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I. INTRODUCTION

One of the most important methods of studying the internal structure
of atoms and molecules involves the absoiption of a quantum of light. For
example, microwave and infrared spectroscopy yield information about the
rotational and vibrational degrees of freedom in a molecule, while
optical and_ultraviolet absorption spectroscopy probe vibrationallstructure
as well asvfhe.electronic degrees of freedom. These techniques aré very
similar iﬁ that they all involve the resonant absorption of light quanta;‘
‘This takes the system from an initial state, characterized by a wave-

* function Wi,"to a final state specified by the wavefunction ¥.. The
difference_iq energy between the two states, Ef-:Ei,‘ is equql to |
hv, the energy imparted by the photon. Absorption takes place only

rat the resonant frequencies. Thus the experimental techniques used in
.these types of spectroscopy generally involve exposing the sample to a
known photon flux and examining the resultant flux from the sample after
the interaction has taken place.

Photoelectron spectroscopy (PES) is in principle very similar to
the techniqﬁes mentioned above. The major operafional difference arises -
‘because the fihal states observed in PES lie in fhe ionization continuum.
Absorption of a photon thus results in the ejectioh of at least one
photoelectron from the system. These electrons are subjected to kinetic-
energy analysis, and it is the kinetic-energy speétrum which contains
information about'thé absorption process. As in the bther absorption

techniques, the energy conservation equation

‘hv = Eg - E (1)



‘must be satisfied.
It is helpful to think of a general final state reached by

absorption of the phofon as a superposition of many degenerate states wj'

ve = ] g v | @

Ef = E. + T. (3)

where Ej isvthe energy of an ionic state and 15 is the kinetic-énergy
of the ionized electron. The measurement of fhe kinetic energy of the
electron quUses our attention on a particular state wj, and we
have:
hy = (EJ.+'TJ.)-_EisEBj+Tj,, @

>whefe the quéntity.EBj is defined as the binding,énergy of the photo-
electron. - |

The most commonly used experimental procedure is therefore to fix
the photon frequency and scan the photoelectron kinetic energy spectrum
for peaks.in'ihtensity. Observation of a.peak at an eﬁergy I& imple
the éxistence of an excited ionic state separated from the initial state by
an energy'EBj, This yields information about the ionic states of the sample;
and, to some degree, about the properties of the initial state. The prob-
~ ability of obServing an electron of energy.Tj,'given by Icfjlz’ is related
to the cross-section for photoionization. This provides further information

about both states involved in the transition. It is important to note
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that if bnéwsimply observéd the éttenuation of the photon flux, the
information 6btained would pertain to a combinatioﬁvof'absorption processes
involving all the ionic states that are energeticélly accessible to the |
radiatibn.’.The‘advantage of PES is thét it allows the study of specific
ionic states. _ -

| This chapter will deal with the nature of the$e excited states,
their energies, and the transition probabilities fdr reaching them via

photon absorption. In Section II the basic theoretical formalism for the

~ interaction of the radiation field with an N-electron system will be

reviewed. . The nature of the wavefunctions used to describe electronic

states and the means of computing them is presented in Section III. In -

~Section 1V, the physical concepts which emerge from a study of the wave-

functions will be used to characterize the nature of the ionic states

~observed in PES. Section V will then analyze the photoionization cross-

section in terms of the logical hierarchy of approximations commonly
employed in cross-section calculations. The sum.fule which relates the
cross-section to the relaxation energy will also be_discussed. In Section
VI the origin and magnitude of the relaxation energy in a variety of systems
willlbe examinéd and related to the physical and'chemical properties of

the species. The chapter ends with a brief discussion of the most commonly

used approaches for estimating binding energies.

1. INTERACTION WITH THE RADIATION FIELD AND PHOTOIONIZATION

We begin by briefly feviewing the semiclassical treatment of the
interaction of radiation with matter. As Schifflvpoints out, the term
“semiclassical” refers to the assumption.that thé radiation field may be
treated classically (within the ffamework of Maxwell's equations), whereas

the system of particleés is treated quantum-mechanically. This approximation
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has the advantage of simplicity and, for the absorption of radiation,

gives the same results as quantum field theory.

A. . Time Dependent Perturbations and Fermi's Golden Rule - e

| Consider a system of particles in a stationary state of a time- ’
independent electrostatic Hamiltonian HO.' At sbme-timé ty;, a time-
dependent'tefm is introduced which represents the electromagnetic field.

The field is assumed to be weak enough to be considered a small perturbation,

but this disturbance may induce transitions to other stationary states of

the particie Hamiltonian. The methods of time-dependent perturbation

theory can be used to learn the probability that the system will be found

in one of these states at some later time tz.

The stationary states, Yo, of }%) satisfy the Schrédinger_equation

Hv = Ev¥ - (5)

and have a simple oscillatory evolution in time
= o i/h Ept |
Wn(t) = e an (6)

A general solution of the equations of motion

... dy(t _ |
zh ;;) = Hy¥(t) (7)

for some arbitrary state ¥(t) can be written

y(t) = Z_tn o t/M Bt . ' - (8)

n
n

The square modulus of the coefficient, lcﬁ|2, is independent of
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time. It gives the probability of observing the superpoéition state,

“¥(t), in some eigenstate ¥ .

If a time dependence is present in the Hamiltonian; i.e., if

H = H

0 VW —

then Eq. (8) is no longer a genéral solution of the wave equétidn. In
fact there are no longer actually any stationary states. However, the
form of the Hamiltonian we have chosen [Eq. (9)] implies that it still
may be useful to expand the general solution in terms of the complete

set of stationary states associated with Hy- Thus the solution is still

: given by Eq. (8), but we must now consider the expansion coefficients to

be time¥dependent.

Substitution of (8) into the Schrodinger equation

d¥(t)

zh
dt

= H y(t) (10)

yields equations of motion governing the expansion coefficients:

dec, (t) Twy_t
. k kn A
zh o = ¥ c () Vi e , (11)
n o
where Vi =~ is the matrix element of the perturbatioh between the

unperturbed states ,
an = <\l‘k|V|‘i’n> s . ,‘ (12)
and

hu “E. . a3

n =

From this point we proceed as usual in perturbation theory. The



coefficients for which we wish to solve are expfessed as a power series
in the perturbation, usually taken only to first order. Integration of
this'equation yields a probability amplitude for observing the arbitrary
state ¥y.

In anticipation of the naturé of the specific perturbation to be
consi&eréd later, we note that if the system is originélly in some

eigenstate,A?i, of Hy» and if the perturbation depends harmonically on

the time,

V(t) = v, et o ' (14)

then the probability of finding the system in some other eigenstate
Yics i.e.,-lgk(t)lz; is directly proportional to the time that the
perfurbation has been active. This implies we should convert our
~ attention to a transition probability per unit time, which finally

leads to Fermi's "'Golden Rule'':
2m : 2 |
Peei = G (B ‘“’kl"”i)-l" (15)

Here Pk+i is the transition probability per unit time for the process
yi—*wk‘ The term p(Ek) is the energy density of final states in the

néighborhoodvabout Wk.

B. The Classical Radiation Field and the Photoemission Cross Section

In.order'to use Eq. (15) to calculate the transition probabilities
induced by the electromagnetic field, we must decide upbn the form of the

perturbation V. It is possible to show by correspondence arguments
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that the Hamiltonian describing a system of spinless particles of

charge e and mass m in an electromagnetic field is given by

S e . 2 : '
H o= Hy+ the o o -2 p.p 4 8 |A12>+e¢ . (16)
S0 e 2 s e s |

\4'>

Although we are not specifically interested in spinless particles, the
interaction Betweeh the spin of the electron and the incident light wa?e
is negligiblé. The operator fk) represents the Hamiltonian describing '
the parti¢1es in the absence of the field. The vector -thy is a sum

of momentum operators for the individual particles

vo= 1) . o B o an
1 .

The radiation field itself is described by the vectdr potential A and
a scalar potential ¢. These are related to the electric and magnetic
field strengths, E and H, by
S T I
E - cgahow

(18)
H o= 7 xA

There is some flexibility in choosing the potentials which define the
field, and, for fields such as those associated with- a light wave, it |

is common to work in the coulomb gauge. In this case we have

(19y
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Since we have assumed that the field is weak, we furthermore neglect the

term in ]A{z, and finally obtain:

H = Hy - the A .y E o)
mcC ~ ~ o
or
; -the S (1)
V(t) = = A-v . o (21)

Now the vector potential for radiation propagating in the form of

a plane wave of wave vector q and frequency w can be written

-2q°T Zwt iqsr -fwt _
A= u A0 e " e + e Te _ (22)

~

where u 1is a unit vector specifying the direction of the electric

field vector (the polarization), and..AO is the amplitude of the potentiai.

The intensity associated with this plane wave is:

~

wz , . _ .
I = m— AO . _ (23)

Since the pertﬁrbatibn is harmenic and we are considering a final state
¥y which lies in the continuum, we can substitute Egs. (21,_22, 23) into
Eq. (15) and find that

1q°-T

4n’he’l |2 '
= S22 o(BY) |u-<yle T T vy - DN

. P .
"k<«1i .
m2cw?
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This is an expression for the transition probability per unit time from '
state ¥. to state ¥y with Ek>Ei' Only the second component of the
vector potential [Eq. (22)] has contributed to this pfobability.

This probability is generally expressed in é’somewhat different

form. ‘Thé cross section, o, 1s defined as the total transition probability

per unit time divided by the incident photon flﬁx. This flux is simply
the infensify of the electromagnetic field dividéd_bylthe photon energy.
A more conveﬁient quantity, however, is the differential cross section
for ejectioh of an electron in a small solid angle, dQ, with respect

to some axis, e.g., that of the electric field vector. This is

given by

doy . 2 7 :
k«i _ mh'e .
de - mzcw i (Ek) - <\ykl ¢ Y l wi) ’ : (25)

where p(Ek) 'is the density of final states corresponding tb the given
solid angle. |

This completes the development of the cross section for photé-
emission in a purely formal way. The major assumption which has been
made thus far is that the interaction between the electrons and the
electromagnefié field.is small enough that it can be treated in first
order. The final assumption about the field which we have not discussed
thus far, but is generally made, involves thé exponential factor in the

matrix element [Eq. (25)]. It can be expanded in the series
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e = 1+ 4q-Tt + %(Zq'T)" + .... (26)

If only the first term in this sum is retained, the'fesulting simplification
is knowﬁ as the ”dipolevapproximation”. Since the momentum of the photon

is dirécfly proportional to q, it is sometimes referred to as the neglect
of phofon momentum; this omission will obviously become less accebtable

as the photon energy increases. .For the purposes of PES, the dipole
approximation»should be rather good as long as q %< k, where k is the

wavevector of the photoelectron.3

IIT. THE WAVEFUNCTIONS

L¢t us now cbnsider the wavefunctions ¥y and wi; which describe
eigenstates of an electrostatic Hamiltonian in_the_absence of perturbation.
In systems containing two or morevelectrons, exact solutions for these
wavefunctions do not exist, and we are forced to. seek appropriate
approximations. As the structure of the final ionic states and the
mechanisms from which they derive oscillator strength are usually
_ interpreted'in the language of these approximatioﬁs, it is helpful to
examine in some detail what they imply about the electronic structure
of the system and the nature of the ionization pfocess.

Thé'Haﬁiltonian for which we seek solutions of the Schrodinger

-

equation will be of the non-relativistic electrostatic form for an

N-electron system in the field of a nucleus of charge Z,

Hy = ZN:[/ v§-§]+§32 r; v - @n
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- The first term in brackets represents the kinetic emergy and nuclear

attraction operators for the it electron and the last term is the
coulombic . interaction between electrons i and 'j.4
Nearly all work on this problem involves the use of the Variation

Principle. This approach employs an approximate form for the N-electron

‘wavefunction which contains adjustable parameters that are varied to

minimize the expectation value of the Hamiltonian. Because the energy
found in this way must be an upper bound to the actual energy, the
optimized parameters define the best approximation to the true wave-

function available using a particular model.5

A. One-Electron Models

The one-electron appreximation is nearly always employed to
calculate electronic structure. It is assumed that the N-eleCtren‘
wavefunction ean be expressed in a form which involves N one-electron
functions. . The simplest wavefunction of this type is the Hartree
product,6 in which the motion of any one electron is assumed to be

completely independent of the others, i.e.,

Wo(l,Z, ... N) ¢1(l) ¢2(2) cee ¢N(N)f (28)

The spin orbital ¢1(1) is a function of the coordinates of electron 1,
and is the product of a spatial function, xl(rl,ei,¢1),'and a one-electron
spin function, a(1) or 8(1), where «o correSponds to m = +% and B to

= .1
ms 5.
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If we assume the motion of each electron is governed by a central
field, the one-electron functions will be hydrogen-like. The {x} are

thus products of a radial function and a spherical harmonic,
M= Ry ) Yyple,0) - (29)

The quantum numbers n, 2 and m are the same as those in the hydrogen
problem and we therefore speak of the orbitals as being s, p, or d-like,
etc. The radial function Imhl(r) is regarded as adjustable and
application of the variational technique (subject to the constraint

that the radial function should femain normalized to unity) leads.to

a set of N. integro-differentiél equations which determine fhe optimum
.set of brbitals {¢}. Each such orbital must satisfy a pseudo-Schrodinger
equation for an effective Hamiltonian in which the pdtentiél is pfovided‘
by the nuclear attraction and the spherically-averaged Coulbmbic inter-
action with all the other electrons. These equafions are solved
iteratively, since the potential in which a specific électron-moves
depends on the other, as yet undetermined, orbitals;v.One originally
guesses a set of radial functions. These orbitals are used to génerate

a potential,vwhich leads to an improved set of functioné. These new
functions generate a new field, etc. This is continued uﬁtil all the
orbitals change by less than some acceptable threshold from one iteration

to the next, ‘and this final potential is known as the self-consistent

field.



.

-13-

The Hartree product [Eq. (28)] sufferé from the seriéus drawback
that it does not satisfy the requirement of antisymmetry the exact wave-
function must obey; interchange of the.coordinatés_of two electrons does
‘not result in a change in the sign>of the wavefunction. The simplest
wavefunction for a closed shell atom whiéh preservés the.product form of

Hartree but sétisfys the antisymmetry requirement is given by Eq.'(SO):
o2, . M) = A8, 1) 0,() ... oM} (0)

A(N) is called the N-electron antisymmetrizer and permutes the coordinates
of the electrons in the direct product. Its effect is more explicitly

seen in the equivalent form of the Slater determinant:

$,(1) 0,(1) ... gD

. $,(2) 0,(2) ... oy(D)

N

YNy = (31)

6 (N) 6, (N) ... dy(N)

When the determinantal function above is subjected to the vari-
ational technique (constraining the {¢} to remain normalized and orthogonal),

the familiar Hartree-Fock equations result:

| [/ V2 - -f—]¢i(1) +Z[/¢§(_z) = ¢j(2)a12] 0 (D)
o (32)

:E: eij.¢j(1)‘

j

D slnggum) [ 6@ - ¢i(2)dr2] 6,1
i
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The first two terms in brackets arise in Hartree's'fbrmulation, but the

last one is strictly a result of the antisymmetric form of the wave-

function. This exchange term is too well-known to warrant discussion. .
The reason we have written out the Fock.equations explicitly is

to point put the presénce of the Lagrangian multipliers, €55 It Can'bé

shown thé; if.the one-electron spin orbitals are subjected to a ﬁnitary

transformation, the totalzwavefunction is unchanged, and the form of the

Hartree-Fock equations is also invariant;'.Therefore the spin-orbitals

are not uniquely determined, and caution should be employed in placing too

great an impdrtance on the "physical nature' of these one-electron functions.

The fact that many of the final ionic states important in PES can be

described:in terms of the ionization of an.electron from a.specific orbital

rests on the success of Koopmans' Theorem7 as a fairly accurate first

approximation to the ionic state. Koopmans, however, realized that there

is an optiﬁum set of spin orbitals for describing ionization; the canonical

set which result from that particular unitary transformation of the ¢'s

which diagonalizes the Lagrangian multiplier matrixv;ij. It is fortunate

that Koopmans' assumption works as well as it does; however, situations

arise for which one-electron descriptions are no longer adequate (as is

true for the case of satellite structure in PES, to be discussed later).

vRigorously, we can only say that photoionization takes a system described

- by one many-body wavefunction to a final state characterized by another i

many-body wavefunction. The canonical Hartree-Fock orbitals are "'special"’

for describing this process because they happen to lump most of the

"many-body'' effects into one orbital.

To illustrate this point, consider the transition from the ground
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~ ) 1 e ) L
state of the molecule carbon monoxide ("I ) to its first ionic state

.2 . s . .
possessing 1. character. This transition can be described fairly

.accurately in terms of the ionization of an electron from the canonical

8 1m. This "molecular orbital' extends over both atomic centers;9

orbital
however, the deloéalized molecular orbitals of CO can be’tranSformed_
into a completely equivalent set thch are largely 1ocalized and corfe-
spond to the classical concepts of bondlng palrs of electrons. 10 A |
descrlptlon of the same transition in terms of these localized orbitals
would necessitate ta1k1ng of ionization of 'part of an electron' from a
carbon-oxygen “bonding” orbital, another fraction of an electron from
the carbon ''lone pair'', etc. In this representation the transition must

be referred to as a mahy-body process whereas it is adequately descfibed ;

as a one-electron process in the canonical representation. The same

~arguments apply to Bloch vs. Wannier functions when discussing a solid.

Although it reduces to a question of semantics, the point has largely:
been unappreciated by photoelectron spectroscopists,'and the question
of what constitutes '"many body" effects in ionization is meaningful only

within the context of a specific representation;

B. Correlation and Configuration Interaction

We now turn to the final refinement in the form of the wavefunction
which allows one, in principle, to approach the éxactvwavefunction to any
degree of accuracy desired,ll' The particular method we shall describe
is not fhe only one available for correcting the shortcomings of the
Hartree-Fock function, but it is the one in most common use by quantum

chemists. This model is termed configuration interaction (CI), so-called



-16-

because in the early days of quantum mechanics it was felt that thé
Hartree—Foék wavefunction was not exact becauseiof its interaction with.
low-1lying excited states. It has;since been recognized that this is not
the case.-‘The assumption of the central field‘ahd the spheriéally-averaged
potential, while accounting for the long range portion of the.Coulombic
interéction, does not allow for the description of the instantaneous
repulsion between electrons. The CI concepts introduced below will be
used in the discussion of the cross section in Section IV. After the
formalism is developed, the types of configurationé important for
correlating‘various systems will be discussed.

There are an infinite number of solutions to the Hartree-Fock
equations (32) in addition to those which are occupied in the Hartree-
Fock.determihant. These unoccupied solutions are termed the virtual
orbitals. Obviously, an infinite number of Slatef determinants can be
formed by "eXciting" electrons from one or more of fhe Hartree-Fock
orbitals into virtual orbitals, and the exact wavéfunction can therefore
be expanded in this series of Slater determiﬁanté. Thus the exact
wavefunction can be written |

YoM = IC e, 3
k .
where the Ck ‘are the expansion coefficients (agéin génerally determined
variationally) and ) represents a specific Slatéf determinant. This
added flexibility usually results in a decrease in the energy of the
wavefunction of less than 1%, but even this is often large compared to’

electron affinities, reaction energetics, and other properties of interest

'
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to the chemist. Furthermore, the changeé in the:chérge density brought
about by CI are often very important in,the computation of dipole moments,
the electrostatic field at the nucleus, efc. A'fecent reviéw of the
effects ofvcorreiation‘on many properties of interest has been given
by Schaefef;lz

The exact form and convergence préperties of the CI wavefunctioﬁ
(33) are,.Of course, dependent on the orbital basis‘employéd. Fér closed-
shell systems suéh as the neon atom; the HartreefFogk determinant dominates
all others. The remaining corrections have been termed ''dynamical corre-
lations" bvainanoélu13 and can be shown to primarily reflect short-range
correlations in the motion of two electrons. The:inclusion of such |
effects thus keeps the electrons farther apart and reduces the energy.
In the 1nground state of the neon atom, e.g., fhis‘correlation energy
has been estimated_l4 to be 10.37 eV cdmpared to the Hartree-Fock energy
of 3497.73 eV; a difference of approximately 0.33. ' |

In open-shell atoms and molecules, fundamehtally differént types

of CI occur. In many cases, it is not even possible (within the usual

assumptions_of doubly-occupied spatial orbitals) to write a single

. determinant which possesses the correct symmetry for the state in

question.15 ‘Even at this level, the concept of oh¢'e1éctron in a
particular orbital muét be abandoned. The asymmetry of the Coulomb field
means that if is no longer even roughly accurate to speak of individual
electrons possessing specific anguiar momenta as was the case for the
closed-shell central fiéld. In addition, relativéiy large CI effects
appear which are chéracterized by excitations from the Hartree-Fock

orbitals into virtual orbitals that are "nearly degenerate' with them.
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For example, the 2s% » sz excitation is very important for correlating
the ground state of Be.

The two factors mentioned above fall intdlthe general category of
"internal" and "semi-internal'' correlation as discussed by Silverstone

16 In addition to them, the '"all-external" or dynamical

and Sinanoglu.
corrélation'present in closed-shell systems is alsb important. Because
of theéé prbblems it is sometimes hazardous, even in the Hartree-Fock
approximation, to speak of the 'ionization of the 1s electron' in an
open-shell atom or molecule. The phenomenon of multiplet splitting in

PES is a dramatic example of this.17’18

1vV. THE FINAL STATE IN PHOTOEMISSION

In Section II we emphasized the fact thaﬁ photoionization is a
transition between two states characterized by N-electron wavefunctions.
In order to obtain some physical insight into the processes leading to
the final states observed in PES, we must at least begin by discussing
the transition in terms of a one-électron orbital model. The particular

failures of the one-electron picture will become apparent later.

A. The Primary State

The most intense peaks, or "primary' states, observed in photo-
electron spectroscopy involve, to first approximation, the ionization of
an electron from a specific canonical spin-orbitéi in the atom or molecule.
" These primary'states are the ones roughly describable by Koopmans' assumption,
in the sense that the electron density in the ionic state resembles the

original system with a "hole' in the region of space which characterized
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the orbital. 'The most probable continuum function is the one which
results When the photoelectron accepts the unit of angular momentum
transferred’in the absorptioh process. Thus ionization of the 1s electron
in neon is well described by a final ionic state of,zS éymmetry,’coupled
to a contihuum function of p Symmetry, which gives p symmetry for the
entire system. The most important channels in the ionization of the Zp
electron involve d and s-symmetry continuum functions, etc.19 |
Although fhese one-electron descriptions are often qualifatiVely
satisfying, the '"passive'" electrons in the final state have actually
relaxed; they are not optimally described by the .same spin-orbitals as
in the grouhd state.20 ~This relaxation, even without explicitly involving
CI, constitutes a many-body effect in the sense that fhe motion of those
electrons not directly involved in the ionization are coupled to the
influence of the departing photoélectron. This relaxation phenomenon

has important consequences for both the energy and intensity of the

primary states and will be discussed later.

B. Correlation States

Toward higher binding energy from each of these primary peaks
there are generally.satellites which have come to be known as reflecting
the preséﬁce of "shake-up'" states. There are, in general, an infinite
number of such states associated with each primary state, but only a few
of them haﬁe observable intensities. They can, in -favorable circumstances,
be 20 - 30% as intense as the primary peak. In an orbital description
they are usually described as one-electron excitations accompanying

ionization. The excitations which lead to the most intense satellites
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generally follow monopole selection rules, e.g., ionization df the.neon'
1s electron accompanied by the excitation of a 2? electron into a 3p
orbital. This monopole mechanism results in an ionic state of the same
angular momentum (ZS)'as the primary hole state énd a continuum function
of p character, yielding the overall Ip symmetry required_by the dipole
selection rules. .

Ai%hough the orbital picture described above is cdmmonly used,
compared'to'thé primary states these "shakeup' states are much less favorably
described in terms of one-electroﬁ transitions. First of all, there are
usually two or more final states of the proper symmetry which can be
derived from a given one-electron transition. This follows because each
one-electfdn'excitation may result in two (or more) unpaired valence
elecfrons which can couple to the unpaired core electron to give two (orv
more) finél states having the same symmetry as the primary state. FEach
one-electron excitation thus splits, a result analoédus tbvthe multiplet
splitting phenomenon in the primary states of paramagnetic species. |
Furfhermore, the assumptions of one-electron, one orbital often have to
be discarded. This is due to the possibility of configuratioﬁ mixing in .
the final state, which can lead to many one-electron processes being
involved in reaching a given final state. As an examplé, the 2p » np
and 2p » n'p processes may both become important-in reaching a particular
shakeup state in neon. Bagus and Gelius21 have shown that the energies
of the Ne 1s satellites are fairly well déécribed in terms of an (optimized
orbital) multi-determinanfal‘wavefunction corresponding to a specific
(Zp > np) orbital excitation. This would seem to imply that in this case

mixing among the various excited configurations is small. The intensities
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computed in the sﬁédenvapproximatiohzz from these w5vefunctiohs, howevef,
are in poor.agreement with experiment.’23 Recent calculations on the F 1s
satellites in hydrogen fluoride have shown that the most intense satellite
state in the‘spectrum inyolves strong mixing ofvboth>30 + 50 [roughly

F2p, +F3s ]andln>2n [F2p  »F3p ] excitations.?

- Any attempt
to describe this state as being reached by a single one-election" '
excitationiwduld.require, at the least, removal of the restrictioné of
specific angular momenta for every orbital. We would be forced to speak

of the excitation as involving orbitals which have both ¢ and = character.

Finally, in addition to the relaxation processes impoftant in

primary states, there are additional rearrangements involved even in a

state which can be well described in the "monopole excitation' model.
As a result, the orbitals which electrons are ""shaken up to' often beér
little relationship to the excited state orbitals bf tﬁe neutral system.
It can also be shown thaf, in the absence of these many-body relaxation
effects, there wbuld be no satellites at all observed in photoélectron-
spectroScopy. - For this variety of reasons the satellites are also
referred to as “correlation peaksd. |

The third'type of state observed arises from what is called the
"conjugate shakeup' mechanism. The transition moments to these states
are generally mhch smaller than the previous two types mentioned. As an
example,.a conjugate shakeup process accompanying 1s ionization in neon
might lead to the 2p final ionic state of Ne' (1512522p535).: The continuum
function Qould then.have either s or d symmetry, resultihglih the overall
'p character ﬁecessafy from the dipole selection rules. This path is

termed "conjugate shakeup' since it appears that the one-electron excitation
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is 2p » 3s, which does not follow the monopole rules proposed for. the |
normal shékeup process.25 | '

The more common conjugate shakeup situation occurs wheﬁ ionization
and excitation occur in the same shell. For example, the final state
'_1522522p”35(ep), reached in the one-electron model through the transitions
2p > ep, 2p » 3s, cannot be reached via the usual monopole selection rules.
Wuillemier and Kraus.e.26 have eStimafed that an uppér‘limit for the‘intensity
of this process relative to the normal case (final electron configuration
1522522pu3p) is of the ofder of 25%. States of this type have also béen
identified in the He(I) and He(II) spectra of gaseoﬁs cadmium,27 mercury,28

and lead.29 The ground state of Hg, e.g., 1is described by the Hartree-

Fock determinant

[core] 65> (IS)
The 6s level primary ionic state

[core] 6s* (25)
is-observéd as well as the conjugate state

[core] 6p1 (ZP)

The latter is roughly 1% as intense as the primary peak (at the He(I)
photon energy). The conjugate excitation 6s - 6p is invoked in. the one-
electron model .to explain this final state. Berkowitz et 51.28 have shown
that a greét deal of the transition moment to this state is caused by

admixture of the '"nearly degenerate' configuration

[core] 6p2 (IS)
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into the ground state wavefunction. Thus the inclusion of correlatibn
in the ground state of Hg is a very 1mportant mechanlsm for contrlbutlng

to the observed satelllte structure.

V. MANY ELECTRON EFFECTS ON THE CROSS SECTION _

In thlS sectlon we examine the specific mathemat1ca1 form of ‘many-.
body effects on the photoionization transition moment. The terms Wthh
arise in a 51ng1e -determinantal . descrlptlon of both initial and flnal
state will be dealt with first, followed by the effects of conflguratlon

interaction.30

A. Relaxation in the Primary State

Let us begin with the single Slater determinants

v.(N) = NS |¢1(1) $,(2) f--»¢N(N)I  | ‘ (34a)
and
wf(N)” = . | x(1) ¢;(2) ...:¢§(N)| L (34b)

The orbitals of the final state have been primed‘to‘emphasize that they
are not necessarily identical to the.initial‘state fﬁnctions. We have
also associated the continuum function, x(1), with_the Ofbifal $,5 i.e.,
if the set {¢', ¢’ .,.} closely resembles {¢2, gs ...} except for the
'effects of relaxation, then ‘{f corresponds to ‘the prlmary state associated
with the.orbltal ¢1. |

When these wavefunctions are substituted into the transition

moment, the result is given by
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!
\

N | |
<¥e(N) |k§1 Vi L ¥ D> = <xb o> Cye(N-1, %, 1Y, (N-1, 6, 1))

fei
N | |
+ 2(1) RCUALY 5> CrN-1, %, D ¥y (N1, 05, 1>
j=2 ! |
N, | |
PN 3 ¢xlos ><wf(N1 X, l)lZ Tly N1, 65, 10> (35)
3= | k=2 |

The notation Wf(N-l, X, 1) refers to ah N-1 electron Slater determinant
which is formed from the N-electron détermiﬁaht by deleting the column

’containing the orbital x and the row denoting electron 1; i.e.,

63(2) 01(2) ... 45(D)

1,03 0 (3) ol e () |
ve(N-1,x,1) = [(N-1)!1% | (36)

o (N) L(N) ... oy (N)

Thevsame notation applys to the wavefunction Wi(N41,¢j, 1). It is formed
by striking the column containing ¢j and the row qonfaining electron 1
from Wi(N).b The sums over the index j are over all spin orbitals.

Since X has either « or B spin (depending on the nature of $,), certain
terms in the sums over j in Eq. (35) vanish by épin orthogonality. For
the present, hOWever, we will retain the full expression, but simplify

its appéarance with'the'following definitions:

13 _ . .
57 = Q¥e(N-1,%,1) [ ¥;(N-1, 45, 1))

o
= Y1, %, 1) | 1;5 Tl 401, 65, 1) -

Equation (35) is then given by
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-3
1}

N
11 : 1+j j
xlv o> s+ Y -1 <xl o> st

fei
- j=2

(37)

+

N . -
22 (DM exlop> P
j=1

The first term of (37) is related to the usual one-electron interpretation.
An electron in orbital ¢, makes a dipole transition to the continuum. If
the orbital angular momentum of ¢, is given by A, then (x!v1|¢l> can be
non-zero only if X has A+1 or A-1 éymmetfy. )
| The_féctor st! multiplying this'one-electron.moment is the overlap
of the '"'passive orbitals'", i.e., those not directiy invOlVed in the
ionizatioﬁ, This overlap factor is generally between .9 and 1.0 for
primary statés, but much smaller fof satellite states. . Its effect is

to introduée the many-body aspects of relaxation into the cross;sectionf
In fact, it is easy to show that if we had made Koopmans' assumption --
ie., ¢, = ¢;;‘¢3 = ¢, etc. -- all the sums in Eq. (37) would vanish,
s!! would be‘unity, aﬁd we would be left with the active electron
approximation

Teey = (x]vll¢l> . - (38)

Relaxation thus intrbduces a multiplicative factor which reduces the
'contribution of the one-electron moment; It is also the source of the
additive corrections in Eq. (37). o
. The first sum over j in Eq. (37) arises from the antisymmétry
requirements on the initial state wavefunctién, and brings Componénts

‘into the total transition moment which arise from dipole transitions
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involving'therther orbitals of the initial staté. It wiil be shown in
a later example to be interpretable as an ionization accompaniéd by |
monopole excitation.

The second line in Eq. (37) arises from the action of the'remaining
momegtum operators, v, through.VN. Here an electron appears to make a
monogble transition (¢j » x) and the passive orbitals havg,rearranged ,
themselves through a dipole excitation. The fofm Of:this-term is very
similar to that of the conjugate shakeup mechanism proposed by Berkowitz
et 51.28 |

Each of these three types of processes contribute to thé transition
moment evén in a primary state. For example, consider the neon (1s)
primary hole state reached by'absorption of soft x-ray radiation. The
ionic state has 23 character and the continuum function is p-like. The

first term in Eq. (37)

(xpr[ls)Sl’ls_
will dominate. The normal shakeup mechénism is involved in the non-
vanishing‘térm- |

<xp|\7125>sl’Zs N

An electron appéars té be ionized from the 2s orbital accompanied by the‘

monopole transition 1s - 2s. Finally, a nonvanishing contribution

1,2p
X_[2p)p~?
_p|,P

involves ionization of the 2p electrbn, accompahied (roughly speaking)

by the excitation 1s -+ 2p. All three mechanisms reach the same final

3



-27-

state and reflect the many-body nature of photoionization. o -
In the particular example used here, the second term should be
negligible'with respect to the first. This can be seen from examination

of the ratio

<xp|v.|25>sl'ZS

= - . (39)
"2 pr[v]ls)Sl’ls -

If R, is substantial compared to unity, retention of the second term is

: , 1,2s B '
SHeed L. N .

warranted. Now —gijig— <<1; 1in fact a rough estimate for this term

20 3

based on Bagus' results’’ is 107°. Furthermore (xp|V|25)/(xp|V|15) is

‘of the order of magnitude of 107} for x-rays of approximately 1 keV energy.

4 that of the

Thus the second term makes a contribution approximately 10~
first. As a general rule,'tﬁe fatio of the overlap factors will always
be small for any primary state, thereby decreasing the importance of
‘this term. Certain situations might arise, howevér, when this small
factor would be counterbalanced by a lérge ratio in the one-electron
moments and this mechanism could then conceivably make a sizable contfi—
bution to the total cross section. | ‘

It is much more difficult to estimate the impoftanée of the third
term.  Its effect is governed by the ratio |
, (XblzP)Pl’zp |
Ry = I,Ts

(xp|v|15>s

(40)

To estimate the factor (xp|2p)/(xp|vlls> we note that if we choose a

vplane wave for Xp’ i.e., xp « eik'f, then (xpllepS = ik(xplZp), and
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2

, |
x_|2p v|2
| o, 12p)] p loglvizes]
2 2 [ 2
{ vils) { )
| O, 1v]1s)] K oG |v]1s)]

Qualitativeiy, one would thus expect this term to be very dependent on-fhe
phetbn energy due to the presence of both thvell/k2 faéter and the ratio
of the transition moments. The_Pl’-Zp/Sl’lS rétio, hewever; is energy
independent. 'P1’2p is the complex conjugate of the x-ray emission
transition moment -- in the>appreximetion’in which relaxed orbitals are -
used for the initial (1s hole) state and the neutral etom ground state
1,2p

functions are used to describe the final (2p hole) state. P in neon

1 1 1,1s is neariy:unity. - In the

is of the order of 10 ~ bohr *, while S
general case, the emisSion transition moment will be dependent on the -
specifics of the atomic or molecular structure. A ratio of-this type
has been examined for the F(1s) hele state of HF and been found to be
negl‘igible.z'4 More work is needed, however, to be eble to.assess the
significance of this term. At this time it seems probable that this
third type of contribution is of minor impottance.except possibly in the
region near fhresholdli | |

To summatize, the major many-body effect brought about by relaxation
is a reductioh'of the active electron transitionvmoment‘by the multipli; A
cative factor s'!. Neglect of relaxation would therefore result in a |
predicted cress section which is higher than the experimental result32
by a factor of (Sll)z. 'In fact, this tendency toﬁerd overestimation has
been noted by Wuiellemier and Krause26 in a recent comparison of expefi-
mental data for neon with theoretical predictions which disregard-

relakation. They have found that the discrepancy is greatest in those



-29-

éases where felaxation effects shoﬁld be more important,ve.g., for nearly
all incident photonvenergieé the calculated 2s orbital Cross section is ~ 20%
greater thah experiment, whereas the 2p orbitél CTOSS secfioh is in much
‘better agreement. - More theoreticai ﬁork is neéded to determine if this
discrepéncy i; due to the relaxation effect, or iS'primarily a result of

the need for a more sophisticated wavefunction which explicitly includes

configuration interaction.33’34v

B. = Configuration Interaction

Tﬁus faf we have examined the consequences of relaxation on the
photoionization cross section. This was done within the assumption of
single-determinantal wavefunctions for both the initial and final states.
Such wavefunctions suffer from the inadequacies pbinted out}in Section 111,
and inclusion of configuration interaction can have significant effects
on the cross sectibn. CI in the initial state appears to be the prime
contfibutor fo-thebobserved intensity of the conjugate'shakeup peaks in
Hg and Cd.27’2$ The importance of correlation in detérmining thevintensity
of normal shakeup peaks in which ionization and excitation occur iﬁ'the

S_Carlson et a1,36 and Byron

same valence‘shell has been noted by Xberg,3
and Joachain..z’7 The importance of both initial and final state correlation
in core-level satellite spectra has recently been studied by Martin, Mills,
and Shirley.24’30 In the following discussion we will concehtrate on

the qﬁalitative aspects of CI as it affects core level satellite structure.

Suppose that the initial state is described by a multiconfiguration

wavefunction WO(N)

VO(N)F = 1Dy &), . " (41)
| - |
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where DOm‘ is the coefficient of the_configuration.@ln in the wavefunction
¥y The configurations may be single Slater determinants expanded in the
occupied and virtual orbital set {¢} or, if necesséry, sums of determinants
chosen to possess the symmetry properties of the gfound state. 'As
discussed preViously, the cbefficient of the Hartree-Fock configuration,
DOO’ will be the leading term in the expansion. For closed-shell atoms
'or molecules it will usually have a value between 0.9 and 1.0, the
rrest.of the coefficients being 0.2 or less. |
Each final state is expanded similarly,
o) = IDn s0 . (42
n ‘ _

wﬁere the primés on the configurations denote that they have been formed
usiﬁg the continuum function and a éet of occupied and virtual orbitals
appropriate'qu the final state. Although severai virtual continuum
functions should, in principle, be included and ailbwed to be occupied
in the CI calculation, we will assume each configuration contains the

one eiectron function Xer s and perform the CI on the ion alone. Thus

Ve (N = X (1) Izl Corp op(N-1) - | (43)

00
where @b(N-l) is the hole state Hartree-Fock configuration. For the

Again, the primary hole state, f'=0, is characterized by a large C

satellite states f', there may be several configurations which mix
strongly. This will be dependent to some extent upon the virtual orbitals

used to define the excited configurations, but in most cases there will
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be a small number (v.1 to 3) of configurations with coeff1c1ents greater
than 0.5.
Insertion of Eqs. (41) and (43) into the eXpression for the

" transition moment (35) yields

Terg = Z Cer Do <xf,|\7|§>1>. s;u}l# | (44)
m,n :
We have again assumed that the final state predominahtly involves
ionization from orbital ¢, Snm is the (N-1) electron overlap infegralv
Between configurations n and m and the dots represent the other terms
obtained. in view of the previous discussion they should be small for -
38

core-level ionization and will be neglected.

~ The ratio of the transition moments to the primary state and a

satellite is thus given by:

11
<xplV1e, > Z COn Dom Snm

T00 o m,n . 45
Tern g1l (45)
PO Gilve> 3 Coun Ogn S
' m,n

- If the final states are close in energy, then the one-electron matrix
eleﬁents should be very nearly the same. The density of final states
which enters into the cross section [Eq. (25)] should also be similar
for the two states. These two assumptions lead to the relative intensities

of the two states in the overlap approximation,39

iECOn on S|

1 T
2 - —_— | (46)
£'0 'Zcf'n om Sem

m,n
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To‘illustrate these CI effects, we have diawh é state diagram
for a four-electron system in Fig. 1. On the left ié the Hartree-Fock
level for the'ground state and some of its excited configurations; above
these are the primary hole state configuration and the paif of
Configp?ations'which are the first approximations to the shakeup states.
In thé.middle of the diagram we have allowed the»ibnic configurations
to interact, forming the observable states of the ion. The ground state
function has also been allowed to mix with its exCited configurationé;
On the far right we have assigned hypothetical CI wavefunctions for
the ionic States.' The wavefunction for the groundvstate is the analog_
of WO(Nel,ls,l) -- the 1s orbital has been projécted out of the wave-
function. |

‘The effective intensity of the primary hole state is given in our
example by the four contributions to the overlap integfal denoted by
A, B, C, and D.. The total overlap integral for the‘primary hole state
is dominated by the contribution from A because it is a product of two ‘
large coefficiénts and a large determinantal overlap. Contributions B
and C are smaller because they involve a small product of coefficients
together with a small overlap integral. This integral is not zero, since
the orbitals'bf’the hole state have relaxed somewhat. Finally, the
contribution from D is small because, although the determinantal overlap
is large, the product of the coefficients is very small.

In the case of the satellites, however, the total overlap is a
fraction of that for the primary state and configurétion interaction
contributions afe much more important. A main contributor may be the

analog to path B, since the coefficients are both large. Within this
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-overlap p1cture the small 1nten51ty of the satellltes is due to the
small determlnantal overlap between the shakeup conflguratlons and the
ground state Path A might also contribute an amount of the same order
of magnltude since, although the product of coefficients is small, the
determ1nanta1 overlap is large. The two contrlbutlons mentioned thus
far could be termed a CI effect in the final state. For similar reasons,
the analog of path D is also important for the satellites and.it arises
‘through'an'initial state CI mechanism. The contribntion from path C 1is
obviously smaller than the others.

Because the ratio of the intensity of satellite to .primary peaks
is given by_the ratio of the total overlaps; configoration interaction
is expected to be very important in understanding even the qualitative
nature of the satellites. Contributions to the total overlap enter with
a phase, and omission of CI can result in intensities which are either
too’high‘or too low.

To summarize this section, many-body effects on the cross section
arise from two somewhat artificially separate phenomena. The cross
section to a primary hole state is affected predominéntly by relaxation
g in the passive orbitals. This results in an apparent reduction in‘the
cross section from that computed assuming no relaxation. Additional
relaxation effects and the inclusion of CI is_expected to be of lesser
importance for most prinary states, although there may arise situations
where it becomes‘significant (multiplet splitting,.olosely spaced primary
states, etc.). The infensities of satellite peaks, on the other hand,
depend entireiy-upon relaxation and configuration interaction contributions.

In a strictly formal vein, of course, there exist only eigenstates of the
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electrostatic Hamiltonian. The concepts of relaxation and CI arise only
when we attempt to form better approximations to those eigenstates than
are available within the confines of an independent electron model.
.Thus‘far, we have examined relaxation as it affects peak intensitieé.
It is well known that it also has important consequences for the energies
of the‘¥iﬁél states. The latter part of this chapter will be conéerned
with the qualitative aspects of the final state stabilization which comes
about through the rearrangement of the passive electrons. This relaxation

energy can bé related to the intensity of the satellite peaks_through an

0

approximate sum rule derived by Manne and Rberg.4 Although these authors

obtained the result from an application of the sudden approximation, it

can also beiderivéd in the dipole approximation. We shall not show this,

but simply note that it follows from the neglect of an energy dependence

in the ratio of the cross section for the primary state vs. its satellites.
In our notation, the sum rule is given by

> (Ei)lﬁf

f=1 ‘Mo

D

wheré ER is the relaxation energy, (If/IO) is the intensity of the
satellite peak relative to the main peak and Ag is the separation in
energy betweén the satellite and the primary state. - Thé denominator
simply reflects a normalization condition so that the intensity units

are arbitrary. The summations are taken over discrete satellites; they

convert to an integration over any continua.
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From Eq. (47) we see that there exists a ''lever arm' relétionship
between the satellite intensities and the relaxation energy. if ER
were zero, no Satellites would be observed. In the'case that ER is
large, the.relaxation manifests itself either as én intense set of
satellites "near thé main peak', or weak satellitesi”far from the main
peak', or of course, something in between. The sum rule provides a
great deal of qualitative information about the relaxation process. For
example, it is a common misconception that there‘are no satellites in
the core ievel'photoelectron spectrum of metals. It is known, however,
that there iS'a large relaxation energy involved in core ionization in
these species, so there must be a fairly large probability for multiple
ekcitation processes. In metals the shakeup (as well as the multiple |
ionization or shakeoff) spectrum is essentially continuous because the
excitations are into the conduction band. Thus while no discrete peaks
are observed, the relaxation energy is manifested as a broad background

on the high-binding-energy side of the main peak;

VI. RELAXATION EFFECTS ON BINDING ENERGY

The foregoing discussion related the photoemission spectrum to -
the photoelectric procéss per se. Two features thatfwere emphasized --
the many-electron nature of the process and the multiplicity of final
statés -- should make it clear that 'relaxation enérgy" is a concept
without a unique meaning. In a strictly formalistic, many-electron
description of the phofoemission problem this concept need never arise.
However, in most discussions that focus on the properties of real systems,

a one-electron description is adopted at some point. "Relaxation energy"
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(or "polarization energy') then becomes a useful term for describing the
energy reduction of the passive electrons in the final state. The
relaxation energy, ER(j), accompanying photoemission from one-elé;tron

level j 1is usually defined by

Eg(N-jl) - B0

By (3)

"€ N) - ER(J) + AECorr + AEmult'+ _A_Erel .(48)
Here EO(N-l) ‘and EO(N) are respectively the totalvénergies of the
primary final state and the initial state. The orbital energy ej(N) is

the energy assigned to the jth

orbital in the initial state; by Koopmans'
Theorem7, ;ej(N) is the binding energy that orbital j would have if
the passivé orbitals were unchanged.during photoemission (i.e., no
relaXatibn).‘ In referring to -e¢ we usually automatically'neglect
muitiplet structure and correlation energy. The former is important
only for open-shell systems, and can be corrected in a'straightforward--
way, through the term

AEe = Bg - Eg) - By - Ey)

Here Ec-E¢ is the multiplet energy separation of the final state from
the average energy of that configuration, within a siﬁgle-determinant
description, and Ei-ﬁi is defined similarly. qu most simple atomic
configurations fhese quantities have been tabulated in terms of Slater

integrals.41 The correlation-energy correction, AEcorr’ accounts for

the difference in the energy stabilization of the final and initial
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sta i ion i ion. |
tes through configuration interaction. Clearly AE ¢ @nd 2E

must be considered together for open-shell systems, in which AEmult is
is an artifact, necéssary only if a

‘<

non-relativistic theory has been used. We shall ignore AE ., 1in the

non-zero. The last term, AErel’

following discussion, as it is only an avoidable éomplication. The terms

AE are sometimes important. No unexceptionable general

mlt
statement can be made about these terms, but they may have either sign

and AECorr

and are usually small in magnitude (= 1 eV). By contrast the relaxation
energy term alWays lowers the binding energy (ER > 0), and it is large
(>> 1 eV) for core levels. This section treats relaxation energy in
atoms, molecules, solids, adsorbates, and solutes.. In each case the
physical origin of Ep will be discussed, its magnitude considered_(with

examples where available), and relevant applications mentioned.

A. Atoms -

Removai of an electron from an atomic orbital cfeates a positive
hpie toward which the passive electrons' orbitals-relak to minimize the
systém's total energy. Within the constraint of a qne—determinant wave -
function this relaxation takes place adiabatically;‘i.e., the electrons'
quantum numbers do not change. Hedin and JohansSon42 showed that the
relaxation energy, ER(j), accompanying ionization‘from'orbital j can

be treated conveniently as the sum of inner-shell, intra-shell, and

outer-shell contfibutions,
ER(j ,n) = ER(n' <n) + ER(n' =n) + ER(n‘-' >n). (49)

Here n is the'principal quantum number of orbital j and n' is that
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of the passive electrons;

The inner-shell temm ER(n'<rﬂ is negligible.v Hedin and Johanéson
obtained this result by direct calculation for Na, K, and their ions. To
obtain somé physical insight into why this is true, we note that the

‘ potential inside a hollow charged'sphére is constant. Thus the presence
-+ of an electron in shell n has little influence on a'wavefunction in
shell n' < n. |

Intra-shell reléxation is intermediate in magnitude, usually
< 5 eV. It arises through a feduction, during remoﬁal of an electron
from orbital j, in the average electrostatic repulsion among thevpassiVe
electrons in'shell n. The leading term in ER(n'=¥n) involves a decrease
in the Slater integral Fo(nn), not a change in the coefficient of this
integral (which would appear in the orbital energy). The physical
picture in this case is that the electrons in shell n are all cohstrained
to lie at essentially the same radius but may disttibute themselves on a
sphere of that radius to minimize their repulsive'interaction. A simple
classical model shows that the loss of an electron from an eight-electron
s,p shell will lead to a reduction df v 3% in the average pair repdlsion.
‘between the femaining electrons. If 0 is reduced by 3%, the value of
Ep(n' =n)_v;ou1d be 3.3 eV for the n=2 shell in so_diﬁm and 1.9 eV for
the n=3 shell in potassium, in rough agreement with the values 2.9 eV
and 1.2 eV, respectively, calculated by Hedin and Johansson.

Outerfshell relaxation is easy to understand, and ER(n':>n) may
be very large. An electron in the n shell shields orbitals in the
n'>n shélls almost completely.. Removal of an n-shell electron therefore

| increases the effective nuclear charge experienééd by the n' shell by
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practically one unit. This essentially quantitative shielding has led
to simplified estimates of ER(n':>n) based on "‘equivalent core'' models,
which have proved to be quite accuraté.43 For core-electron binding
energies, oufer-shell relaxation is by far the largest contributor to
ER(j,n) provided that several electrons occupy a shell with n'>n.
‘ Thus for atomic potassium, Hedin and Johanssén found values of_ER (énd
percehtage arising from Ep(n' >n)) of 32.8 eV (96%), 10.8 eV (82%), and
2.2 eV (40%), respectively, for the 1s, 2s, and 3s orbitals.

A mmber of estimates of ER(j,n) for light atoms are availéble.
Bagus did eérly hole-state calculations.20 Rosén énd Lindgren44 develéped
an optimized relativistic Hartree-Fock-Slater method which th beeh applied

45 to the hole states of elements through Cu (Z=29).

by Gelius and Siegbahn
Outer;shell relaxation energies can also be calculated by a method43 that
combines the.polarization potential approach of Hedin and Johansson with
the equivalent-cores model. Table I gives a summary of the total
calculated relaxation enérgies of the orbitals in selected light atoms.
Most of the values were taken from ref. 45 for consistency, but many of

them are also available in other sources and the agreement between

different calculations is very good.
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Table I. Calculated atomic relaxation energies for the
orbitals of light atoms (eV)?

2s 2p 3s Sp : 3d 4s

—
m .

Atom

He 1.5

Li .8 0.0

Be 7.0 0.7 '

B 10.6 1.6 0.7

C 13.7 2.4 1.6

N 16.6 3.0 2.4

0 19.3 3.6 . 3.2

E 22.1 4.1 3.9

Ne 24.8 4.8 4.7

Na 24.0 4.1 4.4

Mg 24.6 5.2 6.0 0.7

Al 26.1 6.1 7.1 1.0 0.2

Si 27.1 7.0 8.0 1.2 0.4,

p 28.3 7.8 8.8 1.3 0.6

S 29.5 8.5 9.6 1.4 0.9

C1 30.7. 9.3 10.4 1.6 1.1

Ar 31.8 9.9 1.1 1.8 1.4

K 32.8 10.8 12.2 2.2 2.0

Ti  35.4 13.0 14.4 3.6 3.4 2.0 0.3
' Mn 40.1 17.2 18.8 5.1 4.9 3.6 0.4
Cu 48.2 -+ 23.7  25.7 7.7 7.2 5.3 0.3

3Values are mostly from ref. 45. Some are interpolated.

Table I'shows that ER(j,n) decreases monotonically with increasing
n, as expected because of the dominance of outer-shell relaxation. For

the same reason, ER(j,n)'increases monotonically with Z for a given
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orbital. ianalehée orbitals only intra-shell relaxation is impbftant,'
~and it is faifly small in most cases. For s,p shells.the_value of ER.
increaées asithé shell is filled within a given pef}od but decreases
from one period to the next higher'one. This is a gonsequence'of the 2p
shell, for eiampie, being smaller than the 3p shell,.aﬁd conSequently
having avgrééter average electron-electron repulsion-energy. Ep is
slightly larger for ns électrons than for np electrons. These obser?
vations wili all be valuable below in discussihg relaXation in molecules.
Even in atoms these results are useful, because they indicate thaf
relaxation energies in valence shells should decrease somewhat in going

to heavy atoms.

B.  Molecules

| The relaxation energy accompanying photoemission from core levels
in moleculeé_is nearly always larger than in atoms, because additional
electronic chafge can flow toward the positive hole. It is convenient,
though arbitrary, to consider the total relaxation energy as the sum Qf

atomic plus "extra-atomic' contributions,
. . ea,. ‘
Ep(5) = ERG) + Eg°Gi). (50

Naturaliy_fhe.éxact paftitioning of ER(j) in this_ﬁay can be neither
unambiguous nor unique, but it can be meaningful within any parti;ular
molecular orbital model. To gain physical insight iﬁto Eﬁa we can
envision it as arising through polarization of electrons toward the hole.

Alternatively, we may think of one unit of positive charge having been

added to the molecule. It would naturally expand repulsively to the
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outside of the molecule to minimize repulsive interaétion. A homonuclear
diatomic moleéule would be expected to acquire a net charge of approxi-
mately +e/2 on each atom, because the core hole from atom A would be
screened by transfer of ~ -e/2 of electronic charge Fhrough polarization
of the valence orbitals. Similarly, in methéne, ioﬁization of the C 1s
érbitai would be accompanied by transfer of charge & -e/4 from each
hydréééﬁ} That these expectations are approximately borne out is shown
in Table II, which gives final-state atomié chargés calculated in the- '
"RPM' approach.46 This is a model that uses CNDO/Z molecular orbitals®’

and accounts for relaxation.

Table II. Charge transfer accompanying core-level ionization
in nitrogen and methane (in eV)a

Atom Orbital q(initial) q(final)  aq(bond)®
Cinal, ¢ 1s -0.05 -0.09 o
HinGH,  C1s +0.01 +0.26 :
Nz(active N) N 1s 0 ' +0.38 0.62
'Nz(passive N) N 1s 0 +0.62 :

From ref. 46.
bCharge transfer along each bond.

From this discussion,ER for a given core level would be expected
to increase substantially from the free atom to the diatomic molecule.
Since the single additional atom will not provide more than ~ e/2 of

screening charge, however, this increase in ER is limited. Experimental



-43-

results onxéecond—row elements have shown that the ls.binding energies
' 43

are (2-3 eV) lower than the value calculated for free atoms. This is
prqbably theAapproximate size of the extra—atomic.relaxation energy in
these molecules. Additional ligands allow further enhancement of ER
because more electrons are available for screening, and the charge buildup
on any ligand is small. Even in the second-row hydrides of C, N, and O
the 1s binding energies are about 6 eV lower than in the free atoms:
again most of this difference can be attributed to‘the Eﬁa term. Nearly
all fhe total possible extra-atomic relaxation enefgy is already realized
for these small molecules. Increase of the molecular size even to

| infinity (a solid) adds only ~ 2- 3 €V additional relaxation energy:

This is to be expected on the argument that screening‘leaves a_positive'
charge of +e distributed on the outside of a molecule of radius R where
it exerts a répuléive potential of e/R. The largest change in R'l,with
increasing molecular size has already been realized'for the hydrides.

In molecular orbitals relaxation energies mﬁst be considered in
two classes. Delocalized orbitals, in which the electronic charge is
distributed more or less uniformly around the molecule, can be treated
in the samebtérms as were valence shells in atoms. vConsider, for example,
a diatomic molééule in the second row. Ionization from a molecular
orbital made up of atomic 2p functions will entail eséentially the same
relaxation among the passive n=2 orbitals that was obtained in the
free atom. This implies that Ep terms in molecular orbitals can be

estimated by summing over atomic orbital population P-1j times appropriate

intra-shell relaxation energies for those orbitals:
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B 00) = L7 B3 (A0) (s1)
where the E%(AO) values could be taken from Table I. This approach was
used by Banna et a148 for molecular orbitals in fluorinated methanes
with considerable success. It is conceptually pfeferable to the common
practice of estimating binding energies in moleculeé simply by reducing
the calculated orbital enérgies by a constant factor. The use of Eq. (51)
should yield rather good estimates of molecular—brbital binding energies,
although errors due to correlation-energy differences will still be
present. . | | |

In localized moleculaf orbitals; i.e., lone-pairs or highly-
polarized orbitals, additional contributions to ER_qan arise through
extra-atomic relaxation. Atomic (intrashell) relaxation would still be
present, andva relation like Eq. (50) would be applicable. TheVEE?
term is not readily calculable, but it is both important and useful, as
it is closely related to conventional chémicél properties, as discussed
below. We note that the presence of additional relaxation in localized
molecular ofbitais-should be of some valﬁe in identifying these orbitals,
although no applications of this feature have been tested as yet.

Variations iﬁ core-level and lone-pair binding energies are
closely related to variations in chemical reactivity. In fact, the |
loné-pair binding energy is essentially the Lewis basicity within a
constant additive factor. By extending the concept of Lewis basicity
to include core ione pairs, core-level binding energies can be included

in this statement. The physical significance of this connection can be
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appreciated by considering the following two reactions of an alcohol

molecule in the gas phase:.

ROH + H' » ROH;

ot
|

PA (52a)

ROH -~ ROH + e~ E. 'EB(o 1s) . (52b)

In Eq. (52a) a proton approaches the OH group and becomes bound. An O 1s
electron is lost in_Eq. (52b), leaving a positive hole on the oxygen atom.
In both cases the system must respoﬁd to the addition of a positive point
charge, located either within or very near the oxygen atom. The absolute
magnitudes.of fhe energies of these two reactions are very different but

their variation as the R group is altered is nearly identical,49

A(PA) = -aBp . | (53)

This-relationship was first observed for alcoholsvand amines;49 it has
beeﬁ_confirméa and extended to a large number of other molecules,sof51
thereby establishing the relationship between Bronsted basicity and
core-level binding energy for a given functional group. While not all
of the Variation in EB arises from variation of Eﬁa,.calculations49
show thai this is the maih contributor.

The Lewis basicity is a more general concept. It does nof refér
to reactions with any particular acid, but rather to the system's tendency
to give up an‘électron from a lone pair in the valence shell. Now core
electron bihding energies and those of lone-pair valence electrons on
52

the same atom have been shown to vary together. This is expected,

because both variations result from a combination of the initial-state
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potential and the polarization of this potential during photoemission,
~measured at the orbital in question. The concept Of Lewis basicity can .
therefore be extended (at least to within a propoftionality_factor close
to unity) to include the variation in binding enérgy of core electron |
"lone pairs”_f A stringent test of the transferability'of_ligand function
is-then afforded by comparing the variation of‘EB for core_levels of.two

functional groups when the ligands are changed togéther. In cbmparing

the series RI and ROH for alkyl iodides and alcohols, the I 3d5/2

49

and O 1s binding energies were found to vary linearly.?® Even HI

and water lay on the straight line.

Thevchémiéal "message' of these results is simple: Reactivity,
| like binding energy, depends not only on the properties of the initial
state but on those of the final state as well. In working with the
formalism of extra-atomic relaxation, we say thaf'the binding energy
depends on both the effective potential of a given core level in the
initial state and on the change in this potential on photoionization.
‘The chemical-reactivity description would use the terms Znductive and
polarization effects. It is a mistake to discuss chemical propertieé in
terms of grbund-state properties (such‘as dipole moments) alone: the |
same is‘trﬁe of binding energies. Since both basicity.and binding-energy
variation depend on the same combinations of inductive and polarization
phenomena, it is fortunate that this additionalncomplication is present.
Binding-energy shifts appear to possess considerable diagnostic value
for the deterﬁination of chemically interesting properties, and extensive

future application can be expected.
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One immediate application of these ideas can be made in the
interpretation of the variation of the "ionization pdfential" of the
alkyl alcohols. This is the binding energy of the ongen lone pair.
In sign and approximately in magnitude it is equal (see Fig. 2) to the
extra—atomié relaxation enefgy as predicted by the RPM model.49 Thus

extra-atomic relaxation appears to account for a phenomenon that has

received a variety of explanations in the last 30 years.

C. Solids

Relaxation energies in solids are bestbdiscussed separately for
insulators and conductors. We shall treat insulators first.

When a molecule or a multiatomic ion is present in a molecular or
ionic solid, respectively, the binding energy of an orbital in that moiety
is naturally considered as the sum of its local and lattice contributors.53
The relaxation energy accompanying loss of an electron fromlbrbitél i

will have a (molecular or ionic) local contribution plus a contribution

due to lattice polarization,
Ep(i) = ER(i,loc) + ER(i,latt) . (54)

The ER(i,loc)'term has been dealt with in Sections A and B. For large
molecules or ions ER(i) consists mainly of this term and ER(i,latt)-can
‘be neglected. Little evidence is available on the ER(i,latt) term in
molecular crystals. We may safely assume that it is small (<1 eV) on

theoretical grounds.

In the ionic crystal case the experimental situation is reasonably

clear. Fadley_et‘al53 first discussed the polarization energy term for
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an ionic lattice. They used a model described by:tht and Gurney54 to

conclude that this term is of the order 1 eV or lesévfor a series of
potassium salts. The largest ER(i,latt) terms would,.of course, be
expected in monatomic idns, and on balance, the alkali halides appear

to present the most suitable salts for study of ER(i,létt) terms. Citrin

and ‘_I’homas55

éarried out a careful study of core-level binding energies
in;éiéven élkali halides. By comparing observed binding energies with
prédictions'bf a simple theory, they were able to obtain evidence for
the existence of an ER(i,latt) term, plus an estiﬁate of its size. They
avoided thé'troublésome problem of the reference level fof an insulator
by comparing cation and anion core-levels with free-ion binding energies.
Uncertainties in the reference énergy shift all the levels in the crystal
together. This analysis followed that of Fadley et al,s3 including both

a Madelung and an eZectronicS6 relaxation energy, but, adding a repulsive

term E(i,REP), they gave the equation (in our notation)'
re . e 2 - -
EB(1) = EB(l,FI) + Qif__ E(i,REP) - ER(l,latt). A (55)

Here EB(i) ~and EB(i,FI) are respectively the binding energy of orbital
i in the alkali halide lattice and the free ioh, while @ez/R'is>the
Madelung potential energy. Since this latter term is of the order of

10 eV in magnitude, it might appear that errors of ~ 1 eV are incurred
in this model by neglecting the ~ 10% covalency of alkali halide
lattices.57 In fact this is not a serious problem, because the Madelung
term tends to cancel the change in core-level binding energy on forming

the alkali or halide ion.”®
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Cittin and Thomas calculated Ep(i,latt) using a method given by
Mott and Littléton59 for estimating the polarization energy around a
lattice vacancy. ;This probably represents an upper limit for ER(i,latt),
- because the nearest neighbors' polarizabilities must be smaller in a
lattice with'ﬁo vacancy. At any rate, the differences between calculated
values of ER(i,latt) for cations and anions in the same lattice ranged
‘up to 1.2 eV. Inclusion of this term in Eq. (55)'improved the‘differences
between caléulated and measured cation and anion binding energies. This
gives somewhat indirect evidence that their calcuiated values of
ER(i,latt) -- Which range between 1.45 eV and 2.69 eV -- are at least
approximately correct. Thus extra-ionic relaxatidn energies in alkali
halide 1atti¢es may bé taken to vary around 2 ev.

Another'rather indirect measure of extra-atémic relaxation energy
in alkali halides is given by the relative differences between core-level
peak energies and Auger energies in photoemission-spectra‘in free atoms
and crystalzlattices. The additional electron hole in the Auger final
state polarizes neighboring ions more strongly than the photoemission
final states. Hence the Auger transition entails additional extra-atomic
felaxation. In going from atomic sodium to sodium salts, Kowalczyk et
| al60 found that the Na(KLL) Auger transition energy increased by 4.3 eV
in Nal and 3.7»eV in Na,0. A simple 1attice-p01arization model indicates
that the addiiionaz extra-atomic relaxation in an Auger transition should
be about twice that accompanying photoemission.GO‘.Thus half these
observed differences, or.m 2 eV, can be attributed to ER(i,latt) in
Nal, for example, in good agreement with the resuits of Citrin and Thomas.

We may conclude that the lattice contribution to extra-atomic relaxation
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energies accompanying core-level ionization in alkali halide crystals is

>4,59 would predict.

pf the order of'Z eV, as the model.of Mott et al
Uncertainty aboﬁt reference energies has thus far pfecluded a
definite discussion of the ER(i,latt) term in semiconductors. TIn a semi-
metal -- graphite -- it has been possible to calculate the ER(i,latt)
term;guantitatively by using empirical binding énergiés in hydrocarbon

46_USed a relaxation

moleéﬁiés as calibration points. Davis and Shirley
model with CNDO wavefunctions to calculate C 1s relaxation energies for
trigonally-bonded carbons in benzene and larger planar hydrocarbons,
extrapolated to an infinite lattice, and obtained a C 1ls binding energy
(284.4 eV) in excellent agreement with experiment (284.7 eV). This theory
did not start from first principles but used the experimental C 1s binding
-energy in benzene as an anchor point. It appears that graphite 1s one
lattice for which an accurate core-level binding energy can be predicted.
Extra-atomic relaxation energy terms in metals are often large,

and they can be treated in a straightforward way becéusevthere is no
reference energy problem. On photoemission of a core electron from an
atom in a metallic lattice, the itinerant valence electrons are attracted
toward the positive hole thus created. In contrast to the insulator case,
screening charge can actually be transferred to the atom from which the
photoelectroﬁ is ejected. This phenomenon is conveniently discussed in
terms of poSitive phase shifts, 8o» in the partial & waves that describe
the itinerant -electrons. Friedel's allow theory61 is useful here: the
photo-excited atom can be treated as an impurity of one unit higher

atomic number than the lattice. The Friedel sum rule in the form



-51-

§(22+1)6£ = - o . (56)
would apply. This relation states that the excess charge of +e present
on the impurity will be screened'fhrough phase shifts.that lead to a net
charge of -e being attracted toward the hole. The 2-character of this
charge dependé on the character of the conduction bahds immediately above
the Fermi enérgy; Thus in the 3d transition metais, most of the shielding

is by the d wave, while in copper the s and p ﬁmves are important. .

Figure 3 shows a dramatic decrease in the quantity

,AEE(Sp) = EB(Sp,free atom) - EX(Sp,metgl) (57)

62

for the 3d meﬁals at the end of the d shell. Léy'et al™" explained

this behavior in terms of a potential model similar to that of Hedin

42 For the 3d metals through Ni, d-wave state density

and Johansson.
lies just above.the Fermi energy, and the resultant d-wave screening is

similar to that expected for a 3d electron. The potential model gives
sEy(3p) = 5 FO(3p,3d) , (58)

where FO is a Slater integral. - The 3p,3d repulsive interaction FO is
| large because the 3d orbital is relatively small. ‘In Cu and Zn the 3d
shell is full, there is little d-wave density above Eg, and the corre-
sponding FO(Sp,4s) and FO(Sp,4p) integrals that appfoximately describe
AEB(Sb) for s and p wave screening are much smaller. HenCé the sudden

drop in AE; between Ni and Cu. Figure 3 shows experimental values of
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AEB as well as theoretical estimates based on Eq. (57). This relation
Qverestimateé»AEB because the shielding charge is, of course, not
completely localized. Another treatmént of extra-atomic relaxation in
metals, based on polarizability of the lattice, has been given by Citrin
and Hamahn.63 Neither approach is in quantitativevagreement with |
experiment, but the basic physics of extrafatdmic_relaxation energies
accompanying core-level photoemission in metéls_is now well understood.
It appears that this phenomenon can now profitably'be applied to the
elucidation of electronic stfucture problems, such as those related to
phase shifts of the partial waves. .

Valence electrons in metals also experience a substantial Eﬁa
term. This fact can be obscured by making an oversimplified interpretation
of the delocaliied nature of these electrons. In fact, the méan binding
energies of electrons in the valence bands, Eﬁ(VB), is lower than binding
energies of the corresponding orbitals in the free_atoms, E,, mainly

because of the'ER term. Wigner and Bardeen,64 in their classic paper

on the work function in alkali metals, derived an expression that can

be rearranged65 to
= _ 3e” _ 0.458e” | .
- EB(VB) = E, + Eq - [Sr - ] (59)
s s v
Here EC'is the cohesive energy. The quantity in brackets can be inter-

preted as the coulomb and exchange energy differences imposed‘by creation
of a hole in the valence bands (rS is the radius of the Wigner-Seitz
sphere). A common misinterpretation of the Wigner-Bardeen theory is

based on the idea that valence orbitals should show little relaxation
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because Koopmans' Theorem can be used. It is,}of cburse, frue that little
intra-shell relaxation would be expected, as in atoms or molecules tsee
Table I). However, the presence of itinerant valence electrons assures
that the analbgue of extra-atomic relaxation is also present, in the

form of polarization of the electron gaéltoward the ""Coulomb hole" (for
Coulomb energy) or "Fermi hole" (for exchange). 'Unfortunately, the
bmagnitude of Eﬁa is quite_insensifive.to the degree of 1ocalization of

’the final -state hole.65

It is clear, however, that substantial relaxation
does take place on photoemission of a valence electron from a metal, in

~contrast to an atom or molecule.

D. Adsorbates

The pdwer of elecfron spectroscopy for solving problems in surface
science and catalysis has led to many applications of photoemission to
adsorbed speciés on metallic substrates, usually with the intention of
studying adsorbate-catalyst interactions. Relaxation energy shifts play
a rather crucial role in these stﬁdies.

In thsical adsorption, the adsorbate photoemission peaks have
the same structure observed in the free atom or molecule. The bindingh
energy of each peak'is lowered relative to the gas-phase value by an
additional relaxation energy that arises through polarization of the

substrate valence electrons to screen the adsorbate hole state, i.e.,
 “Ef(ads) = Ey(gas) - ¢ - Ep(ads) . S (60)

Here the work function ¢ is retained because while it is the vacuum-

referenced binding energy, Eg(ads) = Eg(ads) + ¢, that should be compared
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to EB(gas),_the work function may be altered by the adsorbate's presence.

Yates and Erickson66 have studied xenon adsorbed on é clean tungsten

surface, finding an ER value of 2.6 eV for the Sds/ztlevels, similar to .
the value obéerved for xenon embedded in a ﬁetallic_lattice.

Core-leﬁel binding‘energies in adsorbed mblchles are generally
substantially smaller than the gas-phase values. The presence of a
' ;Va1ence-e1ectr0n reservoir in the metal allows the molecular equivalent

| of outer-sheil reléxatibn, as electron charge is transferred into thé
molecule's valence orbitals during photoemissionf Thus Barber et a167
reported an O 1s binding energy of 532 eV for oxygen adsorbed on graphite.
This corresponds to 537 eV relative to the vacuum level after a work- -
function correétion. This is still some 9 eV lower than the value
EB n 546 eV expected for free atomic oxygen, indicating a substantial Ep.
For oxygen ih adsorbed CO the 1s binding energies show some‘relaxation-
energy relative to gaseous CO,68’69 but the experimental situation is
generally unclear as yet.

Adsorbate molecules show molecular orbital-peaks in photoemission
spectra that yield detailed adsorbate-substrate bonding information.

Thus Demuth and Eastman’® found that most of the molecular orbitals
shifted to 1owef binding energy in adsorption of CZHZ, C,H,, énd CeHe

on nickel. The average shifts of all the o orbitals were 3.2, 2.1,

and 1.7 eV, respectively. It should be noted that these shifts are - .
smaller than core-level shifts on adsorption, because they arise from |

the molecular analogue of intrashell relaxation. . Two other observations

should be made. These additional values of Ep from extra-molecular

relaxation decrease with increasing molecular size because the hole
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charge tends.to be screened already within the molecule. Also, close
examination of the photoemission spectra of adéorbatés in this work aﬁd
elsewhere shows that the strongly boﬁnd o orbitals show larger relaxation
shifts than_mofe weakly-bound = orbifals, as is the case for molecular
orbitals in free molecules, discussed above. |

Orbitals that form chemisorption bonds to the substrate tend to
oppose the trend and shift to higher binding enefgy. This is an initial
state effect. It has Been observed for the least;bound n orbitals in |
CHy, CH,, and C, by Demuth and Eastman.’® In €O, a similar shift
has beeﬁ obéered for the 50 orbital, which merges with the 1= orbital,
yielding an intense combined peak.71 The 5¢ peak is the carbon 'lone pair"
' orbiial. It should be perturbed, as CO is believed to stand up as an
adsorbate,bwith the carbon atom bonded to the subétraté. Additional
evidence for this orientation is provided by the reiative oxygen and

72 The various changes expected in molecular

carbon cofe—level'shifts.
phbtoemission spectra on adsorption are illusfrated in Fig. 3.

In an earlier section it was emphasized that binding energies,
and particularly relaxation energies, are good indices to chemical
reactivity. Chemical properties cannot be understood in terms of initial-
state properties alone: the final state (following.reaction) or an-
intermediate state must also be considered. The same is true for binding
energies. In adsorbates the chemical reactivity vs. binding energy
parallelism is not so easily made. It would appear, however, that the
same polarization effects that lower the binding ehergy in an adsorbate

molecule should serve to stabilize any activated complex formed by this

molecule, thus speeding up the reaction. It would be as naive to attempt
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to explain qétalytic reactions in terms of properties of the reactants
alone as it would for any other reactions. Relaxation effects appear
to hold one of the keys to an understanding of the complex problem of

heterogeneous catalysis.72

E. - Solutes

Solvation has the effect of providing a reservoir of electrons for
screening holeé.creéted by photoemission from solute molecules. For this
reason the binding energy of a given orbital should be lower if the
molecule is in solution than it would be in the gas phase. Liquid-vapor
shifts in this direction have been observed.73 The few data available
as yet appeaf to support the expectation that dielectric liquids will
show relaxation-energy shifts about equal to those found in dielectric
solids. Enhanced relaxation energies in solutes are well worth study.
They are related, for example, to variations in the order of reactivityA
between gaseous and dissolved molecules. Thus the difference in basicity
between methanol and t-butanol should be reduced or even reversed in
solution, because the solvent can more easily assist.in lowering the
energy of the protonated methanol-idn. Such a reversal is already known

74

for the acidity of alcohols. Further comnections of this-typebbetween

Eq and reactivity provide motivation for photoemissibn studies on solutes.
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VII.  APPROXIMATE BINDING-ENERGY METHODS

.The last section dealt with the theory of electron binding energies.
For completeness, some approximate methods are mentioned below. Only
fairly rigorous_methods fall within the'écope of this discussion. Other
methods are diécussed in appropriate chéﬁters.

Any attempt to calculate binding energies quantitativelyvmust
include relaxation effects. The potential energy.of the active orbital
dﬁe to the entire charge distributioh of the moleéule must also be
considered, not just the local '"atomic charge”. ‘Beyond these constraints
the model employed for a given study will depend,on'the-parameters of
thatvstudy. The mdst stfaightforwérd appréach is én accurate SCF-CI
calculation on both initial and final states. Unfdrtunately, this is
seldom feaéible for large molecules or large numbers of molecules. More
approximate models are therefore nearly always employed. In cbmparing
 these models a few simple points can be made:

1. Thére is little to be gained in practice by using "polarization
potential' theories; since ab initio hole-state calculations
are.still required, one may well compare total energies of |
initial and final states.

2. For large molecules or for problems involVing'many types of
molecules, even single-determinantal ab initio calculations
are likely to become impractical. Less exact mblecular-

47 ot

orbital models such as CNDO, INDO, c., must then be

employed.
3. In applying "intermediate-level" molecular orbital models,

it is inadvisable to compare total energies of hole states
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and ground states. The errors entailed in these models .

preclude reasonable accuracy via fhis approach..
Binding energies of molecular orbitals can probably be estimated to
sufficient accuracy by using orbital energies from ab initio calculatioﬁs
on molecular grdund states, with relaxation corrections as discﬁssed in
Sectioﬁ VI-B. Orbital energies from intermediate-level models are less
satisfactory in predicting the order of orbital binding energies.48
| Core-level binding energies cannot, of course, be calculated
using CNDO, etc. models because they do not explicitly consider coré
orbitals. However, Basch75 and Schwartz76_showed that core-level orbital
energy shifts (i.é., shifts in the orbital energy,bf a given orbital,

say'carbon_ls, from one molecule to another) are nearly equal to (minus)

shifts in the potential at the nucleus,

Ae = -AVn .
Since A\ is easily.(and even rather accurately),calculable from CNDO |
wavefunctions, it is possible to calculate ofbital-energy shifts at tﬁe
CNDO level, a great simplification compared to using.ab-initiq calculations.
This approach was first used in a predictive fashion by Davis et al,77
who found quite'good agreement with experimentalvbinding energies in

small molecules. It is termed a ''potential model' because the electro-
static potential, rather than the total energy, is used to estimate shifts
in binding energy. This specific approach was later termed GPM, because
78,46

only the ground state potential was calculated.

Relaxation effects can be taken into account by extending this

79

~ model, applying the '"equivalent cores" approximation of Jo11y and
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modifying Hedin and Johansson's polarization potential theofy to apply

80 found that this

to the potential at the nucleus. Davis and Shifiey
"'relaxation potential model" (RPM) gave somewhat better agreement with
experiment than the GPM approach. The essential feature of the RPM is

that binding energy shifts are given by
AEB = -AVh,- AVR
The relaxation term is given by

A 1/z[vn(z ‘1) - vn] :

that is, the change in potential at the nucleus on ionization of a core
electron due to outer electron relaxation is approximated by the change
that would occur if the nuclear charge were inéreased by one unit. 'This
RPM approaéh is both accurate and easy to use. It gives results in good
agreement with experiment78 and yields AVp Valués ih fairly good agreement

46

with ab initio estimates. It has been observed81 that RPM gives

systematic differences in both AEB and AVR compared to ab ini?io valhes.
The very good overall.agreement of RPM predictibns with experiment offers
encouragement that these differences could be redUtéd by adjustments
in the CNDO parameters. |

We close this chapier by noting that further discussions of
various models for binding energy shifts are given in the appropfiate
chapter. In particular, Jolly discusses the equivalent-cores appréximation

in Chapter . The essential equivalence of this approximation and the

potentiai model has been shown.82 Finally, two additional techniques
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for estimating binding energies are being evaluated as this is written:

the Xa method83 84 Both are promising but

B
it is too early to evaluate them.

and a propagator approach.
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FIGURE'CAPTIONS

Fig.

Fig.

Fig.

Fig.

1. A hypothetical state diagram for a beryilium-like system. At
the bottom left is the Hartree-Fock determiﬁaﬁt for the ground state
and two of its excited configurations of 'S symmetry; above them is

the 1s hole state determinant and the two configurations of

2 - . U .
S character which arise from the 2s » 3s excitation (the coupling

of the valence electrons is denoted parénthetically). “In the center

pértion the effects of CI are shown. To the’right of each state is
a hypothétical wévefunétion for it (see text)..

2. Comparison between the (oxygen lone pair) first ionization
potential in aliphatic alcohols and the relaxation energy due:to
screening of a positive charge on the oxygen atom. The line has a
slope of 0.9. This agreement suggests that the Variation in

ionization potential, which has been variously attributed to

" "hyperconjugation' and other effects, is in fact largely a consequence

of extra-atomic relaxation.

3. Reduction in the 3p binding'energy of 3&‘e1ements from gas to

metal (points) and estimates based on the simple extra-atomic
relaxation model (line).' The dramatic decreése between nickel and
copper is a consequence of the filling of the 3d shell.

4. Energy level diagram for.photoemission from an adsorbate molecule,
showing ground state M, core-hole state.Nf(c), and hole states

M+(VBS) and M+(VNBS) of valence orbitals that-do and do not bond to

the substrate, respectively. Vacuum reference levels are used. |

Hole state energies (and binding energies) aré lowered on physisorpfion

because of screening by the substrate's valence electrons. The
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core-hole relaxation energy AEpc is greater than-that of the valence-
level hole states, AERV' On chemisorption, the adsorbate-to-substrate

bonding orbital is identified by an increase in its hole-state (and

binding) energy, AEpoND”
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