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Abstract 

Accurate numerical integration of singular functions usually re
quires either adaptivity or product integration: Both interfere with 
fast summation techniques and thus hamper large-scale computations 
in incompressible fluid flow, potential theory and crystal growth. 

This paper presents a method for computing highly accurate quadra
ture formulas for singular functions which combine well with fast sum
mation methods. Given the singularity and the N nodes, we first 
construct weights which integrate smooth functions with order-k ac
curacy. Then we locally correct a small number of weights near the 
singularity, to achieve order-k accuracy on singular functions as well. 
The method is highly efficient and runs in O( N k2d + N log2 N) time 
and O(k2d + N) space. We derive precise error bounds and time esti
mates and confirm them with numerical results which demonstrate the 
accuracy and efficiency of the method in large-scale computations. As 
part of our implementation, we also construct a new adaptive multi
dimensional product Gauss quadrature routine with an effective error 
estimate, and compare it with a standard package. 

The method generalizes to interpolate and differentiate scattered 
data and to integrate singular functions over curves and surfaces in 
several dimensions. 
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1 Introd uction 

Many numerical problems require the evaluation of int.egrals 

fa f(;r)dx, (1.1 ) 

where B is a D-dimensional subset of JRd and f is an integrable function on 
B. Many methods have heen devised for the numerical calculation of such 
integrals, each useful for certain va.lues of D and d and certaiu classes of B 
and f. In the case d =D = 1 an extensive lit.erature is summa.rized in [G], 
while in d> 1 dimensions lUuch recent work is present.ed ill [7, 15]. 

This paper focnses on t.he eva.lua.t.ioll of (1.1) ullcler the following a.s
snmptions. (a) B is a. rect.a.ngle [1I.,b]:= [1I.1,bd x ... x [u(/,b d]. (b) \'Ale a.re 
given values f( 3:j) of f at N points :/'j not of our choosing. (c) We a.re given 
an integra.ble hut. singular function (1 : B--.!R:', which is C Ao away from a 
lower-dimensional subset S of B, and f ha.s the form 

( 1.2) 

where t.p : B--.IRs and 4' : B-+JR are C Ao functions on B. vVe are mainly 
interested in the cases d = 2 and d = ;3, t.hough our met.hods are applicable 
to any d. 

We construct two rules for numerical int.egration. In §2, we const.ruct 
a rule TV with weights Wj , 1 :s j :s N, which integrates smoot.h functions 
accurately: 

N 

I: Hlj !J(:I:j) = 1 !J(:/: )llJ: + EN, 
j=l B. 

( 1.;3) 

where EN decreases rapidly as N -H)O if!J is smoot.h enough and the points 
Xj happen to he distribut.ed appropriately. For example, EN = O(N- Ao

/
d

) if 
9 is C k and the points are uniformly distribut.ed on B, where k is the order 
of accuracy of the rule. The comput.ation of W requires O(/v(k'2d + log:! N» 
time and O(Pd + N) space. Precise error bounds and lLllllwrica.l examples 
are given in §2. 

In §3, we construct. a rule 'W with weight.s Wj which integra.tes singular 
functions of the form (1.2) accurately. The singular rule w has the additional 
property that 'Wj =: Wj except for a small numher of j's, those for which :Cj 

is near the singular set. This property is important in the applica,tion offast 
algorithms to the efficient evaluation of families of singula.r integrals. The 
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computation of those Wj'S differing from IIVj requires O( Pd) time. Error 
bounds and numerical results are given in §3. 

These general rules are constructed with certain specific classes of appli
cations in mind, including computational fluid dynamics, potential theory 
and crystal growth. These applications require the application of integral 
operators 

'/1.(:1:) = l J(;,;,:l!')w(:r')ll:r,' (1.4) 

where J( has known singular behavior on a lower-dimensional set but w is 
(at least piecewise) smooth. Typically J( is singular at a single poiIit, we 
know w(Sj) at N points Sj, and we would like to approxil11a.te Ai values 'n(t;) 
at points ti E lRd

• 

A classical approach to this prohlem is pl'ocluct integration [G]. Here we 
approxima.te '11.( t j ) by a rule of the forlll 

N 

'It; = L J(jjw( Sj ) 
j=l 

(1.5 ) 

with ](jj chosen to integrate some class of W exactly for each -i. This is 
a M X N matrix multiplication, so it costs 0(111 N) work, which is very 
expensive when M and N are large. This has been a stumbling block in 
computational fluid dynamics [5], potential theory for the Laplace equation 
[14], and crystal growth [2a]. Product integration also tends to require 
difficult, expensive, and sometimes impossible algebra.ic manipulations a.nd 
evaluation of integrals in closed fOl'lll. A major ohjective of this paper is 
to eliminate the calculations required by product integra.tion, a.nd 'replace 
them with a single general-pnrpose method which produces locally corrected 
quadrature rules of arhitrary order for a,ny given singularity. 

More recently, fast sUlllmation methods have been developed for several 
kernels ](. These methods evaluate the discrete SIUll 

N 

t/.j = L K( t;, .Sj )TIVjW(.Sj) 
j=l 

( 1.6) 

to accuracy E, in O«N + Ai) log E) work. See [1, :3, 4, 12, 25, 29] for vortex 
methods and potential theory and [11, 24] for Gaussia.n kernels. However, 
these methods cannot be comhined with product integration, where the 
weights depend on the point of evaluation ii' 

Another class of recently-developed fast methods is ahned more directly 
at the continuous problem (1.4)i see [18, 20, 25] for vortex methods and 
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potential theory and [10, 27] for heat potentials. These methods are related 
to product integration in some cases, usually have a fixed and not too high 
order of accuracy, and tend to be slower than fast methods for discrete 
sums (1.6). Like product integration, they sometimes require difficult and 
expensive algebraic manipulations and evaluation of integrals which can be 
carried out only in special cases. 

Singular quadrature rules of the type developed in this paper allow the 
application of fast algorithms for discrete sums (l.()) to the continuous prob
lem (1.4), because Wi are independent of the point of evaluation t; except for 
a few points near the singularity. Thus fast methods can he applied to the 
sum (1.6) with weights lVj , and then '/J,j can he corrected locally to get an ac
curate and inexpensive a.pproximation of u(t;). This observation was appar
ently first made in [19], where one-dimensional singula.r endpoint-corrected 
trapezoidal rules were developed. It has been a.pplied to one-dimensional 
integral equations in [22]. 

Our method requires knowledge of the singula.rity 0'(:/:) only in the weak 
sense that we need modified moments 

(1.7) 

over rectangles C, with Pu a suitahle family of multidimensional orthogonal 
polynomials. Obtaining these moments is itself a highly nontrivial task in 
this generality, with many possibilities depending on the singularity and on 
B. We have implemented, as part of om method, a. general multidimensional 
adaptive Gaussian quadratme code, with a. novel error estimator, which 
may be of some independent iuterest and is therefore described in §4. It is 
sufficient for vortex methods and for volume potentials in potential theory, 
and hence for the solution of va.ria.hle-coefficient elliptic partial differential 
equations, as in [26]. Numerical results in §4 indicate t.hat it is compet.itive 
with standard codes in dimensions cl = 2 and d = 3. 

The techniques presented in this paper generalize iIllmediately to solve 
several other problems of considerable illterest. We can approxima.te and 
differentiate, functions known at arbitrary points, a technique which is use
ful in many compntational problems. We ca~l integrate singular functions 
over more general domains, such as curves and surfaces. Several snch gener
alizations, along with several refinements of the basic method, are discussed 
in §5. 
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2 Smooth rules 

2.1 Overview of the construction 

We construct rules with N given points :rj for integrating smooth functions 
over a d-dimensional rectangle B = [a, v] := [all vtl X ... X [a<1, Vd]. The 
structure of these rules will make a good base for the construction of singular 
rules with locally corrected weights. 

Let k 2: 1 be the desired order of accuracy of the rule, assume N 2: m := 
m(k, d) := (k + d - l)(A: + d - 2)·· ·(k + 1)/:;'/c1!, and choose an integer L 
with P := IN /2£ J 2: m. Using a data structure developed below, we divide 
B into Ai = 2£ rectangular suhcells Bi with disjoint interiors such that B 
is their union and each Bi contains either l' or l' + 1 points :rj. Then on 
each B i , we construct local weights W! for :rj E Bi which integrate the 'In 

monomials of degree ~ /:;, - 1 exactly over B j • (A monomial of degree /:;, in 
d dimensions has the form :t:~":J:~:' ... :I::;'d, where each n, is a nonnegative 
integer and Inl := al + f.\'2 + ... + 0rl = k. There are precisely 'm, lllollomials 
of degree ~ k - 1.) Because of the ill-conditioning of the power basis, we 
construct these weights by solving the following system of'm linear ellltations 
in at least p unknowns: 

(2.1) 

Here 

is a product of one-dimensional Legendre polynomials, with the [th factor 
scaled and shifted to live on the int.erval [lL/, VI]. Since p 2: '//1., this system of 
m equations in at least Jl unkn~owns generically has solutions. We compute 
the solution Wj of least Euclidean norm, usiug the singular value decom
position [9]. §2.:3 discusses what to do when no solution exists. The global 
weights of the rule ltV are then defined to he Wj = tVf if :1: j E Bi . 

2.2 Details of the construction 

We now construct a data structure with two useful features; first, it parti
tions B into rectangular cells over which we can ea.sily integrate polynomials 
and second, there'are neither too lUany nor too few of the points :J:j in each 
cell. Too many points makes the singula.r value decomposition too expensive 
and produce a less accurate rule because the cell size increases, while too few 
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points makes (2.1) overdetermined so generically no solution exists. When 
the number of points p is very close to the minimum required 'In, so (2.1) 
is barely solvable, the solution tends to have large I-norm, making it un
suitable for numerical integration. This is similar to the well-known Runge 
phenomenon encountered in interpolation (where p = m) at equidistant 
points. We found that p of order 2m gave excellent results. 

Such a "tree structure" can be constructed by recursive subdivision. 
Let B = Bl he the level-O root of the tree. Divide Bl in half by a plane 
perpendicular to say the l'th coordinate axis, wit.h the dividing plane located 
so t.hat. IN/2J or IN/2J + 1 point.s are in each half of B 1 • This gives the 
level-l cells B2 and B3 . Repeat this procedure on B~ and B3 , with the 
splitting dimension I chosen independently for each cell, to get. B4 t.hrough 
B7 , each containing IN /4J or IN/4J + 1 points :tj. Repeat.ing this procedure 
L times gives ]I/! = 2L cells Bi on the finest level L, 1l11111hered from -i = 111 
to i =2M -1, each containing p = IN/MJ or fJ+ 1 points :fj. The uuion 
of all the cells on any given level is B. The tree structure is st.ored by 
listing the boundaries of each cell B; = [a;, b;] fromi = 1 to i = 2M - 1, 
a total of 2d . 2M numhers, and indexing the points into a list so that the 
points Xj E Bi are given by j = j(s) for s = b(i), ... ,c(i) and three integer 
functions j, band c. This requires sorting the points in each cell before 
each subdivision, giving a total cost O(Nlog2 N) for the tree construction 
when an O(N log N) sorting method such as heapsort [17J is used. Figure 
1 shows an example of this constl'llct.ion. vVe note that. hierarchical data 
structures with similar properties - though not thiR pa.rticular one - have 
been extensively discussed in [21J. 

The dimension I across which to Rplit a. given cell ca.n be select.ed in sev
eral ways. vVe can split the longest dimension, so that the lellgth-depenclent 
factor in the error estimate helow is reduced as Clllickly as possible; choose 
I with 

for 1 ~ j ~ d. 

Alternatively, we can choose I to minimize the second lUoment of the points 
in the cell .. ' If function values at the nodes are available when the rule is 
constructed, other choices intended to minimize integration error for that 
specific function ca.n he devised. 

For future reference, we note that the tree structure permits efficient. 
O(L) lookup of the level-L cell conta.ining any point :r E B. We simply 
begin at the root and discard aU children Hot conta.ining ;/:; t.he proceRS is 
then repeated recursively on the remaining child until we rea.ch the lowest 
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Figure 1: Levels 1 through 6 ill the tree structure with N = 1137 pseudo
ra.ndom uniformly distributed points OIL [0, 1p. 
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level. More generally, we can find all cells intersecting a given rectangle R. 
in time proportional to L and to their numher. This will be useful in the 
construction of singular rules. 

2.3 Error bounds 

The global weights defined to be Wi = H'j if :l:j E Bi integrate all the Mm 
functions ~i(X):J:u exactly, where Ei(:I:) is the indicator function of Bi , for 
M ~ i ~ 2M - 1 and lex I ~ k - 1. Thus the error in integrating a smooth 
function 9 over B is given by a sum over cells 

(2.2) 

where 

(2.3) 

Let G be the polynomial of degree ~ k - 1 which best a.pproximates !J on 
B; in the maximum norm. Since ltV is exact for G on B i , we ha.ve 

(2.4 ) 

and thus 

where the figure of demerit ni is defined by 

ni = 1 + ~ L IWj!, 
I il x;EBi 

(2.5) 

IBi I is the volume of B., a.nd the Co norm is defined by 

(2.6) 

for continuous functions t.p on a set B. 
The error hound on each cell is thus separated into a fadar ,OJ inde

pendent of the integrand, a factor of lB. I, and a factor which depends only 
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on approximation of the integrand on the cell. The first factor ni cannot 
be bounded a priori unless all the weights are nonnegative, in which case 
ni = 2. However, ni can easily be computed a posteriori and thus serves as 
an extremely useful diagnostic for the quality of the rule. 

The volume factor in the error bound depends only on the distribution 
of points and the tree structure constructed, and will 'add up to the volume 
of the domain B. 

Finally, we bound the error in a.pproximating!J. Assume!J E Ck(B); 
then by multidimensional Taylor expansion [8], we have 

(2.7) 

where (.I'! = a1!O:2!·· o (.I'd!, ;)"!J 
remainder is bounded hy 

o~x 1 ••• (J,'td !J, y" !It ... Y,l'd, and the 

(2.8) 

Since G is the best approximation to !J on Bi by a polynomial of degree 
::; k - 1, Taylor expansion about the center of Bi implies that 

II G'II " (h;f2)" 11::1" II !J - .T C"(8;)::; ~ , v !J C"(8,) 
(t-

I,d='" 

(2.9) 

where B; = [ai, hi] and hi = iii - CLj. 

A global error bound follows imIllediately: 

101 

lEI < L nilBilll!J - (:;IIc"(B;) 
i=1 

where h = maxi,! hi! is the longest cell edge a.t level L of the tree structure 
and 

1 M . 1 ,N 

n = fBI ~ nlIB;! = 1 + WI;; IWil (2.10) 

is the global figure of demerit for the rule W. Note that n plays the role 
of a condition numher for 1-1', mediat.ing hetween the intrinsic diffic.ulty of 
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integrating 9 (as measured by the derivatives of !J) and the accuracy of the 
final result. 

There are several ways to reduce each ni and thus obtain a better error 
bound. Usually taking more points per cell reduces ni

, since the additional 
degrees of freedom are not needed to satisfy (2.1) and can be applied to 
reducing the 2-norm of Wj. However, this increases the cost of computing 
W considerably and increases the cell size h, so taking larger ]J is not cost
effective if applied globally. 

It can be applied ada,ptively, however, by going up to a different level of 
the tree structure when necessary. To implement this, we specify a tolerance 
nm • When ni 2:: nm , we merge B; with its sibling in the tree structure, 
obtaining a cell BI conta.iniug twice as rnany points :I:j. 'rVe then recompute 
all weights lVj for which :I:j E B I , usnally obtaining nl < n", at the cost of 
a larger singular value decomposition and a larger cell size It. If nl is still 
too large, the process may be repeated. 

This adaptive techni<Jlle also permits treatment of the degenerate cases 
when no solution exists to (2.1) on cell B;, because the points ;J:j are not in 
sufficiently general position. Such a cell can he merged with its sibling, after 
which a solution is much more likely to exist. The process rllay be repeated 
if necessary. 

Another approach to reducing the error bound would be to seek the least 
I-norm solution of (2.1), which would minimize n;. This I-norm minimiza
tion problem is standard but somewhat more expensive to solve that the 
2-norm prohlem we solve with the singular value decomposition. We found 
that values of 1) of order 2nt usually produce n; within an order of magni
tude of the lower bound 2, so we expect little improvement from the I-norm 
minimization approach and have not experimented with it. 

2.4 IInplementation and numerical results 

We implemented this method in a portable ANSI Fortran code. The code 
accepts k, d, L, B = [a,b] C Rd

, and N points :I:j E R'I. It returns N 
weights Ttl!j, the cell structure, the lllaximum condition number encountered 
in the singular value decompositions, n, the cell size It, and so forth. The 
numerical results reported here wer~ obtained on a Sun Sparc-2 workstation. 

We tested the code by generating N = 25G, 512, ... , 1G384 pseudoran
dom uniformly distributed points in t.he two-dimensional unit sqnare [0, 1 F, 
computing the weights W with p = k2 > m = k(k + 1)/2 for k = 2,4,8,12 
and 16, and using them to integrate monomials, cosines and Lorentzian 
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fu'nctions over [0, 1]2. The test integrands are thus the vectors 

91(:r) = ((:2:1 + X2)" : 0 ::; It::; 3k) 

92(X) = (cos(n(:c1 - '''d) cos(n(:r2 - '1"2)) : 1 ::; n ::; 10) 

with l"i uniformly distrihu ted on [0, 1] and k the order of the rule. 
Since the N points are randomly generated, we cannot expect a smooth 

convergence as N -+00. Hence for each illtegrand, we generated 20 different 
sets of nodes :!:i and computed the minimum, average and maximum of the 
errors Ej and their base-2 logarithms L j , and the correspollcling standard 
deviations. 

N h n T L1 L2 L3 
128 0.3559 2.05 0.10 -10.;35 -5.07 -3.0;3 
256 0.29;34 2;04 0.15 -11.45 -5.G5 -4.1:3 
512 0.1981 2.05 0.32 -13.44 -7.45 -4.40 
1024 0.1536 2.04 0.()9 -14.07 -8.98 -G.G7 
2048 0.1095 2.05 1.52 -15.59 -10.20 -7.51 
4096 0.0809 2.05 3.28 -17.04 -l1.5G -9.1;3 
8192 0.0551 2.05 7.2(j -18.94 -12.98 -9.8G 
16384 0.0428 2.05 15.99 -19.15 -14.91 -11.25 

Table 1: Mesh size h, figure of demerit H, CPU time T and a.verage base-2 
error logarithms Lj for the second-order smooth rule with N random points. 

Tables 1 through 5 display the averages L j of the hase-2 logarithm of the 
error E produced when the qth-order smooth rule ltV is applied to integrate 
the test functions 9j for j = 1,2 and ;3 and k = 2, 4, 8, 12 and lG. Since the 
number of points doubles in each succeeding row of each table, we expect Lj 

to decrease by kid = k:/2 in each step. This decrease is clearly evident for 
large N. It tends to occur doubled at a.ltel'llate lines because only when the 
number of points increases by 2<1 = 4 does the average spacing h decrease 
by half. 

The code is extremely efficient. Rules of orders It: = 2, 4, 8, 12 and Ie) 
with N = 16384 nodes require T = W, ;33, H57, G42 and 2041 CPU seconds 



N h n T L1 L'/. L3 
128 0.514G 3.22 0.22 -12.G7 -4.90 -3.58 
25G 0.3293 3.51 0.41 -14.54 -7.GG -5.29 
512 0.277G 3.60 0.84 -15.78 -9.15 -4.74 
1024 0.17G4 3.34 1.73 -18.7G -12.09 -7 .(;7 
2048 0.1449 3.36 3 .. 57 -19.G1 -14.40 -9.93 
409G 0.0915 3.42 7.41 -:22.:30 -17.07 -12.82 
8192 0.0752 3.48 15.G3 -2:3.G4 -18.85 -14.:3G 
16384 0.0492 3.49 :32.52 -2G.02 -21.88 -17.27 

Table 2: Mesh size h, figure of demerit. n, CPU t.ime T and avera.ge base-2 
error logarithms Lj for the fourth-order smoot.h rule with N ra.ndom points. 

N h n T L1 L"2 L:~ 
128 1.0000 G.20 1.21 -11.95 -5.:31 -4.29 
250 0.5520 7.:35 2.:37 -14.GO -8.55 -4.5G 
512 0.51:39 (LOI 4.7G -17.92 -12.42 -G.91 
1024 0.289:3 6.69 9.52 -21.:39 -lG.G2 -9.G7 
2048 0.2G:35 G.24 19.1G -24.10 -21.02 -12.25 
409G 0.1504 G.15 38.G5 -28.57 -25.58 -IG.59 
8192 0.1350 (.i. :29 77.91 -3:3.27 -29.lG -17.33 
IG384 0.07SG (L58 157.0S -:W.74 -34.75 -2:3.;32 

Table 3: Mesh size h, figure of demerit. n, CPU tillle T and average base-2 
error logarithms Lj for the eighth-order smooth rule with N random points. 
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N h n T L1 L2 L3 
256 1.0000 19.48 9.95 -14.:34 -9.17 -4.85 
512 0.53G4 24.:37 19.92 -18.62 -1.5.91 -7.G5 

1024 0.50n :37 .65 :39.81 -22.09 -21.00 -9.18 
2048 0.27G2 27.28 79.75 -2G.81 -28.G3 -12.9G 
4096 0.2579 26.22 1.59.82 -:31.52 -:33.99 -15.34 
8192 0.14:31 28.42 320.41 -38.84 -40.07 -21.:38 
1(j:384 0.1324 2G.:38 G42.0G -4:3.8:3 -4fi.71 -2:3.G7 

Table 4: Mesh size h, figure of demerit n, CPU time T and average base-2 
error logarithms Lj for the twelfth-order smooth rule with N ra.ndom points. 

N h n T L1 L"J. L3 
25G 1.0000 71.1G :31.80 -U.:3!.l -9.9G -5.74 
512 1.0000 ;31.9:3 (j:3.70 -lG.2G -W.lO -7.44 
1024 0.5210 G8.11 127.28 -20.29 -24.8G -11.5:3 
2048 0.5045 53.:34 254.55 -2G.5G -:32.94 -l1.(iG 

409G 0.2G96 49.57 509.72 -:3:3.1G -42.:35 -19.14 
8192 0.2576 51.48 1019.G3 -39.50 -47.79 -19.G9 
IG384 0.1:375 45.07 2041.41 -44.54 -48.48 -29.81 

Table.5: Mesh size h, figure of demerit n, CPU time T and a.vera.ge ba.se-
2 error logarithms Lj for the sixteenth-order smoot.h rule wit.h N random 
points. 
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on a Sparc-2 workstation. By comparison, the actual integration of 92 and 93 

with the given points and weights takes 3 a.nd 1.5 CPU seconds respectively. 
Thus an integrand with a substantial degree of complexity will dominate the 
integration time, at least for rules of the lower orders presented here. 

To demonstrate the improvement due to taking ]J substantially larger 
than m, we also ran tests with N = p = m,m+ 1, ... ,P for k = 2, 4, 8,12' 
and 16. Table 6 shows SOllle of the results. We see that larger values of ]J 

produce dramatic decreases in 11, especiaUy for higher-order rules. 

k = 2, N = :3 4 ,I) G 7 8 
11= :l4 :J.4 2.5 2.2 2.2 2.1 

k = 4,N = 10 11 12 1:3 14 1G 
11= 40 10 8.2 5.9 4.G :3.3 

k = 8,N = ;W 40 44 48 ,l)G G4 
11= GGn 85 4:3 24 1:3 7.3 

k=12,N= 78 84 99 114 129 144 
11= 480;3412 10.57 180 4G :n 2;3 

k = lG,N = 1:3G 144 172 200 228 25G 
11= ;n:i597 lG5(il 92:3 221 90 (j(j 

Table 6: A verage figure of demeri t n as a function of the number N = P 
of points pel' cell for k = 2, 4, 8, 12 and IG. 

3 Singular. rules 

3.1 Overview of the construction 

We now select and correct. certain weights llVj of the smooth rule W, to 
produce a singular rule 111 which will integrate singula.r functions J( :/:) = 
cp(:l:). a(:/:) + '~)(:l:) more (l,ccurately. 

The weights to be corrected are selected by forming a list of cells Bi in 
the tree structure built for the smooth rule ltV alld correcting aU the weights 
W; for which :I:; lies in some cell 011 the list. For ea.ch cell Bi on the list, 
we construct 11Ii for :l:j E Bi by requiring 'Wi to satisfy the linear system of 
(l+s)m equations which expresses that Puta:) and P..{:I:)a(:I:) are integrated 
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exactly for 10:1 :S k - 1: 

(3.1) 

(;3.2) 

for 10:1 :S k - 1 and 1 :S t :S 8.' In order for these equations generically to 
have solutions 111, we canIlot use t.he cells Bi on the lowest. level L of t.he 
tree structure, because each of these contains only ]J 2: Ill. or p + 1 points 
:Cj. Instead, we use t.he cells collst.rnct.e<l on level L' of t.he t.ree structure, 
for example with L' := L - flog:!{l + s n if jJ was chosen of order 2m to 
begin with. On level L', we have fewer and larger cells, each conta.iuing at 
least p' := N/2 L' 2: (1 + 8)m points. Thus (:Li) a.nel (a.2) will generic~.lly 
be solvable. In pra.ctice, we solve (3.1) and (;3.2) hy the singular va.lue 
decomposition, obtaining 11) as the soln tioll of lea.st 2-lIorIU if it exists. A 
major new difficulty which re<luirement (3.2) introduces is t.he comput.ation 
of the singular moments 

(3.;3) 

when (T is not smooth. !j4 is devoted entirely t.o t.his question. 
The actual selection of cells to correct can be made in several ways. If (T 

is singular at a point ;J:,. E B, for example, a natural choice would he simply 
to correct t.he cell Bi on level L' which cont.ains :/:,. However, :r. might lie at 
the corner of B;, so many nearby points would go uncorrected if this selection 
were made. A variant of single-cell correction is to correct. only the neighbor 
cells of the quadrant. of cell Bi where ;/:" lies. All altemative a.nd natural 
choice would be to correct all cells intersectiug a region of specified size b 
around the singular set S; these cells ca.lI he iOUlld efficiently, as descrihed 
in §2. However, this requires correction of a number of points proportional 
to N as N -+00, which is unacceptahly expensivt~ if fast sUlluuat.ion methods 
are employed. Thus this selection scheme is robust but too expensive. Also, 
it takes no account of local density variations of the points. 

We chose to select cells for correction by the following approach. The 
user specifies a dimensionless correction radius Tn typically of order unity. 
We find the cell B; = [a, bJ in which the singularity lies (several cells if (T 

has a higher-dimensional singular set). We then select for correct.ion all cells 
intersecting the rectangle R = [:/:,. - Tr.(b - (/)/2, ;r,. + 'IAb - 1l.)/2J of size l'r 

times Bi and cent.ered at. each singular point ;/:. E S. This sca.les t.he size of 
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the corrected area to the local cell size and therefore to the local density of 
nodes, keeping the number of corrected points per singular point of order 
unity as N -?OO with 'l'c fixed. If D = dim S then the numher of corrected 
points is O(N D / d ). We found 'l'c = 3 to give excellent results in practice. 
The lookup of cells to be corrected costs only O( L) per cell. 

Remark: vVe can construct a locally-corrected product integration rule 
using the same technique; we simply drop the requirement (3.2) and go 
up fewer levels in the tree structure. This gives a rule which integrates 
polynomials times a accurately, which is enough for ma.ny a.pplica.tions. The 
added genera.lity obtained by requiring (:3.2) as well as (:3.1) is important 
when the integrand may be nOllsingular (for example when a happens to 
vanish at the singularity), and costs lit.t.le. 

Remark: O'(:r s) lllay he infinite or undefined, so we don't want to eva.l
uate f at ;1:, •• If ;/: 8 is one of the quadra.t.lI1'e points ;l:j, thell we eliminate it. 
from the list of points to he corrected, set Wj = 0, and proceed. 

3.2 Error bounds 

The error hounds for singular rules can be derived hy polynomial approx
imation, as in the smooth case. No matter how the list of corrected cells 
is made up, there will be two types of cells to consider; corrected and un
corrected. On the corrected cells, hoth cp and '1/) can be approximated and 
the remainder estimated a.s for smooth rules. 011 the uncorrected cells, the 
derivatives of the singularity come into play; the key a.ssumption in the error 
hound is that we correct all cells sufficiently close to t.he singularity. 

For notational convenience, let's renlllll her the A1 cells used in the sin
gular rule, so t.hat the first n are 'colTected amI the last A1 - n are not: 
thus B = Uf;l B; where each cell Bi contains at lea.st (1 + .5 )'/11. points for 
1 ~ i ~ n and at. least nl. points for 1/. + 1 ~ -i ~ M. Let t.he sides of Bi he hil 

for I = 1,2, -: .. , d a.nd let h = maXi.1 hil be the lIla.Xillllllll cell edge. Assume 
that we have weights Wj such tha.t 

and 
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for 10'1 ::; k - 1 and 1 ::; i ::; 'It, while 

for 10'1::; k -1 and n+ 1::; i::; M. 
Assume also that the union Ui'=1 Bi of the corrected cells contains the 

set R6 of all points within distance b of the singular set S. For example, 
we assume Uf=IBj contains the hall {II E IRd : 11;/:. - yll ::; b} around each 
singular point a: s • Finally, assume that a is (.'k outside the singular set S 
and that its derivatives satisfy 11. growth condition 

(;3.4) 
o 

for 10'1 = 0 and Inl = k, b > 0 and ;t: rf. RJ • Here C is a. constant and b > 0 is 
arbitrary. This assumption is very benign since it does not even guarantee 
that a is in LI(B). It is satisfied by the singularities occulTing in potential 
theory as well as by the Biot-Sa.vart kernel a = ;l:/IIJ:W. 

Starting. from these assumptions; we derivt' a. bOlllHl for the elTor 

N 

E = l lP(:f). a(J:) + 'I/J( ;1: )(1:1: - L Wj (lP( ;I:j) . a(;/:j) + 'I/J( ;I:j)). 
B j=1 

where lP and 1/) are C k • The nOllsingular term in -¢) can he hounded exactly 
as for the smooth rule in !i2, giving 

For the singular term, we have to consider corrected a.nd uncorrected cells 
separately. On corrected cells Bi ( 1 ::; -i ::; n ), we have a best approximation 
<I> to lP by a polynomial of degree Ii: - 1 alld the resulting hound 

E; = I I lP(.r)· a(;I:)(/;I: - L 'WjlP(;J:j)' a(:':j)! 
Bi XjEB i 

< n~IBd IIlP - <I>IICII(B,) 

where the singular figure of demerit n~ is defined by 
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As in §2, the best approximation error Ilcp - <I>llc"(B.) can be bounded by 
Taylor expansion to get 

Note that a priori n~ can be infinite, if one of the quadrature nodes happens 
to coincide with a singular poiut ;/:" E 8. Thus n~ must he computed a 
posteriori and used as a measure of the quality of the rule. The methods for 
reducing n; discussed in §2.3 apply to n~ as well. In our examples, however, 
we rarely encountered !<\.l·ge values of n~. 

Now consider the error due to integra.t.ing cp . a over an uncorrected cell 
B; where 1IJ = W. From §2.3, we know that t.he error on cell B; is bounded 

o 
by -

E; :::; niIBdCh/2)k L:: ~IID"(cp, a)IIc"(Bi)' 
iui=k n. 

We simplify this hound hy separat.ing derivatives of cp and a, using the 
standard inequality for Holder norms proved in [1:3]: 

Here the C k norm is defined by 

IlcpIICk(B) = Ilcplk""(B) + L:: I lD"cpl IC"(B) 

i"i=k 

for k> 0, so 
E; :::; CndBilhkllcp· allc'k(Bi)' 

This separates the hound for E; iuto two pieces El and E/: 

El en; IB; Ihk Ilallcll(Bi) Ilcpllck(Bi) 
< endBilb-clhkllcpllck(B.) 

and 

where we have used assumption (3.4). 
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We now pause momentarily to discuss our strategy for selecting corrected 
cells Bj • Clearly the choice ti =constant, correcting all cells within a fixed 
distance from S, produces the simplest error bound. Indeed, if {j is fixed, 
then the global error E satisfies 

E :S C!1IBlllcpllck CB)h
k 

just as for the smooth rule, with a constant which depends anti. Unfortu
nately, in practice we cannot afford to compute the D(N) correction weights 
within fixed distance ti from S (\$ N -'rOO. Thus we give IIp the simplicit.y of 
this error bound. 

Instead, we take b = r,.h where T,: is fixed, iii order t.o correct fewer points 
as N ---;'00. This complica.tes both pieces of the error hound in two different 
ways. First, the fa.ctor ti- d seems to ca.llcel the volume factor IBd = O(hd), 
so na.ively summing over all DeN) uncorrected cells prodnces a factor of N 
in both El and E/. Second, the factor O-k in El eliminates the usual O(hk) 
error altogether. 

vVe handle the second difficulty hy seeking au error bound of a different 
form from the usual D (II, k). We choose 0 so tha.t (h / bl :S f where f is a 
user-specified parameter, usually smaller than hk over the ra.nge of affordable 
h. Then we seek an error bound of the form E :S O(f) + O(hk) where the 
constant in O(f) is allowed to depend au derivatives of CT hut not on those 
of cp. The constant in DeltA:), on the other hand, may depend on derivatives 
of cp as usual, but not on those of CT. Similar error hounds often occur 
in the design of fast algorithms [4, 25] and are quite useful in practical 
com pu tations. 

Thus we choose (It/bY :S f t.o get 

Ei :S C!1i IB;jo-d (I/llcplk'k(Bo) + fllcpllcIICBi)) 

and it remains to deal with the first difficnlty, of slllllllling over a.ll 0 (N) 
uncorrected cells B;. 

Let !1m = ma.x!1 i , and divide the uncorrected cells B; into P = O( 1/0) = 
O(l/h) shells 

Sp = {B; : pO :S deB;, S) :S (p + l)O} 

where the distance from B j to S is defined by 

d(Bi, S) := min{II:J: - :1:,.11 : :1: E B i ,3:. E S}. 

For B; E Sp, we have the stronger bound 

E; :S CnmIBil(pli)-d (hkllcpllck(B;) + fp-kll<t'lk:"(B;)) . 
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Thus 

p=1 BiES. 

< cnm (t,l'-d B~' IB'I) ,-"h'lll'lIc'(B) 

+ cn", (t p-
II
-" L. IEil) (i-d£II<pIIc"(B). (;3.5) 

1,=1 RiES p 

The volume of the shell 8
1
) is hounded hy Cp·l-l (i.l, a.nd since t.he cell edges 

are all hounded by h = O( (i), the Sllll1 over i sat.isfies 

L lEd ~ Cl-1(i'/ 
BoES. 

for ·some constant. C. This cancels the factor of {i-il. The first SUIll over p 
in (3.5) then diverges logarithmically, giving a factor of log P = 0(1 log hI), 
and the second is hounded by I:~1 ]1-1-" < 00 if k 2: 1. Thus 

Ai 

L Ei:5 cnm (I log hlh"II<pllck(B) + £II<pII(:I/(B)) 
;=71+1 

We see that we suffer for t.he singularit.y by a fa.ct.or I log hi and a t.erm 
fll<pllcU(B). We conclude that the tota.l error if> hounded hy 

whenever (hi (j)" :5 f. Om: lllunerica.l experiments t.end t.o confirm the accu
racy of t.his bound. 

The absence of a volullle factor lEI ill t.his bound is dismaying at. first. 
sight but. actually natural, because under t.he weak assuIllpt.icm (:3.4) on a, 
the integral it.self need not. sca.le with lEI. If a(:r) = II;rll- lI

, for example, 
then scaling t.he va.riables shows that t.he integral 

r a( :1: )d:z; = 1 aCI: )(/;1: 
J5::5l1xll$R fb$IIr.II$fR 

for any f. Under st.ronger growth condit.ions Oll a, for example t.hose satisfied 
by the Biot.-Savart kernel, the error est.imate wonld scale in t.he sa.me way 
as the int.egral. 
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3.3 Implementation and numerical results 

We have implemented these techniques in a portable ANSI Fortran program 
which constructs the singular weights Wj from the data. structure and weights 
W constructed in §2. The singularity is evaluated by a user-supplied subrou
tine, and is thus quite general. The dimension and order are also arhitrary 
user-specified parameters. A routine for evaluating the singular volume mo
ments by the technique of !j4 is supplied, but the code is highly modular 
and the user can freely import routines for evaluating the singular moments 
if they are available e.g. in dosed form. The polynomials Po{:t:) can also be 
replaced by other basis fUlIctions if desired. The code cOllta.ilLs several other 
refinements discussed in Section 5. 

We have tested the code on severa.l singularities ill d = :2 and d = :l 
dimensions. Here we report on the results obtained with d = 2 a.ud the 
Biot-Savart kernel 

'/" 

aC/:} = 11;;:'11<1· 

We ran two sequences of tests. First, we carried out a convergence study 
with a regular grid. We placed N = 25G, 1024, ... , G55:3G points in a square 
grid in B = [0, IF. For each k = 2, 4 and G, we constructed the smooth 
rule with these N points and ]J = P points per cell.' VVe then generated 
20 random points :1:. in Band compnted the kth-order correction weights 
for each singularity a(:1: - ;l:.), correcting cells contailling p' = 2k".!. points 
and within a correction radius '/'c = :3 tillles the cell containiug :r.,. Tables 
7 through 9 report the a.verages L< and L> of the base-2 logarithms of 
the errors in using these weights to integrate the singular llLonomia.ls (:1:1 + 
x2)"a{:r-:r,.) with 0 ~ (I' ~ k-l for L< awl k ~ ft ~ :3/;:-1 for L>. Note that 
the error for a ~ k - 1 is not zero for two reasous; we compute the singular 
moments approximately and we ouly correct uea.rhy cells. \Ve COlupute the 
singula.r moments with the code descrihed ill §4, llsing increasing accuracy 
as the number of points increa.sed: f" = f,. = 10- 3,10-5 , ••. ,10- 11 for N = 
256, ... , 665:l6. The tables also report the average CPU time per correction 
T, figures of demerit n and nO', the ma.xilllUlll cell edge leugth h, a.nd the 
number C of corrected points. 

The following observa.tions can be wade from these results. The con
vergence rate is somewhat irregular, 1m t roughly accords with theoretical 
expectations. The use of base-2 logarithms l1lea.us tha.t L< and L> should 
decrease by k: each time N is quadrupled, for the kth-onler method. The 
number of corrected points does not increase with N. However, the correc-



tion is rather expensive due to the general-purpose nature of the code and 
the necessity of obtaining singular moments by numerical integration. The 
increase in accuracy of the numerical int.egration accounts for the increase 
of T with N. We believe a more efficient a.nd specialized implementation 
for a specific singularity such as the Biot-Sa.vart kernel could achieve faster 
run times by orders of magnitude. Finally, we observe that the figures of 
demerit n and nO' are hounded by 2 and 3.8 respectively. 

N h C T n nO' L< L> 
25G 0.2500 99 0.G2 2.00 :3.62 -12.21 -12.57 
1024 0.1250 134 1.6:3 2.00 :3JiG -1:3.15 -1:3.G(j 
4096 0.OG25 134 3.G5 2.00 :3.69 -15.:30 -15.57 
1G384 0.0312 139 8.18 2.00 :3.71 -18.4:3 -17.87 
G553() 0.015G 139 18.16 2.00 :3.71 -20.7:3 -19.89 

Table 7: Results of integrating monomials tirnes the Biot-Savart kernel, 
with second-order singular rules with N regular grid points. 

N h C T n nO' L< L> 
256 0.5000 25G 2.44 2.00 :3.G4 -1:3.57 -14.G4 
1024 0.2500 39G 5.09 2.01 :3.G8 -17.14 -19.54 
409G 0.1250 5:37 9.72 2.00 :3.70 -18.40 -20.71 
lfi384 0.OG25 537 17.5G 2.00 :3.71 -20.(:j2 -2:3.29 
G5536 0.0:312 55G :3G.72 2.00 :3.71 -2:3.27 -25.75 

Table 8: Results of integrating lllonoutia.ls times the Biot-Savart kernel, 
with fourth-order singular rules with N regular grid points. 

Our second sequence of tests used N = 128, 25G, ... , 1G:384 pseudoran
dom uniformly distributed points on B = [0, If We repeated the previous 
tests with these points replacing the grid points, and the results are reported 
in Tables 10 through 12. 'Ve observe a reasona.ble convergence rate a.t first, 
with L< eventually levelling off to ahout 10-3 , 1O-r. a.nd 10- 7 for the 2nd, 
4th and 6th order rules respectively. This is the O(E) error due to inte
grating the singularity over the uncorrected cells by the smooth rule ltV. It 
appears in L< and not in L> because L> involves higher-order monomials 
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N h C T 0 0" L< L> 
256 0.5000 256 7.45 2.00 3Ji9 -13.58 -14.G7 
1024 0.2500 ()40 19.06 2.01 :3.G9 -18.48 -20.18 
4096 0.1250 883 31.14 2.01 :3.74 -20.40 -24.74 
16384 0.0625 1075 49.23 2.00 3.71 -21.5:3 -2G.84 
65536 0.0312 1113 81.2G 2.00 3.71 -2G.02 -:31.08 

Table 9: Results of integrating monomials tiwes the Biot-Sa.~art kernel, 
with sixth-order singula.r rules wit.h N regular grid POilltS. 

with larger C k norms, so the 0(11,1.:) term dominates the O(f) t.erm. 

N h C T 0 Ot1 L< L> 
128 . 0.:3410 101 0.G8 2.2S 4.17 -11.10 -9.24 
256 0.2952 145 1.15 2.24 4.:32 -10.2G -10.0() 
512 0.1958 179 1. 7(j 2.25 4.47 -9.2G -10.87 
1024 0.1505 188 2.<i9 2.17 4.22 -10.08 -11.8G 
2048 0.1081 217 4.10 2.1:3 4.1G -10.37 -12.43 
409G 0.0793 219 5.9:3 2.08 :3.94 -10.94 -12.99 
8192 0.05GO 2G4 8.n 2.09 4.2:3 -l1.(j4 -1:3.59 
16384 0.042G 27:3 1:3.17 2.0G :3.97 -12.:34 -14.8:3 

Table 10: Results of integrating lllOlIolllia.ls times the Biot-Sava.rt. ker-
nel, with second-order singula.r rules with N ulliforml.v distributed random 
points. 

4 Singular 11101Uel1ts 

4.1 Overview 

We now descrihe the eva.lua.tion of the .~'/II. singula.r lllOIllents 

Inl ~ /.: - 1, 1 ~ t ~ s. (4.1 ) 

We treat (4.1) as a. special case of a general problem: Given f : B -+ JR." , 
smooth away from a lower-dimensional singular set S, evalua.t.e t.he n-vector 
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N h G' T n DI1 L< L> 
128 0.5136 128 1.65 2.15 3.9G -1:3.41 -10.84 
256 0.3269 256 3.13 2.12 4.14 -17.19 -12.43 
512 0.2799 407 5.11 2.41 4.()1 -17.11 -14.23 
1024 0.1748 535 7.:34 2.50 4.65 -1(i.OO -17.05 
2048 0.1451 G9G 10.93 2.5G 4.80 -15.7G -18.(-jS 

4096 0.OS8~~ 752 14.5:} 2.78 5.11 -17.20 -20.34 
8192 0.0755 1011 21.59 :3.10 G.2:3 -If).:34 -20.16 
Hl384 0.0498 957 29.01 :3.25 G.50 -17.01 -22.72 

Table 11: Results of int.egrating lllonollliais tilliE'S the Biot-Sa.vart ker-
nel, with fourth-order siugular l'Illps wit.h N llllifonllly dist.ributed random 
points. 

N h G' T 12 n" L< L> 
128 0.5G54 128 4.50 2.15 4.10 -14.(i5 -10.9:3 
256 0.5212 2!"IG 8.51 2.20 4.!i7 -17.80 -U.57 
512 0.:3097 512 IG.17 2.2:3 4.52 -19.84 -1(i.21) 

1024 0.2G5G 788 25.21 2.5:3 5.00 -21.02 -18.70 
2048 0.lG2(-j 1085 :3G.05 ;3.01 5.58 -21.1:3 -22.77 
409G O.l:}G:3 1:351 47.72 ;3.:37 G.04 -20.91 -24.G5 
8192 0.OS51 lS43 GB.95 4.30 8.22 -21.9:3 -27.15 
IG384 0.071S 1848 S1.79 5.1S 10.10 -21.90 -28.G7 

Table 12: Results of int.egra.ting lllonolllials tillles t.he Biot-Sava.rt kernel, 
with sixth-order singular rules wit.h N uniformly distribut.ed random points. 
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of integrals 

F = fa j(x)(l:J; ( 4.2) 

We compute (4.2) by a multidimensional adaptive product Gaussian quadra
ture method, with, an error estimate based on Chebyshev differentiation. 
This is a nonstandard approach to (4.2) in several ways, so we describe it 
in detail and present numerical results showing that it is more efficient than 
at least one standard IlLultidimensiollal a.daptive quadrature package. 

Our algorithm is organized along the followhig standard lines. We pro
ceed step by step to refine an a,pproximation t to F. At each step, we have 
a subdivision of B into rectangular cells B i , all error estimate E; on each 
B;, and an approximation F to F formed hy illtegrating over ea.ch Bi with 
product q-point Gauss-Legendre quadrature [G]. We store this information 
in a heap [28], a data, structure which allows us to select the cell B j with the 
largest error estimate at. each step. We refine i' hy choosing a. cell Bi witli 
maximum error estimate, choosing OIle of the coonlina.te a.xe,~, bisecting Bi 
along that coordinate axis, and computing the new integrals a.nd eITor esti
mates. We then insert the new infonna.t.ion into the heap and the next step 
can proceed. We stop refinilLg when one of the following three situations 
occurs: we run out of memory, we encounter roulLdoff error lirnitations, or 
we have a total eITor estimate E sa.tisfying 

where Ell and E,. are user-specified absolute and relative eITor tolerances. 
Our method employs the following llonsta,ndard features. First, the use 

of product Gauss rules rather tha.n nOllpro<lnct rules. Since we a.re interested 
primarily in d = 2- or d = :3-dimensiolla.l prohlems, t.he (j,t points required 
by a product Gauss rule of order 2q is qllite competit.ive with standard 
fully symmetric rules. Anot.her a.dvantage of Gauss rules is the a.rhitra.ry 
order of accuracy available: Using e.g. l'Outine GRULE of [G], Ga.uss points 
and weights of order 2q are rea.dily availahle for any fj. Second, the error 
estimate we give below requires lit.tle a.ddition".! work and identifies the 
direction contributing most t.o the error, the obvious candidate for bisection. 
The usual technique for selecting a direction to hi sect is based on fourth 
differences and is somewhat nnjustified. 
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4.2 Error estimation 

We begin hy bounding the maximum (over 1 ~ i ~ 'It) error in product 
q-point Gauss-Legendre quadrature of li(:);) over a cell B = [a,u]; this will 
suggest a direction along which to subdivide. Although our estimate is really 
a bound and not an estimate, it turns out to be sufficiently sharp in practice. 
The error estimate in one dimension for a single function I rea.ds [6] 

E~(J) 
b q 1. f(:1:)d;/: - L 1IJ;/(:ri) 

" ;=1 

where ~ E (a, u), 'Wi and ;1:i are the weights a.nd Hodes for 'I-point Gauss
Legendre qna.drature on [fl., b], and the error constant is gi.ven by 

In d > 1 dimensions, adding a.nd subt.racting give::; 

Here wi is the ith weight a.nd :d the ith node for·Gauss-Legendre quadrature 
on [aj, Uj]. Thus, by induction au d aud the positivity of the weights w{, 

d d 

IE;I[J] I ~ Cq1B12)bl - t1.lf
qllDiq 

fllclI(B) =: CqlBI I: Ei~. (4.:3) 
1=1 

where IBI = (b 1 -a.d···(br/-t1..d is the volume of B. 
This error bound displays the contribution E;~ of ea.ch dimension to the 

total error bound; thus we can choose the dimellsion I where E;~ is maximum 
over 1 as the dimension across which to split a given cell B. This hound 
is highly practical beca.use only pure derivatives D/2q I a.re involved; these 
require only values of I along a single line and a.re thus lUuch less expensive 
to compute than mixed derivatives. 

In order to approximate this bound, we will Ileed estimates of the quan
tities E~. We approximate the Co Honn hy a. maximum over .,. ra.ndomly 
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chosen points p(1), .•. ,p(,.) distributed in a Latin square [17] in B, and cal
culate the approximation 

Dd '- (b a )2q 111ax l11ax 10".!qf(z (j) '.. 1 (;»)1 lq'- I - I ~ ( I )1' ... , d', ••• , lc/ 
l~l~r a/~x~b, 

hy Chehyshev differentiation. Fix j a.nd l alld let 

where c = (al + br)/2 and II. = (b l - ar)/2. Then 

O,'1q (')-I".!q;:l".!qj"(,(i) . I. .U») 
3 9 s - /, VI PI' ... , (. + LoS, ••• , Pol , 

so 

We approximate the 2qth derivative of!J hy Chebyshev differentiation. Ap
proximate 9 by a t-tenu Chebyshev series 

where the coefficients 9k are computed by 11th-order Chebyshev quadrature 
with p ~ t + 2; 

2 P , 

Yk = - L,y(tdTk-l(tr) 
Jl 1=1 

2L,1'.7r(l-1/2))) .. ,7r(/;:-1/2)(I-1/2)) = - y( cos( cos( . 
P /=1 1) ]I 

( 4.4) 

The jth derivative of 9 is approximated by 

( 4.5) 

where thecoeffidents YkiJ are determined by ba.ckwa.rd recurrence 

(0) 
9k 

YU) 
k-l 

YA: 1 ::; ,. ::; t, 

YF~1 + 2(A: - l)fJki -
ll 

Y~~i+2 = O. 

t-.i~k?2q+1-j, (4.(j) 
(j) 

9t-j+l 
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N th I 1 ff· . (j) 1 (j) J. l' . 1 1 ate at tIe ast two cae lClents, !Jt-j-l an( !Jt-i' can )e exp Jelt y eva-
uated in terms of 9t-l and !Jt alone. Similar thougll more complicated ex
pressions exist for the lower coefficients, but it is easier to evaluate them by 
recurrence (4.6) even if we only want the top two. 

Finally, the fact that ITk(s)1 :::; 1 for lsi:::; 1 allows us to bound g(2q): 

. t-2q 

1I!J(2Q)lIc lI :::; ~1!J~2q)1 + L I!JFq)l· 
k='2 

(4.7) 

Note that we need only compute the coefficieuts !Jk with 2'1 + 1 ~ k ~ t; 
lower-order polynomials drop out after taking 2q deriva.tives. 

For efficiency of implernentatioll, however, we do lIot employ recurrence 
(4.6) and formula.'i (4.4) directly. Instead, we observe that ill the fina.l esti
mate (4.7) each gf·g) is a.linear function;).! of the JI-vector f with components 
II = f(p~j), ... ,e + hs l , ••• ,p~/) : 1 ~ j :::; p). Thus there is a. (t - 2'1) X Jl 
matrix ekl such tha:t 

l' 

!J(2 q
) - '" (. f k - ~ :·kl I 

1=1 

1 ~ k ~ t - 2q. 

We simply precompute this matrix, which depends only all p, t and '1, and 
store it. Then ea.ch error estima.te Ei~ requii'es only JI functioll evalua.tions, 
(t - 2(1)p multiplications a.nel additions. At. llliniullllll, JI = t = 2q + 2, so each 
error estimate costs 2( 2q + 2) multiplications and 2q + 2 fUlIct.ion evalua.tions. 
Thus the tota.l error estimate on Bi requires '/'(1(2IJ + 2) function evalua.tions. 
Since the integra.l requires qd function eva.luat.ions, the error est.imate is 
not. expensive if 2'/'(1 :::; qcl-l. It. a.lso has the adva.ntage that the points of 
evaluation for the iutegral and t.he error estimate are completely different 
(and random for the error), reducing the cha.nce of lllissillg cells wit.h large 
errors. 

4.3 Refinements 

The quadrature scheme outlined ahove is rohust and flexible. We found, 
however, that its efficiency amI accuracy can be improved hy several refine
ments discussed below. 

4.3.1 Getting started 

In the scheme above, we start with a. single cell Band suhdivide as necessa.ry. 
But when 1 is known to be singula.r at some known point :r." we know that 



many subdivisions will be necessary. Any int.egrals and errors computed 
for a cell which is later refined represent wasted effort. This wa.ste can be 
reduced by beginning with several cells instea.d of one, in essence taking 
advantage of prior knowledge of the singularity location to ca,rry out the 
first few refinements beforehand. A reasonahle way to do this is to divide B 
into 2d suhcells with one corner of each being :1:", then construct a quad tree 
with several levels by recursively bisecting ea.ch cell touching :/:... Such a 
subdivision of B can be extremely helpful in reducing the time reclllired to 
integrate f. 

4.3.2 Double-loop integration 

A related feature of our method is the iudependence of the enol' estimator 
from the integration rule. An extreme way to use this independence is 
to compute only error estimates a.s we suhdivide" COIllPUtillg the integrals 
ouly when the final cell strncture has heell cOlllpleted. This saves aU the 
wasted effort of integrating over cells later t.o be refined, and this can he very 
substantial when 'It is very large. U nfortullately, the use of hath absolute 
and relative error criteria, 

makes this impractical since F is involved in the stoppillg condition. We 
could use the initial value of F compnted over the inpnt cells, but this is 
likely to be unnecessarily expensive since the value of F is likely to increase 
substantially as the singularity is resolved. The way out of this dilemma is 
a double-loop procedure in which we start out with a stopping criterion 

E ~ f" + f,.G 

with G set to, say, lOOIIFII~ When this test is passed, we integrate over the 
resulting cell structure and set G to the IIFII thus obtained. Then we repeat 
the inner loop with the new st.opping criteriun. In t.his way, we c.a.n save a 
large number of unnecessary int.egrat.ions over cells. 

Another situation where the double loop approach is useful is when 
roundoff error may be irnportant. 'liVe mainta.in an error estimat.e for each 
cell separately, a.s well as a. global estillla.te formed hy sultlming them up. 
Thus each subdivisiou requires subtractiQIl of the old errol' estimate for the 
subdivided cell a.nd addition of the two new est.imates. When the initial error 
estimate is oi'ders of ma.gnitude la.rger tha.n the final result, serious roundoff 
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problems occur. A double loop is therefore employed; after termination of 
the inner loop over cells, we re-sum the integral and error estimates. If the 
stopping criterion is violated a.fter resumming, we restart immediately from 
where we left off. 

4.3.3 Cautious error estimation 

A refinement which is important for accl11'acy and occurs in most effective 
quadrature routines is the idea of cautiolls two-level error estimation (see 
e.g. [7]). Here \~e use, ill addition to the error estimate Ei computed for 
the current cell, informa.tion ahout the parent cell. The errors and integrals 
compu ted for the parent cell are used sepa.rately. 

Caution means that we do not believe all error estimate which is much 
smaller than the parental estimate; t.hus we replace tiLl> new error est.imate 
E; by max( E;, EcEoltl) where Eo is a user-specified degree of cautioll related to 
the order of accuracy of the rule. TypicaUy E,. = 1O-~ is a reasonahle choice. 
The idea of nonzero Ec is to prevent old informa.tion frOUl being ignored in 
later decisions. 

The use of two-level error estimates, OIL the other hanel, means that we 
consider also the change in the integrals produced hy the suhdivision. Thus 
we replace E; by max(Ej , EdlL1FI) where L1F is the ma.ximum change in any 
integral due to the subdivision. Note tha.t two-level error estimators are 
incompatible with the double loop procedure proposed a.bove, and the two 
are therefore offered as lllutually exdusiv(~ options in 011r implementation. 

4.3.4 Shared singularities 

In the special situation we consider here, we are integra.tiug a long vector 
of n = S'ln functions simultaneously, where each function has the same sin
gularity structure. The repeated eva.luatiolls of all the functions involved in 
the error estimates is wa.steful, so we have implemented cL resta.rt fa.cility. 
We first integrate the singularity a{:t:) alolle, then lise the cell st.ructure con
structed as a starting point for the integrat.ioll of the polYlLolllials P", (:1: )a( :1:) 
as well. Numerical experiments wit.h k = :2,4,G a.nd 8 aild fj = :2,;3,4,G,8 
and 10 and a the Biot-Sa.vart kernel (so tl = oS = :2) shows t.hat this ca.n save 
a factor of five to ten in CPU tillle. However, t.hey a.lso show that further 
improvements in the efficiency of obtaining the iuitial cell structure cannot 
improve the speed of the code much; illdeed, even if the initial cell struc
ture were known a. priori, we would only save about one-t.hird of the CPU 



time. Further speedups can COllle ollly from redllcillg the fllunber of points 
employed or evaluating the functions fa.ster. Improvement in either area. is 
certainly possible. 

4.4 Numerical results 

We implemented the multidimensional adaptive product Ga.ussian scheme 
above in a portable ANSI Fortran code, with the dimension d as a para.meter. 
Although our aim was prima.rily robustness alld relia.bility, the resulting code 
is surprisingly efficient. 

vVe tested the code Oil three problems of va.rious degrees and types of 
difficulty, following the probahilistic techlliejlle of [lG]. In (~a.ch ca.se, we 
integrated a family of integran<is wit it randomly placed or randolllly oriented 
singularities and measured the avera.ge error and success rate. 'vVe used three 
families of integra.nds. First, a smooth hut oscillatory family of cosines: 

Second, skewed exponentials of illcreasing steepness with discontinuities a.t 
angles to the coordinate axes: 

12(:1:) = (exp( - jllAr - :r,·lld : j = 1,2, ... ,10) 

where A is a random matrix with entries chosen from a uniform distrihution 
on [0,1] and 11~:lh = "E..;1=1 1:l:il is the Ivlallhattan norm. Fina.lly, rn = :lG 
Legendre polynomials O~l [0, IF times the 2-dilllellsional Biot-Sa.vart kernel 
as in moment calculatiolls: 

with 10'1 :; 7 and cr(a:) = ;r/II;/:W. Here :/:,. is chosen from a. uniform dis
tribution on [O,l]d. In aU ca.ses the dOlllaill of integration was [0, l]d and 
the dimension wa.s d = 2. "Ve ra.ll 100 samples of each family. The re
sults are shown in Tables 1:3 through U) below. For these 1;a.hles, we used 
Ee = Ed = 10- 2

, l' = 2, t = ]I = :241+2 and f := f" = f,. = 10-1,10- 2
, •.• ,10- 7

• 

We report the number of fUllction eva.lua.tiolls N F, the CPU time T and the 
error E produced by our code. vVe f011nd q = 10, (1 = :3 and q = 4 to be the 
most efficient rule sizes for 11, /2 and Is respectively. Figure 2 shows the 
tree-structured subdivisions constructed with f" = 10-3, 10-~ and 10-7 for 
12 and Is. It is clea.r that the code is refillillg in the right pla.ces. 
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For comparison, Tables Hi through 18 show the corresponding results for 
the multidimensional adaptive fully symllletric quadrature routine DCUHRE 
presented in [2]. The following conclusions can be drawn from this coin par
ison. 

First, in the integration of the Biot-Savart kernel times polynomials, 
DCUHRE achieved most efficient results with the Uth order rule, because 
the kernel is smooth away from the singularity. It required 48 CPU sec. 
with € = 10- 7

• The errors were very reliahly less than the estima.te, and in 
fact very close to the estimate. Gaussian (Jlla,dra.ture, on the other hand, was 
most efficient with a 4-point 8th-order rule when f = 10- 7 . It required 11 
CPU sec. with f = 10- 7

, about four times fa.stpI' tha.lI DCUHRE. The errors 
from our Chebyshev error estimator were less relia.ble ill the Reuse that t.hey 
were sometimes much less than the estillla.te (I,nd somet.imes slightly more. 

On cosines, high-order rules were the most eft"ectivl'. For example, 20th 
order Gaussian quadrature re<lllired 0.04 CPU sec. to a.chieve precision 10- 7

• 

DCUHRE required 0.17 CPU sec. with the Ut.h order rule. 
For skew exponentials, which are C li hut are not (,'1 a.long the ran

domly oriented hyperplanes determiued by fl and :/:", the 9th order rule 
of DCUHRE was more efficient than 13th or 7th. This is a litt.le surprising, 
because the 7th order rule is recommellded by its authors for prohlems -like 
this one- requiring great ada.ptivity. The 9th order rule required 72 CPU 
sec. with € = 10-7 and achieved error 10- 7 reliably. Gaussian <!uadrature, 
on the other hand, got best results'with a. Gth-onler rule, re<llliring n CPU 
sec. with € = 10- 7

. 

f" = f,. NF T E 
0.10E+00 188 O.tH O.(J:lE-ll 
0.lOE-01 188 0.0:3 O.G:3E-ll 
0.10E-02 188 0.04 O.G:3E-ll 
0.10E-0:3 188 0.0:3 O.G:3E-ll 
0.lOE-04 188 0.04 O.G:3E-ll 

0.lOE-05 188 0.0:3 O.G:3E-ll 
O.lOE-OG 188 0.0:3 O.(j:3E-ll 

Table 1;3: Gaussian quadra.ture OIl cosines. 
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Figure 2: Tree structure for a.daptive Gaussia.n qua.dra.ture with f = f" = 
fr = 10-3 , 10-5 a.nd 10-7 (left to right) of skew exponentials (top row) and 
the Biot-Sa.vart kernel multiplied by aG Legendre polynomials (second row). 
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fa = fr NF T E 
0.10E+00 221 0.03 0.65E+00 
0.10E-01 1115 0.13 0.97E-02 
0.10E-02 4788 0.55 0.65E-03 
0.10E-03 17736 2.01 0.29E-04 
0.10E-04 59G55 G.71 0.24E-05 
0.10E-05 201884 22.G2 0.G9E-OG 
0.10E-OG G51924 72.97 0.SGE-07 

Table 14: Gaussian quadrature on skewed exponentials. 

f" = f,. NF T E 
0.10E+00 ;321 0.28 O.12E+Ol 
0.10E-Ol 771 0.G7 0.28E-Ol 
0.10E-02 15:3G 1.;3;3 0.11E-02 
0.10E-0:3 2793 2.4:3 0.27E-0:3 
0.10E-04 4G49 4.04 0.GGE-05 
0.10E-05 76;38 G.G5 0.21E-05 
0.10E-0() 12()51 11.01 0.3:3E-OG 

Table 15: Gallssian quadrature on the Biot-Savart. kernel times polynomi
a.ls. 

f" = f,. NF T E 
0.10E+00 195 0.04 0.l1E-03 
0.10E-Ol 195 0.04 0.l1E-0;3 
0.10E-02 1% 0.04 0.l1E-0;3 
0.10E-0:3 28G 0.05 0.4;3£-04 
0.10E-04 442 0.08 0.50E-05 
0.10E-05 79:3 0.14 0.G5E-OG 
0.10E-06 975 0.17 0.45E-07 

Tahle IG: DCUHRE on cosines. 
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E" = Er NF T E 
O.lOE+OO 178 0.02 O.77E-Ol 
O.lOE-Ol lOGO 0.12 0.OOE-02 
O.lOE-02 4158 0.44 0.OOE-O:3 
O.10E-03 15886 loG!) 0.lOE-03 
0.10E-04 587:3;3 G.IO 0.10E-04 
O.lDE-Oil 202989 21.12 O.lDE-O!) 
O.lOE-OG G85872 71.72 O.lOE-OG 

Ta,ble 17: DCUHRE on skewed exponent.ia,ls. 

Ell = f,. NF T E 
O.lOE+OO 2Gl:3 2.05 0.80E-Ol 
O.lOE-Ol 547:3 4.:30 0.03E-02 
0.10E-02 10270 S.OG 0.!ME-0:3 
0.10E-O;3 17147 1:3.50 O.!)7E-04 
0.10E-04 2G702 21.0;3 O.97E-05 
0.lDE-05 40742 ;32.12 O.98E-0(j 
O.lOE-On GU08 48.:31 O.9SE-07 

Ta,ble 18: DCUHRE on t.he Biot.-Sa,vart kernel times polynomia.ls. 



5 Refinelnents and Generalizations 

The above methods for constructing smooth and singular quaclratU1'e rules 
can be refined and generalized in several ways. 

The smooth rule can be made adaptive to reduce 11, and the order can be 
locally varied to match the smoothness of the integrand. Chebyshev polyno
mials can replace Legendre polynomials, allowing the use of non-equidistant 
FFT techniques to speed up the least 2-norlll calculations. For that matter, 
any other set of basis functions can replace Legendre polYllOlnia.ls, yielding 
rules which are exact for that class of basis fUlLctions. 

Both singular aud smooth rules can be derived for approximating linear 
functionals other than int.egration over B. An import.a.ut example, interpo
lation, is discussed in detail below. This leads to a different approach to 
evaluating integrals of singular fuuctions; transfer the integrand values to 
nice points hy interpolation, then llse nice rules on the nice points. This 
eliminates the necessity of computing singular moments for every corrected 
point. 

Both rules can also be used to integrate over more general domains 
than rectangles, as discussed below. A particula.rly exciting prospect is 
the construction of rules for integrating singula.r functions over curves and 
surfaces, for the boundary integral solution of pa.rtial differential equations. 
This is of course 'another special case of the approximat.ion of other linear 
functionals mentioned in the previous paragraph. 

We could equally well construct lV/ to integrate exactly the k d monomi
als a:f' ... X~d with 1J1'oli'llct degree max lYl ~ k: - 1, ra.ther than integrating 
the m( k, ll) = O( l~d / d!) lllonomia.ls with standard degree (rl + .. . +a./ ~ k-1. 
This choice is a nonstandard one (see [G]), and would have several adva.n
tages and disadvantages. The first, and most importaut, is the improved 
accuracy of such a rule (see [6]). Rules of product order k have order k 
in the standard sense, as well, but they t.end t.o have considerably smaller 
errors than most. rules of st.andanl order k:. They use more points tha.n the 
minimum necessary to achieve standard order k by a. fa.ct.or of In, hut this is 
not overwhelmingly expensive in small dimeusions like cl = 2 or cl = 3. An
other reason is tha.t we llse product Gaussian qua.drat.ure rules to eva.luate 
the moments (see §4), so product order is more convenient. And finally, it is 
easier to construct ~ general multidimensional routine in which the dimen
sion d is an input parameter when rules of product order k are constructed, 
because it is easier to ma.p a. rectangle than a. simplex onto a.n interval. Such 
a rule is more efficient than standard rules in some ways, hecause we are 
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evaluating all necessary Legendre polynomials p"J:l:,) with 0 ::; (\'1 ::; k - 1, 
so we might as well multiply them together to get the remaining terms. Our 
experimental implementa,tion, however, reveale~l that product rules produce 
slightly larger errors at greater expense, due to increased cell sizes. Hence 
our final code used rules which integrate exactly monomials of standard 
degree::; k - 1 exclusively. 

Another refinement is as follows. The error analysis suggests that it 
might be computationally useful to have two different orders of accuracy, 
for the smooth rule and the singular rule. For example, we might construct 
a 16th-order smooth rule but correct it locally only to 4th order. 'iVe have 
implemented this feature in our curreut code but our experience is not yet 
sufficient to indicate its usefulness. 

5.1 Scattered data interp olation 

A common problem of computational physics is to constrnct a glohally de
fined "nice" function which takes given values u(:t:j) at given points :I:j. The 
techniques developed above generalize iuune<iiately to solve this problem. 

The function we construct is a polynomial P(:I:) on each cell Bi of the 
tree structure we constructeel for the smooth rule. A polynomial p of degree 
::; k - 1 can be represented as a Legendre series 

p{:r.) = L }J(n )P",(:I:) 
l(fl~k-l 

where Po is a shifted and scaled Legendre polynomial on Bi = [a, b] and 
ji( a) are the Legendre coefficients of p. Each zj( n) is a linear functional of 
p, hence ca,n be approximated hy 

P{ n) = L Wj ((\' )1'( ;t:j ) 
X.iEB. 

where 'Wj are exact for p = P,,, Irtl ::; k - 1. Thns w(n) = (wj(n) : ;rj E Bd 
can be fonnd as e.g. the lea.<;t 2-nonn solution of 

0,,13= L '/IIj(o:)p/i(;t:j) 
X.iEB; 

for lal::; k - 1 and 1.81::; k -1. The 'In by p 01' p+ 1 matrix (~;,(;r.j» which 
appears need he suhjected to the singular value decomposition only once, 
and then each a requires only two matrix-vector multiplies and a scaling by 
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the singular values. Thus given thefT/, hy l' or jJ + 1 matrix (wj(a», the 
Legendre coefficients of a nice polynomial interpolating values Pj at points 
xi can be computed by matrix multiplication: 

p(a) = L wj(a)pj. 
XjEBi 

Then the Legendre series provides an interpolant to the scattered data Pj. 
This local interpola,nt on Bi is not of course continuous between cells. 

However, it is likely to he reasonably smooth since 'Wj solves a least 2-
norm problem. It will have order of accnracy O(hk) where B; has sides of 
length ~ hand jJj are values of a C k function on B. An expansion in other 
basis functions on each B; can be constructed in the same way, as can the 
derivative of scattered data values. 

5.2 General B 

The techniques developed in 32 and !j:3 extend to integrate over curves and 
surfaces in JR'2 and JR.3. Suppose we want to ca1culate 

11(:1:)(1:1: 

where 1 is singular at some point :I:. which may be in or Hear the curve or 
surface r. vVe enclose r ill a box Band constmct the usual tree structure 
containing the N given points :I:j, which ma.y be either in or outside r. Now 
we construct, e.g. for the smooth rule, weights llVjsatisfying 

(5.1) 

on each cell B j • The glohal weights defined to he lVj = Wj if :I;j E Bi can 
be computed by the singular value decomposition if enough points are in Bi 
and will integra.te smooth functions accura.tely over r. The singular rule is 
produced from the smooth rule in the usual wa.y. 

There are two new complications in this approach when r is not a rect
angle. First, we need the moments 

of polynomials over r n B i • If r is a piecewise liuear manifold these moments 
are exactly computable. In general, however, and certainly when a singular 
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rule is desired, some form of adaptive numerical integration over r will be 
needed. For general r this is a difficult problem; we expect approximation 
by piecewise polynomial r and numerical integration as in the finite ele
ment method will work, hut other techniques may be faster. Note that the 
Gaussian integration code we have developed in §4 ca.n easily he extended to 
integrate over polyhedra rather than rectangles, because Gaussian rules can 
readily be mapped to polyhedra with 2d vertices in d dimensions. Polyhedra 
can be subdivided into polyhedra with 2'/ vert.ices, with only the houndary 
cells being non-rectangular. 

Second, the equations (.5.1) are more likely t.o be rank-deficient, in which 
case no solution ltV} will exist.. If r is a plane, for example, then polynomials 
in variables perpendicular t.o the plane a.re superfluous a,nd we cannot inte
grate them exa.ctly with a.ny llV. The singular value decomposition provides 
a natural treatment of this difficulty; siIllply igllore all equatiOlls which can
not be sa.tisfied. They will not affect the accuracy of the rule W, because 
W only integrates over r ill any case. 

The accuracy of the rule requires more l1lacilinery to allalyze. The a.d
ditional ingredient is extension theorems; we lleed to extelld functions on r 
to smooth functions on Bi without increasing t.he size of deriva.tives. Tha.t 
this can he done is proved in e.g. [8]. It. follows that a rule constructed in 
this way will enjoy the same convergence properties as in the case when r 
is a rectangle. 

6 Acknow ledgeillellts 

The author would like to thank Prof. V. Rokhlin for helpful conversa
tions. This research was supported by a. NSF Young Investiga.tor Award, 
hy Air Force Office of Scientific Resea.rch Grant 92-0l(i!) and by the Applied 
Mathematical Sciences Subprogram of the Office of Energy Research, U.S. 
Department of Energy under Contract DE-ACO:3· 7GSF00098. 

References 

[1] C. R. Anderson. A method of local corrections for computing the ve
locity field due to a collection of vortex 1>101>8. Jour. C:01l!]J'ld. Phys., 
62:111-127,198(:>. 

41 



[2] J. Berntsen, T. O. Espelid, and A. Geltz. An adaptive algorithm for 
the approximate calculation of multiple integrals. A CM Tmns. Math. 
Softw., 17:437-451, 1991. 

[3] A. Brandt and A. A. Luhrecht. Multilevel Ina,trix_ multiplication and 
fast solution of integral equations. JOUT. C017t]nLt. Pllys., 90:348, 1990. 

[4] J. Carrier, 1. Greengard, and V. Rokhlin. A fast adaptive llluitipole 
method for particle simulations. SIAM J . .5'ci. Stilt. Co '/I qJ1lt. , 9:()(j9-
686, 1988. 

[5] A . .J. Chorin. Numerical study of slightly viscous flO\v. J. Fluid Mcch., 
57:785-79G,197:3. 

[6] P . .J. Davis and P. Rahinowitz. Met/tOils of Nll1IUTicuZ Iutegm.tion. Com
puter science and applie~llllathelHatics. Aca.demic Press, second edition, 
1984. 

[7] T. O. Espelid and A. Genz, editors. Numc7.zcu[ intcgmtion: n:cent 
developments, softw(/.'/'c, llnd applications. Kluwer Academic, Dorclrecht; 
Boston, 1992. 

[8] D. Gilbarg and N. S. Trudinger. Elliptic jJa1'tial eli/Jer'cntia/ equations 
of sccond on/e7·. Springer-Verlag, 198:3. 

[9] G. H. Golub and C. F. van Loa.n. Mah'z:/: C01HjJ1ltatio7!s . .Johns Hopkins 
University Press, Baltimore, second editiolt, 1989. 

[10] 1. Greengard and .J. Strain. A fast algorithm for the eva.luation of heat 
potentials. Comm. Pun: Appl. Math., XLIII:!)4!J-9()3, 1990. 

[11] L. Greenga.r<l and .J. Strain. The fa.st Ga.uss transfonn. SIAM .](J'/ll'. 

Sci. Stat. Comput, 12:79-94, 1991. 

[12] W. Hackbusch and Z. P. Nowak. On t.he fa.st matrix multiplication 
in the houndary element method hy pa.nel clustering. N1l111.C1'. Math., 
54:463, 1989. 

[13] L. H6nnallder. The boundary prohleltls of physica.l geodesy. At'ch. 
Rational Mech. Analysis, G2:1-52, 1970. 

[14] M. A. Ja.c;woll and G. T. SYIlUll. Intcyml equation methods in potential 
the01'Y and elastostatics. Academic Press, 1977. 

42 



[15] P. Keast and G. Fairweather, editors. Nume1'ical integration: 1'ecent 
developments, softwll1~e, llnd applications. Kluwer Academic, Dordrecht; 
Boston, 1987. 

[16] .J. N. Lyness and .J . .J. Kaga,nove. A technique for comparing a:utomatic 
quadrature routines. Comput. J., 20:170-177, 1977. 

[17] W. H. Press, W. T. Vetterling, B. P. Flannery, and S. A. Teukolsky. 
Numer'icaI1'ecipes in FO RTRAN: the art of scient~fic computing. Cam
bridge University Press, second edition, 1992. 

[18] V. Rokhlin. Rapid solution of integral equa.tions of classical potential 
theory. J. Comp. Phys., GO:187-207, HJ85. 

[19] V. Rokhlin. End-point corrected trapezoidal <lIladrature rules for singu
lar functions. Research Report YALEUjDCSjRR-441, Yale University 
Department of Computer Science, November 198!). 

[20] G. Russo and .J. Strain. Fast tria.ugulated vortex methods for the 2-D 
Euler equations. Jow·. COnt1}. Phys., to a.ppear. 

[21] H. Samet. The design and analysis of spatial data stl'uctm·es. Acldison
Wesley, Reading, Massachusetts, 1990. 

[22] H. P. Starr. Rapid solution of one-dimensional intf:gml and diJj(:7'cn
tial equations. PhD thesis, Yale University Department of Computer 
Science, 199:3. 

[23] .J. Strain. A boundary integral approaeh to unsta.ble solidification . .10m'. 

Compo Pltys., 85::J42-:lS9, 1989. 

[24] .J. Strain. The fast Gauss tra.nsform with varia.hle scales. SI~M Jom·. 
Sci. Stat. Co trtjJut, 12:U:n-U:39, 1991. 

[25] .J. StraiIl. Fast potential theory II: Layer potentials and discrete snms. 
J. Comput. Phys., 99:251-270, 19!)2. 

[26] J. Strain. Efficient spectrally-accurate solution of va.riable-coefficient 
elliptic problems. Pmc. AmCl·. A1atlt. Soc., to appea.r. 

[27] J. Straiu. Fa:st adaptive methods for the free-space heat equation. SIAM 
J. Sci. Stat. C01Tqmt., to appear. 



[28] R. E. Tarjan. Data stnlctll7'eS ancI network alY(J1'ith111S. CBMS-NSF re
gional conference series in applied mathemat.ics, no. 44. SIAM, Philadel
phia, 1983. 

[29] L. van Dommelen and E. A. Rundellsteiner. Fast adaptive summation 
of point forces in the two-dimensional Poisson equat.ion. .l. Compu.t. 
Phys., 83:126-147, 1989. 

1991 Subject Classifica.tions: (j!)D:32, GGDO!), (j!)DaO, GljR20. 
Key words and phrases: nnmerica.! int.egration, sillgular int.egrals, fast 

. a.lgorit.hms, qnadt.rees, singula.r va.lne decolilpositioll, vort.ex methods, po
tentiaJ theory, interpola.t.ioll. 

E-mail address: st.rain@mat.h.berkeley.eciu. 

44 



LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

~ 1'-=.-
0> Co = .... LO .0 
I :.J 
III -I 
c:{ []) 
--I 


