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ABSTRACT 
We present a formula for the analytic calculation of the electric field in complex form for two

dimensional charge distributions with elliptical contours, in the absence of boundary conditions 
except at infinity. The formula yields compact and practical expressions for a significant class of 
distributions. The fact that the elecu'ic field vanishes inside an elliptical shell follows as a 
straightforward consequence of Cauchy's theorem. The known expressions for the field inside and 
outside a uniformly-charged ellipse are recovered in simple, concise form. The known expression 
for the field of a Gaussian distribution is recovered in a straightforward way as a special case of the 
more general formula. We present, as one new example, tlle field for a parabolic distribution. 

1. Introduction. 
It has long been recognized that a large class of complicated problems in two-dimensional 

electrostatics (and magnetostatics) in free space can be solved in a compact and elegant fashion by 
replacing the ordinary plane ex, y) by the complex plane x+iy. The reason for the great advantage 
of the complex plane can be succinctly stated as follows: if we confine our attention to a charge
free region of space, then the relevant Maxwell's equations to be solved are 

V·E=O, VxE=O 

subject to certain boundary conditions. In tenns of the field components, these equations read 

* Work supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High 
Energy Division, of the U.S. Department of Energy under Contract no. DE-AC03-76SFOOO98. 
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which are nothing but the Cauchy-Riemann conditions for the complex conjugate E of the 
"complex electric field" 

(3) 

A fundamental theorem of complex analysis then implies that If is an analytic function of 
the complex variable z == x + iy or, equivalently, that the field itself E is an analytic function of Z, 

E= E(Z) (4) 

There are two consequences from this analyticity property: (1), the complex electric field 
depends on x and y only through the combination x - iy (the combination x + iy is not allowed); 
and (2), the method of conformal mappings may then be used to transfOlm a complicated boundary 
condition geometry into a new, simpler geometry in which it is easy to find an analytic function 
that satisfies the condition. Since conformal mappings preserve analyticity, the solution for the 
electric field satisfying the original boundary conditions is obtained by simply applying the inverse 
of the mapping.1 • 

Now if the problem to be solved involves free charges, the divergence equation has a 
nonzero right-hand side, 

v . E = 4Jl'p(x) (5) 

and therefore the complex electric field does not satisfy the Cauchy-Riemann conditions, hence it 
is not, in general, an analytic function (at least not in the region where p ;t: 0). As a result, the 
method of conformal mappings is useless, although the complex representation of the field can still 
be used profitably in many cases due to the compactness of the notation.1 

For charge densities with elliptical contours, we show here that Cauchy's theorem allows 
the calculation of the field in a much simpler form than the conventional method,l,2 and yields 
compact expressions that are convenient to use in algebraic or numerical computations. Although 
this class of densities is obviously a limited one, it is useful in many applications in beam physics, 
such as in the calculation of space-charge effects, or in beam-beam interaction problems. The 
method is advantageous both in free-space and also in regions where free charges are present. As 
shown below, this formalism requires working directly with the electric field rather than the 
electrostatic potential; in fact, working with the potential makes it much more complicated. The 
method seems applicable to other charge distributions provided its contours are simple closed 
curves, although it is clear that the basic case cOlTesponds to elliptical contours. 

In Sec. 2 we present the general setup of the calculation of the complex electric field in the 
presence of a charge density with elliptical contours. In Sec. 3 we can·y out the most basic case, 
namely that in which the density is a delta-function over an elliptical shell. The well-known result 
that the field vanishes inside the shell follows as a simple consequence of Cauchy's theorem. The 
complex electric field for a general charge distribution with elliptical contours is the superposition 
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of the field for the previous case weighted by the charge density. In Sec. 4 we carry out several 
examples of the calculation for specific charge densities. In particular, we recover in very simple 
way the known results for the cases of a uniformly-charged ellipse3 and for a Gaussian4 

distribution. In addition we present, as a new example, the calculation of the fieldfor a parabolic 
distribution, which might be used in space-charge problems in proton storage rings. In Sec. 5 we 
present some remarks, and in Sec. 6 our conclusions. 

2. General setup of the calculation. 

We start from the 'solution of Eq. (5) for the case of a single point charge Q located at the 
origin, which we label with'a subscript 0, 

x 
Eo(x) = 2Q-2 

Ixl 
(6) 

where x is the two-dimensional coordinate vector with components (x,y). The general solution for 
an arbitrary two-dimensional (surface) charge density p(x) is obtained by the superposition 
principle, I 

E(x) = 2 (PX' - 2 p(x') J x x' 

Ix -x'i 
In complex form these equations read 

and 

E(x) = J d 2x' _ 2 _, p(x') 
z-z 

(7) 

(8) 

(9) 

where the bar denotes complex conjugation, and z' == x' + iy'. It should be noted that EO exhibits 
the analyticity property (4) for all z '¢: 0, as it should. 

So far, Eq. (9) is completely general and equivalent to Eq. (7). The trick to simplify (9) is 
to reduce the two-dimensional integral to a one-dimensional integral over a simple (i.e., 
nonintersecting) closed curve and then to take advantage of Cauchy's theorem. Obviously the 
success of this method depends on the properties of the charge density p. 

In this note we are only concerned with a specitic class of density functions, namely those 
with elliptical contours. That is to say, we assume that, with an appropriate choice of origin and 
orientation of the coordinate axes, p depends on x and y only through the combination 
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(10) 

rather than on x and y separately. We assume, without any loss of generality, that a;z. b; 
furthermore, if p is a rigorously localized distribution, we define a and b to be the semi-axes of 
the largest ellipse that encloses charge, namely that p = 0 for x2 

/ a2 + y2 / b2 > l. If P extends 
over all space (such as in the case of the Gaussian distribution), the parameters a and b can be 
best interpreted as (or traded off for) the rms sizes of the distribution O"x and O"y respectively, by 
using Eq. (13) below. Eq. (10) implies that the charge density of an elliptical distribution is 
generally written 

(11) 

With the change of variables described in Sec. 3 it is straightforward to show that the total charge 
Q of the distribution, which we assume finite, is given by 

and that the rms sizes are given by 

00 

Q == f d2
xp(x) = rcab f dtp(t) 

o 

where we have introduced the dimensionless density . 

" rcab 
pet) ==-p(t) 

Q 
which is normalized to unity, 

00 

f dtp(t) = 1 
o 

(12) 

(13) 

(14) 

(15) 

Inserting Eq. (11) into Eq. (9) and interchanging the order of the integration,* the complex 
electric field for a general elliptical disttibution becomes 

* This step requires p to be integrable, namely IQI<oo. If p is not positive-definite or negative-definite, the 

requirement is that p must be absolutely integrable, munely J d2xlp(x)I<00. 
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(16) 

This analysis for density functions with elliptical contours was apparently first carried out 
by Smith5 for the electrostatic potential. It is obviously applicable to the field as well, and is 
generalizable to three dimensions (although not within the complex-field formalism). The 
subexpression f d 2x'(-··) in Eq. (16) is nothing but the electric field produced by a delta-function 
density over an elliptical shell of "radius" t, while the integral J dtp(tK") is the superposition of 
the fields produced by all shells of different radii with a weight given by p(t). In Sec. 3 we will 
evaluate the field produced by a single delta-function shell, and in Sec. 4 we will carry out the 
superposition integral for various densities PCt). 

3. The basic case: delta-function elliptical shell. 

The conventional calculation for the field (as well as that for the potential in two- and three
dimensional space) for this case uses elliptical coordinates and is not new.l,s We present here the 
corresponding calculation for the complex case. For simplicity we temporarily set t = 1 in the 
expression for the charge density, which then reads 

p(X)=l. O(;'+~-I) 
nab a b 

(17) 

and take the complex conjugate of the electric field, Eq. (9), so that 

_ 2Q f 2 , o( x,2 / a2 + y'2 / b2 -1) 
E(x)=- d x , 

nab z - z 
(18) 

(we will recover the result for t '# 1 later in this section). The change of variables x' = ar' cos cp' , 
y' = br' sin cp' implies 

2,. 00 

J d2x' ( ... ) == ab J dcp' J r'dr' ( ... ) (19) 
o 0 

The integral over r~ is straightforward, yielding 

2,. - Qf 1 E(x) = - dcp'-.-, 
n z-z 

(20) 

o 
where z' == acos cp' + ibsin cp' represents the elliptical shell in complex parametric form. A further 
change of variable, ,= exp(i cp'), transforms Eq. (20) into a Cauchy-type integral over the unit 
circle in the complex-' plane, 
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(21) 

which can be done by the method of residues. The poles s± of the integrand are easily found to be 

(22) 

In order to provide a well-defined result, we need to make the square-root function in this 
expression unambiguous by means of an appropriate Riemann cut in the z-plane. There are two 
square-root type cuts that emanate out of the foci of the ellipse, which are located on the real axis at 
x = ±(a2 

- b2 )1/2 . The cuts are, in principle, almost arbitrary: any pair of nonintersecting semi
infinite curves emanating out of the foci of the ellipse renders the square root in (22) unambiguous. 
It turns out, as discussed below, that the requirement that the electric field be an unambiguous, 
odd-parity function of z implies that there is a unique specification for the branch cuts. For the time 
being, however, we proceed with the evaluation of Cauchy's integral, keeping in mind that such a 
specification will be made explicit below. 

We first note that.the poles satisfy the relation 

(23) 

which is a positive real number < 1. This implies that at least one of these poles (s-) is always 
contained inside the unit circle, regardless of the value of z. The other pole, s+, mayor may not be 
inside the unit circle, depending on the value of z. More specifically, the funCtions s±(z) are 
conformal mappings with the following properties: The mapping s+(z) maps the ellipse 
z = acos cp + ibsin qJ to the unit circle lsi = 1, the exterior of the elliFse to the exterior of the unit 
circle and the interior of the ellipse to the annulus [(a - b )/(a + b )]1/ < lsi < 1. The mapping s-(z) 
maps the ellipse z = acos qJ + ibsin qJ to the circle lsi = (a - b)/(a + b), the exterior of the ellipse to 
the disk 0 < lsi < (a - b)/(a + b), and the interior of the ellipse to the annulus (a - b)/(a + b) < lsi < 
[(a - b)/(a + b)]1/2 • 

For the calculation of the field we first rewrite Eq. (21) in the form 

(24) 

and consider two cases separately: 

(1) If the observation point x is inside the elliptical charge shell, i.e., if z is inside the 
ellipse, then both poles s+ and s- are inside the unit circle lsi = 1, and Cauchy's theorem yields 

E(x) = 0 . (inside) (25) 
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(2) If the observation point x is outside the elliptical charge shell, then only t;- is inside the 
unit circle, and Cauchy's theorem yields 

E(x) = 2iQ . 2ni 
n(a+ b) '- - t;+ 

_ 2Q 

- -J z2 - a2 + b2 

(26) 

(outside) 

This completes the calculation except that, as mentioned above, we need to, specify the 
Riemann cuts in the z-plane in order to make (z2 - a2 + b2 )1/2 well-defined. We first note that the 
original expression, Eq. (21), defines the electric field to be an unambiguous, odd-parity function 
of z (or x). as it should be, on account of the even parity of the charge density (17). The 
expression (26), on the other hand, has the appearance of being of even parity, since it depends on 
z only through z2. This is misleading: in general, detelmining the parity of a function that involves 
branch cuts is a topological question because it depends on which path one chooses to go from z to 
-z. Clearly, there are only two topologically distinct possibilities to define the Riemann cut 
structure for this square root: (a) the two cuts merge, joining together the two foci of the ellipse, as 
shown in Fig. la, and (b): the cuts emanate out of the foci of the ellipse and extend all the way to 
infinity, as in Fig. 1 b. One can easily prove that the cut structure (a) makes (z2 - a2 + b2 )1/2 an 
odd-parity function of z, while structure (b) makes it an even-parity function. Therefore the cut 
structure (a) provides the COll'ect specification for the electlic field. 

Another way to establish that cut (a) is the correct specification is to note that cut (b) would 
lead to unphysical discontinuities of the electric field across the cut in the region outside the ellipse, 
thus violating the fact that Eq. (21) defines the field in a smooth and unambiguous fashion. In the 
region inside the ellipse the field vanishes identically, hence no discontinuity arises from a cut 
joining the two foci. Therefore cut (a) is the COl1'ect answer. The cut is almost arbitrary: any 
non intersecting line joining the foci that is wholly contained within the ellipse will do. However, in 
practical applications, pa11icularly for more complicated fOlms of p(t), it may be convenient to 
assume the cut to be a straight line, as shown in Fig. la. ' 

In addition to being of odd parity, the real part of the square root (Z2 - a2 + b2)1/2 is 
antisymmetric under the reflection (x.y) ~ (-x,y) and symmetric under (x.y) -7 (x.-y). The 
imaginary part has the opposite reflection properties. This is as it should be: if the charge density is 
fully even under reflections, the electric field must be fully odd. With a cut of type (a), the parity 
and reflection properties are made explicit by the following fOimula, valid for the region outside the 
ellipse: 

-JZ2 _a2 + b2 = Si~X) ~X2 -l- a2 + b2 + ~(x2 -l-a2 + b2)2 + (2xy)2 

+iSi~Y)~l_ x 2 _b2 + a2 + ~(x2 -l-a2 +b2)2 + (2xy)2. 
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(a) 

b 

x 

y 
(b) 

b 

x 

Fig. 1. (a): The square root (/ - i + b2 
)1/

2 is rendered an unambiguous odd
parity function of z for all z by joining into a single straight line the branch 
cuts that emanate out of the foci of the ellipse. (bl: If the cuts extend .out to 
• ,r,"'t I th I . th 2 2 b2 1/2 • 't ,nJ"" Y a ong e rea aXIs, e square root (z - a + ) IS an even-parI Y 
func./ion of Z for all z, with unphysical discontinuities across the real axis . 

. Thus case (a) gives the correct answer for the complex electric field. The cuts 
need not be straight lines, although this is the simplest choice. 
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Finally, we generalize our result for the field to the case in which t * 1, corresponding to 

p(x)=--8 :;-+-h-t Q (2 2 ') 
nab a b 

(28) 

which is obtained from the expression for t = 1, Eq. (26), by the replacements (a, b) -7.Ji. (a,b), 

(29) 

where we have taken the complex conjugate and have used the step function 8(···) to make explicit 
the fact that the field vanishes inside the elliptical shell. The square root in this last expression is 
made well-defined by a branch cut of the type shown in Fig. la, except that, for t *1, the branch 
points are located at ±[t(a2 - b2)]1/2. . . 

4. Applications. 

4.1 General remarks and limiting forms. 

In general, as discussed in the introduction, the complex electric field is not a function of z 
alone because it is not; in general, an analytic function. It turns out, however, that in all but the 
simplest cases, the electric field can be expressed very compactly in terms of the auxiliary complex 
variables 

]: x . y 
~ =-+1-

a b 
and 

bx .ay {i)=-+l-
, a b 

(30) 

and their complex conjugates, in addition to z = x +iy. Obviously these variables are not 
independent; their relationship is most conveniently expressed by the easily-proven identities 

z - m == (a - b)"! 

z+ m =(a+byg 
(31a) 

(31b) 

and their complex-conjugate counterparts. A relation that is particularly useful follows from 
multiplying these two together, 

(32) ~ 

By combining Eqs. (16) and (29) we arrive at the general expl'ession for the complex 
electric field for an elliptical distribution, 

(33) 
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which constitutes the central result of this note. For each t, the cut is a nonintersectin~ line wholly 
contained within the ellipse x2 

/ a2 + l / b2 = t, joining the two foci at ±[t(a2 
- b )]1/2 • Thus, 

overall, the cut extends out to ±1;I(a2 
- b2 )1/2 • However, for a rigorously localized charged 

distribution, the cut extends only out to ±(a2 
- b2 )1/2 when the observation point is outside the 

region with charge, according to the discussion following Eq. (10). The integral can be carried out 
analytically for a significant class of weight functions p(t), of which we will provide a few 
examples below (the thin-shell case, Eq. (29), is recovered by setting pet) = 8(t -1». 

If pU) is regular at t=0, one can easily find from Eq. (33) the leading expression for the 
field at the origin, 

E(x) -7 4QP(0); as Izl-7 0 
a+b 

(34) 

If pet) has finite extent, or if it falls sufficiently rapidly as large distance, then Eq. (33) and 
the normalization property (15) imply that 

E(x) -7 2Q 
Z 

as Izl-7 00 (35) 

so that the field approaches that of a point charge, as it should be expected. Nonleading corrections 
to this limit, which constitute the multi pole expansion of the field, can be easily found from Eq. 
(33) (the resulting multipole expansion is a convergent series only if the charge distribution is of 
finite extent; in all other cases the expansion is asymptotic). 

4.2 Round distribution. 

If the charge distribution is round rather than elliptical, Eq. (33) yields, for the field at 
distance r from the center, 

j
,2/a2 

E(x) = 2~ dt pet) 
Z 0 

(36) 

which is the result one obtains in a straightforward manner from Gauss' theorem. In particular, if 
the charge distribution is a thin round shell, this yields the well-known result 

E(x) = . {
o inside 

Eo(x) outsIde 
(37) 

4.3 Uniformly charged ellipse. 

This case was apparently first considered by Teng.3 Our formalism allows to recover 
Teng's results in a much simpler and concise fashion. In this case the charge density is 
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(38) 

so that p(t) = 8(1.- t). Then the complex field is given by 

E(x) = 2Q J
min(1.1~12) dt 

o ~Z2 - t(a2 
- b2

) 

(39) 

The integral is elementary. If the observation point is inside the ellipse the top limit in the integral is 
t = Igl2 

and we obtain 

(inside) (40) 

If the observation point is outside the ellipse, then the top limit is t = 1 and the result is 

(41a) 

(outside) (41b) 

In arriving at the final result in Eq. (40) for the field inside the ellipse we have used the 
identity (32). Notice that this expression is manifestly devoid of possible discontinuities or 
ambiguities, as it should be according to the earlier discussion on the nature of the cut. Although 
the two expressions (41a) and (41b) for the field outside the ellipse are mathematically equivalent, 
(41b) has the advantage that it is manifestly regular in the round-beam limit, a ~ b, and that it has· 
a straightforward long-distance limit, Izi ~ 00. Therefore this second form is preferable in many 
numerical computations. Notice also that the field in the charge-free region, Eq. (41), is an analytic 
function of Z, as it should be according to Eq. (4). 

At the edge of the ellipse, the two expressions (40) and (41) must coincide. This can be 
verified as follows: we first note that the edge of the ellipse is defined by Igl2 = 1, so that the 

. identity (32) reduces to a2 - b2 = z2 - (1)2. Substituting this into Eq. (41a) and using (31a) yields 
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E(x) = 24Q 2 (z -.0) 

a -b 

= 4Q g 
a+b 

(edge) 

which agrees with the expression for the field inside the ellipse, Eq. (40). 

(42) 

Inside the ellipse, Eq. (40) shows that the field is linear, with the x-component given by 

E - 4Q x x-
a(a + b) 

(inside) (43) 

This linearity property is well known, and is also tme for a three-dimensional ellipsoid. 1,2 Outside 
the ellipse Eq. (41a) yields, for the real part, 

E = 4Q [x- sign(x) 'x2 _ i _a2 +b2 +~(x2 - i - a2 +b2)2 + (2xy)2 ] (44) 
x a2 _ b2 ..fi-V 

while the y-component can be obtained from this by exchanging x H y and a H b. The real 
counterpart of Eq. (41b) is, of course, more complicated. The compactness and relative simplicity 
of the complex form, Eq. (41a), are obvious compared to this real fOlm. If we specialize Eq. (41b) 
to the real axis, we obtain, for x > 0, 

(45) 

which agrees with one of Teng' s Oliginal expressions.3 

4.3 Gaussian charge density. 
An expression for the complex electric field was apparently first derived by Bassetti and 

Erskine.4 We now show how to obtain their result from our general formula. The charge density is 

(46) 

so that pet) = ~e -t12 and the field is 

E(x) = Q J1;12 e-zl2 dt 

o ~Z2 - tea; - a~) 
(47) 

Now making the change of integration variable 2( a.; - a~)i = Z2 - t( a; - a;) and using the 
definition of the complex error function w(z),6 
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lz S2 #[ 2 ] dse =-. eZ w(z)-l 
o 21 

(48) 

gives 

(49) 

where Sl and S2 are 

(50) 
_ ~Z2 -1;12(a; - a~) _ . ill 

S2 = ~2(a; _ (j~) - ~2(a; _ a~) 

Substituting these and using the identity (32) the electt1c field becomes 

(51) 

which is equivalent* to the function F in Ref. [4]. 

4.4 Parabolic charge density. 

By using the elementary recursion relation 

tt - n~ tt J d n 2 [ J d n-l] 
.../1- kt = (211 + l)k t - "t -n .../1- kt 

(52) 

it is obviously possible to compute the complex electt1c tield for a charge density that is an arbitrary 
polynomial function of t (many other fOlms for the density also yield expressions for the field in 
closed fonn). As an example, we consider the density 

{~(I-X2/a2 + i/b2) 
p(x) = nab 

o 

if x2/~2+i/b2 $1 

if x2
/ a 2 + i / b2 > 1 

* Our definition of E differs from Bassetti-Erskine's F by complex conjugation and a multiplicative factor of2i. 
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which is perhaps the simplest case beyond the uniform-density case with possible physical 
meaning. This density might be useful, for example, in applications to space-charge problems for 
proton storage rings. The normalized density reads pCt) = 2(1- t)8(1- t). The field is computed 
following the same steps as in the uniform-charge-distribution case. The only challenge arises 
when one wants to express the final result in a form free from round-beam or large-distance 
apparent ambiguities (see Sec. 5 for a systematic solution to this challenge). The result is 

8Qg (1- (2z + rug) 
a+b 3(a+ b) 

E(x) = (54) 

These expressions are in agreement with the short- and long-distance limits (34) and (35). 
It should also be noted that, in the region with charge, the field is manifestly unambiguous and 
devoid of discontinuities. In the charge-free region, the field obeys the analyticity property (4). 

5. Remarks. 

5.1 Formjactor. 
If a factor z is pulled outside the square root in Eq. (33), the field is written in the form 

ECx) = Eo(x)· F(x) (55) 

where F is a dimensionless "form factor" that describes the finite-size effects, 

(56) 

With the cut structure discussed earlier, it can be easily shown that the square root in this 
expression is an even-parity function, and hence so is F(x) (the point-charge field Eo(x), of 
course, is of odd parity, making the overall field E(x) of odd parity). Since the field is well-defined 
for all z, so is the form factor. The leading behaviors shown in Eqs. (34) and (35) translate into 

F(x) --7 2p(O) g z as Izl--7 0 
a+b 

F(x) --71 as Izl--7 00 
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5.2 Coding in FORTRAN. 
The ANSI-standard definition of the FORTRAN function CSQRT(Z) evaluates the square 

root CZ-2 
- a2 + b2 )1/2 incorrectly for our purposes: CSQRT(Z) turns it into an even-parity 

function, corresronding to the cuts in Fig. 1 b. By the same token, CSQRT(Z) also makes 
[1- (a2 - b2)/z ]1/2 an even-parity function. Therefore, if one wants to carry out computations in 
standard FORTRAN without conditioning the calculation to the ~uadrant to which z belonfis, it is 
simplest to code the formulas with the replacement (z2 - a2 + b2) 72 -7 z[1 ~ (a 2 - b2 )/z2] 72 . 

, " 5.3 Computational speed. ' 
\ . 

Although the complex expressions for the field are simpler than those for the real and 
imaginary parts, they are slower to compute. Results from a benchmark with double-precision 
arithmetic on a VAX 6610 show that computing Eq. (44) (plus the y-component) is faster by a 
factor of 2 than computing Eq. (41a) and then taking the real and imaginary part. In single 
precision, the speed-up factor is 2.5. However, for more complicated cases, we expect that the 
complex expressions are more competitive from the perspective of computational speed due to their 
much simpler form. 

5.4 Distributions that are polynomials in t. 

As mentioned above, the recursion relation (52) allows the computation of the field when 
pet) is an arbitrary polynomial. However, straightforward application of (52) yields an expression 
with a2 

- b2 in the denominator. The general way to obtain a result with a manifestly regular 
round-beam limit is to use the definition of the hypergeometric function and to make a quadratic 
transformation,7 thus . 

rT dttn _ Tn+1 r1 dssn 

Jo ...JI- kt - Jo ...JI - kTs 

T
n
+

1 
( ) = n+12F1 ~,n+l,n+2;kT (58) 

T n
+

1 
( 2 )n+l 

=- -ff=kf 2Fl(-n,n+l,n+2;(I-...Jl-kT)/2) 
n+l 1+ l-kT 

where T is the appropriate top limit of the integral (for a finite-size distribution, T == min(I,I~12) 
and k == (a2 

- b2 )7z2
). For integer values of 1~ the hypergeometric function in the last equation is 

a polynomial of degree n in the variable (1- 1- kT)/2 and hence this form produces results in 
the form of Eq. (41b) or (54). 

5.5 Distribution junctions with contours other than elliptical. 
The method described can be extended, in principle, to charge distributions that depend on 

x and y only through a positive-definite combination c(x,y) such that 
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c(X,y) = t (59) 

represents a simple (i.e., nonintersecting) closed curve. However, it seems clear that the elliptical 
contours are the simplest. 

6. Conclusions. 

We have presented a formalism that yields simple, compact expressions for the electric field 
of two-dimensional charge distributions with elliptical contours. Cauchy's theorem plays a central 
role in the calculation. We have reproduced in closed form the known results for the cases of the 
uniformly charged ellipse an,d the Gaussian distribution. We have also presented a new result as an 
example of a large class of distribution functions that yield closed expressions for the electric field. 
Our formalism allows simplified coding in numerical simulations and easier analytical work in 
problems in beam physics such as those involving space-charge effects or the beam-beam 
interaction. 
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