
LBL-34720
UC-41O

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Accelerator & Fusion
Research Division
Presented at the International Conference on Accelerator and Large
Experimental Physics Control, Berlin, Germany, October 18-22, 1993,
and to be published in the Proceedings

Object-Oriented Software Construction at ALS

H. Nishimura

October 1993

, .

;

Prepared for the U.S. Department of Energy under Contract Number DE·AC03·76SF00098

:0
",

("') " ... ·0 ",
.,0:0
0(1)",
c:tnz ("')
!liZ",
r+0
(l)r+(",)

o
to "'0 -<
0.--_
10

r­
to
r-

("') I
o w
"C ~
'<,

N
I-' CSI

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any walTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Object-Oriented Software Construction at ALS

Hiroshi Nishimura

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

October 1993

Presented at the International Conference on
Accelerator and Large Experimental Physics Control,

Berlin, Germany, 18-22 October, 1993.

This work was supported by the Director, Office of Energy Research,

LBL-34720

Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.

'.1

Object-Oriented Software Construction at ALS*

Hiroshi Nishimura
Advanced Light Source, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA

c++ class libraries have been developed and used for accelerator modeling and machine control at the Advanced Light Source. A class library for
accelerator modeling is portable and supports multiple model instances dynamically at run time. A class library for machine control covers fields
from virtual devices to simulation studies.

1. Introduction

The Advanced Light Source (ALS) [1] is a 1.5-GeV,
sma1l~ttance electron storage ring commissioned at Lawrence
Berkeley Laboratory recently [2]. It is a third-generation light source
with intensive use of exnsertion devices, which requires accurate and
flexible modeling for machine control. Object-oriented programming
(OOP) has played a major role in machine modeling and in
construction of the graphical user interface:

At the higher levels of accelerator control and operation, OOP
has been used to construct a virtual-device layer on top of the flat
'database' that is a list of channels, and to provide an application
framework with graphical user interface for the high-level control
programs.

This is a summary of the object-oriented software construction
effort by accelerator physicists at the ALS Center.

2. Simulation and Modeling

Our effort has been to make simuI8tion and modeling programs
as flexible as possible. In the lattice design phase, we used the Pascal
S compiler [3] as our framework. We have extended the Pascal
compiler itself and associated simulation and modeling library
functions to a set of new P-codes, which enabled us to accept user
algorithms as input. The programs created using this approach are: a
linear 4,0 code, Tracy [4]; a full 6x6 kick code, Gemini [5]; and a
linear 4,0 and full 6x6 code, Tracy2 [6]. They were developed on
V AXNMS using VMS Pascal and are used for off-line studies to
evaluate the machine performance in presence of imperfections [7].

For model-based control, we focused not on the application
programs but on the simulation and modeling library for reusability.
The simulation kernel of Tracy was extracted and rewritten in C to
provide a portable library. This library is object based to support
dynamic modeling [8]. An accelerator is represented by a variable of
the accelerator type, which allows us to manipulate multiple
accelerator instances at run time. At that stage, it was not
object-oriented in any particular OOP language to conserve
portability. .

Our first OOP effort was in a pure OOP language, Eiffel [9].
An accelerator object in C was embedded in the Eiffel object [8] on
UN1X workstations. It is an OOP taken to a very high level and the
scale of the accelerator class is large. The same wrapping was done
by using a hybrid language, Objective-C, for the use with NextStep

on NeXI.
The ALS control system [10] was optimized for access from the

DECpc 480ST PC clones, serving as operator consoles. The
accelerator device access over the Ethernet was not fast enough for
on-line modeling on UN1X workstations. Therefore, our simulation
and modeling library had to be available on PCs. At that stage, we

moved to C++. The C· library was completely redesigned using
objects from a very low level and turned into a C++ class library
called Goemon [11]. This is a class library for accelerator modeling
and simulation to be the building blocks of high-level physics and
control programs, with the. following features:
• The numerical integrator of the Hamiltonian is localized. It is the
standard 4,0 matrix formalism in the cwrent version of Goemon but
is easily exchangeable. That is, Goemon provides a simulation and
modeling program framework that is relatively independent from the
Hamiltonian and its numerical integrator.
• Isolated from the hardware environment: accelerator device access
and graphic user interface are outside of Goemon for better
portability and modularity.
• Compact: only 3000 lines of source code for the basic modules.
Additional 1000 lines for ALS-dependent classes.

Figure 1 shows the Goemon class relationship in Object Model
Notation [12].

Fig.l Goemon Class Relationship

There are two major class categories, Component and Machine.
Component includes lattice elements such as drift spaces, magnets,
and monitors. Element is the base class for Component objects.
Here are some of its member functions:

virtual double getK(); /I return strength
virtual void setK(double K);/I set strength
virtual void pass(Vec5 *x);

/Ipropagate a particle through its field.
virtual void passL(Vec5 *x,const Vec5 *xO);

/Ipropagate a particle through the linearized field.
virtual void passM(Mat55 *M,const Vec5 *xO);

/Ipropagate 4 particles through the linearized field.
virtual Mat55 *getAO;

/Ireturn its transfer matrix.

* This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences,
Material Sciences Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

-1-

Element is not a beam transport line but a unit of it. The main
function is to propagate a particle through its field. Wiggler is
derived from Quad because the "vertical quadrupole" is enough to
calculate on~ergy functions such as tunes. But a compound object of
Drift and Bend is also used for the Hard-Edge model of wigglers
and undulators. Machine contains an array of Celement objects to
represent a beam transport line. Celement represents an Element
objects in a beam transport line and defined as:

class Celement {
pUblic:

Element *Elem;
double S, Size){. SizeY, Xoff,Yoff;

II distance, size, misalignment
Vecs Ref,Path,TwissH,TwissV,Eta;

IIreference orbit, orbit, alpha,beta,eta,

void pass (Vecs *x);
void passL(Vecs *x);
void passM(Mat55 *M);
void PassTwiss(Vec5 *twissH, Vec5 *twissv);
void setOffset{ double x,double y);
double getXoffset();
double getYoffset();

The base class of Machine is BeamLine, whose primary task is
linear optics calculation. Ring is derived from BeamLine as a class
for circular rings.

The first version of Goemon is portable on UNIX workstations,
IBM PCs clones running Windows 3.1 and Windows NT, and
Macintosh with System 7.x.

There is another OOP effort at very high level for model-based
control and machine physics studies. It uses the GLISH software bus
architecture [13] to assemble a high-level application program by
plugging together modular, single-function programs [14]. Goemon
will be one of the suppliers of the libraries to the software bus.

4. Device Control

The ALS Control System [10] is a simple but highly distributed
system. At the lowest level, there are more than 600 Intelligent Local
Controllers (ILCs) providing a direct interface to target devices.
Most of the devices are controlled by oneILC but some are
controlled by several ILCs. Each ILC is mapped onto the 'database'
on the shared memory in the Collector Micro Modules (CMMs). This
database is shared by Display Micro Modules (DMMs). Each DMM
is independently connected to a PC clone that serves as an operators
console. This architecture has provided very efficient device access
during the commissioning, and we plan to adopt an EPICS system
[15]. The OOP effort described in this section was undertaken by the
accelerator physicists who used the control system during
commissioning.

In the ILC-CMM-DMM architecture, the PC control consoles
have logically transparent access to all the device entries in the
database. A class library DEVICE provides a virtual device layer on
top of the database. A$ required for PC clones running MS Windows,
we implemented the DEVICE class by using Turbo Pascal with

-2-

ObjectWindows that is a class library for Windows application
programmfug. When C++ caught up with it, the DEVICE class
library was ported to C++ compilers, Borllind C++ 3.1 and Visual
C++ 1.0. .

Here is the interface ofDBobj [16] that is the base of DEVICE.
It encapsulates channels associated with the same database device
name.

data

class DBobj {

}

public:
float getAMO; IIget analog monitor value
float getSP(void); IIget analog control value
void setSP{float X);I/set analog control value
int getBM(void); IIget boolean monitor value
int getBC(void); I/get boolean control value
void setBC(int B); I/set boolean control value
void getBytes(int OfIset,char *s,int N); I/get N bytes of

void setBytes(int Offset,char *s,int N); llset N bytes of data

It is a wrapper of the basic call library for DMM access in C.
Based on this base class, device classes are derived as follows:

DBobj /I base class
MAGobj /I magnet

QUADobj /I quadrupole magnet
BENDobj /I bending magnet
SEXTobj /I sextupole magnet
STEERobj /I steering magnet

VACobj /I vacuum pumps and gauges
BPMobj II beam position monitors
DCCTobj II beam intensity monitor

Each object of these classes corresponds to a virtual device that
handles its local operational context. MAGobj performs turn on/off,
ramp up/down, and controlled cycling, status watching. BPMobj
supports normal XY reading, fast turn-by-turn reading and its
Fourier analysis, XY averaging and referencing, gain setting, and
calibration. Some of them are simple C++ wrappings of existing C
library functions [17].

There are three major classes for ALS storage ring control:
SRMAGS for quadrupole, bend, and sextupole magnets, SRSTRS
for steering magnets, and SRBPMS for beam position monitors. They
are collections of the DEVICE objects:

SRMAGS
SRSTRS
SRBPMS

QUADobj(49), BENDobj(I), SEXTobj(2)
STEERobj(160)
BPMobj(96)

The numbers in the parentheses are the number of each DEVICE
object used in the programs for daily operations.

4. Ongoing Effort

We are in the transition phase to the normal operation mode. A
more systematic effort is required in a limited amount of machine
time for the development. The role of OOP keeps increasing in the
field of physics application programs. Goemon has been continuously

ft'

enhanced for the use at ALS to construct application programs. There
are several new c++ classes that are under development GPIB
devices are going to be supported over the network by using an object
[18). RF and RF-related beam physics is going to be supported by an
object[19].

OOP for database construction and management is becoming an
mgent issue. As the relational database scheme cannot map the object
relationships effiCiently, we will be using RAIMA Object Manager
[20].

Several efforts are in process for networking. Some are Windows
NT based including NetDDE [21] and others are UNIX based such as
RPC. It is desirable to have a standard class library to encapsulate the
detail of the network programming.

5. Conclusion

A class library approach has been proven to be efficient for modeling
and simulation studies. It is also applied to machine control mainly by
the physicists, which will be compatible with future plans of the
control systems design. and development DEVICE will be released
from the low level tasks that can be done by EPICS.

Acknowledgments

The author would like to express his appreciation to all the ALS
commissioning team members, perticularly the controls engineers led
by S. Magyary.

References

[1] "1-2 GeV Synchrotron Radiation Source, Conceptual Design
Report,"LBL PUB-SI72 Rev. LBL,I986.
[2] A. Jackson, "Commissioning and Performance of the Advanced
Light Source," to be published in IEEE Particle Accelerator
Conference, 1993.
[3] RE.Berry,"Programming Language Translation," Ellis Horwood
Ltd., England, 1981.
[4] H. Nishimura, "Tracy, A Tool for Accelerator Design and
Analysis," Proc. European Part Accel Conf., 803,1988.
[5] E. Forest and H. Nishimura, ·Vertically Integrated Simulation
Tools for Self-Consistent Tracking and Analysis," IEEE Particle
Accelerator Conference, CH2669-0/89/0000-l32, 1989.
[6] J. Bengtsson, E. Forest and H. Nishimura, unpublished.
[7] A Jackson, E. Forest, H. Nishimura and M. S. Zisman,:The Effect
of Insertion Devices on Beam Dynamics in the ALS," IEEE Particle
Accelerator Conference, CH2669-0/89/0000-1752, 1989.
[8] H. Nishimura, "Dynamic Accelerator Modeling Uses Objects in
Eiffel," Computers in Physics 6,456(1992).
H. Nishimura, "Dynamic Accelerator Modeling," to be published in
IEEE Particle Accelerator Conference, 1993.
[9] B. Meyer,"Object-Oriented Software Construction," Prentice-Hall,
NJ, 1988; B. Meyer, "Eiffel: The Language," Prentice-Hall,NJ, 1992;
Eiffe12.3 and Eiffel 3.0 are by Interactive SOfu\:are Engineering Inc .. ,
Santa Barbara, CA.
[10] S. Magyary etal, "Advanced Light Source Control System,"
IEEE Particle Accelerator Conference, 1993. 87CH2387 -9,532, 1987.
S. Magyary, "Anatomy of a Control System: A System Designer's
View," to be published in IEEE Particle Accelerator Conference,
1993.

-3-

[11] H. Nishimura, "C++ Class Library for Accelerator Modeling and
Simulation, Goemon, Reference Manual, version 1.0," LSAP-153,
LBL,I993.
[12] 1. Rumbaugh et. al., "Object-Oriented Modeling and Design",
Prentice-Hall, NJ, 1991.
[13] V. Paxson, to be published in this proceedings.
[14] L. Schachinger and V. Paxson, "A Software System for Modeling
and Controlling Accelerator Physics Parameters at the Advanced
Light Source" , to be published in IEEE Particle Accelerator
Conference, 1993.
[15] 1.Young, to be published in this proceedings.
[16] H. Nishimura, "DMMAccess Using C++ Objects, Introduction
(1)," LSAP-I28, LBL, 1992.
[17] C.Timossi and J.Young, private communication.
[18] M.Chin, E.Henson, H.Nishimura and C.Timossi, unpublished.
[19] C.KiI:n, to be published as LSAP Note, ALS, LBL, 1993.
[20] Raima Object Manager, Raima Corporation, WA.
[21] M. Chin, "Investigation into Network Access for the ALS Control
System Database using Windows NT," to be published as LSEE
Note,ALS, LBL, 1993.

"" _ 4

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

..-~, _-.-4iII ..

