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Abstract 

A phenomenological Ginzburg-Landau theory of charge-density waves is pre

sented. It yields, in the absence of pinning impurities, a manifold of stable 

(equal-energy) states that are independent of the phase of the wave. The pin

ning of these waves by impurities (both weak and strong pinning) is examined 

in detail and spectra, for various impurity distributions are analyzed in detail. 

Strong dependence on the wa:ve phase, change in harmonic content and phase 

shifts are common features, in addition to the appearance of a continuous 

background. There is also a plethora of metastable states, many of which 

have energies close to the ground state. Comparison between the proposed 

theory and experiment in NbSe3 is satisfactory. 

PACS No. 71.45.Lr, 72.15.Nj,61. 70.Rj 

Typeset using REV'I'EX 

1 



1. INTRODUCTION 

~harge-density waves (CD\V) are a collective phenomenon observed in low-dimensional 

solids [1-9]. A strong electron-phonon coupling in those systems, together with particular 

features of the normal-state Fermi surface, lead to an oscillatory (static) distribution of the 

electron charge, to which a periodic lattice distortion (PLD) is generally associated. In most 

cases the CD\V and the PLD are incommensurable with the original crystal lattice of the 

solid. The presence of defects and impurities pins the CD\V to the crystal lattice. Under 

these conditions it cannot contribute to the charge-transport processes, in particular to the 

electrical conductivity. The presence of a strong enough electric field depins the CD\V, makes 

it "mobile" and therefore increases sizably and in a non-linear fashion the conductivity of 

the solid [3,7]. This interesting non-linear conduction process has been the subject of very 

extensive investigations, both theoretical [1,2,10-16] and experimental [9,7,17]. 

In addition to this dynamic effect, the presence of pinning impurities, located at ran

dom positions in the lattice, produces a static structural phenomenon (i.e., not a transport 

phenomenon) which has been also examined in great detail [9]. There are mutually incon

sistent conditions - frustration - arising from the different geometrical requirements of the 

CDvV, with its own intrinsic periodicity, and from the location of the pinning impurities 

throughout the crystal In its attempt to achieve equilibrium, i.e., a minimum of the free 

energy, the system encounters a variety of long-lived metastable states, and may be trapped 

(for long times, even indefinitely) in a non-equilibrium state. Concurrently, the structure of 

the equilibrium state is drastically modified by the presence of the pinning impurities and 

exhibits very complex properties. 

It is the purpose of this contribution to formulate a phenomenological model which 

describes these static phenomena. In particular it is important to obtain a theory that, in 

the absence of impurities, yields a CDW state whose epergy is phase independent, i.e., a 

totally mobile (incommensurable) CDVl. Pinning impurities would then influence, in varying 

degrees, the phase and the amplitude of the CDW, and simultaneously bring to the problem 
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their own geometrical and structural features. 

The phenomenological theory proposed here is m the spirit of the Ginzburg-Landau 

model [18,19]. It applies to one-dimensional CD\Vs. The natural order parameter for such 

systems is the difference in electronic charge density between the state under study and the 

normal state, i.e., that state in which the charge distribution is identical in every primitive 

cell. It is a position-dependent order parameter. (Other possible order parameters, such 

as the local energy band gap and the PLD, are simply proportional to the local electronic 

charge density). 

In section II, a reasonable free energy expression for a single chain containing an arbitrary 

number of impurities is proposed. Section III contains the solution of the model in the 

absence of impurities and a discussion of the behavior of the order parameter and the CD\iV 

"wavelength. The response of the chain to impurities, both in the normal state and in the 

condensed phase is discussed in section IV. Finally section V contains the conclusions. 

II. THE MODEL 

The free energy is expanded in the customary fashion, up to fourth-order terms 

(1) 

Each term contains both short-range and long-range contributions in the single space variable 

x or, equivalently in the Fourier-transform variable q. The only long-range contribution -

smeLll q - is normally caused by the Coulomb interaction. 

If n(x) denotes the order parameter - number of electrons per unit length - the most 

general form of the second-order term can be written as 

F2 = ~ J J f{x - y)n(x)n(y)dxdy 

where f(r;) is an even function of r; which may contain b-functions and their derivatives. 

For the sake of clarity, F2 will be written in terms of the q variable 
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where 

F2 = (L/2) L: fql nq 12 
q 

fq = J f(x )eiqxdx 

n(x) = L: nqeiqx 

q 

and L is the length of the chain. A reasonable choice for fq is 

(2) 

(3) 

(4) 

where the first is a Coulomb-like term which prevents long-wavelength oscillations, and 

especially does not permit a charge transfer to the chain from outside '(nq=o = 0). The 
, 

second is a derivative-in-x term which prevents very-short-wavelength oscillations. The 

simplicity of Eq. (2) implies that the transition from the normal to the CD\V state occurs 

when in some region of q-space fq becomes negative. Therefore, it is useful to write fq in 

the form 

(5) 

where Qo = (al / a2)1/4 is the value of q for which fq has its minimum. It is assumed that 

the tvw constants A and Qo are temperature independent,. and that B varies linearly in T 

and changes sign at the transition temperature Tc 

The fourth-order term should be positive and short-ranged. These conditions are satisfied 

by the simplest possible form 

(6) 

Finally, the impurity contribution to the free energy -is 

Fi = J 1i(x)n(x)d:r = L: J U(x - Rm)n(:r)d:r 
m 

(7) 
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where U(x) is the potential of a single impurity, V(x) is the sum of all impurity potentials, 

and Rm denotes the location of the mth impurity. 

In the cases considered here all impurities are identical. Their potential is chosen to 

be a 8-function [U(x) = Uo 8(x)j. The strength of the potential, Uo, and the positions of 

impurities along the chain, Rm , are therefore the only parameters necessary to describe the 

effect of impurities. 

The free-energy functional F, has one natural length scale, (271" /Qo), the ideal wavelength 

of the CDW .. In addition, F does not contain the lattice constant as a parameter. The 

model is therefore a "continuum" model, and all lattice effects are ignored. This continuum 

approximation is appropriate for the current problem, but must be reassesse<;l and changed 

when looking at other effects, such as the incommensurable-commensurable CD\V phase 

transition [20j. 

There are two independent dimensionless variables in the formulated problem. The first, 

j3 = B /4A, which is linearly proportional to the temperature, is the only parameter needed to 

describe the condensed phase in the absence of impurities. The other dimensionless variable, 

which gives the strength of the impurity potential, can be taken to be u = UoQoJC /64A3. 

III. CDW PHASE WITHOUT IMPURITIES 

A. The Order Parameter 

Above the transition point, i.e., when B > 0, because all terms in F are non-negative, 

the order parameter is necessarily zero. \Vhen B becomes negative, the system can lower 

its energy if the order parameter assumes a non-zero value. There is a finite range of 

wavenumbers in the interval between q_ and q+, 

where fq is negative. For any q in this range nq may have a finite amplitude. Moreover, 

one cannot say that nq vanishes whenever fq is positive since the fourth-order term couples 
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different wavenumbers. 

The first step to solve the problem is to look for the periodic solutions by applying 

periodic boundary conditions. In this case, for a given length a, the condition n(x+a) = n(x) 

is assumed. The solution for 11,(x) is then found by minimizing the free energy. In a second 

step, the free-energy density per unit length, F / L, is minimized with respect to a. If the 

infinite system has a periodic solution with a wavelength A, then the solution in the case of 

periodic boundary conditions has a wavelength a/ v (van integer) very close to the value of 

A. On the other hand, if there is an aperiodic solution for the infinite system, then one can 

expect to see a long-wavelength solution for large values of a. It has been found that there 

is indeed a periodic solution with wavelength close to 2n-j Qo, and there is no indication of 

the existence of aperiodic solutions. 

Therefore the free energy (1)- (6), for negative B and no impurities, yields a CD\\! with a 

well-defined periodicity, i.e., a fundamental wavenumber Q - close in value to Qo - together 

with its odd harmonics 3Q, 5Q, 7Q, .. . The absence of even harmonics is closely linked with 

the absence in F, Eq. (1), of a third-order term in n(x). Only one wavenumber Q and its odd

order harmonics are non-zero; all other nq , even those in the interval q_ < q < q+ vanish, 

since non-vanishing nq's other than those mentioned above have the effect of increasing F4 

more than they cause F2 to decrease. 

The (odd) harmonic content can be easily analyzed in two limits. Near the transition 

temperature, for B negative and small, 

I nQ I~ VI B I /3C (8) 

and 

for m ~ 1 (9) 

On the other hand, for a well established CD\V, i.e., for B negative and large, the term 

in (5) proportional to A can be neglected [21], and 

F ~ J ( ~ B 11, ( ;1: ) 2 + ~ C 11, ( X)"I ) dx ( 10) 

6 



Therefore, in this lirrlit 1£( x) takes two values ±)I B I / e, and the cnw looks like a square 

\vave. Non~zero components of 1£q are given as 

1£ _ 2)1 Bile ( 1)mei(2m+l)4> 
(2m+l)Q - (2m + 1)7l' - (ll ) 

for non-negative integer values of m and for arbitrary values of the phase ¢Y. The "rounding

off" of the square wave takes place over an interval Llx ~ 27l' / (Qo j8'T:B1). 
It should also be noted that, because of the increase of harmonic content with increasing 

I B I, the CD'''l wavenumber Q varies with temperature. 

Q = Qo(1 - :4/32) for I /3 I~ 1, 

Qrx for I /3 I~ 1. 

(12) 

(13) 

'''lith the assumption of a temperature-independent parameter Qo - as it appears in (5) -

the wavenumber Q varies quadratically with (Tc - T) near the transition temperature. This 

behavior does not conform well with experimental data [22J where it has been found that 

the variation of Q is linear in (Tc - T). 

B.Excitation Modes 

The formalism described above yields a CDW with complete phase independence. In 

other words, the charge-density distribution can be translated uniformly by any length 

without· changing the total free energy of the system. This translation is a zero-energy 

excitation, the so-called q = 0 phason mode. It corresponds to a particular wavevector 

(q = 0) of a continuous branch of excitation modes, the phasons. Although only the q = 0 

mode has zero excitation energy, the whole branch carries, for any wavevector, a low energy of 

excitation. The phasons are responsible for the electrical transport properties [7J associated 

with CDWs. It is of interest to investigate these excitation modes. The way to do that is to 

follow the prescription set up originally by Landau [23J. It consists of taking the second-order 

functional derivative of the free energy with respect to the electron density (a generalized 

inverse susceptibility tensor) 
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82P 
cI>(x; X') = 8n(x )8n(x' ) 

which, according to Eqs. (1 )-(6), takes the form 

cI>(x; x') = J(x - x') + 3C n(x)2 8(x - X') 

and then determine its eigenvalues wand eigenfunctions 'l/J( x) 

J cI>(x; x l )7j,(x/)dx' = w'l/J(x) 

(14) 

(15) 

(16) 

In these equations n(x) is the CDW that minimizes P, and has a fixed (but arbitrary) phase. 

The quantity cI>, as defined above, is symmetric and periodic [24] 

cI>(x; x') = cI>(:r + 27r/Q ; x' + 27r/Q) ( 17) 

Bloch's theorem then yields for the eigenfunction 

( 18) 

where a is an index and Uak(X) is a periodic function with period 27r/Q. The quantity 

k is the wavevector of the excitation. The energy of the excitation is proportional to the 

eigenvalue Wak. By taking an appropriate linear combination of 'l/Jak and 'l/Ja,-k, real-valued 

eigenfunctions can be obtained. A typical dispersion relation Wak is shown in Fig. 1. The 

excitations corresponding to the lowest band (a = 0) are phasons. For the specia} case 

of k = 0, WO,k=O is zero, and 'l/Jo,k=O(X), which is proportional to dn(x)/dx, corresponds to 

the uniform translation of the CDW. As expected, WO,k has, for small values, a quadratic 

dependence on k. Thus, phason modes are very sensitive to applied external potentials, 

such as impurities. At the zone boundaries k = ±Q /2, all bands, including the phasons, are 

degenerate in pairs, i.e., all bands "stick together". It is therefore possible (although not 

desirable) to describe all modes in a double-zone scheme, in the interval Q < k :::; Q. 

In addition to the phason there are infinit.ely many other modes, each with finite energies 

throughout the zone. They all involve amplitude modulation and are generically called 
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"amplitudons". The lowest amplitudon mode ( 0' = 1 , k = 0) has an eigenvalue Wl,k=O 

which varies linearly with B, i.e., an "excitation gap" which is proportional to (Te - T) in 

the vicinity of Te. Therefore, low-energy amplitudons may play an important role in the 

response of the CDW system to impurities near the transition temperature. At low enough 

temperatures (large and negative B) the importance of the amplitudons decreases, their 

energy increases, and there are level inversions which result in a spectrum of non-intersecting 

pairs of "stuck-together" bands [see Fig. 1 (b)]. 

IV. EFFECT OF IMPURITIES 

The linear response of the charge density toa given impurity distribution can be found 

by solving 

J 4>(x; x') 8n(x l )dx' = - V(x) (19) 

where 8n( x) is the difference between the charge density of the system and its constant, 

unperturbed value. It is evident from the form of (19) that the small eigenvalues of 4> play 

a crucial role in the behavior of the perturbed 'charge density. In the normal state, since 

n( x) = 0, the inverse susceptibility takes the form 

4>(X;X/) = J(x - x') 

and the eigenvalues of 4> are simply Wq = Jq for each (plane-wave) eigenstate 'ljJq(x). The 

lowest eigenvalue corresponds to Qo and therefore the wavevector Qo "shapes" the charge 

distribution. In the CD\V state, on the other hand, the charge density is crucially affected 

by the phason modes. 

A. Impurities in the normal state 

In the normal state, the presence of an impurity causes a screening-charge "pile up" in its 

environment. There are two regimes where the distribution of the charge behaves differently. 
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If the temperature is high, f3 2: 1, the charge density (in the linear approximation) decays 

exponentially. For a single impurity at the origin 

where 

In the physically more interesting region close to the transition temperature, 0 < f3 < 1, 

Friedel oscillations accompany an exponential decay of charge density 

-UoQo Q. "'I I . c5n(x) = . e- QSlll",X cos(Qo cos ¢> I x I +¢» 
2A sm 2¢> . 

where ¢> is related to f3 by 

Therefore, a small impurity causes oscillations whose amplitude and whose healing length 
r 

go to infinity as the transition point is approached. These oscillations are induced by the 

small value of the function fq at the minimum, i.e., at q = Qo. In other words, near the 

transition temperature, there is a peak in the susceptibility x( q) in the neighborhood of 

q = Qo. This behavior is a precursor to the CDV\T transition [25]. 

B. Impurities in the CDW phase: Linear-response theory 

Because in the natural, pristine state the phase of the CDW is completely undetermined, 

the "ground state" of the system may be considered to be infinitely degenerate. In order to 

apply linear-response theory to the CD\V phase one needs to determine the phase of the un-

perturbed charge density n( x) that minimizes the free energy in the presence of infinitesimal 

(zero-strength) impurities. For real (finite-strength) impurities the charge density becomes 
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[n(x) + 8n(x)J, where 8n(x) can be obtained by solving Eq. (19). The phase of the unper-

turbed charge density n(x) has to be chosen so that the response 8n(x) is zero for vanishing 

values of the impurity-potential strength Uo. This can be accomplished by fixing (pinning) 

the phase so that 

J F(x )n(x + b)dx (20) 

is a minimum as a function of b. Pinning has two implications. First, there is a contribution 

to free energy that is first-order in I Uo I, i.e., the phase of the CD\V is such that the 

interaction between the unperturbed charge and the impurity potential, proportional to 

I Uo I, is a minimum. Pinning (fixing the CD\\! phase) is thus the main energy~determining 

mechanism. Second, and as a consequence, the zero eigenvalue corresponding to the k == 0 

phason mode drops out from (19) without creating any problems [26]. It is now possible 

to assume that the function n(x) is redefined so that b = 0 at the minimuin of (20). Such 

phase-definite charge density is labelled no(x). 

Even though pinning makes (19) solvable, small eigenvalues of <I> corresponding to the 

phason modes cause divergences in the Fourier transform of 8n( x) - denoted by 8nq - at 

odd multiples of Q (see Fig. 2). The divergent part of 8n q is given by 

(l/L) L 2'·"/ Q nO,IQ 
odd I q - I Q 

(21) 

where I is the harmonic index, and 1 is an I-independent quantity with dimension of length, 

which is proportional to Uo and which depends on the temperature and on the impurity 

distribution. The effect of terms of the form (21) on the total charge density [no(x) + 8n(x)] 

is to produce a phase shift of the "pinned wave" over an infinite distance (long range). For 

a few impurities located near the origin, the asymptotic solution for the charge density is 

n(x) = no(x + ,), x -+ +00 

n(x) = no(.T - ~(), x -+ -00 
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The phase shift, is such that positive values indicate displacement of the charge towards 

the region of the impurities. In general, both positive and negative values are possible for ,. 

HO\vever, for a single impurity, only positive values [27] of ')' are observed. It should be noted 

that, is a very sensitive function of the temperature; relatively small changes in f3 produce 

sizable changes in the phase shift (see Fig. 3), one more indication of the complexity and 

non-linearity of the phenomena discussed here. 

If 8n( x) is expanded in terms of the eigenfunctions of <I>, one obtains 

8n(x) = OIL) 'Lh'/k ) 'l/Jok(X) + ... (22) 
k 

where " is proportional to "y. Hence, because of the (1/ k) factor in (22), phason excitations 

with small values of wavevector k have divergently large contributions to the response. The 

divergence of the expansion coefficients in (22) is the result of the absence of a phason gap, 

WO,k=O = 0, and an energy of excitation of the phasons - a quantity proportional to WO,k 

- which depends quadratically on the wavevector k. A better cakulation, beyond linear 

response, shows that this kind of divergences is not an artifact oflinear-response theory, i.e., 

the long-range phase shift is a physical (observahle) phenomenon. 

Terms not included in (21) are well behaved. They change the charge density locally, 

near the impurity, and their effect dies off quickly, with a finite healing length proportional 

to (Qo JiTit 1
. \\Then the sys'tem is close to the transition temperature, the contribution 

of amplitudon modes, especially of a = 1, increases. This property is in agreement with 

the observation that in this limit the healing length and the susceptibility diverge [28J. It 

is because the a = 1 excitations, for small J..~. are in phase with the CD\iV, while the phason 

excitations are ahvays out of phase. 

C. Impurities in the CDW phase: Finite-amplitude effects 

If there are more than one impurities, and the distances between them is large, the 

linear approximation - used to reach the conclusions above - breaks down, even for very 
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small values of the impurity potential Uo. Figure 4 displays the calculated asymptotic 

phase shift for two impurities as a function of the distance between those impurities. For 

increasing distances magnitude of the phase shift gets larger, indicating that the linear

response approximation is valid for smaller and smaller values of Uo. This can be explained 

by a simple example. An attractive impurity pins the phase of the CDW so that the 

maximum of the charge density is at the position of the impurity. For two (attractive) 

impurities located at a distance that is an integral multiple of the CDW wavelength, the 

requirements of maximum amplitude at the impurity site can be satisfied for both. If the 

separation, on the other hand, is not an integral multiple of the wavelength a compromise 

is necessary. For small values of Uo, little change in the CDW structure takes place, and the 

impurities cannot be at maxima of the wave. As Uo increases the structure of the CD\\' gets 

disturbed, and the maxima of the waves move towards the impurities: strong pinning takes 

place (See Figs. 5 and 6). Cross-over behavior between weak and strong pinning regimes is 

governed by the relative values of two energies: (i) the energy gained by placing the CD\\'. 

maxima at the positions of the impurities, an energy proportional to I Uo I and to the 

number of impurities; and (ii) the energy increase caused by the wavelength change, which 

is inversely proportional to the distance between impurities. Therefore, the crossover value. 
-

of Uo is inversely proportional to this distance [11]. The unusual behavior of the phase shift 

shown in Fig. 4 results from this phenomenon. 

For a finite density of impurities, the 1}on-linear problem has been solved under the 

assumption of periodic boundary conditions (i.e. the impurity distribution and the charge 

density are assumed to have a fixed, predetermined period). The artificial period of the 

distribution, a = .M A, is chosen as an integral multiple .M of the CD\V wavelength A at 

the given temperature. The impurity concentration c is defined as the number c = (N / Af), 

corresponding to N impurities per period a. For sufficiently large a and for constant N / Af 

the solution should depict the features of the infinite system, where the impurities are 

distributed randomly. 

To obtain the solutions a cut-off approximation IS made whereby the charge-density 
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components in q-space, n q , are taken to be zero for I q I > Qrnax where Qrnax is a large 

wavenumber. The solutions are then obtained by minimization of the free energy, Eq. (1) 

\"ith respect to n q , following standard numerical procedures. 

A change in the CD\V wavelength, and the presence of several metastable states are 

found to be the characteristic features in the non-linear regime. Figures 5 and 6 show the 

. charge density for the minimum-energy state for two distributions in an N = 2, !l1 = 10 

case, i.e. two identical impurities (u = -0.1), in a period a = 10,\ at a temperature given 

by f3 = -0.5. The distances between the impurities in the two cases were chosen close to a 

discontinuity (see Fig. 4): (Rj'\) = 1.46 for Fig. 5, and (Rj'\) = 1..54 for Fig. 6. These two 

cases are for values of (Rj'\) ~ 1.5, a discontinuous point, so that the phases of no(x) differ 

by exactly 7r. 

In the case of Fig. 5, where the shortest distance betvv'een the impurities is R = 1.46,\, 

the unperturbed distribution no(x) that minimizes the free energy exhibits a minimum at 

the midpoint, i.e. <p = 7r at x = 0 [see Fig. 5 (a), upper panel]. Its Fourier spectrum contains 

a negative component at q = Q, and a positive one at q = 3Q, as shown by the open circles 

in Fig. 5(b). The results of the finite-amplitude calculation for the minimum-energy state 

are shown in real space in Fig. 5 (a), and in q-space in Fig. 5 (b). It corresponds to an· 

energy per unit length (FjL) = -0.061276 (4A)2jC. It can be seen that, in addition to a 

continuous background in q-space that develops because of the impurities, there is change 

in the shape of the singularities at q = Q and q = 3Q, as well as a shift of these features 

towards higher values of q. 

Figure 6 shows the case where the shortest distance between the impurities has been 

increased to R = 1.54,\, i.e., slightly larger than (3'\j2). Here the unperturbed distribution 

no( x) that minimizes the free energy has a maximum at the midpoint, i.e., <p = 0 at x = 0 

[see Fig. 6 (a), upper panel], and its Fourier spectrum includes a positive component at 

q = Q, and a negative one at q= 3Q as shown by the open circles in Fig. 6 (b). The results 

of the finite-amplitude .calculation for the minimum-energy state are shown in real space 

in Fig. 6 (a), and in q-space in Fig. 6 (b). The minimum energy per unit length is now 
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(F / L) = -0.062029 (4A)2 / C . There is also a continuous background but the shifts of the 

q = Q and q = 3Q singularities are towards lower values of q. 

An important feature of these calculations is, in all cases, the existence of many low

energy metastable states. Three of the lowest energy states are shown in Fig. 7 for the case 

of impurity separation R = 1.46>.. The energies of all of the metastable states determined 

numerically for both impurity separations are listed in Table 1. The states are labelled (f.l, v) 

according to the number of cycles (number of minima) observed between the two maxima 

at the impurities in the longer interval (p), and in the shorter one (v). This classification 

scheme is very informative since it provides a graphical description of how the CDW gets 

either compressed or expanded. In the situation chosen here· there are approximately 8.5 

cycles in the large interval, and 1.5 cycles in the smaller one. 

All metastable states display shifts in the singularity of charge density in q-space, similar 

to those described for the ground states. 

It is apparent that a small change in the distribution of impurities can cause drastic 

changes in the spectrum of the system. Singularities in q-space may shift to higher or to 

lower values of the wavenumber [9J and energy level inversions may occur, as occurs for the 

gtound states of twoc·ases investigated here. A similarly rich structure is seen when the 

impurity potential changes strength: inversions of states take place, and some metastable 

states may vanish. For example, for the N = 2, Af = 10 R = 1.46>' case, the (9,1) state, is 

the lowest-energy state for small values of u, but it is replaced by the (9,2) state at larger 

values of u. 

V. DISCUSSION AND CONCLUSION 

A Ginzburg-Landau theory of CDVvs ona single chain has been proposed, developed 

and its consequences explored. The model yields reasonable results, in agreement with 

observation in real 'systems such as monoclinic NbSe3' 

This agreement is in spite of the fact that the Coulomb-like term of the function f(x), 

15 



as defined by Eqs. (3)-(5), has an unphysical property. The inverse Fourier transform of Eq. 

(4) diverges, yielding 

f(x) = -al I x 1/2 - a28"(x) + a38(x) + a constant (23) 

which grows without bound as I x I increases. However, since the average value of n(x) 

vanishes, and in all cases considered here the Fourier transform of n( x) does not contain 

large terms for small q, this deficiency in f(x) does not create any problems. Any other 

model that uses a different fq would display behavior similar to the one found here, provided 

that fq goes to infinity for very small and very large values of q, and that it has two local 

minima at QQ and -QQ. 

The main properties of the model are: 

(1) The harnionic content of the charge density is found to increase with decreasing tem

perature. This property follows naturally from the increase of the magnitude of nQ and the 

non-linearity of the equations. The increased harmonic content makes the CDW look like a 

square-wave, a consequence of the special form chosen for F4 . 

(2) Increasing harmonic contribution with decreasing temperature implies that the CD\V 

wavevector Q decreases as the temperature is lowered, which follows from the fact that 

higher harmonics contribute larger energies because of the q2 term in Eq. (5) 

(3) The model exhibits "electron-hole" symmetry, i.e., a dependence of the free energy only 

on even powers of n(x). 

(4) Because of the "electron-hole" symmetry there are no even harmonics in the spectrum 

n g • 

(5) Also because of the "electron-hole" symmetry all collective excitations are degenerate at 

the boundaries of the Brillouin zone. 

(6) Impurities produce a variety of effects in the CD\V phase, the most important one being 

the fixing of the otherwise undet.ermined phase (pinning). 

(7) A second important effect of the impurities consists of long-range pha.se shifts of the 

CD'VV, shifts that essentially extend to infinite distances. If there are many impurities, the 
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long-range phase shifts appear as a change in CD\V wavelength. 

(8) A third effect is a local disturbance of the charge density in the neighborhood of the 

pinning impurities, an effect that heals over short distances - a healing length proportional 

to (Qo /I,8It 1
• 

(9) The model correctly describes the transition between the weak and the strong pinning 

regImes. 

(10) In the strong pinning regime, one observes changes of the wavelength or equivalently 

changes in the wavevector of the singularity in the q-space. These changes in magnitude 

and shape of the charge-density spectra have a strong dependence on the impurity positions 

and also on the strength of the impurity potential; it is possible to observe discontinuous 

transitions when one parameter is changed continuously. 

(11) In this regime one also observes several metastable states which have their own charac

teristic wavelength distributions. As a function of the main parameters of the problem, they 

too show significant variation in ordering, i.e., level crossing which are apparent in Table 1. 

(12) The existence of very many metastable configurations makes observation of the true 

minimum free-energy state difficult, and achieving equilibrium, a doubtful proposition. 

For real, three-dimensional anisotropic systems interaction between chains is important, 

an effect ignored here. The CD\Vs on different chains maintain a constant phase difference 

between them. If a single impurity is added to one of the chains, the long-range phase shifts 

on that particular chain tend to alter the phases in the neighboring chains. However, the 

interchain interactions contribut.e energies that are proportional to the length of the chains 

as opposed to t.he finite energy contributed by the single impurity. Therefore, one can argue 

that the interchain effect must globally dominate and result in impurity effects that are only 

local, i.e., short-range changes of charge density and CD\V amplitude and wavelength. This 

argument. is clouded by the fact that, as a result of the charge pile-up around the impurity, an 

effective potential is applied to the neighboring chains through the interchain interactions. 

Similar phase shifts can be observed on neighboring chains. However, a model which fully 

includes the interchain interactions is needed to answer t.his question satisfactorily. 
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A number of different topics need further investigation, in particular phenomena in the 

non-linear regime: strong pinning and metastable states. The nature of phase shifts in the 

case of strong pinning and the stability of metastable states as a function of temperature 

and impurity potentials are among the interesting and pressing questions that need to be 

answered. It would be interesting also to develop a time-dependent theory which would 

explain the complex transport phenomena characteristic of CD\V systems. 
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FIGURES 

FIG. 1. The dispersion relation for the collective excitations: (a) (3 = -0.2; (b) (3 = -0.6. Only 

the lowest four modes are shown in each case. 

FIG. 2. The linear response of the charge density (arbitrary units) to an attractive impurity 

at the origin for: (a) (3 = -0.2; and (b) (3 = -0.6. At Q and 3Q, 8nq diverges to infinity for 

an infinite chain length, although nQ and n3Q are still finite. These curves are obtained with the 

application of periodic boundary conditions to a long chain (with a length of 100 wavelengths) and 

therefore 8nq is finite for all q. 

FIG. 3. The phase shift " for a single impurity as a function of the temperature parameter (3. 

FIG. 4. The phase-shift, ,', as a function of Rj A for two impurities, where R is the distance 

between two impurities and A is the wavelength of the CDW. The discontinuities at half-integer 

wavelengths are the result of a phase slip of the unperturbed CDW. Note that when the impurities 

are separated by an integral number of wavelengths I does not vanish and it takes the same value. 

FIG. 5. Charge density (a) in x-space and (b) in q-space for two impurities located at ±0.73.\. 

The unperturbed CDW (the lninimum energy state for vanishing impurity potential) is shown in 

the upper panel in (a) and by open circles in (b). The solid line in (b) is a guide to the eye. Since 

n( x) is an even function of x, nq is a real quantity. Periodic boundary conditions with period. 

a = 10.\ are used. The potential of the impurities is u = -0.1 and the temperature of the system 

(3 = -0.5. The unperturbed CDW has phase 7i at the origin. 

FIG. 6. Charge density for two impurities and conditions identical to those of Fig. 5, but with 

the impurities located at ±0.77.\. The unperturbed CDW has a phase 0 at the origin. 

FIG. 7. Charge density for the lowest three metastable states in the case of Fig .. 5. Note that 

whereas the ground state, Fig. 5, has a (9,1) structure, the metastable states are (a) (9,2), (b) 

(8,2) and (e) (8,1). The energies of these states are given in Table 1. 
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TABLES 

TABLE 1. Energies of stable and metastable states for N = 2 impurities, of strength u = -0.1, 

and for an imposed periodicity a = M A of M = 10 wavelengths. The temperature is f3 = -0.5. 

Two impurity separations R are chosen. The free energy per unit length FI L is given in ~nits of 

(4A)2 Ie. Reciprocal space was cut-off at Qrnax = 20Q = 40 1r I A. The energy density of the chain 

without impurities is FIL = 0 in the normal state, and FIL = -0.043950 (4A)2/C in the 

CDW state. 

State 

(9,1) 

(9,2) 

(8,2) 

(8,1) 

(10,1) 

(10,2) 

(7,2) 

(7,1 ) 

(11,1) 

(11,2) 

(6,2) 

(6,1) 

R = 1.46A 

and 

R = 8.54A 

FIL 

[(4A)2/C] 

-0.061276 

-0.061239 

-0.061189 

-0.060565 

-0.058281 

-0.057923 

-0.056426 

-0.054622 

-0.052932 

-0.052438 

-0.04':>738 

-0.042413 
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State 

(8;2) 

(9,2) 

(9,1 ) 

(8,1 ) 

(10,2) 

(7,2) 

(10,1) 

(7,1 ) 

(11,2) 

(11,1 ) 

(6,2) 

(6,1 ) 

R = 1..54A 

and 

R = 8.46A 

FIL 

[(4A)2 IC] 

-0.062029 

-0.061767 

-0.060267 

-0.059866 

-0.058212 

-0.0.57640 

-0.0·57027 

-0.0,54260 

-0.052.572 

-0.051517 

-0.047333 

-0.042310 
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