the .inversion constrains the resulting attractor shapes. which may 

make it possible to limit the search for hydrologic property distributions to those consistent with 

conceptual geological models or with other additional information. 

Application of a two-dimensional version· of the IPS inversion method to idealized synthetic 

data andto field data from a sand/clay sedimentary sequence and a fractured granite has shoWn its 

promise. but further work remains to be done. We are investigating alternate methods for map­

ping the attractor to· the lattice. in order to better represent geological structure. Another major 

task being undertaken is to analyze and improve the optimization algorithm .. Optimization algo- . 

rithms such as simplex annealing. which combine intelligent choices for new parameter· values 

with the ability to escape local minima seem very promising. Finally. we are working to make 

the numerical simulation of the forward problem as efficient as possible. With the above 

improvements more computationally intensive problems can be tackled. such as using three­

dimensional numerical modelS and CO-inverting sequences of well tests. 

The IFS inversion method does not always return a uniquely determined hydrologic pro­

perty distribution. TIlis is not a failure of the method itself. but rather reflects on the limitations 

of the information contained in the well-test response. By making multiple inversions of a given 

well test, and comparing the returned hydrologic property distributions. one can discern from the 

common features those regiOns which have the greatest influence on the well test and their hydro­

logic properties, and from the contradictory features those regions to which the well-test response 

is not Sensitive. 

As illustrated in Figure 14.co~inverting multiple well tests can make the analysis sensitive 

to greater portions of the flow region. This concept can be extended by co-inverting different 

kinds of data, for example adding seismic or electromagnetic measurements to the objective func­

tion, and adding the corresponding simulations to the forward calculation. A more economical 

, ioi 
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means of improving uniqueness is to condition the inversion of a hydrologic interference test by 

adding penalty terms to the objective function to reflect mismatches to known hydrologic pro­

perty data. Another possibility would be to do a geostatistical analysis of each trial hydrologic 

property distribution and reject those which contradict observed geostatistical parameters. 

Orie ~f the strengths of the hydrologic inversion method is that we use fluid flow to develop 

models that will be used to predict fluid flow. Predicting fluid flow is the ultimate goal for appli­

cations such as estimating water supply or optimizing oil recovery. For studies involvingremedi­

ation of contaminated· aquifers or storage of nuclear waste, understanding solute transport via 

fluid flow is the ultimate goal, rather than studying the flow itself, making the inversion of solute 

transport data desirable. Such inversion can be incorporated in the IFS framework in a straight­

forward manner, and may yield noteworthy results because the equation governing solute tran­

sport contains an advective as well diffusive term, which may strongly impact the inversion pro-

cess .. 

" , "IJ' 
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APPENDIX A: CONSTRUCTING B AS A ROTATION MATRIX 

As an alternative to considering each B j as composed of four independent entries, one can 

construct B j as a rotation matrix 

[

COS aj ~sin ajl 
B j = Cj sin aj cos aj , 

(A. 1) 

where Cj is a contractivity factor (0 < Cj < 1) and aj is a rotation angle. 1bis formulation 

reduces the dimension of P from six to four per affine transformation but still allows a great 

variety of attractors, as illustrated in Figure A.t, frame (a). By holding some components of P 

constant, the effect of C, a, and b can be demonstrated, as shown in frames (b) through (d). By 

allowing changes in a and b while holding C fixed, a wide variety of attractor shapes can be 

created (frame (e», with a further reduction in the dimension of P from four to three per affine 

transform. 

APPENDIX B: THE NUMERICAL MODEL TRINET 

Basic Formulation 

The finite element model TRlNET [Karasaki, 1987] calculates fluid flow and solute tran­

sport on a lattice of one-dimensional finite elements (Le., pipes) of porous medium. TRINET j. 

incorporates an adaptive gridding algorithm to minimize numerical dispersion for transport calcu­

lations,but in the present application we use a fixed grid and calculate fluid flow only. The flow 

equation between the two nodes at either end of a one-dimensional finite element may be written 

as 

(B.t) 

where h is hydraulic head and S and T are the storativity and transmissivity, respectively, of the 

element. The lattice of elements need not be uniformly spaced; it can be two- or three­

dimensional, and rectangular, triangular, or a combination thereof. 

Representation oJ'a Two-dimensional Porous Medium (a Confined Aquifer) 

When applying the IFS inversion method to a porous medium, TRINET is used with a two­

dimensional rectangular lattice to, represent an areal view of an aquifer. It can be shown 
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[Doughty, 1993] th~t for lattice elements with transmissivity T, storativity S, a cross-sectional 

area of one, and length L, the effective aquifer transmissivity i and storativity S are given by 

- T T=-
L 

- 2S S=- .. 
, L (B.2) 

As is customary in the hydrologic literature, the transmissivity i is the product of aquifer 

hydraulic conductivitY K and aquifer thickness, the storativity S is the product of aquifer specific 

storage Ss and aquifer thickness, and hydraulic conductivity is intrinsic permeability divided by , ' 

,fluid viscosity. 

Fora lattice with variable spacing to behave as a uniform porous medium, element proper­

ties must vary with lattice spacing. A convenient variable lattice is a nested lattice in which a 

central fine region with spacing Lis, surrounded'by, a region with spacing aL, which in tum is 

surrounded by a region with spacing a2L, and so on, so that the jth nested region has lattice 

spacing ai L. Figure 27 illustrates such a lattice. One consistent prescription for lattice element 

properties is to require that as lattice spacing increases from L to aiL, the element properties are 

modified as follows: 

(B.3) 

The ability of TRINET to properly model flow through a poroUs medium has been verified 

by comparing its results to the Theis solution [Theis, 1935] for transient radial flow in a confined 

homogeneous isotropic aquifer, in which a fully-penetrating well is pumped at a constant flow 

rate [Doughty, 1993]. , 

Representation of a Quasi Three-dimensional Porous Medium (a Leaky Aquifer) 

The two-dimensional aquifer model described in the previous section has completely 

impermeable confining layers above and below it It is straightforward to extend the model to 

include small vertical flows into the aquifer through a leaky confining layer, which is presumed to 

remain at constant head. One new vertical element and'one new constant-head node are added 

for each node in the original two-dimensional lattice. Each new element has storativity S', 

transmissivity T', length L', and a cross-sectional area of one. It can be shown that for a lattice 

, spacing L, the effective confining layer vertical hydraulic conductivity If' and specific storage Ss ' 
are given by 

-, T' 
K=­

L2 
S ' 

S-'--s - 2' 
L 

(B.4) 
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To account for the variable lattice density in a nested lattice, when the lattice spacing increases 

from L to ai L, the TRlNET properties are modified as follows: 

(B.5) . 

The quasi-three-dimensional nested lattice has been verified by comparing TRlNET results to an 

analytical solution [Han tuSh and Jacob, 1955] for transient radial flow in a homogeneous isotro­

pic aquifer with a slightly leaky confining layer, in which a fully-penetrating well is pumped at a 

constant flow rate [Doughty, 1993]. 
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NOTATION 

A set of points x 
a coarsening factor for a nested lattice 
B matrix of affine transfonn 
b vector of affine transfonn 

C rotation-matrix contractivity factor (Equation (12» 
E energy, the value of the objective function to be minimized by inversion 

Emin stopping criterion for the inversion 
f iterated function system (IPS) • 
g affine transfonn 
h head ordrawdown (m) 
I number of iterations used to generate attractor 
I identity matrix . 
j level of nesting for a nested lattice 

K hydraulic conductivity (mls) 
k the number of affine transfonns in an IPS 
L lattice spacing, for a nested lattice the lattice spacing is aiL at the jth level of nesting (m) 

M number of attractor points affecting a lattice element 
M 0 total number of attractor points 
N number of observed drawdowns included in the objective function 

No a constant to keep E a convenient magnitude (currently No = 1(0) 
n dimension of parameter space 
P vectOr of unknown parameters (entries ofB 's and b's) 

&P vector of random increments 
I &P I magnitude of vector &P (square root of sum of squares of components of LXP) 

S storativity 
IlS contribution of attractorpoint to storativity 
Ss specific storage (m-1) 

T transmissivity (m2/s) , 
b.T contribution of attractor point to transmissivitY 

t time (s) 
1: temperature in simulated annealing algorithm 
x coordinates of point (m) 
x distance (m) 
y distance (m) 

b.1A2 amount of curve shift along the lnt orlnh axis, respectively, to minimize E 
a rotation-matrix angle (Equation (12» 

Subscripts and modifiers 
c calculated 

·0 

o , 
observed 
base value (unaffected by attractor points) or initial value 
leaky confining layer property or trial value 
effective porous medium property 
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Table 1. Synthetic problem 1 inversions with k = 2, b's only varying, and Emin = 3.6. 

Number of Number of P 
Case Forward Accepted (bi, b2) 

Calculations Attractors 
1A 184 21 (0.29,0.47), (0.27,0.25) 
1B 169 43 (0.20,0.20), (0.36,0.46) 
1C 449 67 (0.36,0.46), (0.19,0.20) 
1D 387 50 (0.21,0.21), (0.33,0.41) 
IE 244 35 (0.19,0.18), (0.34,0.45) 
IF 316 47 (0.28,0.26), (0.17,0.42) 

Average:j: 292 44 (0.22,0.22), (0.31,0.45) 

Correct P (0.35,0.45), (0.19,0.19) 
(0.19,0.19), (0.35,0.45) 

Uniform 
medium 

CPU time per iteration is 10 sec on a Solbourne 500 series workstation 
:j:order of b l and b 2 interchanged for C~ses A and C before average taken 

E 

3.2 
2.8 
0.3 
1.5 
1.7 
3.4 

2.2 

10-10 

1.1-

46 

Table 2 .. Synthetic problem 2 (high anomaly) inversions with k = 3, attractor points that 
increment properties, and E min = 1.6. 

Number of Number of 
Case Forward Accepted E 

Calculations Attractors 
2A 795 71 1.4 
2B 87 20 1.6 
2C 2,606 181 1.2 

UnifoI1!l 92 
medium 

CPU time per iteration is 17 sec on a Solbourne 500 series workstation 
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Table 3. Synthetic problem 2 (low anomaly) inversions with k = 3, attractor points that 
decrement properties, and E min = 1.6. . , ~ 

Number of Forward Total Number 
Case Calculations when ofF.orward E 

Best Energy Found Calculations 
2K 2,929 3,497 8.4 
2L 10,929 13,562 5.6 
2M 5,271 26,164 3.9 

Uniform 91 
medium 

Table 4. Synthetic problem 2 inversions for various well locations. Three k = 3 inversions 
were done for each problem, using different random seeds. In all cases E min = 1.6. 

Well Number of 
-Locations Anomaly Forward E 

Calculationst 
Outer High 1,900-2,900 1.3-l.5 

Low 6,000-13,200 0.8-1.4 
Inner High 700-2,600 1.2-1.6 

Low 6,100-12,400 l.3-l.6 
Random· High 1,100-2,100 0.9-l.6 

Random:j: High 500-1,100 1.0-1.6 

tRounded to nearest hundred 
:j:Altemate pumping well; location shown in Figure 26. 
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Table 5. Kesterson Reservoir inversions with k = 4 and attractor points that decrement 
transmissivity. 

Number of Number of 
Case" Forward Accepted E 

\ Calculations Attractors 
Kl lO,579 1.6 
K2 _ 14,993 349 2;1 
K3 7,600 354 1.7 

Uniform 25 
medium 

CPU time per iteration is 77 sec on a Solbourne 500 series workstation 

Table 6. Stripa H-zone CI-2 interference test inversions with k = 4 and attractor points that 
modify transmissivity and storativity. 

Mapping Number of Forward Total Number SDE 
Case from Attractor Calculations when of Forward Energy Flow Rate 

to Lattice Best Energy Found Calculations (lO~ m3/s) 

SI Plus-minus 8,825 13,729 lO 0.22 
S2 Increment lO,453 10,710 8.7 0.13 
S3 Decrement 7,166 11,457 19 0.38 

Uniform 51 0.36 
Medium 

Field 0.21 ±0.06 
Observation 

CPU time per iteration is 3.5 min on a Solbourne 500 series workstation 
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FIGURE CAPTIONS 

Fig. 1. The effect of various affine transforms on a set of points. 

Fig. 2. Generation of Sierpinski' s gasket using an IPS with k = 3 and a set A 0 forming a 

cross. 

Fig. 3. Generation of an attractor using an IPS with k = 4 and a set A <i consisting of a single 

point. 

Fig. 4. A sequence of attractors generated by IFS's with k = 3 whose parameters differ by a 

small amount. For the m th frame, Pm = P m-l + dP, where dP is a vector with random 

increments and I dP I = 0.2. 

Fig. 5. The variation in attractor as parameters of the IPS change. For the 11'1: th frame in 

each series, Pm = PI + dP m' where LlP m is a vector with random increments. 

Fig. 6. Schematic diagram of the mapping from attractor points to lattice element hydrolo­

gic properties. In the frame at the right, element thickness is proportional to transmissivity. 

Fig. 7. Example of the mapping from attractor points to transmissivity distribution. Frame 

(a) shows the attractor superposed on the lattice, and frame (b) shows the transmissivity dis­

tribution, in which element thickness is proportional to T ff o. The solid circles mark the 

well locations for synthetic problem 1. 

Fig. 8. Transient drawdowns at the four observation wells for synthetic problem 1. The 

arrangement of the. plots on the page follows the locations of the observation wells in the 

well field. 

Fig. 9. Energy variation during the inversion for Case IE. The minimum energy so far is 

shown as a dotted line in both frames. 

Fig. 10. The final attractors for six inversions of synthetic problem 1, using IFS' s with k = 2 

with only the b terms of the affine transforms varying. Well locations are marked with open 

circles. 

Fig. 11. The final attractors for six inversions of synthetic problem 1, using IFS's with k =2 

with all parameters of the affine transforms varying. 

Fig. 12. The transmissivity distributions for the six inversions of synthetic problem 1. Ele­

ment thickneSs is proportional to T ff o. 

Fig. 13. The mean transmissivity distribution for the six distributions shown in Figure 12, 

and the mean transmissivity distribution for 30 inversions all using the same parameters, but 

... ~ 
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different random seeds. Element thickness is proportional to T ff o. 

Fig. 14. A schematic diagram showing the regions of an aquifer in which heterogeneities 

tend to have the most affect on well-test results; these are the regions directly between 

pumping wells and observation wells. 

Fig. 15. Model for synthetic problem 2, showing the lattice, well locations (solid circles), 

and the central square anomaly, which may have transmissivity and storativity either 100 

times greater or 100 times less than the background values. The pumping well is the middle 

well on the left. 

Fig. 16. Synthetic data at the five observation wells for synthetic problem 2, compared to 

the response for a uniform mediuII,l. The arrangement of the plots on the page follows the 

locations of the observation wells in the well field. 

Fig. 17. The initial attractor for the k = 3 inversions of synthetic problem 2. 

Fig. 18. Transient drawdowns for synthetic problem 2 with the high anomaly when attractor 

points increment properties. 

Fig. 19. The final attractors for three k = 3 inversions of synthetic problem 2 with the high 

anomaly, whenattractor points increment properties. 

Fig. 20. The final· attractors for three k = 3 inversions of synthetic problem 2 with the high 

anomaly, when attractor points decrement properties. 

Fig. 21. The final attractors for two k = 4 inversions of synthetic problem 2 with the high 

anomaly, when attractor points decrement properties. 

Fig. 22. Transient drawdowns for synthetic problem 2 with the high anomaly when attraCtor 

points decrement properties. 

Fig. 23. The final attractor for a k = 4 inversion of synthetic problem 2 with the high ano­

maly, using the plus-minus algorithm. Attractor points which increment transmissivity and 

storativity are shown as pluses and points which decrement properties are shown as open cir­

cles. Only one quarter of the attractor points used are plotted (256 out of 1024), in order for 

the symbols to be more readily distinguishable. ' 

Fig., 24. Transient drawdowns for synthetic problem 2 with the low anomaly when attractor 

points decrement properties. 

Fig. 25. The final attractors for three k = 3 inversions of synthetic problem 2 with the low 

anomaly, when attractor points decrement properties. 
\ 
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Fig. 26. The well locatiOns used for the inversions of synthetic problem 2, which are sum-. 

marized in Table 4. 

Fig. 27.· The nested TRINET lattice used for the Kesterson inversion. Frame (a) shows the 

central portion of the lattice; the pumping well is at x = 0, y = 0, the locations of the obser­

vation wells are, shown as solid circles. Frame (b) shows the entire lattice; head is held con­

stant at x = ±600, Y = ±600. 

Fig. 28. Observed and calculated transient drawdowns for Kesterson. The arrangement of 

the plots on the page follows the locations of the observation wells in the well field. 

Fig. 29. Results of three decremented-transmissivity inversions for Kesterson: top row - the 

final attractor for each case; middle row - the TRlNET lattice plotted with element thickness 

proportional to transmissivity; bottom row - a grey-scale plot of effective aquifer transmis­

sivity f. The minimu~ transmissivity level shown is T 0"100, although several elements 

have even lower T values. 

Fig. 30. The final attractors for the incremented-transmissivity inversions for Kesterson. 

Fig. 31. The central portion of the nested TRINET lattice used for the Stripa inversion. 

Fig. 32. Observed and calculated transient drawdowns for the Stripa Cl-2 interference test 

for Case S1. The arrangement of the plots on. the page shows the locations where the 

boreholes intersect the H-zone. 

Fig. 33. Energy variation during the inversion of the Stripa Cl-2 interference test for Case. 

S 1. The minimum energy so far is shown in both frames. 

Fig. 34. Results of three inversions for the Stripa C 1-2 interference test: top row - the final 

attractor for each case; middle row - the TRINET lattice plotted with element thickness pro­

portional to transmissivity; bottom row - a grey-scale plot of effective aquifer transmissivity 

f. For Case Sl attractor points which increment properties are shown as pluses and points 

which decrement properties are shown as open circles. For Case S2 attractor points incre­

ment properties and for Case S3 points decrement properties. Th~ range of transmissivity 

levels shown is T <1100 to 40T 0, although several elements have more extreme values. 

Fig. A.1. The variation in attractor as parameters of the IFS change. u~ing the rotation­

matrix form for B • Equation (A. 1). For the m th frame Pm = PI + LlPm• where LlP m is a vec­

tor with random increments and I LlP m I = 0.4. 
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Un transformed set 

Contraction in y 

Reflection and trarislation 

Translation 

(1 01 (0.41 
B= LO IJ b= LO.2J 

Rotation by 30° 

B rO.87 -.51 b (01 
= L 0.5 0.87J = LOJ 

Distortion 

B - (1 0.51 b _ (01 
- LO.5 1 J - LOJ 

XBL 935-4301 

Fig. 1. The effect of various affine transformations on a set of points. 
11' 
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Untransfonned set After one iteration 

After two iterations After three iterations 

After four iterations After five iterations 
XBL 935-4302 

Fig.2. Generation of Sierpinski's gasket using an IFS with k = 3 and a set Ao forming a cross. 

'/ 
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Untransfonned set 

• • • 
• • .• • • • • • • 

After two iterations 

After four iterations 

• • 

• 
• 

After one iteration 

-.. -..- . -.. .. .. .. . . .. . .. . . . -. . ..- ... 
• •• • _.. e • 

o 0 0 
o 

o 
o 0 

After three iterations 

After five iterations 
XBL935-4303 

( 

Fjg. 3. Generation of an attractor using an IFS with k = 4 and a set Ao consisting of a single point 
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Fig. 4. A sequence of attractors generated by IFS's with k= 3 whose parameters differ by a small 
amount. For the m th frame, Pm = Pm-I + ilP. where LlP is a vector with random increments and 
I ilP 1=0.2. 
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Fig. 5 .. The variation in attractor as parameters of the IFS change. For the m th frame in each 
series, Pm = PI + LlPm' where LlP m is a vector with random increments .. 
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Fig. 6. Schematic diagram of the mapping from attractor pOints to lattice element hydrologic 
properties. In the frame at the right, element thickness is proportional to transmissivity. 
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XBL 935-4306 

Fig. 7. Example of the mapping from attractor points to transmissivity distribution. Frame (a) 
shows the attractor superposed on the lattice, and frame (b) shows the transmissivity distribution, 
in which element thickness is proportional to TITo. The solid circles mark the well locations for 
synthetic problem 1. 
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Fig. 8. Transient drawdowns at the four observation wells for synthetic problem 1. Thearrange-
meIit of the plots on the page follows the locations of the observations wells in the well field. . 
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Fig. 9. Energy variation during the inversion for Case IE. The minimum energy so far is shown 
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Fig. 10. The final attractors for six inversions of synthetic problem 1, using IFS' s with k == 2 with 
only the b terms of the affine transforms varying. Wen locations are marked with open circles. 
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Fig. 11. The final attractors for six inversions of synthetic problem 1, using IFS' s with k = 2 with 
all parameters of the affine transforms varying. 
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Fig. 12. The transmissivity distributions for the six inversions of synthetic problem 1. Element 
thickness is proportional to TlTo. 
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Fig_ 13_ The mean transmissivity distribution for the six distributions shown in Figure 12, and the 
mean transmissivity distribution for 30 inversions all using the same parameters, but different ran­
dom seeds .. Element thiclQless is proportional to TlTo. 
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Multiple tests with few wells 
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Fig. 14. A schematic diagram showing the regions of an aquifer in which heterogeneities tend to 
. have the most affect on well-test results; these are the regiOns directly between pumping wells and 

observation wells. 
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Fig. 15. Model for synthetic problem 2, showing the lattice, well locations (solid circles), and the 
central square anomaly, which may have transmissivity and storativityeither 100 times greater or 
100 times less than the background values. The pumping well is the middle well on the left. 
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Fig. 16. Synthetic data at the five observation wells for synthetic problem 2, compared to the re­
sponse for a uniform medium. The arrangement of the plots on the page follows the locations of 
the observation wells in the well field. 
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Fig. 17. The initial attractor for the k = 3 inversions of synthetic problem 2. 
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Fig_ 18. Transient drawdowns for the synthetic. problem 2 with the high anomaly when attractor 
points increment properties. 
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Fig. 19. The final attractors for three k = 3 inversions of synthetic problem 2 with the high 
anomaly, when attractor points increment properties. 
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Fig. 20. The final attractors for three k = 3 inversions of synthetic problem 2 with the high 
anomaly, when attractor points decrement properties. 
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Fig. 21. The final attractors for two k = 4 inversions of synthetic problem 2 with the high anomaly, 
when attractor points decrement properties. 
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Fig. 22 ... Transient drawdowns for synthetic problem 2 with the high anomaly when attractor points 
decrement properties. 
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XBL 935-4322A 

Fig. 23. The final attractor for a k = 4 inversion of synthetic problem 2 with the high anomaly, 
using the plus-minus algorithm. Attractor points which increment transmissivity and storativity are 
shown as pluses and pOints which decrement properties are shown as open circles. Only one 
quarter of the attractor points used are plotted (256 out of 1024), in order for the symbols to be 
more readily distinguishable. . . 
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Fig. 24. Transient drawdowns for synthetic problem 2 with the low anomaly when attractor points 
decrement properties. 
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Fig. 25. The final attractors for three k = 3 inversions of synthetic problem 2 with the low 
anomaly, whenattractor points decrement properties. 
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Fig. 26. The well locations used for the inversions of synthetic problem 2, which are summarized 
in Table 4. 
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Fig. 27. The nested TRINET lattice used for the Kesterson inversion. Frame (a) shows the central 
portion of the lattice; the pumping well is at x = 0, y = 0, the locations of the observation wells are 
shown as solid circles. Frame (b) shows the entire lattice; head is held constant at x = ±600, 
y=±600. 
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Fig. 28. Observed and calculated transient drawdowns for Kesterson. The arrangement of the 
plots on the page follows the locations of the observation wells in the well field 
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Fig. 29. Results of three decremented-transmissivity inversions for Kesterson: top row - the final 
attractor for each case; middle row - the TRINET lattice plotted with element thickness propor-
tional to transmissivity; bottom row - a grey-scale plot of effective aquifer transmissivity f. The 
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Fig. 30. The final attractors for the incremented-transmissivity inversions for Kesterson. 
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Fig. 31. The central portion of the nested 1RINETlattice used for the Stripa inversion . 
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Fig. 32. Observed and calculated transient drawdowns for.the Stripa Cl-2 interference test for 
Case S1. The arrangement of the plots on the page shows the locations where the boreholes inter­
sect the H,..zone. 
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Fig. 33. Energy variation during the inversion of the Stripa C1-2 interference test for Case S 1. TIle 
minimum energy so far is shown in both frames. 
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Fig. 34. Results of three inversions for the Stripa Cl-2 interference test: top row - the final attrac­
tor for each case; middle row - the TRINET lattice plotted with element thicknesS proportional to 
transmissivity; bottom row - a grey-scale plot of effective aquifer transmissivity f. For Case Sl 
attractor points which increment properties are shown as pluses and points which decrement prop­
erties are shown as open circles. For Case S2 attractor points increment properties and for Case S3 
points decrement properties. The range of transmissivity levels shown is To/100 to 4OTo. although 
several elements have more extreme values. 
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Fig. AI. The variation in attractor as parameters ofth~ IPS change, using the rotation-matrix form 
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