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Abstract

Accurate numerical integration of singular functions usually re-
quires either adaptivity or product integration: Both interfere with
fast summation techniques and thus hamper large-scale computations
in incompressible fluid flow, potential theory and crystal growth.

This paper presents a method for computing highly accurate quadra-
ture formulas for singular functions which combine well with fast sum-
mation methods. Given the singularity and the N nodes, we first
construct weights which integrate smooth functions with order-k ac-
curacy. Then we locally correct a small number of weights near the
singularity, to achieve order-k accuracy on singular functions as well.
The method is highly efficient and runs in O(Nk24 + Nlog? N) time
and O(k?? + N) space. We derive precise error bounds and time esti-
mates and confirm them with numerical results which demonstrate the
accuracy and efficiency of the method in large-scale computations. As
part of our implementation, we also construct a new adaptive multi-
dimensional product Gauss quadrature routine with an effective error
estimate, and compare it with a standard package.

The method generalizes to interpolate and differentiate scattered
data and to integrate singular functions over curves and surfaces in
several dimensions.
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1 Introduction

Many numerical problems require the evaluation of integrals

/ f(ax)dz, ) (1.1)
B

where B is a D-dimensional subset of JR? and f is an integrable function on
B. Many methods have been devised for the numerical calculation of such
integrals, each useful for certain values of D and d and certain classes of B
and f. In the case d = D = 1 an extensive literature is summarized in [6],
while in d > 1 dimensions much recent work is presented in {7, 15].

This paper focuses on the evaluation of (1.1) under the following as-
sumptions. (a) B is a rectangle [¢,b] := [u1,0,] X ... X [0g, bg]. (b) We are
given values f(z;) of f at N points a; not of our choosing. (c) We are given
an integrable but singular function ¢ : B—IR*, which is C'* away from a
lower-dimensional subset S of B, and f has the form

f@) = o(x) - o(x) + (), _ | (1.2)

where ¢ : B—IR® and ¢ : B—IR are C* functions on B. We are mainly
interested in the cases d = 2 and d = 3, though our methods are applicable
to any d.

We construct two rules for numerical integration. In §2, we construct
a rule W with weights W;, 1 < j < N, which integrates smooth functions
accurately: '

N ‘
Z Wig(x;) = / g(x)dz + Ey, (1.3)
— B ‘

where Ey decreases rapidly as N—oo if ¢ is sinooth enough and the points
z; happen to be distributed appropiiately. For example, Ex = O(N~#/¢) if
¢ is C* and the points are uniformly distributed on B, where k is the order
of accuracy of the rule. The computation of W requires Q(N (k** +log” N))
time and O(k*! 4+ N) space. Precise error bounds and numerical examples
are given in §2.

In §3, we construct a rule w with weights w; which integrates singular
functions of the form (1.2) accurately. The singular rule w has the additional
property that w; = W; except for a small number of j’s, those for which «;
is near the singular set. This property is important in the application of fast
algorithms to the efficient evaluation of families of singular integrals. The



computation of those w;’s differing from W; requires O(k*?) time. Error
bounds and numerical results are given in §3.

These general rules are constructed with certain specific classes of appli-
cations in mind, including computational fluid dynamics, potential theory
and crystal growth. These applications require the application of integral
operators

| u(x) ::/BI\’(a:,:v')w(:zr’)(l':n’ (1.4)

where K has known singular behavior on a lower-dimensional set but w is
(at least piecewise) smooth. Typically K is singular at a single point, we
know w(s;) at N points s;, and we would like to approximate M values u(2;)
at points t; € IR?.

A classical approach to this problem is product integration [6]. Here we
approximate u(t;) by a rule of the form

N .
Ly = Z[\",-]-w(sj) ] (15)
i=r . '

with K;; chosen to integrate some class of w exactly for each #. This is
a M x N matrix multiplication, so it costs O(MN) work, which is very
expensive when M and N are large. This has been a stumbling block in
. computational fluid dynamics [5], potential theory for the Laplace equation
- {14], and crystal growth [23]. Product integration also tends to require
difficult, expensive, and sometimes impossible algebraic manipulations and
evaluation of integrals in closed form. A major objective of this paper is
to eliminate the calculations required by product integration, and replace
them with a single general-purpose method which produces locally corrected
quadrature rules of arbitrary order for any given singularity.

More recently, fast summation methods have been developed for sevelal
kernels . These methods evaluate the discrete sum

= ZI’(ti,.sj)W’.jw(.sj) 1<i<M - (1.6)

to accuracy €, in O((N + M)loge) work. See [1, 3, 4, 12, 25, 29] for vortex
methods and potential theory and [11, 24] for Gaussian kernels. However,
these methods cannot be combined with product integration, where the
weights depend on the point of evaluation ;.

Another class of recently-developed fast methods is aimed more directly -
at the continuous problem (1.4); see [18, 20, 25] for vortex methods and
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potential theory and [10, 27] for heat potentials. These methods are related
to product integration in some cases, usually have a fixed and not too high
order of accuracy, and tend to be slower than fast methods for discrete
sums (1.6). Like product integration, they sometimes require difficult and
expensive algebraic manipulations and evaluation of integrals which can be
carried out only in special cases. 4 (

Singular quadrature rules of the type developed in this paper allow the
application of fast algorithms for discrete sums (1.6) to the continuous prob-
lem (1.4), because w; are independent of the point of evaluation t; except for
a few points near the singularity. Thus fast methods can be applied to the
sum (1.6) with weights W;, and then u; can be corrected locally to get an ac-
curate and inexpensive approximation of «(#;). This observation was appar-
ently first made in [19], where one-dimensional singular endpoint-corrected
trapezoidal rules were developed. It has been applied to one-dimensional
integral equations in [22].

Our method requires knowledge of the singularity o(=) only in the weak
sense that we need modified moments

/ P.(z)a(x)dx (1.7)
BnC

over rectangles C', with P, a suitable family of multidimensional orthogonal
polynomials. Obtaining these moments is itself a highly nontrivial task in
this generality, with many possibilities depending on the singularity and on
B. We have implemented, as part of our metliod, a general multidimensional
adaptive Gaussian quadrature code, with a novel error estimator, which
may be of some independent interest and is therefore described in §4. It is
sufficient for vortex methods and for volume potentials in potential theory,
and hence for the solution of variable-coefficient elliptic partial differential
equations, as in [26]. Numerical results in §4 indicate that it is competitive
with standard codes in dimensions d = 2 and ¢ = 3.

The techniques presented in this paper generalize immediately to solve
several other problems of considerable interest. We can approximate and
differentiate functions known at arbitrary points, a technique which is use-
ful in many computational problems. We can integrate singular functions
over more general domains, such as curves and surfaces. Several such gener-
alizations, along with several refinements of the basic method, are discussed
in §5. ’
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2 Smooth rules

2.1 Overview of the construction

We construct rules with NV given points x; for integrating sinooth functions
over a d-dimensional rectangle B = [a,0] := [a1, 0] X -+ x [aq,b4). The
structure of these rules will make a good base for the construction of singular
rules with locally corrected weights.

Let k > 1 be the desired order of accuracy of the rule, assume N > m :=
m(k,d) = (k+d-1)(k+d-2)---(k+ 1)k/d!, and choose an integer L
with p := |[N/2%] > m. Using a data structure developed below, we divide
B into M = 2% rectangular subcells B; with disjoint interiors such that B
is their union and each B; contains either p or p + 1 points #;. Then on
each B;, we construct local weights W/ for x; € B; which integrate the m
- monoimials of degree < k -1 exactly over B;. (A monomial of degree k in
d dimensions has the form «7'a5® - .-y, where each «; is a nonnegative
integer and || := a; + @z + ...+ g = k. There are precisely m monomials
of degree < k£ — 1.) Because of the ill-conditioning of the power basis, we
construct these weights by solving the following syqtem of m linear equations
in at least p unknowns:

Z P, (a;)W} = /B P, (x)da || < k- 1. | (2.1)

z;€B; ¢

Here v
P(r("':) = er(:ltl) o 'er(md)

is a product. of one-dimensional Legendre polynomials, with the [th factor
scaled and shifted to live on the interval [a;, ;]. Since p > m, this system of
m equations in at least p unknowns generically has solutions. We compute
the solution W} of least Euclidean norm, using the singular value decom-
position [9]. §2.3 discusses what to do when no solution exists. The global
weights of the rule W are then defined to he W; = W'ji if 2; € B;.

2.2 Details of the construction

We now construct a data structure with two useful features; first, it parti-
tions B into rectangular cells over which we can easily integrate polynomials
and second, there are neither too many nor too few of the points z; in each
cell. Too many points makes the singular value decomposition too expensive
and produce a less accurate rule because the cell size increases, while too few



points makes (2.1) overdetermined so generically no solution exists. When
the number of points p is very close to the minimuimn required m, so (2.1)
is barely solvable, the solution tends to have large 1-norm, making it un-
suitable for numerical integration. This is similar to the well-known Runge
phenomenon encountered in interpolation (where p = m) at equidistant
points. We found that p of order 2m gave excellent results.

Such a “tree structure” can be constructed by recursive subdivision.
Let B = B; be the level-0 root of the tree. Divide B; in half by a plane
perpendicular to say the I’th coordinate axis, with the dividing plane located
so that |N/2] or |{N/2]| 4+ 1 points are in each half of B;. This gives the
level-1 cells B, and Bs. Repeat this procedure on B, and Bs, with the
splitting dimension ! chosen independently for each cell, to get By through
B+, each containing, [ N/4| or |[N/4] 41 points «;. Repeating this procedure
L times gives M = 2L cells B; on the finest level L, numbered {rom i = M
to 1 = 2M — 1, each containing p = [N/M| or p + 1 points «;. The union
of all the cells on any given level is B. The tree structure is stored by
listing the boundaries of each cell B; = [a;,b;] from i = 1 to i = 2M - 1,
a total of 2d - 2M numbers, and indexing the points into a list so that the
points x; € B; are given by j = j(s) for s = 0(7),...,¢() and three integer
functions j, b and e. This requires sorting the points in each cell before
each subdivision, giving a total cost O(N log® N) for the tree construction
when an O(N log N) sorting method such as heapsort [17] is used. Figure
1 shows an example of this construction. We note that hierarchical data
structures with similar properties — though not this particular one - have
been extensively discussed in [21].

The dimension [ across which to split a given cell can be selected in sev-
eral ways. We can split the longest dimension, so that the length-dependent
factor in the error estimate below is reduced as quickly as possible; choose
[ with -

by —a; 2 b — a; for 1<j<d

Alternatively, we can choose [ to minimize the second moment of the points
in the cell.. 'If function values at the nodes are available when the rule is
constructed, other choices intended to minimize integration error for that
specific function can be devised.

For future reference, we note that the tree structure permits efficient
O(L) lookup of the level-L cell containing any point « € B. We simply
begin at the root and discard all children not containing x; the process is
then repeated recursively on the remaining child until we reach the lowest



Figure 1: Levels 1 through G in the tree structure with N = 1137 pseudo-
‘random uniformly distributed points on [0, 1]% -




level. More generally, we can find all cells intersecting a given rectangle R
in time proportional to L and to their number. This will be useful in the
construction of singular rules.

2.3 Error bounds

The global weights defined to be W; = W} if «; € B; integrate all the Mm
functions &;(z)z“ exactly, where £;(2) is the indicator function of B;, for
M <i<2M -1and |o| £ k — 1. Thus the error in integrating a smooth
function g over B is given by a sum over cells

2M -1

N
E = / 9= Wigla;)= > E; (2.2)
B ]=1

i=M

where

/ g - Z Wig( (2.3)

z;€B,;

Let G be the polynomial of degree < k — 1 which best approximates ¢ on
B; in the maximum norm. Since W is exact for G on B;, we have

Ei = /(J Gyla+ 3 WiHG(a;) - g(2;) (2.4)
z;€EB; :
and thus
1B < Mg =Gllosy+ S IWHIG(;) = g(a5)]

r;€B;

QB g — Gllewss

IA

where the figure of demerit  is defined by

Q= Wil (2.5)
IB |B:] ;,

| B:| is the volume of B;, and the C'” norim is defined by
llellcosy = max|o(x)| (2.6)

for continuous functions ¢ on a set B.
The error bound on each cell is thus separated into a factor Q' inde-
pendent of the integrand, a factor of | B;|, and a factor which depends only

10



on approximation of the integrand on the cell. The first factor Q' cannot
be bounded a priori unless all the weights are nonnegative, in which case
Q' = 2. However, Q can easily be computed a posteriori and thus serves as
an extremely useful diagnostic for the quality of the rule.

The volume factor in the error bound depends only on the distribution
of points and the tree structure constructed, and will add up to the volume
of the domain B.

Finally, we bound the error in approximating g. Assume g € C*(B);
then by multidimensional Taylor expansion [8], we have

glz+y)= Y, 9g(x !+Rk(:'=,:1/) (2.7)

lo]<k-1

)y

where ! = aylay!- -y, 9%g = 07 ...00%g, y* = yi"...yy%, and the
remainder is bounded by ‘ '

o J w O

Ri(z,y) < |Z|: a—(}lm 10%9(x + )] (2.8)

Since G is the best approximation to g on B; by a polynomial of degree '
< k — 1, Taylor expansion about the center of B; iinplies that

o= Cliowy < ¥ L2 ovglemy  @9)

la[=k

where B; = [a;,0;] and N; = b; — ;.
A global error bound follows immediately:

M
|E] < > QBil Iy — Gllcws.
i=1
< QlB[(h/Z)k Z “H()‘JH("(B)

Jo|=k

where h = max;,; h; is the longest cell edge at level L of the tree structure
and :

lBIZmB[— 1+ IB|E|W| (2.10)

is the global figure of demerit for the rule W. Note that Q plays the role
of a condition number for W, mediating hetween the intrinsic difficulty of
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integrating ¢ (as measured by the derivatives of ¢) and the accuracy of the
final result.

There are several ways to reduce each ' and thus obtain a better error
bound. Usually taking more points per cell reduces ', since the additional
degrees of freedom are not needed to satisfy (2.1) and can be applied to
reducing the 2-norm of W]?. However, this increases the cost of computing
W considerably and increases the cell size I, so taking larger p is not cost-
effective if applied globally.

It can be applied adaptively, however, by going up to a different level of
the tree structure when necessary. To implement this, we specify a tolerance
Q.. When @ > Q,,, we merge B; with its sibling in the tree structure,
obtaining a cell B; containing twice as many points x;. We then recompute
all weights W; for which =; € By, usually obtaining O <, at the cost of
a larger singular value decomposition and a larger cell size h. If / is still
too large, the process may be repeated.

This adaptive technique also permits treatinent of the degenerate cases
when no solution exists to (2.1) on cell B;, because the points x; are not in
sufficiently general position. Such a cell can be merged with its sibling, after
which a solution is much more likely to exist. The process may be repeated
if necessary.

Another approach to reducing the error bound would be to seek the least
1-norm solution of (2.1), which would minimize @*. This l-norm minimiza-
tion problem is standard but somewhat more expensive to solve that the
2-norm problem we solve with the singular value decomposition. We found
that values of p of order 2m usually produce € within an order of magni-
tude of the lower bound 2, so we expect little improvement from the l1-norm
minimization approach and have not experimented with it.

2.4 Implementation and numerical results

We implemented this method in a portable ANSI Fortran code. The code
accepts k, d, L, B = [a,b] C R, and N points x; € R?. It returns N
weights W;, the cell structure, the maximum condition number encountered
in the singular value decompositions, {2, the cell size i, and so forth. The
numerical results reported here were obtained on a Sun Sparc-2 workstation.

We tested the code by generating N = 256,512, ...,16384 pseudoran-
dom uniformly distributed points in the two-dimensional unit square [0, 1]?,
computing the weights W with p = k* > m = k(k + 1)/2 for k = 2,4,8, 12
and 16, and using them to integrate monomials, cosines and Lorentzian

12



functions over [0, 1]°. The test integrands are thus the vectors
12
gi{z) = (21 + 22)" : 0 < 0 < 3k)

g2() = (cos(n(xy ~ 1)) cos(n(xy —713)) : 1 < n < 10) .

2 . .
gs(z) = (H —l—(n"2 +(2;—r)?) 1< < 10)
i=1 US

with 7; uniformly distributed on [0, 1] and & the order of the rule.

Since the N points are randomly generated, we cannot expect a smooth
convergence as N —oo. Hence for each integrand, we generated 20 different
sets of nodes z; and computed the minimun, average and waximum of the
errors E; and their base-2 Jogarithins L;, and the corresponding standard
deviations.

N - h Q T . L L, Ly
128 0.35%9 2.05 0.10 -10.35 -5.07 -3.03
256 0.2934 2:.04 0.15 -11.45 -5.65 -4.13.
512 0.1981 2.05 0.32 -13.44 -745 -4.40
1024 0.1536 2.04 0.69 -14.07 -8.98 -6.67
2048 0.1095 2.05 1.52 -15.59 -10.20 -7.51
4096 0.0809 2.05 3.28 -17.04 -11.56 -9.13
8192 0.0551 2.05 7.26 -18.94 -12.98 -9.86

16384 0.0428 2.05 15.99 -19.15 -14.91 -11.25

Table 1: Mesh size h, figure of demerit Q, CPU time T and average base-2. -
error logarithms L; for the second-order smooth rule with N random points.

Tables 1 through 5 display the averages L; of the base-2 logarithm of the
error E produced when the gth-order smooth rule W is applied to integrate
the test functions g; for j = 1,2 and 3 and k = 2, 4, 8, 12 and 16. Since the
number of points doubles in each succeeding row of each table, we expect L;
to decrease by k/d = k/2 in each step. This decrease is clearly evident for
large N. It tends to occur doubled at alternate lines because only when the
number of points increases by 2¢ = 4 does the average spacing i decrease
by half. »

The code is extremely efficient. Rules of orders k = 2, 4, 8, 12 and 16
with N = 16384 nodes require T = 16, 33, 157, 642 and 2041 CPU seconds

13



N h Q T L, L, L
128 0.5146 3.22 0.22 -i12.67 -4.90 -3.58
256 0.3293 3.51 041 -14.54 -7.66 -5.29
512 0.2776 3.60 0.84 -15.78 -9.15 -4.74
1024 0.1764 3.34 1.73 -18.76 -12.09 -7.67
2048 0.1449 3.36 3.57 -19.61 -14.40 -9.93
4096 0.0915 3.42 7.41 -22.30 -17.07 -12.82
8192  0.0752 . 3.48 15.53 -23.64 -18.85 -14.36
16384 0.0492 3.49 32.52 -26.02 -21.88. -17.27

Table 2: Mesh size h, figure of demerit 2, CPU time T and average base-2
error logarithms L; for the fourth-order smooth rule with N random points.

N h Q T L, L, Ly
128 1.0000 6.20 1.21 -11.95 -5.31 -4.29
256 0.5520 7.35 237 -14.60 -8.55  -4.56
512 0.5139 6.01 4.76 -17.92 -12.42 -5.91
1024 0.2893 6.69 9.52 -21.39 -16.62 -9.67
2048 0.2635 6.24 19.16 -24.10 -21.02 -12.25
4096 0.1504 6.15 38.65 -28.57 -25.58 -16.59
8192 0.1350 6.29 77.91 -33.27 -29.16 -17.33

16384 0.0786 6.58 157.08 -36.74 -34.75 -23.32

Table 3: Mesh size h, figure of dewerit 2, CPU time T and average base-2
error logarithms L; for the eighth-order smooth rule with N random points.
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N h Q T L, L, L;
256  1.0000 19.48 9.95 -14.34 -9.17 -4.85
512 0.5364 24.37 19.92 -18.62 -1591 -7.65
1024 0.5073 37.65 -39.81 -22.09 -21.00 -9.18
2048 0.2762 27.28 79.75 -26.81 -28.63 -12.96
4096 0.2579- 26.22 159.82 -31.52 -33.99 -15.34
8192 0.1431 28.42 32041 -38.84 -40.07 -21.38
16384 0.1324 26.38 (42.06 -43.83 -46.71 -23.67

Table 4: Mesh size h, figure of demerit 2, CPU time T and average hase-2 '
error logarithms L; for the twelfth-order smooth rule with N random points.

N h - Q T L, L, L,
256  1.0000 71.16 31.80 -13.39 -9.96 -5.74
512 1.0000 31.93 63.70 -16.26 -16.10 -7.44
1024 0.5210 68.11 127.28 -20.29 -24.86 -11.53
2048 0.5045 53.34 254.55 -26.56 -32.94 -11.66
4096  0.2696 49.57 509.72 -33.16 -42.35 -19.14
8192 0.2576 51.48 1019.63 -39.50 -47.79 -19.69
16384 0.1375 45.07 2041.41 -44.54 -48.48 -29.81

Table 5: Mesh size h, figure of demerit 2, CPU time T and average hase-
2 error logarithms L; for the sixteenth-order smooth rule with N random

points. .



on a Sparc-2 workstation. By comparison, the actual integration of ¢, and g3
with the given points and weights takes 3 and 1.5 CPU seconds respectively.
Thus an integrand with a substantial degree of complexity will dominate the
integration time, at least for rules of the lower orders presented here.

To demonstrate the improvement due to taking p substantially larger
than m, we also ran tests with N = p=m,m+1,..., k% for k = 2,4,8,12
and 16. Table 6 shows sonie of the results. We see that larger values of p
produce dramatic decreases in , especially for higher-order rules.

k=2, N = 3 4 5 fi 7 8
Q= 34 3.4 2.5 22 22 21
k=4,N = 10 11 12 13 14 16
Q= 40 10 82 59 46 3.3
=8, N = 36 40 44 48 56 64
Q= 6673 35 43 24 13 7.3
k=12,N = 78 84 99 114 129 144
Q= 4803412 1057 180 46 37 23
k=16,N = 136 144 172 200 228 256
Q= 313597 16561 923 221 90 66

Table 6: Average ﬁgﬁre of demerit Q as a function of the number N = p
of points per cell for k = 2, 4, 8, 12 and 16.

3 Singular rules

3.1 Overview of the construction

We now select and correct certain weights W; of the smooth rule W, to
produce a singular rule w which will integrate singular functions f(x) =
@(x) - o(x) + ¢(2) more accurately.

The weights to be corrected are selected by forming a list of cells B; in
the tree structure built for the smooth rule W and correcting all the weights
W; for which #; lies in some cell on the list. For each cell B; on the list,
we construct w; for x; € B; by réquiring w; to satisfy the linear system of
(14 s)m equations which expresses that P,(«) and P,(«)o(a) are integrated

16



exactly for |a| < k - 1:

/B‘Pa(a:)da: = Z w; Py (;) (3.1)

r;€EB;

/ P,(2)o(a)dx = Z w; Py(a;)a,(x;) ' (3.2)
Bi z,€B;

for |a| < k=1 and 1 <t < s.-In order for these equations generically to
have solutions w, we cannot use the cells B; on the lowest level L of the
tree structure, because each of these contaius only p > m or p + 1 points
x;. Instead, we use the cells constructed on level L’ of the tree structure,
for example with L' := L — [log,(1 + s)] if p was chosen of order 2m to
begin with. On level L', we have fewer and larger cells, each containing at
least p' := N/2L" > (1+ s)m points. Thus (3.1) and (3.2) will generically
be solvable. In practice, we solve (3.1) and (3.2) by the singular value
decomposition, obtaining w as the solution of least 2-norm if it exists. A
major new difficulty which requirement (3.2) introduces is the computation
of the singular moments v

/.. P,(x)a(x)da - (3.3)
B,

when ¢ is not smooth. §4 is devoted entirely to this question.

The actual selection of cells to correct can be made in several ways. If o
is singular at a point 2, € B, for example, a natural choice would be simply
- to correct the cell B; on level L' which contains x,. However, z, might lie at
the corner of B;, so many nearby points would go uncorrected if this selection
were made. A variant of single-cell correction is to correct only the neighbor
cells of the qua.drvant of cell B; where a, lies. An alternative and natural
choice would be to correct all cells intersecting a region of specified size 6
around the singular set 5; these cells can be found efficiently, as described
in §2. However, this requires correction of a number of points proportional
to N as N —o0, which is unacceptably expensive if fast sunnation methods
are employed. Thus this selection scheme is robust but too expensive. Also,
it takes no account of local density variations of the points.

We chose to select cells for correction by the following approach. The
user specifies a dimensionless correction radius r., typically of order unity.
We find the cell B; = [a,)] in which the singularity lies (several cells if &
has a higher-dimensional singular set). We then select for correction all cells
intersecting the rectangle R = [, — r.(b— «)/2, 2, + r.(b — a)/2] of size r,
times B; and centered at each singular point @, € 5. This scales the size of
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the corrected area to the local cell size and therefore to the local density of
nodes, keeping the number of corrected points per singular point of order
unity as N—oo with r, fixed. If D = dim S then the number of corrected
points is O(NP/?). We found r. = 3 to give excellent results in practice.
The lookup of cells to be corrected costs only O(L) per cell.

Remark: We can construct a locally-corrected product integration rule
using the same technique; we simply drop the requirement (3.2) and go
up fewer levels in the tree structure. This gives a rule which integrates
polynomials times o accurately, which is enough for many applications. The
added generality obtained by requiring (3.2) as well as (3.1) is important
when the integrand may be nonsingular (for example when o happens to
vanish at the singularity), and costs little.

Remark: o(a,) may be infinite or undefined, so we don’t want to eval-
uate f at .. If &, is one of the quadrature points x;, then we eliminate it
from the list of points to be corrected, set w; = 0, and proceed.

3.2 Error bounds

The error bounds for singular rules can he derived by polynomial approx-
imation, as in the smooth case. No matter how the list of corrected cells
is made up, there will be two types of cells to consider; corrected and un-
corrected. On the corrected cells, both ¢ and ¢ can be approximated and
the remainder estimated as for smooth rules. On the uncorrected cells, the
derivatives of the singularity come into play; the key assumption in the error
bound is that we correct all cells sufficiently close to the singularity.

For notational convenience, let’s renumber the M cells used in the sin-
gular rule, so that the first n are corrected and the last M — n are not:
thus B = UM, B; where each cell B; contains at least (1 + s)m points for
1 < i < n and at least m points for n+1 < ¢ < M. Let the sides of B; be Iy
for i =1,2,7..,d and let h = max;; I;; be the maximumn cell edge. Assume
that we have weights w; such that

g gy p ¥
/_ rde = Z w;
Bi | z;€B;

and

/ o(x)e"de = Z wio(w;)es
JB;

z;€B;



for o] < k—-1and 1 <¢<n, while

/ “dr = Z w;x J

z;€EB;

for laj<k-landn+1<i< M.

Assume also that the union Uj_, B; of the corrected cells contains the
set Rs of all points within distance ¢ of the singular set 5. For example,
we assume UL, B; contains the ball {y € IR? : |}a; — y|| < 6} around each
singular point z,. Finally, assume that o is C* outside the singular set §
and that its derivatives satisfy a growth condition

If')‘.'(f(f")l S.C(g-(l—lul (3.4)

° :
for |aj = 0 and |a| =k, & > 0 and = ¢ Rs. Here C' is a constant and § > 0 is
arbitrary. This assumption is very benign since it does not even guarantee
that o is in L}(B). It is satisfied by the singularities occurring in potential
theory as well as by the Biot-Savart kernel o = a/||x||*.

Starting from these assumptions, we derive a bound for the error

N

E = /B(,a(.'l:) co(x) 4+ P(a)de - Z’m]-(cp(u:j) co(x;) + ().

j=1

where ¢ and 9 are C*. The nonsingular term in ¥ can be bounded exactly
as for the smooth rule in §2, giving

N
l/ P(x)da - ij'c/)(mj)] < QIB|(L/2)* Z —IIO Plleom-
B j=1 laj= L
For the singular terin, we have to consider corrected and uncorrected cells
separately. On corrected cells B; ( 1 < i < ), we have a best approximation
® to ¢ by a polynomial of degree k — 1 and the resulting bound

E = | / o(a) - ale)de = 3 wyple;) - o)

xr 'EB,‘
QABillle — 2llewa,)

IN

where the singular ﬁgure of demerit Qf, is defined by

o |B| Z|w(r(11)|

z;€B;
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As in §2, the best approximation error ||¢ — ®||cop,, can be bounded by
Taylor expansion to get

. _ 1, ..
E; < 05|B(1/2)° 3 Sl10pllcws)

laf=k &

Note that a priori Q! can be infinite, if one of the quadrature nodes happens
to coincide with a singular point =, € 5. Thus Q) must be computed a
posteriori and used as a measure of the quality of the rule. The methods for
reducing Q* discussed in §2.3 apply to Q! as well. In our examples, however,
we rarely encountered large values of %,
Now consider the error due to integrating ¢ - o over an uncorrected cell
B; where w = W. From §2.3, we know that the error on cell B; is bounded
by ' . °
E; < B2 Y =

la|=k "

10°(¢ - o)llesn-

We simplify this bound by separating derivatives of ¢ and ¢, using the
standard inequality for Holder norms proved in [13]:

H(e - ollevsy < € (lallewsallelloxs,) + alleraallellcos,) -

Here the C* norm is defined by

lellery. = llellewsy + D 110 pllcus,

la|=k

for £ > 0, so
E; < CU|Bi|h*||¢ - allcrs,)-

This separates the bound for E; into two pieces E} and E}:

E; CU|Bi|hH|allcvsnllellens)

< CU|Bi6~ 1M ol|cxs.
and |
E} = CQ Bk ||aller@nllellons:
< oo (4) Iellowa

where we have used assumption (3.4).
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We now pause momentarily to discuss our strategy for selecting corrected
cells B;. Clearly the choice § =constant, correcting all cells within a fixed
distance from .5, produces the simplest error hound. Indeed, if § is fixed,
then the global error E satisfies

E < CO|Bl|lellcxsh’

just as for the smooth rule, with a constant which depends on é. Unfortu-
nately, in practice we cannot afford to compute the O(N) correction weights
within fixed distance § from $ as N—oo. Thus we give up the simplicity of
this error bound.

Instead, we take 6 = . where r, is fixed, in order to correct fewer points

as N—oco. This complicates botl pieces of the error bound in two different

ways. First, the factor §=¢ seems to cancel the volnme factor |B;| = O(ht),
so naively summing over all O(N) uncorrected cells produces a factor of N
in both E} and E2. Second, the factor 6=* in E? eliminates the usual O(h*)
error altogether. _

We handle the second difficulty by seeking an error hound of a different
form from the usual O(h*). We choose é so that (h/8)* < € where € is a
user-specified parameter, usually smaller than i* over the range of affordable
h. Then we seek an error bound of the form E < O(e€) + O(h*) where the
constant in O(e) is allowed to depend on derivatives of ¢ but not on those
of ¢. The constant in O(h*), on the other hand, may depend on derivatives
of ¢ as usual, but not on those of ¢. Similar error hounds often occur
in the design of fast algorithms [4, 25] and are quite useful in practical
computations.

Thus we choose (1/6)* < € to get

Ei < CU|Bi|6~* (W ||l + ellollenay)

and it remains to deal with the first difficulty, of summing over all O(N)
uncorrected cells B;.
Let Q,,, = max ), and divide the uncorrected cells B; into P = O(1/4) =
O(1/h) shells
Sp = {B; :pbé < d(B;,5) < (p+1)8}

where the distance from B; to S is defined by
d(B;, S) := min{||z — ]| : # € B;,a, € 5}.
For B; € 5, we have the stronger bound

E; < CanIBi|(176)-d (hk”@”(?“(B.‘) + 6['_k“‘i°”(3'"(3.')) .
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Thus

M P
2 E= ) Z
i=n41 pr=1 B,€S
P
< m Do |B:| | 6~ “h*[lollcxs)
p=1 B.eS,
p
+ CQu [ Do Y 1Bl 67 lellews)  (3.5)
=1 BES

The volume of the shell S, is bounded by C'p?=184, and since the cell edges
are all bounded by L = O(48), the sum over i satisfies

Z IBll S C'Ild_;lfsd

B;eS,

for some constant C. This cancels the factor of §=¢. The first sun over p

in (3.5) then diverges logarithmically, giving a factor of log P = O(] log h}),
and the second is bounded by 377, p~ ¥ < oo if k> 1. Thus

M

Y E: < CQ (|log Wbkl loxm) + ellellcus))

i=n+1

We see that we suffer for the singularity by a factor |logh| and a term
ellollcopy. We conclude that the total error is hounded by

E < €, ([log hlh ||l cxen) + ellellcu))

whenever (1/6)* < e. Our numerical experiments tend to confirm the accu-
racy of this bound.

The absence of a volume factor |B] in this bound is dismaying at first
sight but actually natural, because under the weak assumption (3.4) on o,
the integral itself need not scale with |B|. If a(x) = ||x]|7%, for example,
then scaling the variables shows that tlhe integral

/ o(x)de = / a(a)dx
s<ll=lI<R es<llell<eR

for any €. Under stronger growth conditions on a, for example those satisfied
by the Biot-Savart kernel, the error estimate would scale in the same way
as the integral.
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3.3 Implementation and numerical results

We have implemented these techniques in a portable ANSI Fortran program
which constructs the singular weights w; from the data structure and weights
W constructed in §2. The singularity is evaluated by a user-supplied subrou-
tine, and is thus quite general. The dimension and order are also arbitrary
user-specified parameters. A routine for evaluating the singular volume mo-
ments by the technique of §4 is supplied, but the code is highly modular
and the user can freely import routines for evaluating the singnlar moments
if they are available e.g. in closed form. The polynomials P,(x) can also be
replaced by other basis functions if desired. The code contains several other
refinements discussed in Section 5.

We have tested the code on several singularities in d = 2 and d = 3
dimensions. Here we report on the results obtained with = 2 and the
Biot-Savart kernel ,

a (1) = W

We ran two sequences of tests. First, we carried out a convergence study
with a regular grid. We placed N = 256, 1024,...,65536 points in a square
grid in B = [0,1]2. For each k = 2, 4 and 6, we constructed tlie smooth
rule with these N points and p = k* points per cell. - We then generated
20 random points «; in B and computed the kth-order correction weights
for each singularity o(x — x,), correcting cells containing p’ = 2k* points
and within a correction radius r, = 3 times the cell containing x,. Tables
7 through 9 report the averages L. and L, of the base-2 logarithmns of
the errors in using these weights to integrate the singular monomials (; +
zy)*o(w—z, ) with0 < a < k—1for Lo and k € a £ 3k—1for L. Note that
the error for a < k — 1 is not zero for two reasons; we compute the singular
moments approximately and we only correct nearby cells. We compute the
singular moments with the code described in §4, using increasing accuracy
as the number of points increased: ¢, = ¢, = 1072,107%,...,10" for N =
256, ...,66536. The tables also report the average CPU time per correction
T, figures of demerit  and §2,, the maximumn cell edge length &, and the
number ' of corrected poiuts.

The following observations can be made from these results. The con-
vergence rate is somewhat irregular, but roughly accords with theoretical
expectations. The use of base-2 logarithms means that L, and Ly should
decrease by k each time N is quadrupled, for the kth-order method. The
number of corrected points does not increase with N. However, the correc-
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tion is rather expensive due to the general-purpose nature of the code and
the necessity of obtaining singular moments by numerical integration. The
increase in accuracy of the numerical integration accounts for the increase
of T with N. We believe a more efficient and specialized implementation
for a specific singularity such as the Biot-Savart kernel could achieve faster
run times by orders of magnitude. Finally, we observe that the figures of
demerit Q and Q, are bounded by 2 and 3.8 respectively.

N nCc T « Q, L. LI
256 0.2500 99  0.62  2.00 3.62 -12.21 -12.57
1024 0.1250 134 1.63 2.00 3.66 -13.15 -13.66
4096  0.0625 134 3.65 200 3.69 -15.30 -15.57
16384 0.0312 139 S.18 200 3.71 -18.43 -17.87
65536  0.0156 139 18.16 2.00 3.71 -20.73 -19.89

Table 7:  Results of integrating monomials times the Biot-Savart kernel,
with second-order singular rules with N regular grid points.

N R C T @ «, I. L,
256 0.5000 256G 2.44 2.00 3.64 -13.57 -14.64
1024 - 0.2500 396 5.09 2.01 3.68 -17.14 -19.54
4096 0.1250 537 9.72 2.00 3.70 -18.40 -20.71
16384 0.0625 537 17.56 2.00 3.71 -20.62 -23.29
65536 0.0312 556 36.72 2.00 3.71 -23.27 -25.75H

Table 8: Results of integrating monomials times the Biot-Savart kernel,
with fourth-order singular rules with N regular grid points.

Our second sequence of tests used N = 128,256,..., 16384 pseudoran-
dom uniformly distributed points on B = [0, 1]*. We repeated the previous
tests with these points replacing the grid points, and the results are reported
in Tables 10 through 12. We observe a reasonable convergence rate at first,
with L. eventually levelling off to about 10-3, 10=° and 10~7 for the 2ud,
4th and 6th order rules respectively. This is the O(¢) error due to inte-
grating the singularity over the uncorrected cells by the smooth rule W. It
appears in L. and not in L, because L, involves higher-order monomials
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Nk c T « 9, L. I,
956 0.5000 256 7.45 2.00 3.60 -13.58 -14.67
1024 0.2500 640 19.06 2.01 3.69 -18.48 -20.18
4096 0.1250 883 31.14 2.01 3.74 -2040 -24.74
16384 0.0625 1075 49.23 2.00 3.71 -21.53 -26.84
65536 0.0312 1113 81.26 2.00 3.71 -26.02 -31.08

Table 9: Results of integrating monomials times the Biot-Savart kernel,
with sixth-order singular rules with N regular grid points.

with larger C'* norms, so the O(/*) term dominates the O(e) term.

N I C T QO Q, . L. L,
128 . 0.3410 101 0.68 2.25 4.17 -11.10 -9.24
266 0.2952 145 1.15 2.24 4.32 -10.26 -10.06
512 0.1958 179 1.76  2.25 4.47 -9.26 -10.87
1024 0.1505 188 2.69 2.17 4.22 -10.08 -11.86
2048 0.1081 217 4.10 2.13 4.16 -10.37 -12.43
4096  0.0793 219 5.93 2.08 3.94 -10.94 -12.99
8192 0.0560 264 8.93 2.09 4.23 -11.64 -13.59
16384 0.0426 273 13.17 2.06 3.97 -12.34 -14.83

Table 10:  Results of integrating monomials times the Biot-Savart ker-
nel, with second-order singular rules with N uniformly distributed random
points.

4 Singular moments

4.1 Overview
We now describe the evaluation of the sm singular moments

/ P (x)o,(x)dx, o} <k -1,1<t<s. | (4.1)
- B, _

We treat (4.1) as a special case of a general problem: Given f: B—IR",
smooth away from a lower-dimensional singular set .5, evaluate the n-vector



N h C T Q. L. I
128 0.5136 128 1.65 2.15 3.06 -13.41 -10.84
256  0.3269 256 3.13 212 4.14 -17.19 -12.43
512 0.2799 407 5.11 241 4.61 -17.11 -14.23
1024 0.1748 535 7.34 2.50 4.65 -16.00 -17.05
2048  0.1451 696 10.93 2.56 4.80 -15.76 -18.68
4096 0.0883 752 14.53 2.78 5.1 -17.20 -20.34
8192 0.0755 1011 21.59 3.10 6.23 -16.34 -20.16
16384 0.0498 957 29.01 3.25 6.50 -17.91 -22.72

Table 11:  Results of integrating monomials times the Biot-Savart ker-
nel, with fourth-order singular rules with N uniformly distributed random
points.

N I c T  Q, I I,
128 0.5654 128 450 2.15 4.10 -14.65 -10.93
256 0.5212 256 851 220 4.57 -17.80 -13.57
512 0.3097 512 1617 223 452 -19.84 -16.28
1024  0.2656 788 2521 253 5.00 -21.02 -18.70
2048  0.1626 1085 36.05 3.01 5.58 -21.13 -22.77
4096  0.1363 1351 47.72 3.37 6.04 -20.91 -24.65
8192  0.0851 1843 68.95 4.30 $.22 -21.93 -27.15
16384 0.0718 1848 8179 5.8 10.10 -21.90 -28.67

Table 12: Results of integrating monomials times the Biot-Savart kernel,
with sixth-order singular rules with N uniformly distributed random points.
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of integrals &
F=/f(a:)(l:1: (4.2)
B

We compute (4.2) by a multidimensional adaptive product Gaussian quadra-
ture method, with an error estimate based on Chebyshev differentiation.
This is a nonstandard approach to (4.2) in several ways, so we describe it
in detail and present numerical results showing that it is more efficient than
at least one standard multidimensional adaptive quadrature package.

Our algorithm is organized along the following standard lines. We pro-
ceed step by step to refine an approximation F to F. At each step, we have
a subdivision of B into rectangular cells B;, an error estimate E; on each
B;, and an approximation F to F formed by integrating over each B; with
product ¢-point Gauss-Legendre quadrature [6]. We store this information
in a lieap [28], a data structure which allows us to select the cell B; with the
largest error estimate at each step. We refine £ by choosing a cell B; withi
maximum error estimate, choosing one of the coordinate axes, bisecting B;
along that coordinate axis, and computing the new integrals and error esti-
mates. We then insert the new information into the heap and the next step
can proceed. We stop refining when one of the following three situations
occurs: we run out of memory, we encounter roundoff error limitations, or
we have a total error estimate E satisfying

E < e+ ellfll

where €, and ¢, are user-‘speciﬁed absolute and relative error tolerances.

Our method employs the following nonstandard features. First, the use
of product Gauss rules rather than nonproduct rules. Since we are interested
primarily in d = 2- or d = 3-dimensional probleins, the ¢! points required
by a product Gauss rule of order 2¢ is quite competitive with standard
fully symmetric rules. Another advantage of Gauss rules is the arbitrary
order of accuracy available: Using e.g. routine GRULE of [6], Gauss points
and weights of order 2¢ are readily available for any ¢. Second, the error
estimate we give below requires little additional work and identifies the
direction contributing most to the error, the obvious candidate for bisection.
The usual technique for selecting a direction to bisect is based on fourth
differences and is somewhat unjustified.
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4.2 Error estimation

We begin by bounding the maximum (over 1 < ¢ < n) error in product
g-point Gauss-Legendre quadrature of f;(x) over a cell B = [a, b]; this will
suggest a direction along which to subdivide. Altlough our estimate is really
a bound and not an estimate, it turns out to be sufficiently sharp in practice.
The error estimate in one dimension for a single function f reads [6]

b q .
qu(f) = / fla)yda — Z w; f(i;)
@ i:l
= C,(b—a) ¥ f(g)

where £ € (a,b), w; and x; are the weights and nodes for ¢-point Gauss-
Legendre guadrature on [a,b], and the error constant is given by

(41)*
(24 + 1)((29)1)*

In d > 1 dimensions, adding and subtracting gives

Cq =

y g

by ba
E:(f = / / f(ay, o aa)dey .o oday — Z 'u;,.ll e Z f(1ll
i,=1 ig=1
= / Ed'l[f(zl, (111+Zw,,...2m E[f(, el

l.;_ td =1

Here w! is the ith weight and ! the ith node for Gauss-Legendre quadrature
on [a;,d;]. Thus, by induction on d and the positivity of the weights w!,

|E{Al < C IBIZUM = a7 fllewn = qIBIZE (4.3)

i=1

where |B| = (by — @y) - - +(bg — ) is the volume of B.

This error bound displays the contribution E{fl of each dimension to the
total error bound; thus we can choose the dimension ! where Ej} is maximum
over | as the dimension across which to split a given cell B. This bound
is highly practical because only pure derivatives §;f are involved; these
require only values of f along a single line and are thus much less expensive
to compute than mixed derivatives.

In order to approximate this bound, we will need estimates of the quan-
tities Ej}. We approximate the C' norm by a maximum over r randomly
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chosen points p®), ..., p(") distributed in a Latin square [17] in B, and cal-
culate the approximation

d 90,00 e (7)
Df = w—mﬂg%#@§Wf@ v @y )l

by Chebyshev differentiation. Fix j and [ and let
| g(s) = fOP, . e+ hs, ),
where ¢ = (a; + 0;)/2 a.ynd h = (b = a;)/2. Then
0219(s) = K99 FD, .+ b, D),

$0
52 . 1H2 .
Em = 2 111311?‘;. 110 g}] co

- We approximate the 2¢th derivative of g by Chebyshev differentiation. Ap-
proximate g by a t-term Chel)yshev series

g(s) = —J1+ZJITL 1(s),

where the coefficients ¢, are computed by pth- 01de1 Chebyshev quadrature
with p > t +2;

R |
g = j;zy(tl)Tk—l(tl)

= 2 ZJ((OG( / )) cos( gl U l/j)(l — 1/2) (4.4)

The jth derivative of g is approximated by

; gy <L ,
99(3) % 591 + 3 0 Tioa(s), (4.5)

k=2

where the coefficients _/“) are determined by backward recurrence

o = g 1<k <,
9P = gl H A=Y -z k>20+1-4, (4.6)
Jz(]-)]+1 = Jgj-)ﬁ:: ’ '
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Note that the last two coefficients, g,“_ )J-_ , and gf’_ )]-, can be explicitly eval-
uated in terms of g,_; and g, alone. Similar though more complicated ex-
pressions exist for the lower coefficients, but it is easier to evaluate them by
recurrence (4.6) even if we only want the top two.

Finally, the fact that |T).(s)] < 1 for |s| < 1 allows us to bound ¢(?9):

. t—2y
lg@ller < 1o+ 3 127, (4.7)
k=2
~ Note that we need only compute the coefficieuts g, with 2¢q +1 < k < t;
lower-order polynomials drop out after taking 2¢ derivatives.

For efficiency of implementation, however, we do not employ recurrence
(4.6) and formulas (4.4) directly. Instead, we observe that in the final esti-
mate (4.7) each ¢{*% is a linear functional of the p-vector f with components
fi = f(p(lj), et hs,,...,pf,j) :1 < j < p). Thus there is a (¢t — 2¢) X p
matrix e such that

) s
!Iﬁ--q):z(-'«'klfl 1 S/.Sf—‘Zq
I=1

We simply precompute this matrix, which depends only on p, t and ¢, and
store it. Then each error estimate E,"fl requires only p function evaluations,
(t—2q)p multiplications and additions. At minimum, p =1 = 2¢+2, so each
error estimate costs 2(2¢+2) multiplications and 2¢+2 function evaluations.
Thus the total error estimate on B; requires »d(2q 4+ 2) function evaluations.
Since the integral requires ¢ function evaluations, the error estimate is
not expensive if 2rd < 9. It also has the advantage that the points of
evaluation for the integral and the error estimate are completely different
(and random for the error), reducing the chance of missing cells with large
€errors.

4.3 Refinements

The quadrature scheme outlined above is robust and flexible.  We found,
however, that its efficiency and accuracy can be improved by several refine-
ments discussed below.

4.3.1 Getting started

In the scheme above, we start with a single cell B and subdivide as necessary.

But when f is known to be singular at some known point 2, we know that
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many subdivisions will he necessary. Any integrals and errors computed
for a cell which is later refined represent wasted effort. This waste can be
reduced by beginning with several cells instead of one, in essence taking
advantage of prior knowledge of the singularity location to carry out the
first few refinements beforehand. A reasonable way to do this is to divide B~
into 2¢ subcells with one corner of each being z,, then construct a quadtree
with several levels by recursively bisecting each cell touching x,. Such a
subdivision of B can be extremely lLelpful in reducing the time required to
integrate f.

4.3.2 Double-loop integration

A related feature of our method is the iudependence of the error estimator
from the integration rule. An extreme way to use this independence is
to compute only error estimates as we subdivide, computing the integrals
only when the final cell structure has been completed. This saves all the
wasted effort of integrating over cells later to be refined, and this can be very
substantial when = is very large. Unfortunately, the use of hoth absolute
and relative error criteria

E<e+ollFl

makes this impractical since F is involved in the stopping condition. We
could use the injtial value of F' computed over the input cells, but this is
likely to be unnecessarily expensive since the value of F is likely to increase
substantially as the singularity is resolved. The way out of this dilemma is
a double-loop procedure in which we start out with a stopping criterion

E<e +eG

with G set to, say, L00]|F||. Wlen this test is passed, we integrate over the
resulting cell structure and set G to the || F|] thus obtained. Then we repeat
the inner loop with the new stopping criterion. In this way, we can save a
large number of unnecessary integrations over cells.

Another situation where the double loop approach is useful is when
roundoff error may be important. We maintain an error estimate for each
cell separately, as well as a global estimate formed by summing them up.
Thus each subdivision requires subtraction of the old error estimate for the
subdivided cell and addition of the two new estimates. When the initial error
estimate is orders of magnitude larger than the final result, serious roundoff
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problems occur. A double loop is therefore employed; after termination of
the inner loop over cells, we re-sum the integral and error estimates. If the
stopping criterion is violated after resumming, we restart immediately from
where we left off.

4.3.3 Cautlous error estimation

A refinement which is important for accuracy and occurs in most eftective
quadrature routines is the idea of cautious two-level error estimation (see
e.g. [7]). Here we use, in addition to the error estimate E; computed for
the current cell, information about the parent cell. The errors and integrals
computed for the parent cell are nsed separately.

Caution means that we do not believe an error estimate which is much
smaller than the parental estiinate; thus we replace the new error estimate
E; by max(E;, €. F,q) Where €, is a user-specified degree of caution related to
the order of accuracy of the rule. Typically ¢, = 107? is a reasonable choice.
The idea of nonzero ¢, is to prevent old information from being ignored in
later decisions.

The use of two-level error estimates, on the other hand, means that we
consider also the change in the integrals produced by the subdivision. Thus
we replace E; by max({E;, ¢;]AF|) where AF is the maximumn change in any
integral due to the subdivision. Note that two-level error estimators are
incompatible with the double loop procedure proposed above, and the two
are therefore offered as mutually exclusive options in our implementation.

4.3.4 Shared singularities

In the special situation we consider here, we are integrating a long vector
of n = sm functions simultaneously, where each function has the same sin-
gularity structure. The repeated evaluations of all the functions involved in
the error estimates is wasteful, so we lhave implemented a restart facility.
We first integrate the singularity o(«:) alone, then nse the cell structure con-
structed as a starting point for the integration of the polynowmials P, (a)o(x)
as well. Nunerical experiments with & = 2,4,6 and 8 aid ¢ = 2,3,4,6,8
and 10 and o the Biot-Savart kernel (so d = s = 2) shows that this can save
a factor of five to ten in CPU time. However, they also show that further
improvements in the efficiency of obtaining the initial cell structure cannot
improve the speed of the code much; indeed, even if the initial cell struc-
ture were known a priori, we would only save about one-third of the CPU

32



time. Further speedups can come ouly from reducing the number of points
employed or evaluating the functions faster. Improvement in either area is
certainly possible.

4.4 Numerical results

We implemented the multidimensional adaptive product Gaussian scheme
above in a portable ANSI Fortran code, with the dimension d as a parameter.
Although our aim was primarily robustness and reliability, the resulting code
is surprisingly efficient.

We tested the code on three problemns of various degrees and types of
difficulty, following the probabilistic technique of [16]. In each case, we
integrated a family of integrands with randoily placed or randowmly oriented
singularities and measured the average error and success rate. We used three
families of integrands. First, a smooth hut oscillatory family of cosines:

A=) = (cos(j(x1—x,1)) cos(j(xn—it,2)) - - cos(j(wa—x,ra)) 7 = 1,2,...,10)

Second, skewed exponentials of increasing steepness with discontinuities at
angles to the coordinate axes:

falw) = (exp(—jl|Aw — a.{) : 7 = 1,2,...,10)

where A is a random matrix with entries chosen from a uniform distribution
on [0,1] and ||z||; = i, |2;| is the Manhattan norm. Finally, m = 36
Legendre polynomials on [0,1]” times the 2-dimensional Biot-Savart kernel
as in moment calculations: '

fs(x) = Po(x)a(x - x,)

with |a| < 7 and a(x) = «/|jz||*. Here w, is chosen from a uniform dis-
tribution on [0, 1]% In all cases the domain of integration was [0,1]* and
the dimension was d = 2. We ran 100 samples of each family. The re-
sults are shown in Tables 13 through 15 below. For these tables, we used
€e=€=10"%r=2,t=p=24+2ande:=¢, = ¢, = 1071,107%,...,10°7.
We report the number of function evaluations Ng, the CPU time T and the
error E produced by our code. We fonnd ¢ = 10, ¢ = 3 and ¢ = 4 to be the
most efficient rule sizes for f, f, and f; respectively. Figure 2 shows the
tree-structured subdivisions constructed with ¢, = 1073, 105 and 10~7 for
f and f3. It is clear that the code is refining in the right places.
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For comparison, Tables 16 through 18 show tlie corresponding results for
the multidimensional adaptive fully syminetric quadrature routine DCUHRE
presented in [2]. The following conclusions can be drawn from this compar-
ison.

First, in the integration of the Biot-Savart kernel times polynomials,
DCUHRE achieved most efficient results with thée 13th order rule, because -
the kernel is smooth away from the singularity. It required 48 CPU sec.
with € = 1077, The errors were very reliably less than the estimate, and in
fact very close to the estimate. Gaussian quadrature, on the other hand, was
most efficient with a 4-point 8th-order rule when ¢ = 10-7. It required 11
CPU sec. with € = 10~7, about four times faster than DCUHRE. The errors
from our Chebyshev error estimator were less reliable in the sense that they
were sometimes much less than the estimate and sometimes slightly more.

On cosines, high-order rules were the most effective. For example, 20th
order Gaussian quadrature required 0.04 CPU sec. to achieve precision 1077,
DCUHRE required 0.17 CPU sec. with the 13th order rule.

For skew exponentials, which are C" but are not C! along the ran-
domly oriented hyperplanes determined by A and x,, the 9th order rule
of DCUHRE was more efficient than 13th or 7th. This is a little surprising,
because the 7th order rule is recommended by its authors for problems —like
this one— requiring great adaptivity. The 9th order rule required 72 CPU
sec. with € = 10”7 and achieved error 10~ reliably. Gaussian quadrature,
on the other hand, got best results'with a Gth-order rule, requiring 73 CPU
sec. with € = 1077, '

€4 = €, Ng T E
0.10E400 188 0.03 0.63E-11
0.10E-01 188 0.03 0.G63E-11
0.10E-02 188 0.04 0.63E-11
0.10E-03 188 0.03 0.63E-11
0.10E-04 188 0.04 0.63E-11
0.10E-05 188 0.03 0.63E-11
0.10E-06 188 0.03 0.63E-11

Table 13: Gaussian quadrature on cosines.
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Figure 2: Tree structure for adaptive Gaussian qua.(lra;ture with € = ¢, =
€ = 1073, 107% and 10~7 (left to right) of skew exponentials (top row) and
the Biot-Savart kernel multiplied by 36 Legendre polynomials (second row).



€, = €, NF T E
0.10E+00 221 0.03 0.65E4-00
0.10E-01 1115 0.13 0.97E-02
0.10E-02 4788  0.55 0.65E-03
0.10E-03 17736  2.01  0.29E-04
0.10E-04 59655 6.71  0.24E-05
0.10E-05 201884 22.62 0.69E-06
0.10E-06 651924 7297 0.86E-07

Table 14: Gaussian quadrature on skewed exponentials.

€, = €, NF » T E
0.10E400 321 0.28 0.12E401
0.10E-01 771 0.67  0.28E-01
0.10E-02 1536  1.33  0.11E-02
0.10E-03 2793 243 0.27E-03
0.10E-04 4649 4.04 0.66E-05
0.10E-05 7638 6.65 0.21E-05
0.10E-06 12651 11.01 0.33E-06

Table 15: Gaussian quadrature on the Biot-Savart kernel times polynomi-
als.

€a = € Ne T E
0.10E4+00 195 0.04 0.11E-03
0.10E-01 195 0.04 0.11E-03
0.10E-02 195 0.04 0.11E-03
0.10E-03 286 0.05 0.43E-04
0.10E-04 - 442 0.08 0.50E-05
0.10E-05 793 0.14 0.65E-06
0.10E-06 975 0.17 0.45E-07

Table 16: DCUHRE on cosines.
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€, = € Np T E

0.10E+00 178  0.02 0.77E-01
0.10E-01 1069  0.12 0.90E-02
0.10E-02 4158  0.44 0.99E-03
0.10E-03 15886  1.65 0.10E-03
0.10E-04 58733  6.10 0.10E-04
0.10E-05 202989 21.12 0.10E-05
0.10E-06 685872 71.72 0.10E-06

Table 17: DCUHRE on skewed exponentials.

€, = €, Np T E

0.10E400 2613 2.05 0.89E-01
"0.10E-01 5473  4.30 0.93E-02
0.10E-02 10270 8.06 0.93E-03
0.10E-03 17147 13.50 0.97E-04
0.10E-04 26702 21.03 0.97E-05
0.10E-05 40742 32.12 0.98E-06
0.10E-06 61308 48.37 0.98E-07

Table 18: DCUHRE on the Biot-Savart kernel times polynomials.
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5 Refinements and Generalizations

The above methods for constructing smooth and singular quadratute rules
can be refined and generalized in several ways.

The smooth rule can he made adaptive to reduce €, and the order can be
locally varied to match the smoothness of the integrand. Chebyshev polyno-
mials can replace Legendre polynomials, allowing the use of non-equidistant
FFT techniques to speed up the least 2-norm calculations. For that matter,
any other set of basis functions can replace Legendre polynomnials, yielding
rules which are exact for that class of basis functions.

Both singular and smooth rules can be derived for approximating linear
functionals other than integration over B. An important example, interpo-
lation, is discussed in detail below. This leads to a different approach to
evaluating integrals of singular functions; transfer the integrand values to
nice points by interpolation, then use nice rules on the nice points. This
eliminates the necessity of computing singular moments for every corrected
point.

Both rules can also be used to integrate over more general domains
than rectangles, as discussed below. A particularly exciting prospect is
the construction of rules for integrating singular functions over curves and
surfaces, for the boundary integral solution of partial differential equations.
This is of course another special case of the approximation of other linear
functionals mentioned in the previous paragraph.

We could equally well construct W/ to integrate exactly the k¢ monomi-
als &7 - - -2 y* with product degree max oy < k — 1, rather than integrating
the m(k, d) = O(k?/d!) monomials with standard degree e, +. . .+ay < k—1.
This choice is a nonstandard one (see [6]), and would have several advan-
tages and disadvantages. The first, and most important, is the improved
accuracy of such a rule (see [6]). Rules of product order k& have order k
in the standard sense, as well, but they tend to have considerably smaller
errors than most rules of standard order k. They use more points than the
minimum necessary to achieve standard order & by a factor of d!, but this is
not overwhelmingly expensive in small dimensions like / =2 or d = 3. An-
other reason is that we use product Gaussian quadrature rules to evaluate
the moments (see §4), so product order is more convenient. And finally, it is
easier to construct a general multidimensional routine in which the dimen-
sion d is an input parameter when rules of product order k are constructed,
because it is easier to map a rectangle than a simplex onto an interval. Such
a rule is more efficient than standard rules in some ways, because we are
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evaluating all necessary Legendre polynomials P, () with 0 < o < k -1,
so we might as well multiply them together to get the remaining terms. Qur
experimental implementation, however, revealed that product rules produce
slightly larger errors at greater expense, due to increased cell sizes. Hence
our final code used rules which integrate exactly monomials of standard
degree < k — 1 exclusively.

Another refinement is as follows. The error analysis suggests that it
might be computationally useful to have two different orders of accuracy,
for the smooth rule and the singular rule. For example, we might construct
a 16th-order smooth rule but correct it locally only to 4th order. We have
implemented this feature in our current code but our experience is not yet
sufficient to indicate its usefulness.

5.1 Scattered data interpolation

A common problem of computational physics is to construct a globally de-
fined “nice” function which takes given values u(:;) at given points a;. The
techniques developed above generalize immediately to solve this problem.
The function we construct is a polynomial p() on each cell B; of the
tree structure we constructed for the smooth rule. A polynomial p of degree
< k —1 can be represented as a Legendre series

pla) = Z pla)P,(x)

jaj<b—1"

/

where P, is a shifted and scaled Legendre polynomial on B; = [a,)] and
p(a) are the Legendre coefficients of p. Each j(«) is a linear functional of
P, hience can be approximated by

o) = Z w; (a)p(e;)

T;€B;

where w; are exact for p = P,, |a| < k= 1. Thus w(«a) = (wi{a) : a; € B;)
can be found as e.g. the least 2-norm solution of

bup = Z w; () Py(a;)

z;€B;

for la} < k — 1 and |8} < k— 1. The m by p or p+ 1 matrix (Ps(«;)) which
appears need be subjected to the singular value decomposition only once,
and then each «a requires only two matrix-vector multiplies and a scaling by
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the singular values. Thus given the m by p or p + 1 matrix (w;(a)), the
Legendre coefficients of a nice polynomial interpolating values p; at points
z; can be computed by matrix multiplication:

e)= Y wi(a)p;.
z;€B;

‘Then the Legendre series provides an interpolant to the scattered data p;.

This local interpolant on B; is not of course continuous between cells.
However, it is likely to be reasonably smooth since w; solves a least 2-
norm problem. It will have order of accuracy O(h*) where B; has sides of
length < h and p; are values of a C'* function on B. An expansion in other
basis functions on eaclh B; can be constructed in the same way, as can the
derivative of scattered data values. -

5.2 General B

The techniques developed in §2 and §3 extend to integrate over curves and
surfaces in IR? and IR3. Suppose we want to calculate

[ Fy

where f is singular at some point 2, which may be in or near the curve or
surface I'. We enclose I' in a box B and construct the usual tree structure
containing the N given points x;, which may be either in or outside I'. Now
we construct, e.g. for the smooth rule, weights PVJ? satisfying

Z "V;P(,(:I:j) = /r‘nB» P,(x)da (5.1)

2;€B;

on each cell B;. The global weights defined to he W; = W} if x; € B; can
be computed by the singular value decomposition if enough points are in B;
and will integrate smooth functions accurately over I'. The singular rule is
produced from the smooth rule in the usual way.

There are two new complications in this approach when I' is not a rect-
angle. First, we need the moments

P, (x)dx
I'nB;

of polynomials over I'N B;. If T is a piecewise linear manifold these moments
are exactly computable. In general, however, and certainly when a singular
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rule is desired, some form of adaptive numerical integration over I' will be
needed. For general I' this is a difficult problemn; we expect approximation
by piecewise polynomial I' and numerical integration as in the finite ele-
ment method will work, but other techniques may be faster. Note that the
Gaussian integration code we have developed in §4 can easily be extended to
integrate over polyhedra rather than rectangles, becanse Gaussian rules can
readily be mapped to polyhedra with 2¢ vertices in d dimensions. Polyhedra
can be subdivided into polyhedra with 2¢ vertices, with only the boundary
cells being non-rectangular.

Second, the equations (5.1) are mnore likely to be rank-deficient, in which
case no solution W'J-i will exist. If T'is a plane, for example, then polynomials
in variables perpendicular to the plane are superfluous and we cannot inte-
grate them exactly with any W. The singular value decomposition provides
a natural treatment of this difficulty; simply ignore all equations which can-
not be satisfied. They will not affect the accuracy of the rule W, because
W only integrates over I' in any case.

The accuracy of the rule reqnires more machinery to analyze. The ad-
ditional ingredient is extension theorems; we need to extend functions on T’
to smooth functions on B; without increasing the size of derivatives. That
this can be done is proved in e.g. [8]. It follows that a rule constructed in
this way will enjoy the same convergence properties as in the case when T’
is a rectangle. ‘ '
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