
LBL-34683
UC-405

Lawrence Berkeley Laboratory
U.NIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

To be submitted for publication

Locally-Corrected Multidimensional Quadrature
Rules for Singular Functions

J. Strain

September 1993

OJ
-'
0.
co .
t11
lSI

r
0"(')
"'S 0
111"0 ,c.:::

c.:::
Prepared for the U.S. Department of Energy under Contract Number DE·AC03·76SF00098

. I\)

r
OJ
r
I

W
-'=" en
CD
w

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any walTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-34683

LOCALLY-CORRECTED MULTIDIMENSIONAL
QUADRATURE RULES FOR SINGULAR FUNCTIONS

John Strain 1

Departllleut of ivlathematics
and

Lawrence Berkeley Labora,tory
University of California

Berkeley, CA 94720

September 199:3

IThis research was supported by a NSF Youug Investigator Award, by Air Force Office
of Scientific Research Grant No. !J2-01G5 alld by the Applied Mathematical Sciences
Subprogram of the Office of Energy Research, 11 .S. Department. of Energy Hilder Contract
DE-AC03-76SFOO()98.

Abstract

Accurate numerical integration of singular functions usually re
quires either adaptivity or product integration: Both interfere with
fast summation techniques and thus hamper large-scale computations
in incompressible fluid flow, potential theory and crystal growth.

This paper presents a method for computing highly accurate quadra
ture formulas for singular functions which combine well with fast sum
mation methods. Given the singularity and the N nodes, we first
construct weights which integrate smooth functions with order-k ac
curacy. Then we locally correct a small number of weights near the
singularity, to achieve order-k accuracy on singular functions as well.
The method is highly efficient and runs in O(N k2d + N log2 N) time
and O(k2d + N) space. We derive precise error bounds and time esti
mates and confirm them with numerical results which demonstrate the
accuracy and efficiency of the method in large-scale computations. As
part of our implementation, we also construct a new adaptive multi
dimensional product Gauss quadrature routine with an effective error
estimate, and compare it with a standard package.

The method generalizes to interpolate and differentiate scattered
data and to integrate singular functions over curves and surfaces in
several dimensions.

2

Contents

1 Introduction

2 Smooth rules
2.1 Overview of the construction
2.2 Details of the construction ..
2.3 Error bounds
2.4 Implementation and numerical results

3 Singular rules
3.1 Overview of the constructiOll
3.2 Error bounds
3.3 Implementation and numerical results

4 Singular moments
4.1 Overview ...
4.2 Error estimatiOll
4.3 Refinements...

4.3.1 Getting sta,rted
4.3.2 Double-loop integration
4.3.3 Cautious error estimation
4.3.4 Shared singularities

4.4 Numerical results

5 Refinements and Generalizations
5.1 Scattered data interpolation
5.2 General B

6 Acknowledgements

3

4

7
7
7

10
12

16
Hi
18
2;3

25
25
28
30
30
31
;J2
32
33

38
39
40

41

1 Introd uction

Many numerical problems require the evaluation of int.egrals

fa f(;r)dx, (1.1)

where B is a D-dimensional subset of JRd and f is an integrable function on
B. Many methods have heen devised for the numerical calculation of such
integrals, each useful for certain va.lues of D and d and certaiu classes of B
and f. In the case d =D = 1 an extensive lit.erature is summa.rized in [G],
while in d> 1 dimensions lUuch recent work is present.ed ill [7, 15].

This paper focnses on t.he eva.lua.t.ioll of (1.1) ullcler the following a.s
snmptions. (a) B is a. rect.a.ngle [1I.,b]:= [1I.1,bd x ... x [u(/,b d]. (b) \'Ale a.re
given values f(3:j) of f at N points :/'j not of our choosing. (c) We a.re given
an integra.ble hut. singular function (1 : B--.!R:', which is C Ao away from a
lower-dimensional subset S of B, and f ha.s the form

(1.2)

where t.p : B--.IRs and 4' : B-+JR are C Ao functions on B. vVe are mainly
interested in the cases d = 2 and d = ;3, t.hough our met.hods are applicable
to any d.

We construct two rules for numerical int.egration. In §2, we const.ruct
a rule TV with weights Wj , 1 :s j :s N, which integrates smoot.h functions
accurately:

N

I: Hlj !J(:I:j) = 1 !J(:/:)llJ: + EN,
j=l B.

(1.;3)

where EN decreases rapidly as N -H)O if!J is smoot.h enough and the points
Xj happen to he distribut.ed appropriately. For example, EN = O(N- Ao

/
d

) if
9 is C k and the points are uniformly distribut.ed on B, where k is the order
of accuracy of the rule. The comput.ation of W requires O(/v(k'2d + log:! N»
time and O(Pd + N) space. Precise error bounds and lLllllwrica.l examples
are given in §2.

In §3, we construct. a rule 'W with weight.s Wj which integra.tes singular
functions of the form (1.2) accurately. The singular rule w has the additional
property that 'Wj =: Wj except for a small numher of j's, those for which :Cj

is near the singular set. This property is important in the applica,tion offast
algorithms to the efficient evaluation of families of singula.r integrals. The

4

· .

computation of those Wj'S differing from IIVj requires O(Pd) time. Error
bounds and numerical results are given in §3.

These general rules are constructed with certain specific classes of appli
cations in mind, including computational fluid dynamics, potential theory
and crystal growth. These applications require the application of integral
operators

'/1.(:1:) = l J(;,;,:l!')w(:r')ll:r,' (1.4)

where J(has known singular behavior on a lower-dimensional set but w is
(at least piecewise) smooth. Typically J(is singular at a single poiIit, we
know w(Sj) at N points Sj, and we would like to approxil11a.te Ai values 'n(t;)
at points ti E lRd

•

A classical approach to this prohlem is pl'ocluct integration [G]. Here we
approxima.te '11.(t j) by a rule of the forlll

N

'It; = L J(jjw(Sj)
j=l

(1.5)

with](jj chosen to integrate some class of W exactly for each -i. This is
a M X N matrix multiplication, so it costs 0(111 N) work, which is very
expensive when M and N are large. This has been a stumbling block in
computational fluid dynamics [5], potential theory for the Laplace equation
[14], and crystal growth [2a]. Product integration also tends to require
difficult, expensive, and sometimes impossible algebra.ic manipulations a.nd
evaluation of integrals in closed fOl'lll. A major ohjective of this paper is
to eliminate the calculations required by product integra.tion, a.nd 'replace
them with a single general-pnrpose method which produces locally corrected
quadrature rules of arhitrary order for a,ny given singularity.

More recently, fast sUlllmation methods have been developed for several
kernels](. These methods evaluate the discrete SIUll

N

t/.j = L K(t;, .Sj)TIVjW(.Sj)
j=l

(1.6)

to accuracy E, in O«N + Ai) log E) work. See [1, :3, 4, 12, 25, 29] for vortex
methods and potential theory and [11, 24] for Gaussia.n kernels. However,
these methods cannot be comhined with product integration, where the
weights depend on the point of evaluation ii'

Another class of recently-developed fast methods is ahned more directly
at the continuous problem (1.4)i see [18, 20, 25] for vortex methods and

5

potential theory and [10, 27] for heat potentials. These methods are related
to product integration in some cases, usually have a fixed and not too high
order of accuracy, and tend to be slower than fast methods for discrete
sums (1.6). Like product integration, they sometimes require difficult and
expensive algebraic manipulations and evaluation of integrals which can be
carried out only in special cases.

Singular quadrature rules of the type developed in this paper allow the
application of fast algorithms for discrete sums (l.()) to the continuous prob
lem (1.4), because Wi are independent of the point of evaluation t; except for
a few points near the singularity. Thus fast methods can he applied to the
sum (1.6) with weights lVj , and then '/J,j can he corrected locally to get an ac
curate and inexpensive a.pproximation of u(t;). This observation was appar
ently first made in [19], where one-dimensional singula.r endpoint-corrected
trapezoidal rules were developed. It has been a.pplied to one-dimensional
integral equations in [22].

Our method requires knowledge of the singula.rity 0'(:/:) only in the weak
sense that we need modified moments

(1.7)

over rectangles C, with Pu a suitahle family of multidimensional orthogonal
polynomials. Obtaining these moments is itself a highly nontrivial task in
this generality, with many possibilities depending on the singularity and on
B. We have implemented, as part of om method, a. general multidimensional
adaptive Gaussian quadratme code, with a. novel error estimator, which
may be of some independent iuterest and is therefore described in §4. It is
sufficient for vortex methods and for volume potentials in potential theory,
and hence for the solution of va.ria.hle-coefficient elliptic partial differential
equations, as in [26]. Numerical results in §4 indicate t.hat it is compet.itive
with standard codes in dimensions cl = 2 and d = 3.

The techniques presented in this paper generalize iIllmediately to solve
several other problems of considerable illterest. We can approxima.te and
differentiate, functions known at arbitrary points, a technique which is use
ful in many compntational problems. We ca~l integrate singular functions
over more general domains, such as curves and surfaces. Several snch gener
alizations, along with several refinements of the basic method, are discussed
in §5.

G

2 Smooth rules

2.1 Overview of the construction

We construct rules with N given points :rj for integrating smooth functions
over a d-dimensional rectangle B = [a, v] := [all vtl X ... X [a<1, Vd]. The
structure of these rules will make a good base for the construction of singular
rules with locally corrected weights.

Let k 2: 1 be the desired order of accuracy of the rule, assume N 2: m :=
m(k, d) := (k + d - l)(A: + d - 2)·· ·(k + 1)/:;'/c1!, and choose an integer L
with P := IN /2£ J 2: m. Using a data structure developed below, we divide
B into Ai = 2£ rectangular suhcells Bi with disjoint interiors such that B
is their union and each Bi contains either l' or l' + 1 points :rj. Then on
each B i , we construct local weights W! for :rj E Bi which integrate the 'In

monomials of degree ~ /:;, - 1 exactly over B j • (A monomial of degree /:;, in
d dimensions has the form :t:~":J:~:' ... :I::;'d, where each n, is a nonnegative
integer and Inl := al + f.\'2 + ... + 0rl = k. There are precisely 'm, lllollomials
of degree ~ k - 1.) Because of the ill-conditioning of the power basis, we
construct these weights by solving the following system of'm linear ellltations
in at least p unknowns:

(2.1)

Here

is a product of one-dimensional Legendre polynomials, with the [th factor
scaled and shifted to live on the int.erval [lL/, VI]. Since p 2: '//1., this system of
m equations in at least Jl unkn~owns generically has solutions. We compute
the solution Wj of least Euclidean norm, usiug the singular value decom
position [9]. §2.:3 discusses what to do when no solution exists. The global
weights of the rule ltV are then defined to he Wj = tVf if :1: j E Bi .

2.2 Details of the construction

We now construct a data structure with two useful features; first, it parti
tions B into rectangular cells over which we can ea.sily integrate polynomials
and second, there'are neither too lUany nor too few of the points :J:j in each
cell. Too many points makes the singula.r value decomposition too expensive
and produce a less accurate rule because the cell size increases, while too few

7

points makes (2.1) overdetermined so generically no solution exists. When
the number of points p is very close to the minimum required 'In, so (2.1)
is barely solvable, the solution tends to have large I-norm, making it un
suitable for numerical integration. This is similar to the well-known Runge
phenomenon encountered in interpolation (where p = m) at equidistant
points. We found that p of order 2m gave excellent results.

Such a "tree structure" can be constructed by recursive subdivision.
Let B = Bl he the level-O root of the tree. Divide Bl in half by a plane
perpendicular to say the l'th coordinate axis, wit.h the dividing plane located
so t.hat. IN/2J or IN/2J + 1 point.s are in each half of B 1 • This gives the
level-l cells B2 and B3 . Repeat this procedure on B~ and B3 , with the
splitting dimension I chosen independently for each cell, to get. B4 t.hrough
B7 , each containing IN /4J or IN/4J + 1 points :tj. Repeat.ing this procedure
L times gives]I/! = 2L cells Bi on the finest level L, 1l11111hered from -i = 111
to i =2M -1, each containing p = IN/MJ or fJ+ 1 points :fj. The uuion
of all the cells on any given level is B. The tree structure is st.ored by
listing the boundaries of each cell B; = [a;, b;] fromi = 1 to i = 2M - 1,
a total of 2d . 2M numhers, and indexing the points into a list so that the
points Xj E Bi are given by j = j(s) for s = b(i), ... ,c(i) and three integer
functions j, band c. This requires sorting the points in each cell before
each subdivision, giving a total cost O(Nlog2 N) for the tree construction
when an O(N log N) sorting method such as heapsort [17J is used. Figure
1 shows an example of this constl'llct.ion. vVe note that. hierarchical data
structures with similar properties - though not thiR pa.rticular one - have
been extensively discussed in [21J.

The dimension I across which to Rplit a. given cell ca.n be select.ed in sev
eral ways. vVe can split the longest dimension, so that the lellgth-depenclent
factor in the error estimate helow is reduced as Clllickly as possible; choose
I with

for 1 ~ j ~ d.

Alternatively, we can choose I to minimize the second lUoment of the points
in the cell .. ' If function values at the nodes are available when the rule is
constructed, other choices intended to minimize integration error for that
specific function ca.n he devised.

For future reference, we note that the tree structure permits efficient.
O(L) lookup of the level-L cell conta.ining any point :r E B. We simply
begin at the root and discard aU children Hot conta.ining ;/:; t.he proceRS is
then repeated recursively on the remaining child until we rea.ch the lowest

8

Figure 1: Levels 1 through 6 ill the tree structure with N = 1137 pseudo
ra.ndom uniformly distributed points OIL [0, 1p.

9

level. More generally, we can find all cells intersecting a given rectangle R.
in time proportional to L and to their numher. This will be useful in the
construction of singular rules.

2.3 Error bounds

The global weights defined to be Wi = H'j if :l:j E Bi integrate all the Mm
functions ~i(X):J:u exactly, where Ei(:I:) is the indicator function of Bi , for
M ~ i ~ 2M - 1 and lex I ~ k - 1. Thus the error in integrating a smooth
function 9 over B is given by a sum over cells

(2.2)

where

(2.3)

Let G be the polynomial of degree ~ k - 1 which best a.pproximates !J on
B; in the maximum norm. Since ltV is exact for G on B i , we ha.ve

(2.4)

and thus

where the figure of demerit ni is defined by

ni = 1 + ~ L IWj!,
I il x;EBi

(2.5)

IBi I is the volume of B., a.nd the Co norm is defined by

(2.6)

for continuous functions t.p on a set B.
The error hound on each cell is thus separated into a fadar ,OJ inde

pendent of the integrand, a factor of lB. I, and a factor which depends only

10

on approximation of the integrand on the cell. The first factor ni cannot
be bounded a priori unless all the weights are nonnegative, in which case
ni = 2. However, ni can easily be computed a posteriori and thus serves as
an extremely useful diagnostic for the quality of the rule.

The volume factor in the error bound depends only on the distribution
of points and the tree structure constructed, and will 'add up to the volume
of the domain B.

Finally, we bound the error in a.pproximating!J. Assume!J E Ck(B);
then by multidimensional Taylor expansion [8], we have

(2.7)

where (.I'! = a1!O:2!·· o (.I'd!, ;)"!J
remainder is bounded hy

o~x 1 ••• (J,'td !J, y" !It ... Y,l'd, and the

(2.8)

Since G is the best approximation to !J on Bi by a polynomial of degree
::; k - 1, Taylor expansion about the center of Bi implies that

II G'II " (h;f2)" 11::1" II !J - .T C"(8;)::; ~ , v !J C"(8,)
(t-

I,d='"

(2.9)

where B; = [ai, hi] and hi = iii - CLj.

A global error bound follows imIllediately:

101

lEI < L nilBilll!J - (:;IIc"(B;)
i=1

where h = maxi,! hi! is the longest cell edge a.t level L of the tree structure
and

1 M . 1 ,N

n = fBI ~ nlIB;! = 1 + WI;; IWil (2.10)

is the global figure of demerit for the rule W. Note that n plays the role
of a condition numher for 1-1', mediat.ing hetween the intrinsic diffic.ulty of

11

integrating 9 (as measured by the derivatives of !J) and the accuracy of the
final result.

There are several ways to reduce each ni and thus obtain a better error
bound. Usually taking more points per cell reduces ni

, since the additional
degrees of freedom are not needed to satisfy (2.1) and can be applied to
reducing the 2-norm of Wj. However, this increases the cost of computing
W considerably and increases the cell size h, so taking larger]J is not cost
effective if applied globally.

It can be applied ada,ptively, however, by going up to a different level of
the tree structure when necessary. To implement this, we specify a tolerance
nm • When ni 2:: nm , we merge B; with its sibling in the tree structure,
obtaining a cell BI conta.iniug twice as rnany points :I:j. 'rVe then recompute
all weights lVj for which :I:j E B I , usnally obtaining nl < n", at the cost of
a larger singular value decomposition and a larger cell size It. If nl is still
too large, the process may be repeated.

This adaptive techni<Jlle also permits treatment of the degenerate cases
when no solution exists to (2.1) on cell B;, because the points ;J:j are not in
sufficiently general position. Such a cell can he merged with its sibling, after
which a solution is much more likely to exist. The process rllay be repeated
if necessary.

Another approach to reducing the error bound would be to seek the least
I-norm solution of (2.1), which would minimize n;. This I-norm minimiza
tion problem is standard but somewhat more expensive to solve that the
2-norm prohlem we solve with the singular value decomposition. We found
that values of 1) of order 2nt usually produce n; within an order of magni
tude of the lower bound 2, so we expect little improvement from the I-norm
minimization approach and have not experimented with it.

2.4 IInplementation and numerical results

We implemented this method in a portable ANSI Fortran code. The code
accepts k, d, L, B = [a,b] C Rd

, and N points :I:j E R'I. It returns N
weights Ttl!j, the cell structure, the lllaximum condition number encountered
in the singular value decompositions, n, the cell size It, and so forth. The
numerical results reported here wer~ obtained on a Sun Sparc-2 workstation.

We tested the code by generating N = 25G, 512, ... , 1G384 pseudoran
dom uniformly distributed points in t.he two-dimensional unit sqnare [0, 1 F,
computing the weights W with p = k2 > m = k(k + 1)/2 for k = 2,4,8,12
and 16, and using them to integrate monomials, cosines and Lorentzian

12

fu'nctions over [0, 1]2. The test integrands are thus the vectors

91(:r) = ((:2:1 + X2)" : 0 ::; It::; 3k)

92(X) = (cos(n(:c1 - '''d) cos(n(:r2 - '1"2)) : 1 ::; n ::; 10)

with l"i uniformly distrihu ted on [0, 1] and k the order of the rule.
Since the N points are randomly generated, we cannot expect a smooth

convergence as N -+00. Hence for each illtegrand, we generated 20 different
sets of nodes :!:i and computed the minimum, average and maximum of the
errors Ej and their base-2 logarithms L j , and the correspollcling standard
deviations.

N h n T L1 L2 L3
128 0.3559 2.05 0.10 -10.;35 -5.07 -3.0;3
256 0.29;34 2;04 0.15 -11.45 -5.G5 -4.1:3
512 0.1981 2.05 0.32 -13.44 -7.45 -4.40
1024 0.1536 2.04 0.()9 -14.07 -8.98 -G.G7
2048 0.1095 2.05 1.52 -15.59 -10.20 -7.51
4096 0.0809 2.05 3.28 -17.04 -l1.5G -9.1;3
8192 0.0551 2.05 7.2(j -18.94 -12.98 -9.8G
16384 0.0428 2.05 15.99 -19.15 -14.91 -11.25

Table 1: Mesh size h, figure of demerit H, CPU time T and a.verage base-2
error logarithms Lj for the second-order smooth rule with N random points.

Tables 1 through 5 display the averages L j of the hase-2 logarithm of the
error E produced when the qth-order smooth rule ltV is applied to integrate
the test functions 9j for j = 1,2 and ;3 and k = 2, 4, 8, 12 and lG. Since the
number of points doubles in each succeeding row of each table, we expect Lj

to decrease by kid = k:/2 in each step. This decrease is clearly evident for
large N. It tends to occur doubled at a.ltel'llate lines because only when the
number of points increases by 2<1 = 4 does the average spacing h decrease
by half.

The code is extremely efficient. Rules of orders It: = 2, 4, 8, 12 and Ie)
with N = 16384 nodes require T = W, ;33, H57, G42 and 2041 CPU seconds

N h n T L1 L'/. L3
128 0.514G 3.22 0.22 -12.G7 -4.90 -3.58
25G 0.3293 3.51 0.41 -14.54 -7.GG -5.29
512 0.277G 3.60 0.84 -15.78 -9.15 -4.74
1024 0.17G4 3.34 1.73 -18.7G -12.09 -7 .(;7
2048 0.1449 3.36 3 .. 57 -19.G1 -14.40 -9.93
409G 0.0915 3.42 7.41 -:22.:30 -17.07 -12.82
8192 0.0752 3.48 15.G3 -2:3.G4 -18.85 -14.:3G
16384 0.0492 3.49 :32.52 -2G.02 -21.88 -17.27

Table 2: Mesh size h, figure of demerit. n, CPU t.ime T and avera.ge base-2
error logarithms Lj for the fourth-order smoot.h rule with N ra.ndom points.

N h n T L1 L"2 L:~
128 1.0000 G.20 1.21 -11.95 -5.:31 -4.29
250 0.5520 7.:35 2.:37 -14.GO -8.55 -4.5G
512 0.51:39 (LOI 4.7G -17.92 -12.42 -G.91
1024 0.289:3 6.69 9.52 -21.:39 -lG.G2 -9.G7
2048 0.2G:35 G.24 19.1G -24.10 -21.02 -12.25
409G 0.1504 G.15 38.G5 -28.57 -25.58 -IG.59
8192 0.1350 (.i. :29 77.91 -3:3.27 -29.lG -17.33
IG384 0.07SG (L58 157.0S -:W.74 -34.75 -2:3.;32

Table 3: Mesh size h, figure of demerit. n, CPU tillle T and average base-2
error logarithms Lj for the eighth-order smooth rule with N random points.

14

N h n T L1 L2 L3
256 1.0000 19.48 9.95 -14.:34 -9.17 -4.85
512 0.53G4 24.:37 19.92 -18.62 -1.5.91 -7.G5

1024 0.50n :37 .65 :39.81 -22.09 -21.00 -9.18
2048 0.27G2 27.28 79.75 -2G.81 -28.G3 -12.9G
4096 0.2579 26.22 1.59.82 -:31.52 -:33.99 -15.34
8192 0.14:31 28.42 320.41 -38.84 -40.07 -21.:38
1(j:384 0.1324 2G.:38 G42.0G -4:3.8:3 -4fi.71 -2:3.G7

Table 4: Mesh size h, figure of demerit n, CPU time T and average base-2
error logarithms Lj for the twelfth-order smooth rule with N ra.ndom points.

N h n T L1 L"J. L3
25G 1.0000 71.1G :31.80 -U.:3!.l -9.9G -5.74
512 1.0000 ;31.9:3 (j:3.70 -lG.2G -W.lO -7.44
1024 0.5210 G8.11 127.28 -20.29 -24.8G -11.5:3
2048 0.5045 53.:34 254.55 -2G.5G -:32.94 -l1.(iG

409G 0.2G96 49.57 509.72 -:3:3.1G -42.:35 -19.14
8192 0.2576 51.48 1019.G3 -39.50 -47.79 -19.G9
IG384 0.1:375 45.07 2041.41 -44.54 -48.48 -29.81

Table.5: Mesh size h, figure of demerit n, CPU time T and a.vera.ge ba.se-
2 error logarithms Lj for the sixteenth-order smoot.h rule wit.h N random
points.

15

on a Sparc-2 workstation. By comparison, the actual integration of 92 and 93

with the given points and weights takes 3 a.nd 1.5 CPU seconds respectively.
Thus an integrand with a substantial degree of complexity will dominate the
integration time, at least for rules of the lower orders presented here.

To demonstrate the improvement due to taking]J substantially larger
than m, we also ran tests with N = p = m,m+ 1, ... ,P for k = 2, 4, 8,12'
and 16. Table 6 shows SOllle of the results. We see that larger values of]J

produce dramatic decreases in 11, especiaUy for higher-order rules.

k = 2, N = :3 4 ,I) G 7 8
11= :l4 :J.4 2.5 2.2 2.2 2.1

k = 4,N = 10 11 12 1:3 14 1G
11= 40 10 8.2 5.9 4.G :3.3

k = 8,N = ;W 40 44 48 ,l)G G4
11= GGn 85 4:3 24 1:3 7.3

k=12,N= 78 84 99 114 129 144
11= 480;3412 10.57 180 4G :n 2;3

k = lG,N = 1:3G 144 172 200 228 25G
11= ;n:i597 lG5(il 92:3 221 90 (j(j

Table 6: A verage figure of demeri t n as a function of the number N = P
of points pel' cell for k = 2, 4, 8, 12 and IG.

3 Singular. rules

3.1 Overview of the construction

We now select and correct. certain weights llVj of the smooth rule W, to
produce a singular rule 111 which will integrate singula.r functions J(:/:) =
cp(:l:). a(:/:) + '~)(:l:) more (l,ccurately.

The weights to be corrected are selected by forming a list of cells Bi in
the tree structure built for the smooth rule ltV alld correcting aU the weights
W; for which :I:; lies in some cell 011 the list. For ea.ch cell Bi on the list,
we construct 11Ii for :l:j E Bi by requiring 'Wi to satisfy the linear system of
(l+s)m equations which expresses that Puta:) and P..{:I:)a(:I:) are integrated

lG

exactly for 10:1 :S k - 1:

(3.1)

(;3.2)

for 10:1 :S k - 1 and 1 :S t :S 8.' In order for these equations generically to
have solutions 111, we canIlot use t.he cells Bi on the lowest. level L of t.he
tree structure, because each of these contains only]J 2: Ill. or p + 1 points
:Cj. Instead, we use t.he cells collst.rnct.e<l on level L' of t.he t.ree structure,
for example with L' := L - flog:!{l + s n if jJ was chosen of order 2m to
begin with. On level L', we have fewer and larger cells, each conta.iuing at
least p' := N/2 L' 2: (1 + 8)m points. Thus (:Li) a.nel (a.2) will generic~.lly
be solvable. In pra.ctice, we solve (3.1) and (;3.2) hy the singular va.lue
decomposition, obtaining 11) as the soln tioll of lea.st 2-lIorIU if it exists. A
major new difficulty which re<luirement (3.2) introduces is t.he comput.ation
of the singular moments

(3.;3)

when (T is not smooth. !j4 is devoted entirely t.o t.his question.
The actual selection of cells to correct can be made in several ways. If (T

is singular at a point ;J:,. E B, for example, a natural choice would he simply
to correct t.he cell Bi on level L' which cont.ains :/:,. However, :r. might lie at
the corner of B;, so many nearby points would go uncorrected if this selection
were made. A variant of single-cell correction is to correct. only the neighbor
cells of the quadrant. of cell Bi where ;/:" lies. All altemative a.nd natural
choice would be to correct all cells intersectiug a region of specified size b
around the singular set S; these cells ca.lI he iOUlld efficiently, as descrihed
in §2. However, this requires correction of a number of points proportional
to N as N -+00, which is unacceptahly expensivt~ if fast sUlluuat.ion methods
are employed. Thus this selection scheme is robust but too expensive. Also,
it takes no account of local density variations of the points.

We chose to select cells for correction by the following approach. The
user specifies a dimensionless correction radius Tn typically of order unity.
We find the cell B; = [a, bJ in which the singularity lies (several cells if (T

has a higher-dimensional singular set). We then select for correct.ion all cells
intersecting the rectangle R = [:/:,. - Tr.(b - (/)/2, ;r,. + 'IAb - 1l.)/2J of size l'r

times Bi and cent.ered at. each singular point ;/:. E S. This sca.les t.he size of

17

the corrected area to the local cell size and therefore to the local density of
nodes, keeping the number of corrected points per singular point of order
unity as N -?OO with 'l'c fixed. If D = dim S then the numher of corrected
points is O(N D / d). We found 'l'c = 3 to give excellent results in practice.
The lookup of cells to be corrected costs only O(L) per cell.

Remark: vVe can construct a locally-corrected product integration rule
using the same technique; we simply drop the requirement (3.2) and go
up fewer levels in the tree structure. This gives a rule which integrates
polynomials times a accurately, which is enough for ma.ny a.pplica.tions. The
added genera.lity obtained by requiring (:3.2) as well as (:3.1) is important
when the integrand may be nOllsingular (for example when a happens to
vanish at the singularity), and costs lit.t.le.

Remark: O'(:r s) lllay he infinite or undefined, so we don't want to eva.l
uate f at ;1:, •• If ;/: 8 is one of the quadra.t.lI1'e points ;l:j, thell we eliminate it.
from the list of points to he corrected, set Wj = 0, and proceed.

3.2 Error bounds

The error hounds for singular rules can be derived hy polynomial approx
imation, as in the smooth case. No matter how the list of corrected cells
is made up, there will be two types of cells to consider; corrected and un
corrected. On the corrected cells, hoth cp and '1/) can be approximated and
the remainder estimated a.s for smooth rules. 011 the uncorrected cells, the
derivatives of the singularity come into play; the key a.ssumption in the error
hound is that we correct all cells sufficiently close to t.he singularity.

For notational convenience, let's renlllll her the A1 cells used in the sin
gular rule, so t.hat the first n are 'colTected amI the last A1 - n are not:
thus B = Uf;l B; where each cell Bi contains at lea.st (1 + .5)'/11. points for
1 ~ i ~ n and at. least nl. points for 1/. + 1 ~ -i ~ M. Let t.he sides of Bi he hil

for I = 1,2, -: .. , d a.nd let h = maXi.1 hil be the lIla.Xillllllll cell edge. Assume
that we have weights Wj such tha.t

and

18

for 10'1 ::; k - 1 and 1 ::; i ::; 'It, while

for 10'1::; k -1 and n+ 1::; i::; M.
Assume also that the union Ui'=1 Bi of the corrected cells contains the

set R6 of all points within distance b of the singular set S. For example,
we assume Uf=IBj contains the hall {II E IRd : 11;/:. - yll ::; b} around each
singular point a: s • Finally, assume that a is (.'k outside the singular set S
and that its derivatives satisfy 11. growth condition

(;3.4)
o

for 10'1 = 0 and Inl = k, b > 0 and ;t: rf. RJ • Here C is a. constant and b > 0 is
arbitrary. This assumption is very benign since it does not even guarantee
that a is in LI(B). It is satisfied by the singularities occulTing in potential
theory as well as by the Biot-Sa.vart kernel a = ;l:/IIJ:W.

Starting. from these assumptions; we derivt' a. bOlllHl for the elTor

N

E = l lP(:f). a(J:) + 'I/J(;1:)(1:1: - L Wj (lP(;I:j) . a(;/:j) + 'I/J(;I:j)).
B j=1

where lP and 1/) are C k • The nOllsingular term in -¢) can he hounded exactly
as for the smooth rule in !i2, giving

For the singular term, we have to consider corrected a.nd uncorrected cells
separately. On corrected cells Bi (1 ::; -i ::; n), we have a best approximation
<I> to lP by a polynomial of degree Ii: - 1 alld the resulting hound

E; = I I lP(.r)· a(;I:)(/;I: - L 'WjlP(;J:j)' a(:':j)!
Bi XjEB i

< n~IBd IIlP - <I>IICII(B,)

where the singular figure of demerit n~ is defined by

If)

As in §2, the best approximation error Ilcp - <I>llc"(B.) can be bounded by
Taylor expansion to get

Note that a priori n~ can be infinite, if one of the quadrature nodes happens
to coincide with a singular poiut ;/:" E 8. Thus n~ must he computed a
posteriori and used as a measure of the quality of the rule. The methods for
reducing n; discussed in §2.3 apply to n~ as well. In our examples, however,
we rarely encountered !<\.l·ge values of n~.

Now consider the error due to integra.t.ing cp . a over an uncorrected cell
B; where 1IJ = W. From §2.3, we know that t.he error on cell B; is bounded

o
by -

E; :::; niIBdCh/2)k L:: ~IID"(cp, a)IIc"(Bi)'
iui=k n.

We simplify this hound hy separat.ing derivatives of cp and a, using the
standard inequality for Holder norms proved in [1:3]:

Here the C k norm is defined by

IlcpIICk(B) = Ilcplk""(B) + L:: I lD"cpl IC"(B)

i"i=k

for k> 0, so
E; :::; CndBilhkllcp· allc'k(Bi)'

This separates the hound for E; iuto two pieces El and E/:

El en; IB; Ihk Ilallcll(Bi) Ilcpllck(Bi)
< endBilb-clhkllcpllck(B.)

and

where we have used assumption (3.4).

20

We now pause momentarily to discuss our strategy for selecting corrected
cells Bj • Clearly the choice ti =constant, correcting all cells within a fixed
distance from S, produces the simplest error bound. Indeed, if {j is fixed,
then the global error E satisfies

E :S C!1IBlllcpllck CB)h
k

just as for the smooth rule, with a constant which depends anti. Unfortu
nately, in practice we cannot afford to compute the D(N) correction weights
within fixed distance ti from S (\$ N -'rOO. Thus we give IIp the simplicit.y of
this error bound.

Instead, we take b = r,.h where T,: is fixed, iii order t.o correct fewer points
as N ---;'00. This complica.tes both pieces of the error hound in two different
ways. First, the fa.ctor ti- d seems to ca.llcel the volume factor IBd = O(hd),
so na.ively summing over all DeN) uncorrected cells prodnces a factor of N
in both El and E/. Second, the factor O-k in El eliminates the usual O(hk)
error altogether.

vVe handle the second difficulty hy seeking au error bound of a different
form from the usual D (II, k). We choose 0 so tha.t (h / bl :S f where f is a
user-specified parameter, usually smaller than hk over the ra.nge of affordable
h. Then we seek an error bound of the form E :S O(f) + O(hk) where the
constant in O(f) is allowed to depend au derivatives of CT hut not on those
of cp. The constant in DeltA:), on the other hand, may depend on derivatives
of cp as usual, but not on those of CT. Similar error hounds often occur
in the design of fast algorithms [4, 25] and are quite useful in practical
com pu tations.

Thus we choose (It/bY :S f t.o get

Ei :S C!1i IB;jo-d (I/llcplk'k(Bo) + fllcpllcIICBi))

and it remains to deal with the first difficnlty, of slllllllling over a.ll 0 (N)
uncorrected cells B;.

Let !1m = ma.x!1 i , and divide the uncorrected cells B; into P = O(1/0) =
O(l/h) shells

Sp = {B; : pO :S deB;, S) :S (p + l)O}

where the distance from B j to S is defined by

d(Bi, S) := min{II:J: - :1:,.11 : :1: E B i ,3:. E S}.

For B; E Sp, we have the stronger bound

E; :S CnmIBil(pli)-d (hkllcpllck(B;) + fp-kll<t'lk:"(B;)) .

21

Thus

p=1 BiES.

< cnm (t,l'-d B~' IB'I) ,-"h'lll'lIc'(B)

+ cn", (t p-
II
-" L. IEil) (i-d£II<pIIc"(B). (;3.5)

1,=1 RiES p

The volume of the shell 8
1
) is hounded hy Cp·l-l (i.l, a.nd since t.he cell edges

are all hounded by h = O((i), the Sllll1 over i sat.isfies

L lEd ~ Cl-1(i'/
BoES.

for ·some constant. C. This cancels the factor of {i-il. The first SUIll over p
in (3.5) then diverges logarithmically, giving a factor of log P = 0(1 log hI),
and the second is hounded by I:~1]1-1-" < 00 if k 2: 1. Thus

Ai

L Ei:5 cnm (I log hlh"II<pllck(B) + £II<pII(:I/(B))
;=71+1

We see that we suffer for t.he singularit.y by a fa.ct.or I log hi and a t.erm
fll<pllcU(B). We conclude that the tota.l error if> hounded hy

whenever (hi (j)" :5 f. Om: lllunerica.l experiments t.end t.o confirm the accu
racy of t.his bound.

The absence of a volullle factor lEI ill t.his bound is dismaying at. first.
sight but. actually natural, because under t.he weak assuIllpt.icm (:3.4) on a,
the integral it.self need not. sca.le with lEI. If a(:r) = II;rll- lI

, for example,
then scaling t.he va.riables shows that t.he integral

r a(:1:)d:z; = 1 aCI:)(/;1:
J5::5l1xll$R fb$IIr.II$fR

for any f. Under st.ronger growth condit.ions Oll a, for example t.hose satisfied
by the Biot.-Savart kernel, the error est.imate wonld scale in t.he sa.me way
as the int.egral.

22

3.3 Implementation and numerical results

We have implemented these techniques in a portable ANSI Fortran program
which constructs the singular weights Wj from the data. structure and weights
W constructed in §2. The singularity is evaluated by a user-supplied subrou
tine, and is thus quite general. The dimension and order are also arhitrary
user-specified parameters. A routine for evaluating the singular volume mo
ments by the technique of !j4 is supplied, but the code is highly modular
and the user can freely import routines for evaluating the singular moments
if they are available e.g. in dosed form. The polynomials Po{:t:) can also be
replaced by other basis fUlIctions if desired. The code cOllta.ilLs several other
refinements discussed in Section 5.

We have tested the code on severa.l singularities ill d = :2 and d = :l
dimensions. Here we report on the results obtained with d = 2 a.ud the
Biot-Savart kernel

'/"

aC/:} = 11;;:'11<1·

We ran two sequences of tests. First, we carried out a convergence study
with a regular grid. We placed N = 25G, 1024, ... , G55:3G points in a square
grid in B = [0, IF. For each k = 2, 4 and G, we constructed the smooth
rule with these N points and]J = P points per cell.' VVe then generated
20 random points :1:. in Band compnted the kth-order correction weights
for each singularity a(:1: - ;l:.), correcting cells contailling p' = 2k".!. points
and within a correction radius '/'c = :3 tillles the cell containiug :r.,. Tables
7 through 9 report the a.verages L< and L> of the base-2 logarithms of
the errors in using these weights to integrate the singular llLonomia.ls (:1:1 +
x2)"a{:r-:r,.) with 0 ~ (I' ~ k-l for L< awl k ~ ft ~ :3/;:-1 for L>. Note that
the error for a ~ k - 1 is not zero for two reasous; we compute the singular
moments approximately and we ouly correct uea.rhy cells. \Ve COlupute the
singula.r moments with the code descrihed ill §4, llsing increasing accuracy
as the number of points increa.sed: f" = f,. = 10- 3,10-5 , ••. ,10- 11 for N =
256, ... , 665:l6. The tables also report the average CPU time per correction
T, figures of demerit n and nO', the ma.xilllUlll cell edge leugth h, a.nd the
number C of corrected points.

The following observa.tions can be wade from these results. The con
vergence rate is somewhat irregular, 1m t roughly accords with theoretical
expectations. The use of base-2 logarithms l1lea.us tha.t L< and L> should
decrease by k: each time N is quadrupled, for the kth-onler method. The
number of corrected points does not increase with N. However, the correc-

tion is rather expensive due to the general-purpose nature of the code and
the necessity of obtaining singular moments by numerical integration. The
increase in accuracy of the numerical int.egration accounts for the increase
of T with N. We believe a more efficient a.nd specialized implementation
for a specific singularity such as the Biot-Sa.vart kernel could achieve faster
run times by orders of magnitude. Finally, we observe that the figures of
demerit n and nO' are hounded by 2 and 3.8 respectively.

N h C T n nO' L< L>
25G 0.2500 99 0.G2 2.00 :3.62 -12.21 -12.57
1024 0.1250 134 1.6:3 2.00 :3JiG -1:3.15 -1:3.G(j
4096 0.OG25 134 3.G5 2.00 :3.69 -15.:30 -15.57
1G384 0.0312 139 8.18 2.00 :3.71 -18.4:3 -17.87
G553() 0.015G 139 18.16 2.00 :3.71 -20.7:3 -19.89

Table 7: Results of integrating monomials tirnes the Biot-Savart kernel,
with second-order singular rules with N regular grid points.

N h C T n nO' L< L>
256 0.5000 25G 2.44 2.00 :3.G4 -1:3.57 -14.G4
1024 0.2500 39G 5.09 2.01 :3.G8 -17.14 -19.54
409G 0.1250 5:37 9.72 2.00 :3.70 -18.40 -20.71
lfi384 0.OG25 537 17.5G 2.00 :3.71 -20.(:j2 -2:3.29
G5536 0.0:312 55G :3G.72 2.00 :3.71 -2:3.27 -25.75

Table 8: Results of integrating lllonoutia.ls times the Biot-Savart kernel,
with fourth-order singular rules with N regular grid points.

Our second sequence of tests used N = 128, 25G, ... , 1G:384 pseudoran
dom uniformly distributed points on B = [0, If We repeated the previous
tests with these points replacing the grid points, and the results are reported
in Tables 10 through 12. 'Ve observe a reasona.ble convergence rate a.t first,
with L< eventually levelling off to ahout 10-3 , 1O-r. a.nd 10- 7 for the 2nd,
4th and 6th order rules respectively. This is the O(E) error due to inte
grating the singularity over the uncorrected cells by the smooth rule ltV. It
appears in L< and not in L> because L> involves higher-order monomials

24

N h C T 0 0" L< L>
256 0.5000 256 7.45 2.00 3Ji9 -13.58 -14.G7
1024 0.2500 ()40 19.06 2.01 :3.G9 -18.48 -20.18
4096 0.1250 883 31.14 2.01 :3.74 -20.40 -24.74
16384 0.0625 1075 49.23 2.00 3.71 -21.5:3 -2G.84
65536 0.0312 1113 81.2G 2.00 3.71 -2G.02 -:31.08

Table 9: Results of integrating monomials tiwes the Biot-Sa.~art kernel,
with sixth-order singula.r rules wit.h N regular grid POilltS.

with larger C k norms, so the 0(11,1.:) term dominates the O(f) t.erm.

N h C T 0 Ot1 L< L>
128 . 0.:3410 101 0.G8 2.2S 4.17 -11.10 -9.24
256 0.2952 145 1.15 2.24 4.:32 -10.2G -10.0()
512 0.1958 179 1. 7(j 2.25 4.47 -9.2G -10.87
1024 0.1505 188 2.<i9 2.17 4.22 -10.08 -11.8G
2048 0.1081 217 4.10 2.1:3 4.1G -10.37 -12.43
409G 0.0793 219 5.9:3 2.08 :3.94 -10.94 -12.99
8192 0.05GO 2G4 8.n 2.09 4.2:3 -l1.(j4 -1:3.59
16384 0.042G 27:3 1:3.17 2.0G :3.97 -12.:34 -14.8:3

Table 10: Results of integrating lllOlIolllia.ls times the Biot-Sava.rt. ker-
nel, with second-order singula.r rules with N ulliforml.v distributed random
points.

4 Singular 11101Uel1ts

4.1 Overview

We now descrihe the eva.lua.tion of the .~'/II. singula.r lllOIllents

Inl ~ /.: - 1, 1 ~ t ~ s. (4.1)

We treat (4.1) as a. special case of a general problem: Given f : B -+ JR." ,
smooth away from a lower-dimensional singular set S, evalua.t.e t.he n-vector

25

N h G' T n DI1 L< L>
128 0.5136 128 1.65 2.15 3.9G -1:3.41 -10.84
256 0.3269 256 3.13 2.12 4.14 -17.19 -12.43
512 0.2799 407 5.11 2.41 4.()1 -17.11 -14.23
1024 0.1748 535 7.:34 2.50 4.65 -1(i.OO -17.05
2048 0.1451 G9G 10.93 2.5G 4.80 -15.7G -18.(-jS

4096 0.OS8~~ 752 14.5:} 2.78 5.11 -17.20 -20.34
8192 0.0755 1011 21.59 :3.10 G.2:3 -If).:34 -20.16
Hl384 0.0498 957 29.01 :3.25 G.50 -17.01 -22.72

Table 11: Results of int.egrating lllonollliais tilliE'S the Biot-Sa.vart ker-
nel, with fourth-order siugular l'Illps wit.h N llllifonllly dist.ributed random
points.

N h G' T 12 n" L< L>
128 0.5G54 128 4.50 2.15 4.10 -14.(i5 -10.9:3
256 0.5212 2!"IG 8.51 2.20 4.!i7 -17.80 -U.57
512 0.:3097 512 IG.17 2.2:3 4.52 -19.84 -1(i.21)

1024 0.2G5G 788 25.21 2.5:3 5.00 -21.02 -18.70
2048 0.lG2(-j 1085 :3G.05 ;3.01 5.58 -21.1:3 -22.77
409G O.l:}G:3 1:351 47.72 ;3.:37 G.04 -20.91 -24.G5
8192 0.OS51 lS43 GB.95 4.30 8.22 -21.9:3 -27.15
IG384 0.071S 1848 S1.79 5.1S 10.10 -21.90 -28.G7

Table 12: Results of int.egra.ting lllonolllials tillles t.he Biot-Sava.rt kernel,
with sixth-order singular rules wit.h N uniformly distribut.ed random points.

2G

of integrals

F = fa j(x)(l:J; (4.2)

We compute (4.2) by a multidimensional adaptive product Gaussian quadra
ture method, with, an error estimate based on Chebyshev differentiation.
This is a nonstandard approach to (4.2) in several ways, so we describe it
in detail and present numerical results showing that it is more efficient than
at least one standard IlLultidimensiollal a.daptive quadrature package.

Our algorithm is organized along the followhig standard lines. We pro
ceed step by step to refine an a,pproximation t to F. At each step, we have
a subdivision of B into rectangular cells B i , all error estimate E; on each
B;, and an approximation F to F formed hy illtegrating over ea.ch Bi with
product q-point Gauss-Legendre quadrature [G]. We store this information
in a heap [28], a data, structure which allows us to select the cell B j with the
largest error estimate at. each step. We refine i' hy choosing a. cell Bi witli
maximum error estimate, choosing OIle of the coonlina.te a.xe,~, bisecting Bi
along that coordinate axis, and computing the new integrals a.nd eITor esti
mates. We then insert the new infonna.t.ion into the heap and the next step
can proceed. We stop refinilLg when one of the following three situations
occurs: we run out of memory, we encounter roulLdoff error lirnitations, or
we have a total eITor estimate E sa.tisfying

where Ell and E,. are user-specified absolute and relative eITor tolerances.
Our method employs the following llonsta,ndard features. First, the use

of product Gauss rules rather tha.n nOllpro<lnct rules. Since we a.re interested
primarily in d = 2- or d = :3-dimensiolla.l prohlems, t.he (j,t points required
by a product Gauss rule of order 2q is qllite competit.ive with standard
fully symmetric rules. Anot.her a.dvantage of Gauss rules is the a.rhitra.ry
order of accuracy available: Using e.g. l'Outine GRULE of [G], Ga.uss points
and weights of order 2q are rea.dily availahle for any fj. Second, the error
estimate we give below requires lit.tle a.ddition".! work and identifies the
direction contributing most t.o the error, the obvious candidate for bisection.
The usual technique for selecting a direction to hi sect is based on fourth
differences and is somewhat nnjustified.

27

4.2 Error estimation

We begin hy bounding the maximum (over 1 ~ i ~ 'It) error in product
q-point Gauss-Legendre quadrature of li(:);) over a cell B = [a,u]; this will
suggest a direction along which to subdivide. Although our estimate is really
a bound and not an estimate, it turns out to be sufficiently sharp in practice.
The error estimate in one dimension for a single function I rea.ds [6]

E~(J)
b q 1. f(:1:)d;/: - L 1IJ;/(:ri)

" ;=1

where ~ E (a, u), 'Wi and ;1:i are the weights a.nd Hodes for 'I-point Gauss
Legendre qna.drature on [fl., b], and the error constant is gi.ven by

In d > 1 dimensions, adding a.nd subt.racting give::;

Here wi is the ith weight a.nd :d the ith node for·Gauss-Legendre quadrature
on [aj, Uj]. Thus, by induction au d aud the positivity of the weights w{,

d d

IE;I[J] I ~ Cq1B12)bl - t1.lf
qllDiq

fllclI(B) =: CqlBI I: Ei~. (4.:3)
1=1

where IBI = (b 1 -a.d···(br/-t1..d is the volume of B.
This error bound displays the contribution E;~ of ea.ch dimension to the

total error bound; thus we can choose the dimellsion I where E;~ is maximum
over 1 as the dimension across which to split a given cell B. This hound
is highly practical beca.use only pure derivatives D/2q I a.re involved; these
require only values of I along a single line and a.re thus lUuch less expensive
to compute than mixed derivatives.

In order to approximate this bound, we will Ileed estimates of the quan
tities E~. We approximate the Co Honn hy a. maximum over .,. ra.ndomly

28

chosen points p(1), .•. ,p(,.) distributed in a Latin square [17] in B, and cal
culate the approximation

Dd '- (b a)2q 111ax l11ax 10".!qf(z (j) '.. 1 (;»)1 lq'- I - I ~ (I)1' ... , d', ••• , lc/
l~l~r a/~x~b,

hy Chehyshev differentiation. Fix j a.nd l alld let

where c = (al + br)/2 and II. = (b l - ar)/2. Then

O,'1q (')-I".!q;:l".!qj"(,(i) . I. .U»)
3 9 s - /, VI PI' ... , (. + LoS, ••• , Pol ,

so

We approximate the 2qth derivative of!J hy Chebyshev differentiation. Ap
proximate 9 by a t-tenu Chebyshev series

where the coefficients 9k are computed by 11th-order Chebyshev quadrature
with p ~ t + 2;

2 P ,

Yk = - L,y(tdTk-l(tr)
Jl 1=1

2L,1'.7r(l-1/2))) .. ,7r(/;:-1/2)(I-1/2)) = - y(cos(cos(.
P /=1 1)]I

(4.4)

The jth derivative of 9 is approximated by

(4.5)

where thecoeffidents YkiJ are determined by ba.ckwa.rd recurrence

(0)
9k

YU)
k-l

YA: 1 ::; ,. ::; t,

YF~1 + 2(A: - l)fJki -
ll

Y~~i+2 = O.

t-.i~k?2q+1-j, (4.(j)
(j)

9t-j+l

2!)

N th I 1 ff· . (j) 1 (j) J. l' . 1 1 ate at tIe ast two cae lClents, !Jt-j-l an(!Jt-i' can)e exp Jelt y eva-
uated in terms of 9t-l and !Jt alone. Similar thougll more complicated ex
pressions exist for the lower coefficients, but it is easier to evaluate them by
recurrence (4.6) even if we only want the top two.

Finally, the fact that ITk(s)1 :::; 1 for lsi:::; 1 allows us to bound g(2q):

. t-2q

1I!J(2Q)lIc lI :::; ~1!J~2q)1 + L I!JFq)l·
k='2

(4.7)

Note that we need only compute the coefficieuts !Jk with 2'1 + 1 ~ k ~ t;
lower-order polynomials drop out after taking 2q deriva.tives.

For efficiency of implernentatioll, however, we do lIot employ recurrence
(4.6) and formula.'i (4.4) directly. Instead, we observe that ill the fina.l esti
mate (4.7) each gf·g) is a.linear function;).! of the JI-vector f with components
II = f(p~j), ... ,e + hs l , ••• ,p~/) : 1 ~ j :::; p). Thus there is a. (t - 2'1) X Jl
matrix ekl such tha:t

l'

!J(2 q
) - '" (. f k - ~ :·kl I

1=1

1 ~ k ~ t - 2q.

We simply precompute this matrix, which depends only all p, t and '1, and
store it. Then ea.ch error estima.te Ei~ requii'es only JI functioll evalua.tions,
(t - 2(1)p multiplications a.nel additions. At. llliniullllll, JI = t = 2q + 2, so each
error estimate costs 2(2q + 2) multiplications and 2q + 2 fUlIct.ion evalua.tions.
Thus the tota.l error estimate on Bi requires '/'(1(2IJ + 2) function evalua.tions.
Since the integra.l requires qd function eva.luat.ions, the error est.imate is
not. expensive if 2'/'(1 :::; qcl-l. It. a.lso has the adva.ntage that the points of
evaluation for the iutegral and t.he error estimate are completely different
(and random for the error), reducing the cha.nce of lllissillg cells wit.h large
errors.

4.3 Refinements

The quadrature scheme outlined ahove is rohust and flexible. We found,
however, that its efficiency amI accuracy can be improved hy several refine
ments discussed below.

4.3.1 Getting started

In the scheme above, we start with a. single cell Band suhdivide as necessa.ry.
But when 1 is known to be singula.r at some known point :r." we know that

many subdivisions will be necessary. Any int.egrals and errors computed
for a cell which is later refined represent wasted effort. This wa.ste can be
reduced by beginning with several cells instea.d of one, in essence taking
advantage of prior knowledge of the singularity location to ca,rry out the
first few refinements beforehand. A reasonahle way to do this is to divide B
into 2d suhcells with one corner of each being :1:", then construct a quad tree
with several levels by recursively bisecting ea.ch cell touching :/:... Such a
subdivision of B can be extremely helpful in reducing the time reclllired to
integrate f.

4.3.2 Double-loop integration

A related feature of our method is the iudependence of the enol' estimator
from the integration rule. An extreme way to use this independence is
to compute only error estimates a.s we suhdivide" COIllPUtillg the integrals
ouly when the final cell strncture has heell cOlllpleted. This saves aU the
wasted effort of integrating over cells later t.o be refined, and this can he very
substantial when 'It is very large. U nfortullately, the use of hath absolute
and relative error criteria,

makes this impractical since F is involved in the stoppillg condition. We
could use the initial value of F compnted over the inpnt cells, but this is
likely to be unnecessarily expensive since the value of F is likely to increase
substantially as the singularity is resolved. The way out of this dilemma is
a double-loop procedure in which we start out with a stopping criterion

E ~ f" + f,.G

with G set to, say, lOOIIFII~ When this test is passed, we integrate over the
resulting cell structure and set G to the IIFII thus obtained. Then we repeat
the inner loop with the new st.opping criteriun. In t.his way, we c.a.n save a
large number of unnecessary int.egrat.ions over cells.

Another situation where the double loop approach is useful is when
roundoff error may be irnportant. 'liVe mainta.in an error estimat.e for each
cell separately, a.s well as a. global estillla.te formed hy sultlming them up.
Thus each subdivisiou requires subtractiQIl of the old errol' estimate for the
subdivided cell a.nd addition of the two new est.imates. When the initial error
estimate is oi'ders of ma.gnitude la.rger tha.n the final result, serious roundoff

:n

problems occur. A double loop is therefore employed; after termination of
the inner loop over cells, we re-sum the integral and error estimates. If the
stopping criterion is violated a.fter resumming, we restart immediately from
where we left off.

4.3.3 Cautious error estimation

A refinement which is important for accl11'acy and occurs in most effective
quadrature routines is the idea of cautiolls two-level error estimation (see
e.g. [7]). Here \~e use, ill addition to the error estimate Ei computed for
the current cell, informa.tion ahout the parent cell. The errors and integrals
compu ted for the parent cell are used sepa.rately.

Caution means that we do not believe all error estimate which is much
smaller than the parental estimate; t.hus we replace tiLl> new error est.imate
E; by max(E;, EcEoltl) where Eo is a user-specified degree of cautioll related to
the order of accuracy of the rule. TypicaUy E,. = 1O-~ is a reasonahle choice.
The idea of nonzero Ec is to prevent old informa.tion frOUl being ignored in
later decisions.

The use of two-level error estimates, OIL the other hanel, means that we
consider also the change in the integrals produced hy the suhdivision. Thus
we replace E; by max(Ej , EdlL1FI) where L1F is the ma.ximum change in any
integral due to the subdivision. Note tha.t two-level error estimators are
incompatible with the double loop procedure proposed a.bove, and the two
are therefore offered as lllutually exdusiv(~ options in 011r implementation.

4.3.4 Shared singularities

In the special situation we consider here, we are integra.tiug a long vector
of n = S'ln functions simultaneously, where each function has the same sin
gularity structure. The repeated eva.luatiolls of all the functions involved in
the error estimates is wa.steful, so we have implemented cL resta.rt fa.cility.
We first integrate the singularity a{:t:) alolle, then lise the cell st.ructure con
structed as a starting point for the integrat.ioll of the polYlLolllials P", (:1:)a(:1:)
as well. Numerical experiments wit.h k = :2,4,G a.nd 8 aild fj = :2,;3,4,G,8
and 10 and a the Biot-Sa.vart kernel (so tl = oS = :2) shows t.hat this ca.n save
a factor of five to ten in CPU tillle. However, t.hey a.lso show that further
improvements in the efficiency of obtaining the iuitial cell structure cannot
improve the speed of the code much; illdeed, even if the initial cell struc
ture were known a. priori, we would only save about one-t.hird of the CPU

time. Further speedups can COllle ollly from redllcillg the fllunber of points
employed or evaluating the functions fa.ster. Improvement in either area. is
certainly possible.

4.4 Numerical results

We implemented the multidimensional adaptive product Ga.ussian scheme
above in a portable ANSI Fortran code, with the dimension d as a para.meter.
Although our aim was prima.rily robustness alld relia.bility, the resulting code
is surprisingly efficient.

vVe tested the code Oil three problems of va.rious degrees and types of
difficulty, following the probahilistic techlliejlle of [lG]. In (~a.ch ca.se, we
integrated a family of integran<is wit it randomly placed or randolllly oriented
singularities and measured the avera.ge error and success rate. 'vVe used three
families of integra.nds. First, a smooth hut oscillatory family of cosines:

Second, skewed exponentials of illcreasing steepness with discontinuities a.t
angles to the coordinate axes:

12(:1:) = (exp(- jllAr - :r,·lld : j = 1,2, ... ,10)

where A is a random matrix with entries chosen from a uniform distrihution
on [0,1] and 11~:lh = "E..;1=1 1:l:il is the Ivlallhattan norm. Fina.lly, rn = :lG
Legendre polynomials O~l [0, IF times the 2-dilllellsional Biot-Sa.vart kernel
as in moment calculatiolls:

with 10'1 :; 7 and cr(a:) = ;r/II;/:W. Here :/:,. is chosen from a. uniform dis
tribution on [O,l]d. In aU ca.ses the dOlllaill of integration was [0, l]d and
the dimension wa.s d = 2. "Ve ra.ll 100 samples of each family. The re
sults are shown in Tables 1:3 through U) below. For these 1;a.hles, we used
Ee = Ed = 10- 2

, l' = 2, t =]I = :241+2 and f := f" = f,. = 10-1,10- 2
, •.• ,10- 7

•

We report the number of fUllction eva.lua.tiolls N F, the CPU time T and the
error E produced by our code. vVe f011nd q = 10, (1 = :3 and q = 4 to be the
most efficient rule sizes for 11, /2 and Is respectively. Figure 2 shows the
tree-structured subdivisions constructed with f" = 10-3, 10-~ and 10-7 for
12 and Is. It is clea.r that the code is refillillg in the right pla.ces.

:33

For comparison, Tables Hi through 18 show the corresponding results for
the multidimensional adaptive fully symllletric quadrature routine DCUHRE
presented in [2]. The following conclusions can be drawn from this coin par
ison.

First, in the integration of the Biot-Savart kernel times polynomials,
DCUHRE achieved most efficient results with the Uth order rule, because
the kernel is smooth away from the singularity. It required 48 CPU sec.
with € = 10- 7

• The errors were very reliahly less than the estima.te, and in
fact very close to the estimate. Gaussian (Jlla,dra.ture, on the other hand, was
most efficient with a 4-point 8th-order rule when f = 10- 7 . It required 11
CPU sec. with f = 10- 7

, about four times fa.stpI' tha.lI DCUHRE. The errors
from our Chebyshev error estimator were less relia.ble ill the Reuse that t.hey
were sometimes much less than the estillla.te (I,nd somet.imes slightly more.

On cosines, high-order rules were the most eft"ectivl'. For example, 20th
order Gaussian quadrature re<lllired 0.04 CPU sec. to a.chieve precision 10- 7

•

DCUHRE required 0.17 CPU sec. with the Ut.h order rule.
For skew exponentials, which are C li hut are not (,'1 a.long the ran

domly oriented hyperplanes determiued by fl and :/:", the 9th order rule
of DCUHRE was more efficient than 13th or 7th. This is a litt.le surprising,
because the 7th order rule is recommellded by its authors for prohlems -like
this one- requiring great ada.ptivity. The 9th order rule required 72 CPU
sec. with € = 10-7 and achieved error 10- 7 reliably. Gaussian <!uadrature,
on the other hand, got best results'with a. Gth-onler rule, re<llliring n CPU
sec. with € = 10- 7

.

f" = f,. NF T E
0.10E+00 188 O.tH O.(J:lE-ll
0.lOE-01 188 0.0:3 O.G:3E-ll
0.10E-02 188 0.04 O.G:3E-ll
0.10E-0:3 188 0.0:3 O.G:3E-ll
0.lOE-04 188 0.04 O.G:3E-ll

0.lOE-05 188 0.0:3 O.G:3E-ll
O.lOE-OG 188 0.0:3 O.(j:3E-ll

Table 1;3: Gaussian quadra.ture OIl cosines.

34

I-
,

~ ~
J

:1
J J -I,

I "
, ~
+ + -tlIH

IIH
lilt

f-- 11'-

I--
, J

J
f-- Ll JJ _E H-f-- -IT iEr- r-

I't- r-
r-

I--

Figure 2: Tree structure for a.daptive Gaussia.n qua.dra.ture with f = f" =
fr = 10-3 , 10-5 a.nd 10-7 (left to right) of skew exponentials (top row) and
the Biot-Sa.vart kernel multiplied by aG Legendre polynomials (second row).

31': ,)

I

fa = fr NF T E
0.10E+00 221 0.03 0.65E+00
0.10E-01 1115 0.13 0.97E-02
0.10E-02 4788 0.55 0.65E-03
0.10E-03 17736 2.01 0.29E-04
0.10E-04 59G55 G.71 0.24E-05
0.10E-05 201884 22.G2 0.G9E-OG
0.10E-OG G51924 72.97 0.SGE-07

Table 14: Gaussian quadrature on skewed exponentials.

f" = f,. NF T E
0.10E+00 ;321 0.28 O.12E+Ol
0.10E-Ol 771 0.G7 0.28E-Ol
0.10E-02 15:3G 1.;3;3 0.11E-02
0.10E-0:3 2793 2.4:3 0.27E-0:3
0.10E-04 4G49 4.04 0.GGE-05
0.10E-05 76;38 G.G5 0.21E-05
0.10E-0() 12()51 11.01 0.3:3E-OG

Table 15: Gallssian quadrature on the Biot-Savart. kernel times polynomi
a.ls.

f" = f,. NF T E
0.10E+00 195 0.04 0.l1E-03
0.10E-Ol 195 0.04 0.l1E-0;3
0.10E-02 1% 0.04 0.l1E-0;3
0.10E-0:3 28G 0.05 0.4;3£-04
0.10E-04 442 0.08 0.50E-05
0.10E-05 79:3 0.14 0.G5E-OG
0.10E-06 975 0.17 0.45E-07

Tahle IG: DCUHRE on cosines.

3!:i

E" = Er NF T E
O.lOE+OO 178 0.02 O.77E-Ol
O.lOE-Ol lOGO 0.12 0.OOE-02
O.lOE-02 4158 0.44 0.OOE-O:3
O.10E-03 15886 loG!) 0.lOE-03
0.10E-04 587:3;3 G.IO 0.10E-04
O.lDE-Oil 202989 21.12 O.lDE-O!)
O.lOE-OG G85872 71.72 O.lOE-OG

Ta,ble 17: DCUHRE on skewed exponent.ia,ls.

Ell = f,. NF T E
O.lOE+OO 2Gl:3 2.05 0.80E-Ol
O.lOE-Ol 547:3 4.:30 0.03E-02
0.10E-02 10270 S.OG 0.!ME-0:3
0.10E-O;3 17147 1:3.50 O.!)7E-04
0.10E-04 2G702 21.0;3 O.97E-05
0.lDE-05 40742 ;32.12 O.98E-0(j
O.lOE-On GU08 48.:31 O.9SE-07

Ta,ble 18: DCUHRE on t.he Biot.-Sa,vart kernel times polynomia.ls.

5 Refinelnents and Generalizations

The above methods for constructing smooth and singular quaclratU1'e rules
can be refined and generalized in several ways.

The smooth rule can be made adaptive to reduce 11, and the order can be
locally varied to match the smoothness of the integrand. Chebyshev polyno
mials can replace Legendre polynomials, allowing the use of non-equidistant
FFT techniques to speed up the least 2-norlll calculations. For that matter,
any other set of basis functions can replace Legendre polYllOlnia.ls, yielding
rules which are exact for that class of basis fUlLctions.

Both singular aud smooth rules can be derived for approximating linear
functionals other than int.egration over B. An import.a.ut example, interpo
lation, is discussed in detail below. This leads to a different approach to
evaluating integrals of singular fuuctions; transfer the integrand values to
nice points hy interpolation, then llse nice rules on the nice points. This
eliminates the necessity of computing singular moments for every corrected
point.

Both rules can also be used to integrate over more general domains
than rectangles, as discussed below. A particula.rly exciting prospect is
the construction of rules for integrating singula.r functions over curves and
surfaces, for the boundary integral solution of pa.rtial differential equations.
This is of course 'another special case of the approximat.ion of other linear
functionals mentioned in the previous paragraph.

We could equally well construct lV/ to integrate exactly the k d monomi
als a:f' ... X~d with 1J1'oli'llct degree max lYl ~ k: - 1, ra.ther than integrating
the m(k, ll) = O(l~d / d!) lllonomia.ls with standard degree (rl + .. . +a./ ~ k-1.
This choice is a nonstandard one (see [G]), and would have several adva.n
tages and disadvantages. The first, and most importaut, is the improved
accuracy of such a rule (see [6]). Rules of product order k have order k
in the standard sense, as well, but they t.end t.o have considerably smaller
errors than most. rules of st.andanl order k:. They use more points tha.n the
minimum necessary to achieve standard order k by a. fa.ct.or of In, hut this is
not overwhelmingly expensive in small dimeusions like cl = 2 or cl = 3. An
other reason is tha.t we llse product Gaussian qua.drat.ure rules to eva.luate
the moments (see §4), so product order is more convenient. And finally, it is
easier to construct ~ general multidimensional routine in which the dimen
sion d is an input parameter when rules of product order k are constructed,
because it is easier to ma.p a. rectangle than a. simplex onto a.n interval. Such
a rule is more efficient than standard rules in some ways, hecause we are

38

evaluating all necessary Legendre polynomials p"J:l:,) with 0 ::; (\'1 ::; k - 1,
so we might as well multiply them together to get the remaining terms. Our
experimental implementa,tion, however, reveale~l that product rules produce
slightly larger errors at greater expense, due to increased cell sizes. Hence
our final code used rules which integrate exactly monomials of standard
degree::; k - 1 exclusively.

Another refinement is as follows. The error analysis suggests that it
might be computationally useful to have two different orders of accuracy,
for the smooth rule and the singular rule. For example, we might construct
a 16th-order smooth rule but correct it locally only to 4th order. 'iVe have
implemented this feature in our curreut code but our experience is not yet
sufficient to indicate its usefulness.

5.1 Scattered data interp olation

A common problem of computational physics is to constrnct a glohally de
fined "nice" function which takes given values u(:t:j) at given points :I:j. The
techniques developed above generalize iuune<iiately to solve this problem.

The function we construct is a polynomial P(:I:) on each cell Bi of the
tree structure we constructeel for the smooth rule. A polynomial p of degree
::; k - 1 can be represented as a Legendre series

p{:r.) = L }J(n)P",(:I:)
l(fl~k-l

where Po is a shifted and scaled Legendre polynomial on Bi = [a, b] and
ji(a) are the Legendre coefficients of p. Each zj(n) is a linear functional of
p, hence ca,n be approximated hy

P{ n) = L Wj ((\')1'(;t:j)
X.iEB.

where 'Wj are exact for p = P,,, Irtl ::; k - 1. Thns w(n) = (wj(n) : ;rj E Bd
can be fonnd as e.g. the lea.<;t 2-nonn solution of

0,,13= L '/IIj(o:)p/i(;t:j)
X.iEB;

for lal::; k - 1 and 1.81::; k -1. The 'In by p 01' p+ 1 matrix (~;,(;r.j» which
appears need he suhjected to the singular value decomposition only once,
and then each a requires only two matrix-vector multiplies and a scaling by

:39

the singular values. Thus given thefT/, hy l' or jJ + 1 matrix (wj(a», the
Legendre coefficients of a nice polynomial interpolating values Pj at points
xi can be computed by matrix multiplication:

p(a) = L wj(a)pj.
XjEBi

Then the Legendre series provides an interpolant to the scattered data Pj.
This local interpola,nt on Bi is not of course continuous between cells.

However, it is likely to he reasonably smooth since 'Wj solves a least 2-
norm problem. It will have order of accnracy O(hk) where B; has sides of
length ~ hand jJj are values of a C k function on B. An expansion in other
basis functions on each B; can be constructed in the same way, as can the
derivative of scattered data values.

5.2 General B

The techniques developed in 32 and !j:3 extend to integrate over curves and
surfaces in JR'2 and JR.3. Suppose we want to ca1culate

11(:1:)(1:1:

where 1 is singular at some point :I:. which may be in or Hear the curve or
surface r. vVe enclose r ill a box Band constmct the usual tree structure
containing the N given points :I:j, which ma.y be either in or outside r. Now
we construct, e.g. for the smooth rule, weights llVjsatisfying

(5.1)

on each cell B j • The glohal weights defined to he lVj = Wj if :I;j E Bi can
be computed by the singular value decomposition if enough points are in Bi
and will integra.te smooth functions accura.tely over r. The singular rule is
produced from the smooth rule in the usual wa.y.

There are two new complications in this approach when r is not a rect
angle. First, we need the moments

of polynomials over r n B i • If r is a piecewise liuear manifold these moments
are exactly computable. In general, however, and certainly when a singular

40

rule is desired, some form of adaptive numerical integration over r will be
needed. For general r this is a difficult problem; we expect approximation
by piecewise polynomial r and numerical integration as in the finite ele
ment method will work, hut other techniques may be faster. Note that the
Gaussian integration code we have developed in §4 ca.n easily he extended to
integrate over polyhedra rather than rectangles, because Gaussian rules can
readily be mapped to polyhedra with 2d vertices in d dimensions. Polyhedra
can be subdivided into polyhedra with 2'/ vert.ices, with only the houndary
cells being non-rectangular.

Second, the equations (.5.1) are more likely t.o be rank-deficient, in which
case no solution ltV} will exist.. If r is a plane, for example, then polynomials
in variables perpendicular t.o the plane a.re superfluous a,nd we cannot inte
grate them exa.ctly with a.ny llV. The singular value decomposition provides
a natural treatment of this difficulty; siIllply igllore all equatiOlls which can
not be sa.tisfied. They will not affect the accuracy of the rule W, because
W only integrates over r ill any case.

The accuracy of the rule requires more l1lacilinery to allalyze. The a.d
ditional ingredient is extension theorems; we lleed to extelld functions on r
to smooth functions on Bi without increasing t.he size of deriva.tives. Tha.t
this can he done is proved in e.g. [8]. It. follows that a rule constructed in
this way will enjoy the same convergence properties as in the case when r
is a rectangle.

6 Acknow ledgeillellts

The author would like to thank Prof. V. Rokhlin for helpful conversa
tions. This research was supported by a. NSF Young Investiga.tor Award,
hy Air Force Office of Scientific Resea.rch Grant 92-0l(i!) and by the Applied
Mathematical Sciences Subprogram of the Office of Energy Research, U.S.
Department of Energy under Contract DE-ACO:3· 7GSF00098.

References

[1] C. R. Anderson. A method of local corrections for computing the ve
locity field due to a collection of vortex 1>101>8. Jour. C:01l!]J'ld. Phys.,
62:111-127,198(:>.

41

[2] J. Berntsen, T. O. Espelid, and A. Geltz. An adaptive algorithm for
the approximate calculation of multiple integrals. A CM Tmns. Math.
Softw., 17:437-451, 1991.

[3] A. Brandt and A. A. Luhrecht. Multilevel Ina,trix_ multiplication and
fast solution of integral equations. JOUT. C017t]nLt. Pllys., 90:348, 1990.

[4] J. Carrier, 1. Greengard, and V. Rokhlin. A fast adaptive llluitipole
method for particle simulations. SIAM J . .5'ci. Stilt. Co '/I qJ1lt. , 9:()(j9-
686, 1988.

[5] A . .J. Chorin. Numerical study of slightly viscous flO\v. J. Fluid Mcch.,
57:785-79G,197:3.

[6] P . .J. Davis and P. Rahinowitz. Met/tOils of Nll1IUTicuZ Iutegm.tion. Com
puter science and applie~llllathelHatics. Aca.demic Press, second edition,
1984.

[7] T. O. Espelid and A. Genz, editors. Numc7.zcu[intcgmtion: n:cent
developments, softw(/.'/'c, llnd applications. Kluwer Academic, Dorclrecht;
Boston, 1992.

[8] D. Gilbarg and N. S. Trudinger. Elliptic jJa1'tial eli/Jer'cntia/ equations
of sccond on/e7·. Springer-Verlag, 198:3.

[9] G. H. Golub and C. F. van Loa.n. Mah'z:/: C01HjJ1ltatio7!s . .Johns Hopkins
University Press, Baltimore, second editiolt, 1989.

[10] 1. Greengard and .J. Strain. A fast algorithm for the eva.luation of heat
potentials. Comm. Pun: Appl. Math., XLIII:!)4!J-9()3, 1990.

[11] L. Greenga.r<l and .J. Strain. The fa.st Ga.uss transfonn. SIAM .](J'/ll'.

Sci. Stat. Comput, 12:79-94, 1991.

[12] W. Hackbusch and Z. P. Nowak. On t.he fa.st matrix multiplication
in the houndary element method hy pa.nel clustering. N1l111.C1'. Math.,
54:463, 1989.

[13] L. H6nnallder. The boundary prohleltls of physica.l geodesy. At'ch.
Rational Mech. Analysis, G2:1-52, 1970.

[14] M. A. Ja.c;woll and G. T. SYIlUll. Intcyml equation methods in potential
the01'Y and elastostatics. Academic Press, 1977.

42

[15] P. Keast and G. Fairweather, editors. Nume1'ical integration: 1'ecent
developments, softwll1~e, llnd applications. Kluwer Academic, Dordrecht;
Boston, 1987.

[16] .J. N. Lyness and .J . .J. Kaga,nove. A technique for comparing a:utomatic
quadrature routines. Comput. J., 20:170-177, 1977.

[17] W. H. Press, W. T. Vetterling, B. P. Flannery, and S. A. Teukolsky.
Numer'icaI1'ecipes in FO RTRAN: the art of scient~fic computing. Cam
bridge University Press, second edition, 1992.

[18] V. Rokhlin. Rapid solution of integral equa.tions of classical potential
theory. J. Comp. Phys., GO:187-207, HJ85.

[19] V. Rokhlin. End-point corrected trapezoidal <lIladrature rules for singu
lar functions. Research Report YALEUjDCSjRR-441, Yale University
Department of Computer Science, November 198!).

[20] G. Russo and .J. Strain. Fast tria.ugulated vortex methods for the 2-D
Euler equations. Jow·. COnt1}. Phys., to a.ppear.

[21] H. Samet. The design and analysis of spatial data stl'uctm·es. Acldison
Wesley, Reading, Massachusetts, 1990.

[22] H. P. Starr. Rapid solution of one-dimensional intf:gml and diJj(:7'cn
tial equations. PhD thesis, Yale University Department of Computer
Science, 199:3.

[23] .J. Strain. A boundary integral approaeh to unsta.ble solidification . .10m'.

Compo Pltys., 85::J42-:lS9, 1989.

[24] .J. Strain. The fast Gauss tra.nsform with varia.hle scales. SI~M Jom·.
Sci. Stat. Co trtjJut, 12:U:n-U:39, 1991.

[25] .J. StraiIl. Fast potential theory II: Layer potentials and discrete snms.
J. Comput. Phys., 99:251-270, 19!)2.

[26] J. Strain. Efficient spectrally-accurate solution of va.riable-coefficient
elliptic problems. Pmc. AmCl·. A1atlt. Soc., to appea.r.

[27] J. Straiu. Fa:st adaptive methods for the free-space heat equation. SIAM
J. Sci. Stat. C01Tqmt., to appear.

[28] R. E. Tarjan. Data stnlctll7'eS ancI network alY(J1'ith111S. CBMS-NSF re
gional conference series in applied mathemat.ics, no. 44. SIAM, Philadel
phia, 1983.

[29] L. van Dommelen and E. A. Rundellsteiner. Fast adaptive summation
of point forces in the two-dimensional Poisson equat.ion. .l. Compu.t.
Phys., 83:126-147, 1989.

1991 Subject Classifica.tions: (j!)D:32, GGDO!), (j!)DaO, GljR20.
Key words and phrases: nnmerica.! int.egration, sillgular int.egrals, fast

. a.lgorit.hms, qnadt.rees, singula.r va.lne decolilpositioll, vort.ex methods, po
tentiaJ theory, interpola.t.ioll.

E-mail address: st.rain@mat.h.berkeley.eciu.

44

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

~ 1'-=.-
0> Co = LO .0
I :.J
III -I
c:{ [])
--I

