
LBL-34750 
UC-406 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 

Presented at the NATO Advanced Study Institute, 
Maratea, Italy, June 28-July 10, 1992, and to be 
published in the Proceedings 

Mirrors for Synchrotron-Radiation Beamlines 

M.R. Howells 

September 1993 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur
poses. 

This report has been reproduced directly from the best available copy. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Mirrors for Synchrotron-Radiation Beamlines 

M.R. Howells 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 USA 

To be published in the Proceedings of the 
NATO Advanced Study Institute 

New Directions in Research with Third-Generation 
Soft X -Ray Synchrotron Radiation Sources 

held in Maratea, Italy 
June 28-July 10, 1992 

Edited by: 

A.S. Schlachter 
Advanced Light Source 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 USA 

and 

F.J. Wuilleumier 
Laboratoire de Spectroscopie 

Atomique et Ionique 
Universite Paris Sud 

Orsay, France 

LBL-34750 
UC-406 

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials 
Sciences Division, of the U.S. Deparunent of Energy under Contract No. DE-AC03-76SF00098. 





MIRRORS FOR SYNCHROTRON-RADIATION BEAMLINES 

MALCOLM R. HOWELLS 
Advanced Light Source 
Lawrence Berkeley Laboratory 
Berkeley CA 94720, USA 

ABSTRACT. We consider the role of mirrors in synchrotron-radiation beamlines and discuss the optical 
considerations involved in their design. We discuss toroidal, spherical, elliptical, and paraboloidal mirrors 
in detail with particular attention to their aberration properties. We give a treatment of the sine condition 
and describe its role in correcting the coma of axisymmetric systems. We show in detail how coma is 
inevitable in single-reflection, grazing-incidence systems but correctable in two-reflection systems such as 
those of the Wolter type. In an appendix, we give the theory of point aberrations of reflectors of a general 
shape and discuss the question of correct naming of aberrations. In particular, a strict definition of coma is 
required if attempts at correction are to be based on the sine condition. 

1. Introduction 

Mirrors are the standard way to manipulate radiation beams at synchrotron-radiation 
facilities. They are almost always used at grazing incidence, and with the increased 
sophistication of optical designs and increased power in the radiation beams, they have 
become an important and challenging branch of optical technology. It is becoming well 
known that there are important limits to what it is possible to manufacture, so that mirror 
technology is one of the major limits to the performance of a beamline. 

In this paper, we consider the functions of mirrors, the shapes one can conceive, and the 
standard way to initiate the process of design based on a paraxial analysis. We consider 
quantitative geometrical descriptions of the important mirror shapes, both in an exact way and 
by using series expansions. The latter both simplify calculations and make it possible to 
identify the terms involved in approximating a surface with particular aberrations of the 
radiation beams reflected from the surface. We study the "sine condition" as a way to 
understand some of the special limits that apply to single grazing-incidence reflectors and to 
see the benefits of double-reflection schemes such as the Wolter telescope. Although the 
benefits of such aberration-canceling schemes are not normally necessary for bearnline 
mirror systems, the same principles apply to grating systems for which aberration canceling 
can have practical importance. In order to study the aberrations quantitatively, we give a table 
of some of the terms of the optical-path function expansion in the Appendix, together with a 
discussion of the naming conventions of the aberrations for systems with and without a 
symmetry axis. The names must be strictly defined if rules for aberration correction, such as 
the sine condition, are to be successfully used. 
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2. Mirrors in Synchrotron-Radiation Beamlines 

We show in Table 1 the main functions of mirrors in beamlines and address the important 
question of whether the optical quality of the mirror limits the spectral resolution of the 
beamline. Horizontal deflection of the beam is necessary to achieve separation of branch 
lines derived from the same bending-magnet port. At higher photon energies (smaller 
grazing angles), such separation can be difficult to achieve, and one must resort .to a 
separation in the distance of the experiments from the source. On the other hand, undulator 
beams are difficult to split. between simultaneous users and are often time-shared. The 
switching of the beam between the users then involves a mirror or mirrors that can be moved 
under computer control. This is easier to do nearer the source, such as in switching between 
monochromators. After the exit slit of a monochromator, the separation achievable with 
grazing reflections is too small for large experiments like surface-science stations, and the 
only recourse is to place the e~periments on a rotating platform- centered at a beamline 
bellows to act as a "knuckle." 

The use of mirrors as energy filters has been practiced since the earliest days of 
synchrotron radiation-research and has been analyzed, for example, by Rehn (1985). 
Roughly speaki,n..g,._ the mirror reflects efficiently only for grazing angles smaller than the 
critical angle v28' where 0 is the difference from unity of the real part of the refractive 
index of the mirror coating. The cutoff energy varies by about a factor of 2-2.5 between the 

TABLE 1. Functions of beamline mirrors. 

Type of mirror Resolution 
Function (typical) determining? Applications 

Deflection High power, often No Separation of branches from a 
flat port 

Energy Filtration Any No Low-pass energy filter, order 
suppression 

Power Absorption High power, often No Rejection of power at 
flat unwanted photon energies 

Condensation Spherical, toroidal, or No Source ·to entrance slit (high 
ellipsoidal power), exit slit to sample (low 

power) 

Collimation High power, Yes Plane grating and crystal 
spherical, toroidal, or monochromators, e.g., to 
paraboloidal match the beam angular 

spread to the rocking curve 
width of a given crystal 

Microprobe Low power, Sets spatial Microscopy. fluorescence 
Formation Kirkpatrick-Baez resolution microanalysis 

pair, or ellipsoid 

Focusing Low power, spherical, Yes for grating, Plane grating and crystal 
toroidal, or no for crystal monochromators 
paraboloidal 
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most and the least reflective coatings. The ability of mirrors to carry out this crude filtering is 
often important for suppressing unwanted high-order diffracted beams from grating 
monochromators. 

In cases where significant power is carried by x rays with energy above the intended range 
of operation, it is usual to absorb such x rays in the first mirror at grazing incidence. This 
approach allows subsequent components, which may have a higher grazing angle and may be 
resolution-determining (with correspondingly tighter tolerances), to operate at lower power 
load. 

Many beamlines have condensing mirrors that either deliver the beam from the source into 
the entrance slit of a monochromator or relay the beam from the exit slit to the sample. The 
first type of mirror is normally high power and the second, low power. The surface 
tolerances are set by the sizes of the object and image in each case, while failure to meet the 
tolerances leads to a loss of 'flux and/or spatial resolution but not to a loss of spectral 
resolution. 

The natural vertical opening angle of the synchrotron radiation from the bending magnets 
of a typical high-energy storage ring is about 5-10 times larger than the rocking curve width 
of commonly used crystals. Thus there is a motivation to collimate the radiation. Plane 
diffraction gratings can also profit from a collimation mirror that leads to a wavelength
independent focal position at infinity. Such mirrors are resolution determining. 

Finally mirrors may be used for focusing. · When they focus the light from a grating to an 
exit slit, they affect the spectral resolution. When .they are used as concentrators for 
microscopy or microanalysis, they determine the spatial resolution. The most critical cases of 
the latter occur when the grazing~incidence "forgiveness factor" is not in effect and the 
(often-multilayer-coated) mirrors are used at normal incidence. 

3. Paraxial Design: Coddington's Equations 

The first step in designing a beamline is the same as for any optical system: paraxial design. 
This is a preliminary design process that only considers behavior that is second order in the 
optical path function, that is, focusing effects in the tangential and (separately} in the sagittal 
plane. Third- and higher-order effects (aberrations) are neglected at this stage. One 
manifestation of this level of approximation is that the curvatures at every point of an optical 
surface are approximated by the two principal curvatures at the mirror center (pole). That is, 
surfaces that have a curvature that varies with position, such as ellipsoids, are effectively 
approximated as toroids. Even though we shall consider aberrations and the exact shapes of 
the surfaces later, the paraxial properties, focal lengths, image positions, and so on that we 
calculate· during the paraxial analysis will remain valid. The equations that govern the 
focusing behavior of a toroid, known as Coddington's equations, thus assume a special 
importance in beamline design. They are 

1 1 2 
-+-=---
r r' Rcosa 

1 1 2cosa 
-+-=---
r r' p 

. {1) 

where r is the object distance, r' the image distance, R the major axis, and p the minor axis of 
the toroid. Thus we see that the tangential and sagittal focal lengths, fr and fs are given by 

1 f 1 =-Rcosa 
2 . 

1 p 
fs=--- ' 

2 cos a 
{2) 
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and if one desires that ft = fs (stigmatic image), then evidently r/R = cos2a. These equations 
can be proved by a geometrical argument (Longhurst, 1962) or by setting F 200 and F 020 
equal to zero (see Eq. AI and Table Al). 

4. Geometrical Descriptions of Mirror Surfaces 

Another useful way to approximate a mirror surface is to express it as a two-dimensional 
Maclaurin's series with respect to a coordinate system whose y-z plane is the tangent plane at 
the mirror pole and whose x axis is the normal at the pole. That is 

x = I,aijyizi . 
ij 

The coefficients in this series, the a;/ s, are used as descriptors of the mirror surface shape in 
the aberration series given in the Appendix, which is therefore universal for all mirror shapes. 
These coefficients are associated with particular point ,aberrations, and a study of the 
Maclaurin's series can provide some insight into the nature of the distortions to be expected 
in wave fronts reflected from a mirror. We give in Tables 2 and 3, the aij's for the ellipsoid 
of revolution and t_!te bicycle-tire toroid which is an arc .of the minor radius (p) rotated about 
a point at distance R. From these, one can get thea;j's of the paraboloid of revolution and 

TABLE 2. Ellipsoid of revolution* aij's. 

~ 0 1 2 3 4 

0 0 0 r+r' 0 ~. · 4rr'cos
2
a J 

4rr' cos a tz6 sm2a+ 
2 (r+ r')2 

1 0 0 sinac 1) 0 * 
Go2- ---

2 r r' 

2 cosa(r+ r') 0 
' • 22 [3 4"' (1 cm'aj] 0 * 

4rr' ao2sm a-- ---
2 (r+ r')2 2 

3 
sinac I) 0 * 0 * 

~o-- ---
2 r r' 

4 

[s~·'aC 1 )' 1 ] 
0 * 0 * 

a2o --- +--
' 16 r r' 4rr' 

*Paraboloid of revolution a;.js are obtained from those of the ellipse by setting r'~ oo for a collimating parabola 
orr~ oo for a focusing one, the rays always traveling to the right. 
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TABLE 3. Bicycle-tire toroid* a;fs 

IX 0 1 2 3 4 

0 0 0 1 0 1 -
2p 8p3 

1 0 0 0 0 * 

2 1 0 1 0 * -
2R 4R2p 

3 0 0 * 0 * 

4 1 0 * 0 * 
8R3 

*Apple core torOid a;Js are the same as those g1ven m this table except for the 
replacement R2p ~ Rp2 in 022· 

a point at distance R. From these, one can get the o;/s of the paraboloid of revolution and 
the apple-core toroid (an arc of radius R rotated about its chord at maximum distance p) as 
explained in the table footnotes. Those of the corresponding cylinders are obtained by 
setting j = 0 and those of the sphere by setting R = p. 

As an example of how useful this representation is, consider the case of an elliptical 
cylinder mirror such as one might get by bending techniques. The height x of the surface 
does not depend on z, so we may write it 

(3) 

Hence the curvature is given by 

(4) 

Suppose the segment of the ellipse is chosen to demagnify the object (Fig. 1). We will then 
haver'< r, so that 030 will be negative and the linear term in Eq. (4) will represent a curvature 
that diminishes with increasing y as it should (Fig. 1). In order to produce an unaberrated 
image of the axial object point, that is, a circular wave front in the image space, the ellipse 
needs an 030 term of the proper value as given in Table 2. If the mirror were circular instead 
of elliptical, a3o would be zero (according to Table 3), which is larger than the correct 
(ellipse) value and according to Eq. (3) would cause the wave front to lead the reference 
sphere when y is positive and lag behind it when y is negative. Alternatively one can also see 
from Eq. (4) that the change in 030 represents an error in the mirror curvature (and hence a 
similar error in the reflected wave front) that varies linearly with the position, y, in the 
aperture. This type of twisting of the wave front (which we call aperture defect) moves the 
outgoing ray in the same direction for all points in the mirror aperture, so that the effect on 
the image of a point or a line is to produce an asymmetry of the delivered image. 
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Figure ·1. Ellipse geometry and notation. 

Similar arguments can elucidate other types of image defect due to other departures of the 
mirror from the ideal ellipsoid of revolution. It is important to recognize that incorrect ai/S 
lead to point aberrations (that is, those that do not depend on the z coordinate). Such 
aberrations can, in principle, always be corrected by altering the shape of the single reflecting 
surface we are discussing, while those that do depend on z cannot. · 

5. Toroidal Mirrors 

The surface of the bicycle-tire toroid is the easiest aspheric one to fabricate with good figure 
and finish because it is possible to move the lap in a pseudo-random motion while still 
maintaining contact with the mirror. surface at all points. Thus for toroids (but not for 
conics), one-can use a large lap, which is a great advantage. This leads us to investigate the 
image quality that can be achieved by using a bicycle-tire toroid mirror, which from now on 
we will simply call a toroid. 

The steep sagittal curvature of the grazing-incidence toroid typically leads to a curvature of 
the tangential line image, which is the one we would normally like to use to deliver light into a 
monochromator entrance slit. We will start by evaluating this effect. We are looking for a 
••.dy' = k.dz'2 " type of relationship in the· image plane [where (.dy', &') are the coordinates 
of the ray intersection point relative to the Gaussian image point as origin]. We know from 
applying Eq. (AS) to the astigmatism term (which dominates in determining .dz') that 

llz' = lr'(S + S') .• (5) 

so we need those terms that give a .dy' proportional to &'2, after we take the derivative with 
respect to w and substitute for l from Eq. (5). There are three such terms as discussed by 
Welford (1965): Ft02· Fttl• and Ft20· Thus, 
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r' a ( 1 ) ~Y/c=--- -wf2F120+w/Flll +wF102 . 
cosa dv.· 2 

(6) 

Note that none of these terms depends on z (only on z' ), so that this is still a point aberration. 
We consider the case in which the source is a point in the symmetry plane (z = 0) and there is 
some astigmatism. This leads to a type of line curvature named astigmatic curvature by 
Beutler (1945). There is another type that arises when the source has a finite extent in the z 
direction (for example, a slit). The latter type comes from F 102· with z :1: 0 and was named 
enveloping curvature by Beutler. In practice, both may be present and would be combined as 
shown in Fig. 2 (Welford, 1965). Returning to Eqs. (5) and (6) and the Appendix, and taking 
F102 and F111 from (Noda, 1974), we now have 

(S+S')
2 J 

(7) 

Using the above equation for fs, this becomes 

(a) 

(b) 

(c) 

Figure 2. The two types of line curvature. (a) shows the one due to the finite length of the entrance slit, 
called "enveloping curvature" by Beutler, and (b) shows that of the astigmatic focal line due a point source 
at the entrance slit, called "astigmatic curvature" by Beutler. In practice the two are combined into a shape 
formed by displacing either curve along the other aS shown in (c). The two effects can have either the same 
or opposite signs. 
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fl. , = J2 tan a [3M+ 1- 2r'] 
Yic 4fs fs ' 

(8) 

where M (= r/r') is the magnification. This a useful equation for calculating the depth (sag) 
of the curved line image in the general case where some astigmatism is present lfs * ft). An 
important special case is the stigmatic image ifs = ft). Using/5 = (llr+llr') -1, Eq. (8) becomes 

ll.yl' = .!_12 sin a (M _ 1) . 
c 2 p (9) 

It is noteworthy that the undesirable broadening .dy'Lc• passes through zero for particular 
choices of the conjugates in both Eq. (8) and Eq. (9). When there is a stigmatic image, the 
line-curvature aberration is evidently zero for unity magnification. This is sensible intuitively 
since the mirror surface needed for aberrationless imaging of a point at unity magnification is 
an ellipsoid with the mirror pole in the symmetric position in the Y-Z plane (Fig. 1). Now the 
curvatures of an ellipsoidal mirror vary with position on the surface but take stationary 
(minimum) values in the Y-Z plane. Therefore, a toroid, which has two constant curvatures, is 
a better approximation there than elsewhere. The advantage of unity magnification goes 
further than eliminating line curvature. It also eliminates the aperture defect (F300 
aberration), as we discuss below. The good-quality image provided by a toroid at unity 
magnification has several practical applications in beamline design. 

To see the usefulness of Eq. (8) let us define separate magnifications and image distances 
in the tangential and sagittal planes. Thus M 1 = r'1 /r and M s = r'5/r. Equation (8) now tells 
us that the curvature of the tangential focal line will be zero provided that 

(10) 

so that there ·is always an Ms that gives zero line curvature. This equation is potentially useful 
also. It is also significant that the line curvature has opposite signs on opposite sides of the 
magnification value where it passes through zero. 

We can derive a useful rule of thumb from Eq. (9) that helps in thinking about possibilities 
for using toroids in practical situations. Suppose that the radii are chosen for the image to be 
stigmatic, and the source point is at infinity (M = 0). This is the worst case for using a toroid, 
being the furthest from unity magnification. At grazing incidence (sina ==1), Eq. (9) reduces 
to 

J2 
ll.ylc == 

2
p • (11) 

which is the sag of the toroid in the minor radius direction. This gives a useful "worst-case" 
feeling for the amount of line curvature to be expected and shows that, in general, the time 
when a toroid will work best is when it is acting as a weak lens. 

We turn now to the next-largest toroid aberration after the line curvature, namely, aperture 
defect. The ray aberration .dy'3oo is given by 

(12) 
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which leads, in the general case to 

.1y3oo = %w2{sin a(M -1{ cos a(;+:, )-2a2o ]-4r'a3o} (13) 

Specializing to the case of a toroid for which a3o = 0 and a2o = li2R and assuming we are at 
the tangential focus so that we can apply Coddington's equations, this reduces to 

A , 3 2 sin a( M -1) 
uY300 = -w • 2 R 

(14) 

or in the common case of grazing incidence (sin a= 1) and M<<1, we get another useful rule 
of thumb 

3 w2 
.1y3oo =2R , (15) 

which applies equally to spherical and toroidal mirrors since the sagittal properties are not 
involved. If w is the mirror half-width, then this equation gives the aberration of the marginal 
ray and is thus a rather pessimistic estimator of image degradation. One can see, for example; 
that half the rays have aberrations less than one-quarter that of the marginal ray. The 
aperture defect is the dominant aberration in spherical condensing mirrors such as one would 
use on an undulator beamline with a monochromator that has an entrance slit. As we noted 
above, it vanishes at unity magnification or, more generally, it is zero on the Rowland circle. 

6. SphericaiMirrors: Kirkpatrick-Baez Systems 

The theory given so far for toroidal mirrors applies to spherical ones in the special case p = 
R. In view of this, a stigmatic image is not obtainable using a spherical ·mirror unless a = 0. 
In fact, when spherical mirrors are used at extreme grazing angles (a few degrees or less), the 
astigmatism is essentially complete. That is, the mirror achieves almost no focusing in the 
sagittal plane and the rays continue to diverge (or converge) at the same angle as before. At 
first sight, this appears to be a disadvantage, but in fact it is very useful because one can use a 
second spherical mirror focusing in the sagittal plane of the first to achieve a focused image 
in two dimensions as shown in Fig. 3. Such a scheme has less aberration than a single 
stigmatic toroid at the same grazing angle and is easier to make with good tolerances. It was 
used in a magnifying microscope configuration in the 1940s and 1950s (Kirkpatrick, 1948), 
but is now more often used in a demagnifying geometry to form a microprobe (Underwood, 
1988) or to condense a beam into a monochromator entrance slit. 

Just as toroids are easier than conics to fabricate, so spheres are easier than toroids. The 
easiest surface of all is a sphere with a ·loose tolerance on the radius, which is in many ways 
even easier than a flat. From a fabrication point of view, a flat is like a sphere with a 
particular value of the radius. The use of spherical optics is now established as the way to get 
the best figure and finish accuracy. It is often the only way to get optics with the tolerances 
required to deliver x rays at modern synchrotron radiation facilities without degrading the 
optical quality of the beam. 

The lowest-order aberration is a familiar one from grating theory where it is known that the 
image of an erect object is formed in a plane steeply inclined to the outgoing principal ray. 
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Figure 3. The layout of the two spherical mirrors in the Kirkpatrick-Baez microscope with their tangential 
planes perpendicular. / 

One example of such an inclined focal plane is the Rowland circle. This defect, known as 
obliquity of field, is not represented in the listing in the Appendix because it is a purely in
plane field aberration and there is no field coordinate in the symmetry plane in the Noda 
description. Nonetheless, the behavior can still be described by considering the focusing 
condition F 200 = 0 and noting that the tangent of the angle e between the focal plane and 
the principle ray is given by 

tan9-= ,,aal = tanaa 
or' r M +l 

where aa is the grazing angle of incidence. The angle e is seen to be always smaller than 
the grazing angle: obviously a very unfavorable condition for imaging. The difficulty in 
avoiding the loss of performance caused by this defect was partly responsible for the decline 
in popularity of the Kirkpatrick-Baez microscope as a device for imaging extended object 
fields. However, if one only wishes to image a small distant object such as a slit or the 
synchrotron source, then the defect becomes tolerable and the spherical mirror is very useful. 
Without the steep curvature of the toroid we now have p large and therefore fs large by 
Eq. (2) and the line image becomes essentially straight as one would expect [see Eq. (8)] 
(Hogrefe, et al., 1986). The largest aberration for long-radius spherical mirrors is therefore 
the aperture defect, which we have already discussed and which is typically the main limit to 
performance for the spherical condensing mirrors that are now quite widely used. Another 
limit is the difficulty of making mirrors larger than about one meter long. Current capability 
does extend up to 1.5 meters but with some worsening in cost, weight, and tolerances for 
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figure and finish. The consequence of this size limit is that the horizontal collection angles of 
Kirkpatrick-Baez systems used on bending magnets are rather severely restricted when the 
photon energy is above a few-hundred eV. However, such systems are well suited to use with 
undulator beams. 

7. Ellipse- and Parabola-Shaped Mirrors 

Mirrors shaped as elliptical cylinders and as ellipsoids of revolution are both of interest and 
have been used on beamlines. For example, both have been used as focusing mirrors for the 
SX700 plane-grating monochromator (Petersen, 1982; Nyholm, 1986). They are obvious 
choices for many applications as the two-dimensional and three-dimensional surfaces of exact 
·point-to-point imaging. Paraboloidal cylinders and paraboloids of revolution also have 
obvious applications and, as we have seen, can often be regarded as a special case of an ellipse 
with one conjugate equal to infinity. However, it often turns out that these cases are less 
useful than they might appear. Firstly, the ideal imaging propeny only applies to the axial 
object point, and other points are imaged poorly. This is not a fatal disadvantage, and we 
discuss it funher in the section on the sine condition. Secondly, if one puts a full-size lap in 
contact with any of these surfaces, then the oniy possible motion of the lap relative to the 
surface without losing contact is a linear motion in a single direction for the cylinders and 
rotation in a single direction for the surfaces of revolution. This is not sufficient for good 
polishing, so one must have recourse to zone polishing using a small or a flexible lap. Such 
an approach gives much worse errors in figure and finish and with greater effon and cost 
than using a large lap. The result is that it is hard to get good-quality mirrors in this 
category. The ellipsoidal mirrors in the SX700s have always been th~ limiting component of 
those systems, and their manufacturing tolerances determined the achievable spectral 
resolution. The plane-grating monochromators at the National Synchrotron Light Source 
were similarly limited in resolution by the fabrication tolerances of their parabolic mirrors. 
The most promising strategy for obtaining an ellipse of high accuracy, in this author's 
opinion, is to use bending, which is only applicable for an elliptical cylinder but does allow 
the surface to be manufactured as a flat. Diamond turning is an acceptable way to generate 
the surfaces of revolution, but the polishing problem described above still remains. 

First consider an elliptical mirror whose action is defined by the object and image 
conjugates r and r' and the included angle 2a (see Fig. 1 ). The equation of the ellipse is 
X2fa2 + y2fb2 = 1 where a and b are the semi-major and semi-minor axes, respectively. The 
ellipse parameters a, b and the eccentricity e can be expressed in terms of the user-specified 
quantities r, r' and a by means of the focus-directrix definition of the shape of the ellipse and 
the geometry of Fig. 2: 

2a = r+r' 
(2ae )2 = r2 + r'2 - 2rr' cos 2a 

b2 =a2(J-e2) . 

The coordinates of the pole of the mirror are 

[Y[ 
x0 =±a~1-J;2 

y: = rr' sin 2a 
0 2ae ' 
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where the square root is +, 0, or-, depending on whether r is greater than, equal to, or less 
than r'. The tangential radius of curvature Rp at the pole of the mirror is given by 

{rr')3/2 
R =~-'---

P ab 
' (18) 

and the angle ~ between the tangent at the mirror pole and the x axis is given by 

l(sin a) O=cos- -e- . (19) 

For a parabola, defined by the focal length r and included angle 2a , the equation is y2 = 
4aoX, where ao is the semi-latus- rectum. The latter is given by 

(20)~ 

while the pole of the mirror is the point 

x0 =ao tan2 a Yo= 2a0 tan a (21) 

Rp is given by 

R - 2ao 
P- cos3 a ' (22) 

and the angle ~ between the tangent at the mirror pole and. the x axis is cot -1 a. Rp is useful 
for paraxial design,, and ~ for making coordinate transforms between the X-Y and x-y 
systems. 

The applications of conic mirrors that one encounters in synchrotron practice are_ usually 
quite unsophisticated, and one has little need to understand- the geometry in a serious way. 
For applications in which a high-resolution image is required, as opposed to reproduction of 
a simple shape, this situation changes and one needs to understand the behavior of the wave 
fronts in a more complete way. In such cases, the reader is referred to one of the treatments 
in the literature that deal with conic and similar mirrors at a deeper level (Brueggemann, 
1968; Combleet, 1984; Kersch, 1991). 

8. The Sine Condition and Coma in Axisymmetric Grazing-Incidence Mirrors 

8.1. GENERAL ARGUMENTS 

We tum now to the role of the sine condition in determining the aberrations of grazing 
incidence systems with an axis of symmetry. The-sine condition (Abbe, 1879; Welford, 1962, 
1976) states that for all rays one must have 

sin t/J tPp --=-
sin t/J' t/J~ 

(23) 
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where iP and iP' are the angles of the inward and outward rays to the symmetry axis and fPp 
and iP'P are the same thing in the paraxial regime. Satisfying the condition guarantees tliat a 
system free of spherical aberration is also free of coma. The coma involved in this theorem is 
strictly the aberration of the axisymmetric system, which depends linearly on the field angle 
measured from the symmetry axis and is defined, for example, by Born and Wolf (1980). As 
pointed out by Underwood (1992), the aberrations of grazing-incidence systems with only a 
plane of symmetry (which have been loosely called coma by some workers) cannot be 
corrected by obeying the sine condition or any derivative of it. The proper naming of 
aberrations is discussed further in the Appendix. Here we only emphasize again that since the 
aberrations of greatest interest to us-line curvature and aperture defect-are not really coma, 
they are not corrected by obeying the sine condition. 

Of course, there are grazing-incidence systems that do have a symmetry axis. Such 
systems are widely used in x-ray telescopes. The main ideas on which they are based were 
first described by. Wolter in a landmark paper in 1952, long before the technology needed to 
implement the ideas effectively became available. We give a distillation of these ideas in what 
follows and discuss the possibility of applications to synchrotron-radiation systems. 

The first important idea can be expressed as follows. Given object and image points 0 and 
I lying on the axis and distant u and v, respectively, from the center A of the system (Fig. 4), 
construct a new point, B, such that A and B are harmonic conjugates with respect to 0 and I. 
That means that B divides OI externally in the same ratio that A divides it internally. Draw a 
sphere with AB as diameter. It can be shown that the sine condition is equivalent to the 
requirement that the locus of the intersection points P of the inward rays from 0 and the 
corresponding outward rays to I should be the sphere AB. This locus, called the 

.,..,......-------- ........ 

/ -/ ......... , 
Optical // ~ Principal surface '' '\. 

~/ . \\ 

_P/ \ 

14-----u----

-------....._ 
lc 
I 
I 
I 
I 
I 
I 

-------
/ 

/ 
/ 

I 
I 

/ 
/ 

/ 

I 

\ 
I 

,s 
I 
I 

Figure 4. The geometrical form of the sine condition. Let A and B be harmonic conjugates with respect to 
the object and image points 0 and I. Draw a circle on AB as diameter. The requirement that the locus of 
the ray intersection point P be the circle AB is equivalent to the sine condition. 
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.. KniefHiche" by Wolter, is usually translated "principal surface" in English. From the 
point of view of grazing-incidence systems, which generally have small deflection angles, the 
plane through A normal to the axis will be a reasonable approximation to the sphere. 

Suppose now that we have a segment of a single grazing-incidence ellipsoid of revolution 
with object and image points at the foci of the ellipse (Fig. 5a). We immediately see that the 
principal surface in this case is the surface of the mirror itself, and it is roughly perpendicular 
to the spherical surface that it would need to be to obey the sine condition (Underwood, 
1978). It is obvious from this that any single-reflection grazing-incidence mirror violates the 
sine condition grossly and can never be coma-corrected. On the other hand, consider a 
different segment of the ellipse (Fig. 5b) again operating with the object and image points at 
the foci but this time in normal incidence. In this case, the principal surface is still the mirror 
itself, but now it closely approximates the spherical surface required to satisfy the sine 
condition. A high degree of coma correction is therefore expected. One way to achieve a 
similarly high degree of coma correction in a grazing-incidence system is to use a double 
reflection as in the Wolter telescope and microscope systems (Fig. 5c). Variants of these have 
been widely used in recent years, particularly as x-ray telescopes. In the next section, we give 
plausibility arguments showing how coma is produced and how the double-reflection 
principle can be used to correct it. 

8.2. CALCULATION OF THE COMA CIRCLE 

First consider a paraboloid of revolution being used to focus parallel light (Fig. 6) and 
consider the image formed by a thin ring of reflecting surface PIP2P3. For the rays that enter 
parallel to the axis, shown as thin lines, the image is perfect and the rays unite at the focus F. 
Thus, there is no spherical aberration. For the rays (shown dashed) that enter at a small angle 
o below the axis-parallel ones, the reflected rays from PI and P3 will both be deflected 
downward and will meet the focal plane at F2 and F3, which are both below F. In the 
projection, in which the ray is seen through P2, it appears undeflected and arrives at F2, which 
is above F. From the geometry of the figure we can see that 

FF _ -r'sino 
I- COS(lf'+O) 

FF _ -r'sino 
3 - cos( lJf- 8) 

FF2 = r'tan o . , (24) 

where r' = PIF and the angle 2lf' = PIFP3. If we now take o << lJf, FI and F3 become the · 
same, and both have 

while F2has 

-r'o 
y=--' 

cos lJf 

y= r'o . 

(25) 

(26) 

By considering other reflection points on the ring PI P2P3, we can see that, for the rays 
inclined to the axis by o, the image will be a circle centered on F, and, from (25) and (26), the 
radius of the circle Rc must be given by 
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(a) 

(b) 

(c) 

Actual principal surface 

I 
I 
I 
I 
I 
I 

\ 

,.____Desired 
principal 

---------------------------s-u--rfaces~ 

Actual principal surface 

' ~ 
~ 

" 

' _- Principal surface 
,,~ _..,_-

Figure 5. (a) Single-reflection imaging geometry in which the principal surface is the mirror itself, which 
is roughly perpendicular to the principal surface (shown dashed) needed to satisfy the sine condition. (b) 
Another single-reflection geometry but now at near normal incidence; the mirror and the desired principal 
surface almost coincide and thus lead to much higher quality imaging. (c) Double-reflection Wolter system 
in which the principal surface is a much better approximation to the desired surface than in (a). 

R = r'o (1 +cos"') . 
c 2 cos"' 

(27) 

This has been an approximate treatment (Howells, 1980). Wolter's more accurate one reveals 
that the radius of the circle is actually given by 
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Figure 6. Definition of the points F, F1, F1', F2, F3 used in explaining the origin of coma in the single
reflection, grazing-incidence mirror with a symmetry axis. 

R = r' tan 8 ( 1 +cos tjl) , 
c 2 cos tjl (28) 

and that the center is shifted off axis by s where 

s=- r'tanO( 1- COS'If~ • 

2 COS'If ) 
(29) 

Now consider a grazing-incidence ellipse in the same geometry but with the object point at a 
finite distance r from P1P2P3 and displaced a distance ..6 from the axis so that 8 = 11/r. 

· Since 11f is small for grazing-incidence systems, we have (1 + cos tj!)lcos 'IJf == 2. Consequently, 
Rc == (r'lr).6 or ..6 times the magnification. Moreover, (1 - cos'IJf)/cos'IJf == 0 so s == 0. The 
conclusion is that the image of an off-axis point is a circle centered on the axis with a radius 
such as to pass through the paraxial image point. 

That this aberration is really Seidel coma can be seen from the fact that it varies linearly 
with the field angle 8 and also because each circular zone of the aperture contributes a 
circular aberration figure in the focal plane. Furthermore, each time the reflecting point runs 
once round the ring P1P2P3, the ray traces out the circle twice, which is again characteristic of 
coma (Welford, 1962). 

It is also clear from the above treatment that the normal-incidence conic has the expected 
well-corrected coma. For this case, the value of 'IJf is roughly 180° leading to (1 + cos tj!)lcos tjl 
== 0. 
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With this insight into the dominant field-angle-dependent aberration of the single grazing
incidence mirror, we can understand the well-known "bow-tie" shaped image that used to be 
troublesome at synchrotron radiation facilities before low-emittance electron beams became 
widespread. Consider a unity-magnification mirror comprising a segment of an eJlipsoid of 
revolution that subtends a maximum angle n at the axis. The image of an off-axis point will 
be an arc of the image circle of angle 2!2 passing through the paraxial image of the object 
point. When the object is extended in one direction much more than the other, as 
synchrotron radiation sources often are, the result is a "bow-tie" image as explained in 
Fig. 7. Note that this behavior also follows the theory closely for a unity-magnification 
toroid, which does have a type of symmetry axis with the center points of the object and 
image lying on it. However, as the magnification departs from unity, the behavior initially 
continues roughly similarly, bot the symmetry of the system has been broken and the 
aberrations are no longer strictly Seidel coma. Although there is no sudden change, the 
behavior becomes significantly different for magnifications far from unity. 

Actual "image" 

,.._ 
I ---1 ........................ 

I ---
~-----------,, ,, 

" ,---------:::= 
\ ---
\ ---, __ _ 

Gaussian image 

~------------------ / 
-- I --. 

Figure 7. Explanation of how coma leads to a "bow-tie" image when a mirror with an axisymmetric (or 
nearly axisymmetric) shape is implemented over a segment of angular width n = 16.5°. 
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9. Mirror Pairs in Wolter Geometry 

We now return to the analysis of the focusing system shown in Fig. 6 with a view to 
elucidating the principle of the Wolter double-reflection system. Suppose that the ring 
P1P2P3 contains the joint between the two reflectors and imagine the rays to be reflected twice, 
just in front of and just behind the joint. Considering the same three rays, we find that P2F2 
behaves as before, while the rays through Pt and P3 are now deflected upward by S instead of 
downward and arrive at Ft' as shown in Fig. 6. The rays through Pt and P3 now have 

r'8 
y=+-- ' 

cos 1/1 
(30) 

while the ray through P2 continues to have y = r'S, so that the aberration circle, in the case of 
a Wolter system, has a radius Rw given by 

Rw = r'S (1-cos 1/f) . 
2 cos"' 

(31) 

Equation (31) for R,..has the factor (1-cosl/f)/cos'l/f= 0 for a grazing-incidence system, 
whereas the corresponding factor in Eq. (28) for Rc was approximately equal to 2. Thus the 
introduction of the double reflection brings about a large reduction in the aberration and 
allows one to design grazing-incidence systems with image quality similar to that of the 

. normal-incidence conic. This is in accord with expectations based on the sine condition and 
the principal surface for the double-reflection system as shown in Fig. 5. 

Although this discussion of the Wolter double-reflection principle contributes to our 
understanding of grazing-incidence mirror systems, it does not provide a blueprint for. a new 
generation of improved beamline mirrors: The kind of high-quality image provided by a 
Wolter system is useful in imaging systems such as x-ray telescopes and may eventually be 
useful in x-ray microscopes. However, beamline mirrors are generally condensers and the 
fact that detail features within the object (which is usually the synchrotron source or a slit) are 
not accurately reproduced in the image is unimportant provided the overall size of the image 
is not significantly enlarged. The only useful improvement one would get by using a Wolter 
system as a condenser would be to eliminate the bow-tie effect, but as Fig. 7 shows, the gain in 
the flux that could pass through a slit would hardly make up for the losses of the mirror itself 
and would scarcely repay the investment needed for an extra aspheric mirror and all its 
accompanying systems. 

One might ask whether there could be a role for the Wolter system as a collimating or 
focusing system for a monochromator. This is a different case and the higher-quality ''lens" 
would have certain advantages. For example, even a perfect paraboloid mixes the horizontal 
and vertical divergences of the beam from a bending magnet, and this is a disadvantage in 
illuminating crystal monochromators which could probably be avoided by using. the Wolter 
system. However, even when such advantages are taken into account, it is hard to imagine the 
high cost of a Wolter system of sufficient optical quality being considered acceptable for a 
beamline component. Moreover, the aberrations of focusing and collimating optics in 
grating monochromators must be combined with those of the grating, and the use of a better 
"lens" is an oversimplification of what is needed. The conclusion is that Wolter optics 
probably do not have a role in beamline systems for the time being. This is not to say that 
mirror pairs in general are not useful. Indeed, there are already several examples existing and 
proposed, and we can understand their operation in terms of the principles described above. 
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10. Mirror Pail:'s in General 

There have been several studies carried out to identify the best way to combine the action of 
two mirrors or a mirror and a grating (Pouey, 1981, 1983; Aspnes, 1982; Hunter, 1981; 
Chrisp, 1983). Figure 8 shows several configurations involving two identical toroids, some of 
which tend to obey the sine condition (¢' increases when t/> increases). Others radically 
disobey it (¢'decreases when ¢.increases). The dominant point aberrations F3oo or F120 will 
not be improved by obeying the sine condition, but they can still be made to cancel. We will 
analyze this possibility in terms of wave-front errors. Even for the field aberrations, we 
expect a high degree of correction to be achieved only if there is an exact or approximate 
symmetry axis and the sine condition has an exact meaning. First consider the toroid in 
Fig. 8a and take F3oo as an example. Based on the fact that the circular curvature of the 
mirror is too weak on the upstream side and too strong on the downstream (compared to the 
ideal paraboloid), we would expect the wave front emerging from the first mirror to be 

{a) 

(b) 

Figure 8. Four possible ways of combining two toroidal mirrors in pairs: (a) and (c) violate the sine 
condition grossly because the angle to the axis decreases at the outgoing side when it increases on the 
ingoing side; (b) and (d) satisfy the sine condition in this sense. On the other hand, (a) and (c) are 
configured for approximate cancellation of point aberrations depending on an odd power of w (aperture defect 
and line curvature), while (b) and (d) are not. 
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twisted, as described earlier, by an amount proportional to w3 and to be leading the reference 
sphere above the principal ray and lagging it below. If we apply the same argument to the 
second mirror, we see that wave-front errors of opposite sign will be introduced by the second 
reflection, provided its direction is as shown in Fig. 8a. Note that this is the direction that 
strongly disobeys the sine condition. Similar arguments show that the wave-front errors 
corresponding to line curvature (which also depends on an odd power of w) will also be self
canceling for the same mirror configuration (Fig. 8a). That the configuration in Fig. 8a 
indeed gives a better image of the axial point than the inverse configuration (shown in Fig 
8b) can be verified by ray tracing for particular geometries. It is noteworthy that these types 
of arguments depend on the aberrations being small enough and the mirrors close enough 
together that each ray is reflected at aperture coordinates (w, 1) with substantially the same 
magnitudes (although maybe not the same signs) in each mirror. This is a condition that may 
not be met in real beamlines. 

There are some similar comparisons between pairs of mirrors that do and do not obey the 
sine condition reported by Aspnes (1982) and Hunter (1981). One has to be careful in 
interpreting the results given by Aspnes because the toroids used had magnification values 
limited to unity or infinity. The choice of unity has special consequences because the point . 
aberrations, line curvature and aperture defect, which would normally be dominant, happen to 
vanish at that value. As we have seen, the point and field aberrations must be considered 
separately and their relative importance depends on the source size and aperture size. 
Roughly speaking, the worst that can happen due to a field aberration is an extreme bow-tie 
effect that enlarges the short dimension of the synchrotron source or slit to equal the long 
one. On the other hand, the potential damage due to point aberrations is unlimited. For the 
small source sizes of modem storage rings, the best system design for a condenser will 
normally be one that corrects the point aberrations. 

This discussion does not exhaust the possibilities of two-mirror systems. Readers wishing 
to explore further can refer to the paper by Namioka et al. (1983). 

One can obviously design mirror pairs analogous to those in Fig. 8 using conics. Naturally 
these have no point aberrations, whichever way round they are, since they are the ideal point
imaging surfaces. However, it is important to recognize that manufacturing tolerances are 
likely to be larger for a conic than a toroid and will often more than outweigh the aberration 
advantage of conics. 
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Appendix. The Optical Path Function Expansion for Gratings and Mirrors 

According to Noda et al. (1974), the diffraction-grating optical, path function is given by 

1 1 1 1 1 
F= wFJOo +wF102 +lFOl I +-w2F2oo +-J2Fo20 +-w3F3oo +-wJ2Fl20 +wlFill +-w4F400 

2 2 2 2 8 
1 1 1 1 1 1 

+-w212F220 +-l4 F04o +-w2F2o2 +-l2Fo22 +-l3Fo3I +-w2lF211+ ... 
4 8 4 4 2 2 

(AI) 

We have included the 102 term explicitly, whereas Noda et al. included it implicitly in the 
100 term. F is the actual path length AB, and w and 1 are defined in Fig. Al. In Fijk. i, j, 
and k are the powers of w, 1, and z (or z') in the series expansion ofF, each term of which 
represents a particular geometrical optical aberration. The terms go up to fourth order (i + j 
+ k ~ 4) and are exactly those given by Noda et a1. Those that have j + k = odd have be.en 
omitted, being equal to zero by symmetry, and terms that have i = j = 0 are omitted because 
they do not represent aberrations. For the study of mirrors, we can use a still more restricted 
subgroup of the expressions for the Fijk's. First we reject the parts that represent the 
possibility that the grating is a holographic recording. This leads to 

(A2) 

z 

Figure AI. Coordinate system used discuss the optical path function analysis (after Noda, 1974). 
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where Eijk is the expression given in Table Al. For a beamline mirror, it is often sufficient to 
consider a point source located in the symmetry plane of the mirror. This means z = z' = 0, k 
= 0. We also know that from the Jaw of reflection that f3 =-'-a, so that (A2) becomes 

Fijo = E;jo(a,r,O)+Eijo(-a,r',O) . (A3) 

The function E;jo(a, r, 0) is therefore tabulated in Table A-1, which uses the notations 

cos2 a 
T= 2a20 cosa 

r 
1 

S=--2ao2 cos a 
r 

(A4) 

S ' and T 'are also defined and are the same as S and T except that r is replaced by r'. The aij 

parameters have been discussed in detail for some important surfaces in the main text. 
The terms in Eq. (Al) have some similarities with the terms in the aberration expansion of 

an axisymmetric optical system. The aperture coordinates w and l, for example, are basically 
the same as the aperture coordinates of an axisymmetric system. However, since our system 
has only a plane of symmetry rather than an axis, the notion of field coordinates is 
completely different. In fact, the conventional field angle or field coordinate, which would be 
measured from the axis, no longer exists in the absence of an axis and so aberrations that 
depend on it, such as Seidel coma, have no analog in the present study. One should not make 
the mistake of regarding z or z' as directly analogous to the "axisymmetric" type of field 

TABLE AI. Values of E;jO(a,r,O). 

~ 0 1 2 3 4 

0 0 0 s 0 4a52 .:...s2 
-8l2Q4 cos a 

r 

1 -sina 0 Ssina 0 * ----2a12 cos a 
r 

2 T 0 4a20ao2 - TS- 2a12 sin2a 0 * + 
r 

2Ssin2 a -4a22 cosa 
,2 

3 Tsina 0 * 0 * 2a30 cosa 
r 

4 4aio - T2 
- 4a3o sin 2a 0 * 0 * 
r 

4Tsin2 a 
8a40 cosa + 

,2 
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coordinate. To see the error of this, consider the case in which both types of system are 
specialized to two dimensions so that only their tangential planes are considered. The 
axisymmetrical system still has a field coordinate measured from the axis, but for the plane
symmetric system, the restriction to the tangential (symmetry) plane implies z: = z' = 0! The 
same error might lead us to look in Eq. (AI) for terms like w3z: or w[2z to find the coma 
terms. But these terms are both symmetry-forbidden. There is no coma in the usual sense, 
and none of our coordinates w, 1, or z (or z') can be identified as a conventional field 
coordinate. 

In light of the above, it is perhaps unfortunate that a tradition has grown up in the 
synchrotron-radiation community of giving traditional names to the aberration terms in Eq. 
(Al) based on only partial similarities to the corresponding aberrations of the axisymmetric 
system. For example, the F120 and F3oo aberrations, which have the same dependence on the 
aperture coordinates as conventional coma, have been referred to as "coma," even though 
there could be no similarity in their dependence on the field coordinates, as explained above. 
The present author has been among those guilty of this. It has been pointed out by 
Underwood (1992) that this can lead to important errors in the treatment of coma (see the 
section on the sine condition). · Therefore we propose to continue to use traditional names 
only when the analogy is fairly complete. The following system of names is proposed: 

F 1 oo Grating equation 
F 102 Line curvature 
Fo11 Law of reflection in the sagittal plane 
F 200 Tangential defocus 
Fo20 Astigmatism (sagittal defocus) 
F 300 Aperture defect 
F 120 Line curvature 
F 111 Line curvature 
F 400 Spherical aberration 
F 220 220 aberration 
F 040 Higher-order astigmatism 
F 202 202 aberration 
F 022 022 aberration 
F 031 031 aberration 
F211 211 aberration 

Of course, the treatment given so far does not enable one to calculate the most interesting 
thing, which is the extent of degradation (blurring) of the image that will be caused by any 
particular aberration. We now proceed to address that issue in the geometrical optics 
approximation. For each term of the aberration series, we calculate the ray aberrations 
(displacements from the paraxial image point), which in our notation are known as L1y' and 
L1z': 

~l·o =__.!_(CJF) 
'1 cosa dw ijO ' 

(A5) 

and 
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Azijo = r'( ()F) . az ··o lJ 

The total ray aberration in the Lly' (L1z') direction is the algebraic sum of the Llyijo's (L1z'ijo's ). 
This means that partial or total canceiiation of aberrations (known as "aberration balancing" 
when done deliberately) is possible and is sometimes useful. 

(A6) 

Equations (AS) are central to the geometrical theory of aberrations. Proofs are provided, for 
example, by Welford (1962) an_d Born and Wolf (1980). Neither of these authors includes 
the case of grazing incidence, which differs from the standard case of axial symmetry by the 
factor llcosa in the first of Eqs. (A5). This arises simply from the coordinate change 
involved in rotating the exit pupil so that it can be perpendicular to the outgoing principal 
ray. For the slow systems involved in grazing-incidence optics, Eqs. (A5) give an exceilent 
approximation. For very fast systems of f-1 and faster, more complex expressions are needed 
as provided, for example, by McKinney and Palmer (1987). 

As an example of the application of Eqs. (A5) and (A6), we show some ray traces in 
Fig. A3. The rays traced are shown in Fig. A2 and are done in double precision, so ali 
aberrations up to very high order are accurately represented. To illustrate the action of 
Eqs. (AS) in determining the pattern of ray intersections in the receiving plane, we try to 
explain the general features of the ray traces in terms of the lowest-order aberrations. In the 
general case, we approximate L1x' and Lly' as 

I I 1. 

2 - D 0 + X • -
D 0 + X • -E u -
D 0 + X • D 0 + X • D 0 + X • D 0 + X • c 0 .Q -
D 0 + X • r- D 0 + X • -
D 0 + X • ·u; 

0 a.. 
D 0 + X • D 0 + X • D 0 + X • D 0 + X • 

-2 
D 0 + X • r- D 0 + X • -

_l l 

-10 0 10 
Position (em) 

Figure A2. Layout of the 5 x 15 ray points and their plot labels used in the ray trace shown in Figure A3. 
This figure shows the pattern of intersections of the rays with the tangent plane at the pole of $e toroidal 
mirror. The rays travel from left to right. 
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Figure A3. Ray traces of the images of a point source produced by a toroidal mirror under various 
conditions. The 5 x 15 pattern of incoming rays and their plot symbols are shown in Figure A2. The 
parameters of the system for the image shown in (a) are: r= 10m, r'= 2 rn, a= 88°, R = 95.55123612 rn, 
p = 0.1163316560 m. The mirror area (tangential x sagittal), measured in its tangent plane, is 300 x 40 
mrn2. Rand p are calculated to give a stigmatic image, and we follow the standard practice of using 
extreme precision for calculated numbers input to the ray-trace code. Figure (a) is the image in the focal 
plane for the above system. Figure (b) shows the image from the same system but in a plane 15 ern 
downstream of the focus and with a 5 x 31 ray pattern. In Figure (c) the system is the· same as in (a) except 
that the value of p has been increased to the value (0.1744974840 m) given by Eq. (1 0) to demonstrate that 
the line image indeed becomes straight as predicted. Figure (d) is the same as (c) but with an expanded 
transverse scale so that the residual aberrations can be seen. 
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(A7) 

and 

, r' [ 1 2 3 2] L1y =-- -1)201 +f200w+-Fj00w 
cosa 2 2 . (A8) 

Notice we are ignoring the second and third terms in Eq. (6) in our representation of the line
curvature aberration. This is valid provided we are dealing with a steeply curved toroid 
(p << R). Substituting for 1 from (A 7) into (A8) we get 

(A9) 

Equation (A9) shows some of the characteristics we see in the ray traces. For example, when 
F 020 = F 200 = 0 representing a stigmatic focus, which is the condition prevailing in Fig. 
A3(a), Eq. (A9) predicts a family of parabolas, each with a semi-latus rectum that increases 
with increasing w and a L1y'-directed shift proportional ~o w2. Most of these features can be 
seen in Fig. A3(a). On the other hand, when Fo2o = w = 0 (the plus signs in Fig. A2), 
Eq. (A7) predicts that Liz'= 0. The line traced out by the plus signs does show this behavior 
at low 1, but at high 1, some higher-order aberrations give an increase in Liz'. Study of the rate 
at which Liz' increases with l (measured in plus-sign intervals) shows it to be an F04o effect, 
i.e., Liz' proportional to [3. Figure A3(b) shows more aberrations because now Fo20. F2oo :1:0, 
but it continues to show, basically, a family of parabolas. In the symmetry plane (1 = L1z = 0), 
we have two effects determining L1y', a w effect (defocus) and a w2 effect (aperture defect). 
Starting from the plus sign at (0, 0), we can see that the sizes and directions of the shifts along 
the L1y' axis are intelligible on this basis. Turning to 'Fig. A3(c), we see a large astigmatism 
(long focal line) and no defocus, and we see clearly that application of Eq. (10) in chq_osing p 
correctly delivers a straight focal line. Examination of the expanded diagram in Fig. A3(d) 
reveals that the only horizontal shift along the L1y' axis is the w2 one (aperture defect), as it 
should be, since we are now in focus. Moreover, we see another aberration that gives a slight 
line curvature with equal sizes but opposite signs for positive and negative values of w: the 
hallmark of the F 220 effect. 
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