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ABSTRACf 

The perturbed-hard-sphere chain (PHSC) equation of state for multi­

component mixtures is presented as a generalization from the equation of state for 

pure fluids. The reference term, based on Chiew's equation of state for hard-sphere 

chains, requires no mixing rules. Only the attractive perturbation requires van der 

Waals one-fluid mixing rules. Cross parameters needed in the perturbation are 

obtained using pure-fluid parameters and simple combining rules. The simplifying 

physical assumptions required to reduce the perturbation term to the Flory X 

parameter are given. Specific interactions are included by adapting the model of ten 

Brinke and Karasz. Model calculations for binary mixtures demonstrate that the 

PHSC equation can predict lower critical solution temperatures, upper critical solution 

temperatures and closed partial-miscibility loops. Special attention is given to the 

effects of polymer molecular weight, pressure, differences in segment size and 

differences in segment interaction energy. 

1. INTRODUCTION 

Molecular-based thermodynamic models for describing liquid-liquid equilibria (LLE) in 

polymer mixtures can be divided into four categories, each corresponding to a particular statistical 

mechanical framework: incompressible-lattice models, generalized van der Waals partition­

function theories, compressible-lattice models, and off-lattice (continuous-space) models of chain 

fluids. 

* To whom correspondence should be addressed. 
Submitted to Chemical Engineering Science Symposium in Print on Molecular Modelling, September 1993. 
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The most widely used and best-known of the incompressible lattice models is the Flory­

Huggins theory (Flory, 1953) which illustrates in a simple way the competition between the 

entropy of mixing and the attractive forces that produces liquid-liquid phase separation at low 

temperatures with an upper critical solution temperature (UCST). Much work has been done to 

improve the mathematical solution of the lattice problem including chain connectivity and 

nonrandom mixing (Guggenheim, 1952); pursuing a formal "exact" solution to the lattice problem 

using advanced statistical-mechanical methods (Dudowicz and Freed, 1990; Madden, et al., 1990; 

Pesci and Freed, 1989); or using lattice Monte-Carlo simulations (Lambert, et al., 1993; Szleifer, 

1990). These improvements provide better agreement with experiment by widening the liquid­

liquid coexistence curve. 

However, polymer mixtures display more complex behavior in the liquid phase 

(Rowlinson and Swinton, 1982) than can be explained by the incompressible lattice. Such 

behavior includes limited miscibility at high temperatures with a lower critical solution temperature 

(LCST). Also, specific interactions can cause a homogeneous phase to reappear at temperatures 

below the UCST forming closed partial-miscibility loops (Bae, et al., 1991). UCSTs and LCSTs 

can merge to exhibit hourglass-shaped phase diagrams upon decreasing pressure (Zeman and 

Patterson, 1972) or increasing polymer molecular weight (Siow, et al., 1972). By modifying the 

Flory X parameter, it is possible to determine the mathematical conditions which give rise the these 

types of phase diagrams. These modifications usually require giving empirical or semi-empirical 

dependencies of X on temperature (Cheluget, et al., 1993), temperature and composition (Bae, et 

al., 1993; Qian, et al., 1991a; Qian, et al., 1991b; Sole and Koningsveld, 1992), or temperature, 

composition and pressure (van Opstal and Koningsveld, 1992a; 1992b). 

To understand high-temperature LCSTs properly, it was recognized that free-volume 

effects must be included (Patterson, 1969). This is an important recognition because 

incompressible lattice theories cannot represent excess volumes of mixing. Early theories which 

attempted to include free-volume effects were based on a generalized form of the van der Waals 
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partition function, which is the product of two independent partition functions: one accounts for 

free-volume and the other for attractive forces (Flory, 1965; Flory, et aI., 1964). The free-volume 

contribution is usually based on a "cell" model, where the polymer segment occupies a cell whose 

volume is always larger than the "hard-core" 'Volume of the segment (Prigogine, et al., 1957). The 

contribution from attractive forces isdetennined by counting pair interactions in a manner similar to 

that used for the incompressible lattice; however, the "lattice energy" is assumed to be inversely 

proportional to some power of the volume. Since the energy is based on lattice ideas, 

nonrandomness has also been incorporated (Brandani, et al., 1991; McMaster, 1973; Xie, et al., 

1992). The Perturbed Hard-Chain Theory and related equations of state (Beret and Prausnitz, 

1975; Donohue and Prausnitz, 1978; Sako, et al., 1989; Vimalchand and Donohue, 1989) are 

based on similar ideas. 

Alternatively, the free-volume concept has also been included using compressible lattice 

models (Sanchez and Lacombe, 1976; 1978). The assumptions are the same as those for the in­

compressible lattice in the Flory-Huggins approximation, but vacant sites are added as an 

additional component. The number of vacant sites is determined by minimization of the Gibbs 

energy with respect to volume yielding a "lattice-fluid" equation of state. Other variations on the 

lattice-fluid model utilize solutions to the lattice model in the Guggenheim approximation (Costas 

and Sanctuary, 1981), the quasichemical approximation (High and Danner, 1989; High and 

Danner, 1990; Panayioutou and Vera, 1982), and more recently the Lattice-Cluster approximation 

(Dudowicz and Freed, 1991a; 1991b; 1991c; 1992). By using essentially lattice-based methods 

for counting polymer configurations and segmental interactions, all of the above-mentioned 

theories ignore the continuous nature of real polymer configurations. 

Recerit publications indicate increased interest in developing off-lattice (continuous-space), 

statistical-mechanical based equations of state for polymer mixtures. A rigorous statistical­

mechanical treatment for polymers is difficult due to their asymmetric structure, large number of 

internal degrees of freedom, and strong coupling between intra- and intermolecular interactions. 
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Fortunately, a number of studies have focused on a relatively simple model-athermal hard-sphere 

.chains pictured as a series of freely-jointed tangent hard spheres (Chapman, et al., 1988; Chiew, 

1990; Dickman and Hall, 1986; Honnell and Hall, 1989). Despite their relative simplicity, the 

properties of hard-sphere chains take into account some significant features of real polymer liquids, 

including excluded-volume effects and segment connectivity. More important, they provide a 

useful reference system in statistical-mechanical perturbation theories for chain-like molecular 

fluids, to replace the much simpler hard-sphere reference system used in most existing perturbation 

theories of fluids, such as the Barker-Henderson theory (Barker and Henderson, 1967), the 

Weeks-Chandler-Andersen theory (Weeks, et al., 1971) and their modifications. 

Dickman and Hall were the first to present an equation of state for hard-sphere chains 

(Dickman and Hall, 1986). They obtained the pressure through the formulation of chain-segment 

insertion probabilities in a manner analogous to that used to derive the lattice-based Flory-Huggins 

theory. Later, Honnell and Hall derived a new equation of state utilizing the Carnahan-Starling 

equation (Carnahan and Starling, 1969) and the Tildesley-Streett (Tildesley and Streett, 1980) 

dimer equation (Honnell and Hall, 1989). These equations have been tested against computer­

simulation results for hard-sphere chains (Dickman and Hall, 1988) and their binary mixtures 

(Honnell and Hall, 1991). Yethiraj and Hall also extended the above equations to include square­

well chains where unbonded segments interact through a square-well intermolecular potential 

(Yethiraj and Hall, 1991). 

Another statistical-mechanical based equation of state for hard-sphere chains and mixtures 

was obtained by Chapmru;t, et al. (1988) from Wertheim's first-order perturbation theory for 

associating fluids (Wertheim, 1987). Using this equation as a basis, the Statistical Associating 

Fluid Theory (SAFT) was developed by adding a mean-field perturbation term to include attractive 

or dispersion forces (Chapman, et al., 1990; Huang and Radosz, 1990). SAFT has been used to 

explain and correlate experimental pIT data as well as the phase behavior of primarily supercritical 

fluid mixtures containing polymers (Chen, et al., 1992; Huang and Radosz, 1991). 
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A particularly elegant, yet simple, method has been presented by Chiew (1990) who 

studied hard-sphere chains and mixtures using the Percus-Yevick integral-equation theory coupled 

with chain connectivity. Analytical equations of state for hard-sphere chains and mixtures were 

obtained. The structure of Chiew's result is similar to the SAFf reference equation for non­

associating chains in that the properties of hard-sphere chains and mixtures can be expressed in 

terms of the radial distribution functions of (unbonded) hard spheres and hard-sphere mixtures at 

contact. A major difference is that the SAFT bonding term is obtained through a low-order 

perturbation whereas Chiew's result is essentially exact within the assumptions of the Percus­

Yevick theory. Moreover, since the hard spheres in a chain need not all have the same diameter, 

Chiew's theory can represent hard-sphere-chain copolymers and their mixtures where the spherical 

segments have different sizes. 

Recently, a significant modification and generalization of Chiew's result has been made 

through use of the Carnahan-Starling radial distribution functions of hard spheres and hard-sphere 

mixtures at contact in both the bonding and non-bonding terms (Song, et al., 1993a). When 

compared with computer simulations of hard-sphere-chain mixtures, the new equation of state 

gives better agreement than Chiew's original equation of state. In general, the new equation of 

state is expressed more succinctly and is more convenient for application. 

A perturbed-hard-sphere-chain (PHS C) equation of state has been established using this 

new equation of state for hard-sphere chains as the reference system plus a van der Waals attractive 

term as the perturbation (Song, et al., 1993b). Because the effective hard-sphere-diameter and 

attractive-energy parameters are theoretically-based functions of temperature (Song and Mason, 

1989), this PHSC equation of state is applicable to fluids containing small or large molecules 

including polymers and copolymers. 

The primary purpose of this paper is to extend to mixtures the PHSC equation of state for 

pure fluids described earlier (Song, et al., 1993b). Unlike most existing mixture theories such as 

conformal-solution theories (e.g., Lee, 1988), extension of the equation of state for mixtures 
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emerges clearly and rigorously from the theoretical nature of the equation of state for pure fluids, 

without the use of mixing rules for the reference part. Only the attractive term requires van der 

Waals one-fluid (vdW1) mixing rules which can also be derived from a fIrst-order perturbation 

theory for mixtures (McQuarrie. 1976). By adopting vdWl mixing rules, our results are 

essentially for a mean-fIeld mixture. 

An additional purpose of this paper is to use this equation of state for mixtures for a 

molecular study of liquid-liquid phase equilibria (LLE) of binary polymer solutions. In principle, 

however, the equation of state presented here is also applicable to vapor-liquid equilibria because it 

is applicable to fluid mixtures containing any number of components and over the entire range of 

fluid conditions. We are particularly concerned here with binary LLE because of the variety of 

observed liquid-liquid phase behavior reported in the literature. 

The remainder of this paper is organized as follows: In Section 2. we give a short 

derivation of the equation of state for mixtures as a generalization from pure fluids, present a 

simple method for the 'inclusion of specifIc interactions and summarize the pertinent thermo­

dynamic functions needed to calculate liquid-liquid equilibria in binary mixtures. In Section 3 we 

present calculated phase diagrams for mode'l mixtures and investigate the effects of polymer 
• 

molecular weight, pressure. segment size differences, and segment interaction energy differences. 

Conclusions are summarized in Section 4. 

2. EQUATION OF STATE & THERMODYNAMIC FUNCTIONS 

2.1. Equation of State for Mixtures 

Derivation of the equation of state for mixtures follows a rigorous fIrst-order statistical 

mechanical perturbation theory based on a mixture of hard-sphere chains as the reference system, 

and closely parallels that for pure fluids. Only the main steps need to be presented. 
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The equation of state for pure fluids is written (Song, et al., 1993b) 

(2.1.1) 

where p is the pressure, p = N IV is the number density (N is the number of molecules and V the 

volume), kB is the Boltzmann constant, T is the absolute temperature, g(d+) , is the radial 

distribution function of hard spheres at contact and d is the effective hard-sphere diameter. In Eq. 

(2.1.1), the first three terms represent the reference equation of state for hard-sphere chains, and 

the last term is a van der Waals type perturbation to take into account attractive forces. The three 

segment-based parameters in Eq. (2.1.1), r, b, and a, all have a clear physical interpretation. The 

first parameter, r, represents the number of effective hard spheres per molecule. The second 

parameter, b, represents the second virial coefficient of hard spheres; it is an effective van der 

Waals covolume. The third parameter, a, reflects the strength of the attractive forces between two 

non-bonded segments. In the PHSC theory both b and a are temperature dependent; they are given 

by (Song, et al., 1993b): 

2~ 2K· 
beT) = 3'd

3
(T) = "30'3 ~ (kBT /es) (2.1.2) 

aCT) = 2; 0'3 e:J'a (kBT /eS) (2.1.3) 

where d is the effective hard-sphere diameter of a segment. The constants e and 0' are associated 

with a pair potential; e is the depth of the minimum in the pair potential and 0' is the separation 

distance between segment centers at this minimum. (The definition of O'used here differs from its 

usual definition as the separation distance between segment centers when the potential is zero.) 

Alternatively, 0' can be considered an effective "hard-core" segment diameter at absolute zero 

temperature. In Eqs. (2.l.2) and (2.1.3), :J'a and :J'b are two universal functions in terms of a 

scaled temperature, kB T / e s. The factor, s(r) , arises from the scaling of:J'a and :J'b from single-

sphere systems to systems containing r tangent spheres; s(r) is a function of r only. Since 
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accurate experimental values for e and a exist for methane and argon, the thermodynamic 

properties of these two fluids are used to determine the single-sphere universal functions. 

Extension ofEq. (2.1.1) to mixtures is straightforward: 

L=(L) +(L) 
pkT pkT ref pkT pert 

(2.1.4) 

where Xj = NJN is the number fraction of molecules (effective hard-sphere chains), 'i is the 

number of hard spheres comprising component i = 1,2, . .. m and gjldj;) is the ij pair radial 

distribution function of hard-sphere mixtures at contact. Like Eq. (2.1.1), the flrst three terms in 

Eq. (2.1.4) represent the reference equation of state for hard-sphere-chain mixtures and the last 

term is a van der Waals-type perturbation for attractive forces. For each unlike pair of components 

(i "# j), additional parameters, bjj and ajj , are need~d for the mixture. Their physical meanings are 

similar to those for pure fluids; bjj is the second cross virial coefficient of hard-sphere mixtures, 

and ajj is the parameter reflecting attractive forces between two unlike segments. A combining rule 

is not necessary for calculating bjj because hard-sphere diameters are additive 

(2.1.5) 

In Eq. (2.1.5), d j and d j are the effective hard-sphere diameters for pure fluids i and j at 

temperature T, respectively, as calculated from Eq. (2.1.2). An expression for hjj follows from 

this additivity 

= 2n d~(T) = .!.(b~/3 +b~/3)3 
3 IJ 8 I J ' 

(2.1.6) 

Parameter ajj can be obtained by extending Eq. (2.1.3) to mixtures 

(2.1.7) 
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where, like in pure fluids, Eij and (J';j are associated with a pair potential between unlike segments. 

E;j and tJij can be detennined from pure-component parameters using appropriate combining rules 

cr.. = 
'I 

(2.1.8) 

(2.1.9) 

Eq. (2.1.8) introduces the binary parameter, k;j" In Eq. (2.1.7), [F;j (T) represents a temperature 

dependence for a;j; a 'Simple choice for [F;j (T) is a geometric mean of the universal function [Fa 

for pure fluids i and j 

[F;j (T) = (2.1.10) 

Finally, to obtain a complete equation of state from Eq. (2.1.4), a suitable mathematical 

form for gij(di;) is needed. The best known analytical expression for g/di;) is the Boublik-

Mansoori-Carnahan-Starling (BMCS) equation for hard-sphere mixtures (Boublik, 1970; 

Mansoori, et al., 1971) 

where 11 is the packing fraction 

P III 

11 = - ~ x. r; b. " 4~ I I I 

I 

( J
1/3 

J:.. = bi bj P ~ x r. b2/3 
~'I b 4 £.J Ie Ie Ie 

ij Ie 

(2.1.11) 

(2.1.12) 

(2.1.13) 

For one-component systems and equal-segment-size mixtures, ~jj = 17, and Eq. (2.1.11) reduces 

to the Carnahan-Starling equation for hard spheres. 
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In summary, the most notable feature of the proposed equation of state for mixtures, Eq. 

(2.1.4), is that the reference equation of state for hard-sphere-chain mixtures follows a rigorous 

statistical-mechanical theory, without using mixing rules. Only the attractive term requires van der 

Waals one-fluid mixing rules. 

2.2 Thermodynamic functions 

Since the equation of state is established, other thermodynamic functions, such as the 

Helmholtz energy and the chemical potential, can be derived. It is useful to transform Eq. (2.1.4) 

from number basis (where the independent, intensive variables are T, P and Xi) to segment basis 

with more useful independent variables for polymer mixtures. The segment-basis independent 

variables are temperature T, segment density Pr = Nr/V, and segment fraction <Pi = N/i / Nr where 

N r is the total number of segments in the system 

The relation between Xi and <Pi is 

(<pJr;) 

'L7(<Pdlj)' 
or A. = 'l'i 

Xi r; 
'L7Xjlj 

In terms ofT, Pr' and <Pi' Eq. (2.1.4) can be rewritten as 

(2.2.1) 

(2.2.2) 

(2.2.3) 

The general equation for calculating the Helmholtz energy from a pressure-explicit equation 

of state is (Prausnitz, et al., 1986) 

A(T,V,Ni ) = iA;O(T) + l"(p- NkBT)dV + kBTiN; In(N;kBT) 
i v V i V 

(2.2.4) 

Eq. (2.2.4) can be written in terms ofT, Pr' and <Pi: 
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The final result is 

where 

with 

1] = Pr ~ A..b. 
4 ~'I'I I 

I 

1 ,,-1 
I = ~I + __ _ --,1J,---,-

II II-I n ~ 1 (1 ~ 1]),,-1 ' 
II = ~ In(1- 1]) . 

The chemical potential can be found by differentiation ofEq. (2.2.6) 

( aA) /11 = - ,. 
aN.. T.P,,/l;.l 

11 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

(2.2.9) 

(2.2.10) 

(2.2.11) 

(2.2.12) 



The result is 

~ ( 1)( ()Q;) L.J</J. 1-- N-
;=1' Ii raNI: 

where (utilizing the chain rule of partial differentiation) 

and 

Pr r. b 
4 I: I: 

( )

113 

(
a; .. ) b. b. P 2/3 

N _'I = -'-' -Lr, b 
r aNL b.. 4 I: I: 

~ ., 

(2.2.13) 

(2.2.14) 

(2.2.15) 

(2.2.16) 

(2.2.17) 

For physical interpretation, it is useful to show the necessary conditions to reduce the 

perturbation to the Flory X parameter. Towards that end, the Helmholtz energy of mixing can be 

divided into reference and perturbation terms 

= 
!l. . Are! 

nux + 
!l. . Apert 

nux (2.2.18) 

In Eq. (2.2.18), the form of the reference tenn is identical to that based on the negative athennal 

entropy of mixing of hard-sphere-chain mixtures which reduces to the Flory-Huggins athermal 

entropy of mixing under the following conditions: 1) mixing is perfonned at constant temperature 
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and total constant volume, 2) all segment diameters must be equal and 3) the packing fractions of 

the pure components must be equal (Song, et al., 1993a). The perturbation term is 

(2.2.19) 

where Pri = 'N; r;/V is the segment density of pure component i. The above three conditions lead to 

the result that the segment densities of the pure components must be equal to the segment density 

of the mixture, i.e. Pri = Pr' As a result, Eq. (2.2.19) becomes 

Il . Apert 
mU: 

(2.2.20) 

The first term in the brackets in Eq. (2.2.20) can be further rearranged with the result 

m 

L <Pi (1- <p) au 
m m 1 m 

= L<Pi <Pj au - L<Pi2 
au = 2 ~<Pi <Pj (au + ajj ) • 

ij I~ 

(2.2.21) 

Upon substitution into Eq. (2.2.20) yields 

(2.2.22) 

which identifies the Flory pair-interaction parameter as 

X.. = A['!'(a .. + a .. ) - a .. ] 
I) kT 2 u )) I) 

B 

(2.2.23) 

2.3 Specific Interactions 

To include specific interactions such as hydrogen bonding, we use here an extension of the 

model by ten Brinke and Karasz (1984) which has previously been used with a lattice-fluid 

equation of state (Sanchez and Balazs, 1989). This model assumes that a segment of component i 
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interacts with a segment of componentj either in a non-specific manner with an interaction energy 

(potential well depth) Eij or in a specific manner with interaction energy Ejj + &jj' However, the 

probability that the two segments are not in the proper orientation to form the specific interaction is 

usually much greater than the probability that two segments are in the proper orientation. Hence 

there is an entropic penalty for forming the specific interaction. This entropic penalty is 

represented by a parameter, {J)jj' which is the ratio of the 'number of orientations (degeneracy) 

which can form a non-specific interaction to the number of orientations which can form a specific 

interaction. 

The total energy of interaction due only to ij pair interactions, U,ol4l,ij' is proportional to the 

number of segments of type i andj in the system, Nri and Nrj' respectively. If a fraction, hj' of 

the interactions are specific and the remaining interactions are non-specific, 

UIIJ141,ij DC -[(1- h)EijNri~j + f/eij + Oej)NriN,.j] 

DC - NriN,/eij + hjOeij) 
(2.3.1) 

Eq. (2.3.1) suggests that, to include specific interactions, eij in Eqs. (2.1.2), (2.1.3) and (2.1.7) 

be replaced by a modified energy parameter defined as an "averaged" interaction energy 

(2.3.2) 

If the specific interaction occurs between the same components, Eqs. (2.1.2) and (2.1.3) become 

(2.3.3) 

(2.3.4) 

For specific interactions between different components, Eqs. (2.1.7) and (2.1.10) become 

a"", (T) = 2n (J'~ e .. [I' .. (T) 3 '/ '/ '/ (2.3.5) 
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(2.3.6) 

If specific interactions occur only between different components and not between any of the pure 

components Eq. (2.3.6) is identical to Eq. (2.1.10), but Eq. (2.3.5) is not identical to Eq. (2.1.7). 

The fraction of specific interactions is determined from a Boltzmann distribution (Hino, et 

al., 1993; Sanchez and Balazs, 1989; ten Brinke and Karasz, 1984) 

1 
f j = 

1 + IDjj exp( - Oejj / kT) 

2.4 Binary mixtures 

(2.3.7) 

The phase behavior of binary polymer/solvent or polymer/polymer mixtures is distinctly 

different from that of simple liquid mixtures. Although the physical basis of observed 

experimental phenomena is well understood, it remains a challenge to demonstrate the usefulness 

of a molecular equation of state to reproduce observed phase diagrams. The original van der Waals 

equation with conventional mixing rules (Van Konyenburg and Scott, 1980) can be used to 

calculate, qualitatively, nearly all observed phase diagrams for binary mixtures but, because of its 

oversimplified basis, it cannot illustrate the effect of large volume differences between solvent and 

polymer on liquid-liquid equilibria of polymer solutions. 

Our ultimate goal in the following paragraphs is to show that Eq. (2.2.6) can predict all 

types of observed liquid-liquid phase diagrams of binary polymer mixtures. Although the locus of 

critical lines or coexistence curves can be determined in pressure-temperature-composition space, 

the calculations shown here are in the temperature-composition plane at a specified pressure. 

Special attention is given to effects of pressure, segment-size differences, segmental interaction­

energy differences, and polymer molecular weight on liquid-liquid phase diagrams. 

The critical conditions for binary mixtures can be expressed as (Sadus, 1992) 
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(2.4.1) 

(2.4.2) 

where 

A# = (a'(A/N,kT) ) 
dt/>~ T.p, 

(2.4.3) 

A#~ = e'(AfN,kT») 
dt/>; T.p, 

(2.4.4) 

Pp = :T(;;,L, (2.4.5) 

Ppp = .&(a'p) 
kT dp; T'~i 

(2.4.6) 

p~ = p,~(~L, (2.4.7) 

p~~ = 1 (a'p) 
PrkT dt/>1

2 
T .p, 

(2.4.8) 

P~p 
1 ( a'p ) 

= kT dt/>I dPr T 
(2.4.9) 

The quantities on the left hand sides ofEqs. (2.4.3)-(2.4.9) are defined to be dimensionless. 

To calculate coexistence curves, the necessary conditions applicable to two conjugate 

phases ' and "in equilibrium are 

T' - T" p' - " II' - II' - , -P'I""1-""1> II~ - II" r-z -""2 . (2.4.10) 

In the absence of specific interactions, reducing temperature, pressure and density by the 

parameters of pure-component 1 (ell and Gil) isolates six quantities which must be specified to fix 
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completely the thermodynamic properties of the binary mixture. Two opvious parameters are the 

effective chain length of each component, Ii. and r2 • Four more arise from the intermolecular 

potential between segment pairs. Of these four, two arise from the intermolecular potential of the 

pure fluids. The ratio E22/ Ell characterizes differences in intermolecular forces between segments 

of the same type; Similarly, the size difference between segments is characterized by the ratio 

0"22/0"11' The remaining two are binary parameters since they apply to the intermolecular potential 

between unlike components, E12/ ..JEll E22 = 1- "'2 and G I2 /O"ll' Additivity of "hard-core" 

segment diameters [Eq. (2.1.9)] is used here to fix G I2 /Gll • 

Specific interactions introduce two additional parameters for each ij pair--&jj / Ejj , the 

increased depth in the potential well when a specific interaction is formed, and roij' the ratio of the 

orientational degeneracy of the non-specific interaction to that of the specific interaction. For 

brevity we focus here only on specific interactions between different components in a mixture and' 

not between non bonded segments of pure components. 

In the next Section, we present calculations for model polymer mixtures and consider how 

these parameters influence phase behavior in mixtures at liquid-like densities. These parameters 

provide a molecular-level index for investigating structure-property relationships in polymer 

mixtures. 

3. MODEL CALCULATIONS & DISCUSSION 

Fig. lea) shows the liquid-liquid phase diagram for several polymers of varying molecular 

weight dissolved in their own monomers. Because the monomer and polymer segments are 

identical, their segment size and energetic parameters are identical and the pair interaction 

parameter, ~2' is zero. Zero pressure is chosen as a low pressure close to atmospheric pressure. 

The only difference is the chain length of the two components, giving LCST behavior. 
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Fig. l(b) for a monomer/IOO-mer mixture indicates why these systems split into two liquid 

phases as temperature approaches the critical temperature of the solvent. In this figure, the 

segment densities of the coexisting phases are shown for each temperature along the binodal. In 

both Figs. l(a) and l(b), the temperature is reduced by the critical temperature of the pure solvent 

and in Fig. l(b) the segment density is reduced by the critical segment density of the pure solvent. 

Because temperatures are below the critical temperature of the solvent and because the ratio of 

densities in Fig. l(b) is always greater than unity, both phases are in the liquid state. As temper­

ature approaches the critical temperature of the solvent, the 'density of the polymer-dilute phase 

decreases almost exponentially, whereas the density of the polymer-rich phase stays essentially 

constant (even though its composition changes dramatically). The preference for the solvent to 

form its own expanded phase is the driving force for LCST behavior. 

As soon as a significantly large asymmetry in the pair interactions is introduced, both 

UCST and LCST behavior appear in solvent/polymer mixtures. This asymmetry can be introduced 

in three ways: 1) the energy-parameter ratio differs from unity, 2) the segment-size ratio differs 

from unity, and 3) a non-zero value for the binary interaction parameter, ~2' Since the ajj , which 

depend explicitly on Ejj and O"ij' is related to the Flory X parameter through Eq. (2.2.23) (albeit 

under a restrictive set of conditions), the above methods for introduction of asymmetry in the pair 

interactions is easily confinned. Small differences in segment diameters can have a significant 

effect since O"jj always appears to the third power. 

Fig. 2(a) shows p~ase diagrams with both an UCST and a LCST: A non-zero value of ~2 

introduces asymmetry in the pair interactions. In addition, Fig. 2(a) shows that increasing polymer 

molecular weight decreases the LCST and increases the UCST. Fig. 2(b) is similar to Fig. l(b), 

but the former includes densities of the coexisting phases below the UCST. Density differences 

playa secondary role for the UCST since the differences in density between phases are small as 

compared to those at temperatures above the LCST. 
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If the asymmetry in segment-pair interactions is sufficiently large, increasing the molecular 

weight can cause the UCST and LCST to overlap, producing an hourglass-type phase diagram, 

shown in Fig. 3. 

When the asymmetry in the pair interactions is due. to differences between pure-component 

energy parameters, pressure can have a large effect upon the type of phase diagram as illustrated in 

Fig. 4 for a monomer/lOO-mer mixtures and in Fig. 5 for a 3-mer/3OO-mer mixture. In Fig. 4, at 

pressures well above the critical pressure of the solvent, LCSTs no longer are present below the 

critical temperature of the solvent but UCSTs remain. As pressure falls, LCSTs decrease 

significantly and UCSTs increase slightly and eventually merge to form hourglass-shaped phase 

diagrams. Since real solvents can rarely be represented by a single sphere, Fig. 5 is included to 

illustrate that the same type of behavior occurs in more realistic systems at typical experimentally­

accessible pressures. 

In polymer blends, the entropy of mixing is very small. Therefore, small asymmetries in 

pair interactions can cause UCST-type partial immiscibilities as illustrated in Fig. 6 for a WOO-mer 

. blend for three different ratios of the pure-component interaction energies close to unity. Small 

increases in the ratio of pure interaction energies can lead to dramatic increases in the UCST. For 

polymer blends, the range of the scaled temperature, kBT /e11 , investigated here is restricted to 

values less than 2.0-3.0 because typical values for the energy parameter of a pure polymer liquid 

are in the range of 200-700 K (Song, et ai., 1993b). Hence, the temperature ranges presented 

here are realistic. The lowest UCST in Fig. 6 is at a very low temperature, possibly below the 

blend's glass-transition temperature; as a result, the lowest UCST may be difficult to observe 

experimentally. Conversely, if asymmetries in pair interactions are large, the UCST may increase 

above experimentally-accessible temperatures causing incompatibility. 

The usual explanation for LCST behavior in polymer blends is that the small entropy of 

mixing enhances the effects of small disparities in compressibilities of the two polymers 

(McMaster, 1973). Compressibility differences are typically related to differences in molecular 
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size of the polymers. In most models (particularly lattice-based models), differences in molecular 

size can only be reflected by differences in chain length, r. Few studies exist which also consider 

the effect of segment size (Kammer, 1989). In the PHSC equation of state, differences in segment 

size arise through the ratio of pure-component segment diameters. As illustrated in Fig. 7, differ­

ences in segment diameter (coupled with asymmetries in interaction energies) can lead to LCST­

type behavior, even in mixtures where both polymers have an equal number of segments. This 

system also exhibits an VCST, but at a very low temperature which may be below the glass­

transition temperature. Like solvent/polymer systems, LCSTs due exclusively to chain length 

differences were found to occur only near the critical temperature of the smaller chain-length 

component, which is an unmeasurably high temperature for polymers of significant molecular 

weight. 

Closed partial-miscibility loops can be produced by inclusion of specific interactions as 

. illustrated in Fig. 8. For illustration, this figure shows only the effects of specific interactions for a 

monomer mixture where the only difference between components is the 1-2 pair interaction. These 

types of phase diagrams occur in mixtures of highly polar fluids; to produce an VCST at a 

reasonable temperature, a relatively large value of 1s.2 is required. The large values for ~2 (as 

compared to ell) and ml2 indicate a highly specific, energetically favorable interaction which 

causes a single homogeneous phase to reappear at a temperature below the VCST. 

Fig. 9 illustrates the effect of polymer molecular weight on the size of the partial-miscibility 

loop for a solvent/polymer mixture. As the molecular weight of the polymer increases, the VCST 

begins to approach the critical temperature of the pure solvent whereas the LCST decreases only 

slightly. The critical compositions are shifted towards the pure solvent as molecular weight 

increases; for each molecular weight the critical composition at the VCST is slightly different from 

that at the LCST. 
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4. CONCLUSIONS 

The continuous-space theory of polymer mixtures discussed here is based on a perturbation 

of a modified Chiew equation of state for athermal hard-sphere chains; that equation is obtained 

from the integral theory of fluids using the Percus-Yevick closure with a hard-sphere connectivity 

constraint. The perturbation is of the simple van der Waals form. 

For the theory presented here, no mixing rules are required for the hard-sphere reference 

term. Van der Waals one-fluid theory is used for extending the perturbation to mixtures. Specific 

interactions, such as hydrogen bonding, are introduced through the method of ten Brinke and 

Karasz. 

Relative to other theories, the PHSC theory has a significant advantage: the spherical 

segment diameter of one component need not be the same as that of another component. Further, 

within a given component, the segment diameters need not all be the same. It is this feature which 

makes the theory attractive for mixtures containing copolymers, to be discussed ina separate 

publication. 

Phase diagrams are presented for a variety of binary polymer-solvent and polymer-polymer 

mixtures. Although this theory is applicable to vapor-liquid equilibria, examples illustrating liquid­

liquid equilibria are presented here because liquid-liquid equilibria provide a much more critical test 

of the theory. Using physically reasonable parameters, the theory successfully reproduces phase 

diagrams with upper or lower critical solution temperatures, or both, including closed partial­

miscibility loops. Attention is given to the effect of molecular weight, pressure and various 

molecular parameters on phase behavior .. 
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FIGURE CAPTIONS 

Figure 1. (a) Liquid-Liquid phase diagram for several different-chain length polymers mixed 

with their monomers. Since the polymer segments are identical to the monomer only 

LCST behavior is observed at high temperatures approaching the 'critical temperature of 

the pure monomer. (b) Segment densities of coexisting phases along the binodal for a 

monomer/1oo-mer mixture. 

Figure 2. (a) Monomer/polymer mixtures exhibiting both VCST and LCST behavior. As the 

molecular weight of the polymer rises the LCST decreases and the VCST increases. 

(b) The segment densities of coexisting phases along both binodals for a 

monomer/IOO-mer mixture. The difference in segment densities for the LCST curve is 

large opposed to that for the VCST curve. 

Figure 3. Phase diagram for monomer/polymer mixtures where the VCST and LCST merge to 

form an hourglass-type phase diagram upon increasing the polymer molecular weight. 

Figure 4. The effect of pressure on the phase diagram for a monomer/lOO-mer mixture. As 

pressure falls towards "atmospheric" pressure, the VCST and LCST can merge to form 

hourglass type phase diagrams. At high pressures (well above the critical pressure of 

the monomer), the LCST increases above the critical temperature of the pure monomer, 

but the VCST changes only slightly. 

Figure 5. The effect of pressure on the phase diagram for a 3-mer/300-mer mixture. This figure 

represents a more realistic solvent at pressures that are accessible experimentally. 

Figure 6. Phase diagram for a 1000-mer blend exhibiting only an VCST. With small increases in 

the ratio of the interaction energies between segments of the same type, there is a large 

increase in the VCST. 

Figure 7. Phase diagram for a 1000-mer blend exhibiting both an VCST and a LeST. The LCST 

arises from differences in segment size coupled with asymmetries in pair interactions. 

Figure 8. Phase diagram for a monomer/monomer mixture exhibiting a closed partial-miscibility 

loop_ Both monomers are identical except for the 1-2 pair interaction (which includes a 

specific interaction) and as a result, produces a phase diagram which is symmetric 

about Xl = x2 = 1/2 . 
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Figure 9. Effect of polymer molecular weight on the phase diagrams of solvent/polymer mixtures 

exhibiting closed partial-miscibility loops. Specific interactions only occur between 

different components. For each molecular weight, the composition at the UCST is 

slightly different from that at the LCST. 
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