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THE PROPERTIES OF UNDULATOR RADIATION 

M.R. HOWELLS AND B.M. KINCAID 
Advanced Light Source 
Lawrence Berkeley Laboratory 
Berkeley CA 94720 USA 

ABSTRACT. A new generation of synchrotron radiation light sources covering the VUV, soft x-ray, and 
hard x-ray speclrai regions is under construction in several countries. These sources are designed 
specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce 
high-brightness near-diffraction-limited synchrotron radiation beams. Some of the novel features of the 
new sources are discussed, along with the characteristics of the radiation produced, with emphasis on the 
Advanced Light Source, a third-generation 1.5 GeV storage ring optimized for undulator use. A review of 
the properties of undulator radiation is presented, followed by a discussion of some of the unique 
challenges being faced by the builders and users of the new undulator sources. These include difficult 
mechanical and magnetic tolerance limits, a complex interaction with the storage ring, high x-ray beam 
power, partial coherence, harmonics, optics contamination, and the unusual spectral and angular properties 
of undulator radiation. 

1. Introduction 

Undulators are now established as operational sources of ultraviolet and x-ray radiation at many 
synchrotron radiation facilities around the world. They are providing qualitatively new and better 
types of radiation beams and have been involved in many of the most creative new experiments. 
The success of undulators can be credited to the combined efforts of the originators of the 
undulator concepts (Motz, 1951; Motz et al., 1953; Madey, 1971; Alferov et aI., 1974; Kincaid, 
1977), and to more recent activities such as the work of magnet specialists in the realization of 
practical undulators (Halbach 1981, 1983; Halbach et al., 1981), accelerator designers (Chasman 
et aI., 1975; Green, 1977; Vignola, 1985), builders who incorporated wigglers and undulators into 
real storage rings (Bazin et al., 1980; Artamonov et al., 1980A, 1980B; Brown et aI., 1983; 
Krinsky et al., 1983), and users applying the undulator radiation to scientific problems (Rarback 
et al., 1986; Johnson et al., 1992). A primary motivation for investment in undulators is that 
undulator beams concentrate the x-ray output into fairly narrow spectral peaks that can be 
arranged to cover the desired photon energy range. This greatly reduces the amount of unwanted 
x-ray power and the associated engineering challenges. The experimental benefits of the higher­
brightness beams provided by undulators fall into two main classes: (1) the possibility for 
improved perfonnance of monochromators, and (2) the ability to focus the x-ray beam to a small 
probe. These are essentially applications of the small optical-phase-space area of undulator 
beams and, in general, they use a multiplicity of wave modes. A third related benefit, which we 
consider to be separate, is that a useful amount of power is now available in a single mode. This 
is one of the qualitatively new features of undulator radiation and opens the way for a class of 
experiments that use coherent beams. . 

1 



In this report, we consider the physical basis and characteristics of undulator radiation and the 
calculation of its spectral and angular distribution. We describe the coherence properties of 
undulator beams and show how to calculate the coherence functions needed for applications. We 
examine the effect of real-world variables on the production ofundulator radiation. including the 
beam optics of the storage ring, radiation from the upstream and downstream bending magnets, 
and failure of the far-field assumption that is conventionally used in calculating undulator output. 
We give a brief analysis of the effect of undulator magnetic field errors on the electron beam and 
on the radiated spectrum and discuss several examples from the Advanced Light Source (ALS) 
undulator program. Finally, we make some comments on the capability of present-day undulator 
technology and the perfonnance trade-offs now available. 

2. Fundamentals of Radiation Emission by Fast Electrons: Time Compression 

Following Kim, 1989, we consider an electron with an instantaneous velocity v = Ik (c being the 
velocity of light) on an arbitrary trajectory rU') relative to an origin 0 as shown in 
Fig. 1. An observer is located at x, whose position relative to the electron is specified by the unit 
vector n making an angle e with v. An electromagnetic signal emitted by the electron at time t' 
and traveling in a straight line will arrive at the observer at a later time t, where 

, ,I_x. -'-r",U..2')1 
t=t +- (1) 

C 

The stationary observer sees the electron's motion as a function of time t, which is different from 
r(t') due to the change in time scale represented by Eq. (1). The scale-change factor is given by 

dl dlx - r(I')ll 
-=1+ =1-n-p=I-JlcosO _ 
dt' dt' c 

(2) 

If we now define r for the electron as the ratio of its mass to its rest mass, then we have 

n 

---
o x 

Ii .... 
r(t ') 

o 

Figure 1. Electron trajectory. observer and notation for time c.ompression. 

2 



1 1 
Y= g 2 

1-­
c2 

1 

~(l- {J)(l + {J) 

I-/h-, . 
2y 

If we now expand the cosine in Eq. (2) and use Eq. (3), we arrive at 

.E!.=1.(_1 +82) 
dt'2 y2 ' 

(3) 

(4) 

which allows us to estimate the size of the "time-compression" effect represented by dt/dr'. For 
typical storage rings, the electrons are extremely relativistic and r is of the order of a few 
thousand. This means that if e "" D. then the time is compressed by a factor of a few million. On 
the other hand, if e is greater than a few times lIy, then the 8 2 tenn dominates in Eq. (4) and the 
time compression is much less. The time compression is the factor by which the wavelength of 
signals radiated by the electron is shortened. We see from this argument that, in practical cases, 
the time compression is a very large effect, but it is mainly confined to emission angles within a 
cone of half angle I1yaround the line from the observer to a "tangent point" on the electron 
trajectory. 

Physically, the time compression is due to the fact that a highly relativistic electron follows 
very closely behind the signals it emitted at earlier times. Moreover, the strength of the electric 
field at the observer is proportional to the apparent transverse acceleration of the electron as seen 
by the observer, which will be large when the time compression is large. Thus, the amount of 
radiation will be large within the I1r emission cone. To see this more quantitatively, consider a 
tangent point P on an electron trajectory with local radius of curvature p, and define a curve 
segment AB centered on P and 5ubtending an angle 21yat the center of curvature (Fig. 2a). In 
terms of the emission time. the electron moves from A to P in a time Lit' "" ply and, during that 
time, suffers a transverse displacement L1x of plr 2 (Fig. 2b). In terms of observation time, the 
displacement ill happens in the much shorter time Lit "" L1t'r2= pl2 y3c. Thus, the motion seen by 
the observer has the form shown in Fig. 2c. The sharp kink at P corresponds to a very large 

. transverse acceleration as seen by the observer, 

d 2x L1x 4c2r4 
dt 2 "" (LitA--+P)2 ""-p-

(5) 

which is of order y4 times larger than the acceleration in the emission time frame. On this basis. 
the typical frequency of the radiation should be about l/L1t or 2r3dp . This is in reasonable 
agreement with the so-called "critical frequency" we = 3r3d2p, which is conventionally used to 
characterize a bending magnet spectrum. 

3. Undulators 

3.1. BASIC DESCRIPTION 

An undulator is a device intended to drive the electron in a sinusoidal trajectory. Most 
commonly. this is accomplished by applying an alternating magnetic field in the vertical direction 
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Figure 2. The effect of time compression: (a) the electron trajectory in space, (b) radial coordinate as a 
function of emission time t', (c) the apparent variation of the radial coordinate as a function of observation 
time t. (From Kim, 1989.) See text for further explanation. 
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so that the oscillations lie in the horizontal plane. We begin with the case of an exactly sinusoidal 
field and trajectory as shown schematically in Fig. 3. For this case, 

x=-acos(kuZ) 

dx = k,asin(k,z) 
dz 

(
d

2X) =k2a=-'­
dz 2 max u p 

(6) 

where z is along the undulator axis, x is horizontal, y is vertical, and ku = 2w..lu. The centripetal 
force at maximum curvature (radius = p) is that corresponding to the peak field B and is given by 

m v2 
evxB=-'-

p 
or more p=-­

eB 
(7) 

where e, me, and mo are the electronic charge, mass, and rest mass, respectively. Eliminating a 
and p between Eqs. (7), (8), and (9), we can detennine a value for (dxldz)max that we define to be 
equal to K/y. When defined in this way, the deflection parameter K is given by 

eB 
K=--=O.934A,(cm)B(T) (8) 

ku moe 

and is equal to the maximum angular excursion of the beam in units of 1Iy. From Eqs. (6) and 
(7), we can also obtain the following expressions for a and J3x. = v.!c: 

I ~ I t I ~ I t I ~ I t I ~ I t I ~ I t I ~ I t I ~ I t I ~ I t I 

0= K/y I u= KAJ21rY 

e-

I ~ I t I ~I t I ~ I t I ~ I t I ~ I t I ~ I t I ~ I t I ~ I t I 

I": • 
L= NAu 

Figure 3. Basic undulator layout and notation. 
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K a=--
kur 

(9) 
dx dxdt K. -=--=/3x =-sm(kuZ) 
dz dtdz r 

The value of a is normally rather small (about 10 Ilm or so), which makes it much less than the 
horizontal width of most storage ring electron beams. 

A device that deflects the beam by about l/y or less is known as an undulator (K ,;; 1). One 
that deflects the beam by much more than l/y is known as a wiggler (K» 1). According to our 
earlier discussion of time-compression. the synchrotron radiation beam can be regarded as a kind 
of "searchlight," of angular half width about l/r. pointing along a tangent to the electron 
trajectory. The above defmitions, therefore, suggest that the time variation of the electric field as 
seen by the observer will be roughly sinusoidal for an undulator and will consist of a series of 
pulses for a wiggler. It is, consequently. quite understandable that the spectrum (the Fourier 
transform of the field) of an undulator has a sharp peak with a few hannonics while the spectrum 
of a wiggler has a broad distribution of harmonics. Two representative spectra are shown in 
Fig. 4. It is noteworthy that the wiggler spectrum extends as far as a harmonic number 
approximately equal to K3. 

3.2. THEFUNDAMENTALEQUA1l0N 

The fundamental equation of undulator action sets a relationship between the wavelength of the 
undulator and the wavelength of the emitted radiation. The undulator output wavelength is 
determined essentially by the Doppler shift due to the motion of the radiating electron. The 
amount of the shift. or "time-compression factor." which is also the compression factor between 
lengths. is given by Eq. (2) as 

(10) 

1.0 r-

0.8 I-- N' Undulator Wiggler 

K=3 

£ 0.6 I--
~ - I-- liN 0 .. 

.E 0.4 I--

0.2 I-

0.0 
, , A 1,Illli, 

0 1 2 3 4 5 0 10 20 30 40 50 60 

n n 

Figure 4. Wiggler and undulator comparative spectra. 
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Here, p;, is the average forward velocity of the electron and is given by 

where f3z = /3 cosV' and 'I' is the angle of the electron trajectory to the axis, 
cosine in Eq, (10), using Eq. (3) for 1-/3. and allowing for hannonics. we get 

(11 ) 

By expanding the 

(12) 

This is the fundamental equation describing undulator action derived from the principle of time 
compression. Another point of view. applicable to the on-axis radiation. is that the factor Au/2y2 
represents two separate effects: (1) the Lorentz contraction of the undulator period as seen by the 
moving electron (a factor lIy), and (2) a relativistic Doppler shift of the emitted wavelength due 
to the relative velocity of the electron and observer (a factor 1I2y) . 

We have introduced the deflection parameter K as a measure of the angular excursion. It is 
also a dimensionless measure of vector potential and scales as Au' B for a pure sine-wave 
undulator. In actual undulators, the magnetic field is non-sinusoidal and can be represented as a 
Fourier series with only odd spatial harmonics. as in Eq. (54). The even spatial harmonics are 
normally forbidden by the symmetry of the magnetic structure. We can regard our results in 
Section 3.1 as applying to the first harmonic of such a series and then repeat the development of 
Eqs. (6) through (8) for the mth harmonic. This leads to 

(13) 

The undulator output wavelength is determined essentially by the time compression due to the 
motion of the radiating electron. The amount of time compression is given by Eq. (10). which 
leads to the fundamental equation as shown above. For an undulator field described by a Fourier 
series like Eq. (54), the average forward velocity is modified, The output wavelength is still 
determined by K via the same fundamental equation, but K is now defmed as 

WI eB,~ ~2 K = ~ K2 = -'-"- • where Belf = ~...1t!. 
£.. m k "'''C £..m2 m U""\J m 

(14) 

The relations in Eq. (14) are proved in Appendix 1. It is noteworthy that Belfis neither the rms 
field nor the peak field. 

3.3. DIFFRACDONLiMITS AND11IE CENTRAL CONE 

From Eq. (12), we see that the on-axis wavelength is lengthened (red-shifted) if the receiving 
point moves off the axis or. equivalently. if the electron trajectory has an angle to the axis. We 
also know that the fundamental wave train radiated by the undulator must have N periods. where 
Ni.u = L and L is the length of the undulator. Therefore. even a single electron emission pattern 
on axis must have a spectral spread of about Li'vA = liN for the fundamental or L1J.iAm = limN for 
the mth harmonic. From Eq. (12). we fmd that the amount ofred shift is 
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ilA Am (8)-Am (O) 

Am = Am(O) 
(15) 

Equation (15) defines a useful quantity, r". Further. let us defme an angle a; corresponding to a 
spectral spread L1N'Am = 1I2mN as 

The angle 0; turns out to be important in the analysis of undulator beams. It is the nns width of 
the one·electron undulator beam due to diffraction. One can see this in a rough way by 
calculating the angle of the first minimum of the diffraction pattern of an ideal Jongitudinalline 
source. Consider a parallel beam of rays emitted coherently at angle {J from every point on the 
source. The diffraction minimum will occur when the path difference between the rays from the 
upstream and downstream ends of the source (L - Lease) is equal to)./2. This leads directly to 
8=..))./ L. . 

Equations (15) and (16) show that, provided the collection half angle {Jee is less than (J;, then 
the intrinsic spectral width limN is not much spoiled by red shifting. The radiation within llcc is 
called the central cone and is the most useful part of the undulator emission. The central cone of 
an undulator beam is even more highly collimated than normal synchrotron radiation. Equation 
(16) shows that it has a characteristic angular width 11 (r.fN), which is substantially smaller than 
the lIy width of a bending magnet beam. Because every harmonic is red shifted according to Eq. 
(12), the wavelength of each harmonic will equal that of the fundamental at a sufficiently large 
off-axis angle. The radiation pattern at the fundamental frequency thus consists of a bright 
central peak on the axis and a series ofpanially illuminated rings of angular radius -Jm -11 y". A 
similar argument holds for higher harmonics which have rings due to the hannonics of higher 
number than themselves. 

For the case of a real electron beam, it may happen that the electron beam angular spread (J; is 
greater than £Icc. In this case, the central cone width has to be defined equal to (J; , and this will 
represent a degradation of the spectral brightness of the undulator. Storage rings such as the 
ALS, which are intended to operate with undulators, are designed to have electron beam angular 
spreads that are small compared to £Icc. 

3.4. PRACTICAL REALIZATION OFUNDULATORS 

The practical realization of undulators is now nearly always by means of permanent magnets 
following the methods developed by Halbach, 1981, 1983, and Halbach et al., 1981. We do not 
have space for a review here, but the most common design for building high-field devices (the so­
called hybrid scheme) consists of blocks of permanent magnet material combined with soft iron 
pole pieces as shown in Fig. 5 .. The materials used for the recently completed ALS undulators 
were neodymium-iron-boron blocks and vanadium permendur pole pieces. The ALS devices are 
the largest and most demanding yet attempted, and their achieved field quality and projected 
performances are treated in more detail in a later section. 

The technology of the undulator magnetic structure and the physics of the resulting magnetic 
field distributions set limits on the range of devices that can, in principle, be built. Usually, one 
starts with a knowledge of a photon energy operating range and a magnetic gap defined by the 
requirements of the storage ring injection system. As a start, we may safely assume that the 
output of an undulator falls to zero as K approaches zero. In fact, as we shall see in Section 4, it 
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Figure 5. Construction of a hybrid undulator from current-sheet-equivalent material (CSEM) and steel. 

falls to about half maximum at K = 0.5, and fairly rapidly below that, so that we may reasonably 
. regard K = 0.5 as a limit. Using Eq. (12) with K = 0.5 and () = O. we obtain the value for Au that 
delivers the required minimum wavelength. Accepting this value. we then fmd that the maximum 
wavelength obtainable wi1l be determined, via Eq. (12), by the highest achievable value of K. 
which depends on the field. 

A certain amount of information about the field can be calculated from formulas that apply to 
magnet structures of optimum design (Halbach, 1983); 

Neodymium - iron: 

Bo=344exp[- tll (5.08-1.54 tJJ 

Samarium - cobalt: 

Bo=333exp[ - tll (547-1.8 tJJ 

0.085<1..<0.8 All 

g 
0.07<-<0.7 All 
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]n these formulas, Bo is the peak field and, hence, is an overestimate of Bef!. Using BO to compute 
K or ). would, therefore, be incorrect. An accurate evaluation of the value of K via Eq. (14) (and 
thence J..) requires a knowledge of the Fourier expansion of the field. This can be obtained using 
a program such as POISSON (see for example, Warren et a1., 1987). In pursuing this type of 
design exercise, one possible variation is to reduce Au somewhat to gain some brightness (larger 
N for a given L) and reduce the total power. The trade-off would be a reduction in the spectral 
range. We consider this question further in Section 7.1. 

Although Eqs. (17) and (18) are correctly given in the reference quoted, they have, 
nevertheless, often been misunderstood. Accordingly, we wish to point out several things that 
these equations do not imply. 

1. They can only be used in the stated ranges of values of the gap-ta-period ratio. Outside the 
stated ranges they can give meaningless results. 

2. They give the maximum total field obtainable by good design for a single gap-to-period 
ratio. They do not predict what field this same well-designed undulator will produce at 
other gap-ta-period ratios. 

3. The field given is the peak field, not the rillS field or the Bef! used in Eq. (14). 
Consequently, one cannot obtain a correct value for K using Bofrom Eqs. (17) or (18). 

4. The total field may contain a strong harmonic content. For the smallest gap-to-period 
ratios, the field is highly non-sinusoidal. The greater the hannonic content. the greater the 
difference between Bo and Bef!. 

4. Characteristics of Undulator Radiation 

4.1. CALCULATION OFTI-IE SPECTRAL AND ANGULAR DiSTRlBlJIlONS 

The general problem of calculating radiation from accelerated electrons has received extensive 
attention in the literature as reviewed as reviewed, for example, by Blewett, 1988. The first 
derivation of a synchrotron radiation spectrum was in the 1912 publication by G.A. Schott 
(Schott, 1912), although not much could be done with it at the time. After the experimental 
discovery of synchrotron radiation, Schwinger derived expressions in terms of known functions 
describing bending magnet radiation and clarified the physics of the process (Schwinger, 1949). 
A lucid treatment of the problem, and one which has been widely used by other authors, is 
provided by Jackson. 1975. If the coordinate system is the one shown in Fig. 6, then according to 
Jackson. the flux per unit solid angle is given (in SI units) exactly by 

dI(m) 
--: 
dmdQ 

_I_"m' +f~{nx[n-PJx~ + {n-p)c }eiooc"R{"'<ldJ' 
4"'0 4,,'c _~ (1-n.p)'R r'{I-n.p)'R' 'I 

which reduces in the far field to 

dIU») 1 e2ro2 +f~ __ : ____ nx(nxp)eiro(f-n'x"fC)dt 
drodf2 4nEo 4n2c 

-~ 

, 
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Figure 6. Notation and coordinate systems for radiation calculations. 

z 

Not all applications of these equations are in the far field, and, to avoid the complication of 
Eq. (19), Wang, 1993B, has shown that it can be simplified to 

~ 
, 

4 +-
dl(w) aliw f (') U"'d --= ".2 nle t 
dD 4"." -- (21) 

provided that the distance R to the observation point satisfies R » yA. This requirement is 
much less restrictive than the far-field condition and is satisfied in all cases of interest in 
synchrotron radiation applications. Equation (21) has been used for numerical calculations 
(discussed in a later section) of the radiation pattern to be expected from the ALS undulators 
based on the actual measured fields of the devices. It also provides a much greater degree of 
physical insight into the relationship between the electron's trajectory and its radiation pattern. 

The full calculation of the angular and spectral distribution of undulator radiatibn in tenns of 
known functions was first given by Alferov eI al., 1974. Helical undulators have been treated by 
Kincaid, 1977. More recent treatments of the calculations, starting from Eq. (20), have been 
provided by Hofmann, 1986, and Krinsky eI at., 1983, and an ab initio calculation has been given 
by Kim, 1989. Hofmann's calculation of the spectral power per unit solid angle due to a single 
electron in an undulator leads to the following expression: 

P, -:-_3:::m::.'.!.Y-,·'", ---,.i{.:...2_Y·_8_C_OS_¢_Sm_I_-,.-K_'S_rn..,.3.:...)':-:+,.:{2_Y_·_8S_in_¢_S_ml..:.)'...1 N [Sin( ~ "N )]' 

"(I+K'I2) K" (1+Y"82)' WI l.iW"N 
COl 

(22) 
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where 

+-

Sml = L.11(mau)Jm+21(mbu) 
f=--

+-
Sm3 = L/l(nul,)(Jm+21+I(mb.,)+Jm+21-I(mb,») 

1=-00 
_,---:K~'_2~~ a -

,- 4(1+ r'282)' 
(23) 

and e and ¢ are the radial and azimuthal angles, respectively. In comparing Eq. (22) with the 
corresponding equation given by Krinsky et al., 1983, and after translation of Krinsky's notation 
to Hofmann's, one finds that there is still an apparent disagreement in the Sm3 tenn of Eq. (22), 
which Krinsky expresses in tenns of different Bessel function series. However, upon application 
of the recurrence relation J j1+1(X)+Jj1_1(X) = 2J1lj1(x)lx, the two expressions can be seen to be fully 
identical. 

The first term in the square bracket of Eq. (22) describes the (j polarization and the second 
tenn describes the fr. Obviously, the "contribution is zero in the horizonta1 plane (¢ = 0). In 
fact, as shown by lGtamura. 1980, the undulator radiation is plane-polarized in the (j direction out 
to several central-cone widths so that this is the prevailing form for essentia1ly a11 applications. 
The only frequency dependence in Eq. (22) is that of the sine function, which represents the 
intrinsic fractional bandwidth limN due to the presence of N undulator periods as we have noted 
above and can see in Fig. 4. 

The shape of the light intensity distribution for the first four harmonics is depicted in Fig. 7. 
One can see that the strength of the even harmonics is zero on the undulator axis and that the mth 
pattern has m Jobes along the horizontal axis of the receiving plane and none along the vertical 
axis. The amount of each harmonic present depends, in a complicated way, on all the variables 
and is not represented in the diagram. An important quantity. in practice, is the on-axis flux per 
unit solid angle a ~"Ia!2. We can obtain this under the approximation of zero electron beam 
emittance by setting 8= ¢= 0 in Eq. (22). Considering the exaet harmonic frequencies and using 
the Bessel function properties JI1(O) = ~J1O and LJ1(x) = (-l)J1J/i(x), we find that the SI tenns of 
Eq. (22) vanish and 

Sm3 = Jm+! (mau)-Jm_l (mau) 

2 2 
=0 m even 

m odd K'2 
DU=4' b., =0. (24) 

Using these values in Eq. (22), multiplying by the number of electrons in the undulator at any 
instant (I Llec), and changing from power to photon flux, we finally get the flux per unit solid 
angle 

(25) 

where 
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Figure 7. Intensity distribution (in arbitrary units) for the first four harmonics. 
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Figure 7. (continued). 
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m odd (26) 

This function is easier to calculate and is shown in Fig. 8 for several values of m. We can recast 
Eq. (25) in a useful way in terms of (J; as 

(27) 

This shows that the denominator of the right hand side of Eq. (27), which we call ~m ,is 
approximately equal to the flux in the central cone of the mth harmonic of the one-electron 
pattern. 

4.2. THE EFFECT OF A FINITE ELECTRON BEAM EMITTANCE 

Let us now consider the case when the electron beam has a non-zero emittance. Suppose that the 
center of the undulator is a waist of the electron beam (implying a vertical phase-space ellipse) 
with horizontal (x) and vertical (y) nns beam widths (o-.n O'y) and angular widths (0';, (J }.) given 
by 

(28) 

where Ex,~' are the storage ring emittances and /3x. /3:,. are the electron beam amplitude functions 
at the waist. Suppose that an electron in the mid~plane of the undulator has phase~space 
coordinates (x, x', y. y,), and that we regard the coordinates as representing a ray. Let the arrival 

. point of the ray in a receiving plane distance D downstream be (~, 1]). Then 
~ = x + x'D and 7J = y+ y'D. If each phase-space coordinate is Gaussian-distributed, then the 
normalized probability that the arrival point will be (~, 1]) is 
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Figure 8. The function Fm(K) [Eq. (26)). 
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(29) 

where 

In calculating the total intensity at (;.1]), we need to know the weighted average of 
lIPua2PIJnaw over 8 and ¢. The weight corresponding to (8, ¢) is the probability, from 
Eq. (29), of the ray arrival point (uD, vD), which is the one needed to send light at angles (8 cosq,. 
fJ sin¢) to the point C;. fJ). Thus, the intensity at (;, TO per unit area per unit frequency interval is 

2 _211' 
a l(~, ry) = 2,-f f G(K, 8,¢,w)p(u)p(v)BdBd¢ , 

awas D 0 0 
(30) 

where G is essentially the right-hand side of Eq. (22) and p(u) and p(v) are nonnalized Gaussians 
like Eq. (29) with 

u=I_Bcos¢ 
D 

v=!l-ecos¢ 
D 

Although this treatment is based on the superposition of the intensities of the one-electron 
patterns according to the principles of geometrical optics, it remains valid in the far field even 
when the system is diffraction limited or partly so. However, there are regimes when both 
diffraction is important and the calculation is in the Fresnel region. In these cases. it is necessary 
to cany out a superposition of the fields rather than the intensities. This is covered by the so­
called "brightness convolution theorem" (Kim. 1989), which requires use of the brightness 
function that we discuss in Section 5. 

Since it is important to be able to model the behavior of undulators in real storage rings, it is 
necessary to evaluate large numbers of integrals like Eq. (30). In fact. such evaluations pose one 
of the principal difficulties in designing efficient codes for the frequent "production runs" 
involved in developing and using undulator x-ray sources. One approach to minimizing the 
processing time is to use Gaussian quadrature as proposed by Kincaid. 1993. There exist several 
fairly widely used computer codes capable of implementing the calculations discussed so far 
(Kim, 1989; Jacobsen and Rarback, 1985; Walker, 1992). 

4.2. FLUX AND BRIGHTNESS ESTIMA 1ES FOR REAL ELECIRON BEAMS 

We now tum to assessing the effect of fmite emittance on the flux per unit solid angle and on the 
brightness. The basic approach was worked out on geometrical optics principles by Green. 1977, 
for bending magnet radiation. To adapt Green's ideas to undulator radiation. we use Eq. (16) for 
the diffractive angular spread in place of the vertical opening angle of bending magnet radiation. 
This leads us to a new way to write Eq. (27) for the flux per unit solid angle: 
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afFm I = fFm 
aa 8=~=O 21rI~I}. 

(31) 

where 

(32) 

To obtain a similar estimate of the brightness, we need to know the diffraction-limited source 
size Ur corresponding to the diffraction-limited emission angle (J;, both of which can be 
calculated by approximating the one-electron undulator source as a Gaussian laser mode (Kim, 
1986). At the wavelength of peak emission, which is slightly longer than Am (see Section 6.2), 
this results in the following description in terms of rms width and angular width of the radiation 
beam: 

, fim G = -, L ' 
, Am 

E=CJ,CJ,=-
4H 

The on-axis spectral brightness is then given by 

B (00)- 5>"m 
m , - 4 2~ '("" r 'r'I 

1i ~x~x~Y~r 

where 

I =~cr2+0'2 x x , and 

(33) 

(34) 

To summarize the present section, we show in Fig. 9 the spectral flux per unit solid angle and 
the spectral brightness of a variety of synchrotron radiation sources as calculated by Hulbert and 
Weber, 1992. 

S. Coherence of Undulator Radiation 

5.1. SPAllALANDTEMPORALCOHERENCE 

We are interested in the possibility of interference experiments for which we must create two or 
more interfering beams with a definite phase relationship so as to allow interference fringes to be 
formed. Ther.e are two ways to do this, and each one challenges the degree of coherence of the x­
ray beam in a different way. In the first method, we combine the beam with a delayed copy of 
itself formed by amplitude division as in the Michelson interferometer. If the delay is greater 
than the length of the wave train (the "coherence length" of the beam), then we will not see any 
interference fringes. Thus, for this method, we must have a sufficiently monochromatic beam, 
which is the same as having high temporal coherence. In the second method, we combine beams 
of x-rays taken from two different points on the wave front (wave front division) as in a Young's 
slits experiment. If the distance between the two points is greater than the "coherence width" 
over which a sufficiently good phase relationship exists, then, again, we will not get the desired 
fringes. The requirement for this method is to have good collimation (a source subtending a 
sufficiently small angle at the experiment), which is the same as having high spatial coherence. 
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Figure 9. Flux (a) and brightness (b) for various synchrotron radiation sources from Hulbert and Weber, 
1992. 
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5.2. DEFINrnON OF A MODE OF TIlE UNDULATOR BEAM 

The angle over which a source provides spatially coherent illumination is roughly the wavelength 
divided by the source size. If only this angle is fined with light in each of the horizontal and 
vertical directions, then the beam is said to compose a single mode. Under such conditions, its 
size-angle product (emittance) is approximately equal to the wavelength. To make the concept of 
an undulator mode more precise, we represent the undulator radiation pattern in a phase space 
(x, x', y, y,), which is essentially the same as the phase space used to represent the electron beam. 
Calculations of the paraxial ray optics of the radiation beam can be carried out using matrix 
techniques to manipulate the vectors (x, x') and (y, y') as one would do for the electron 
trajectories. However, as we have seen, there are significant diffraction effects in undulator 
action that are not accounted for by a geometrical optics analysis nor by the computer ray-tracing 
techniques that have been so valuable up to now in modeling beamline optical systems. In 
physical optics, we are obliged to work with the fields, so -we represent the electric field at 
distance z from the mid-plane as E(x, y; z). We will also need the frequency-space representation 
of E, E(x', y', z), where we note that, for the small angles of interest to us, the angle variables 
(x', y) are proportional to the spatial frequencies [(sinx,)/il, (siny')/il J. E and E are thus related 
by a Fourier transfonn. We now define the nns spatial and angular extent of the fields as 

+- +-
f x2IE(x)12 dx f X'21£(X')1

2 
dx' 

Kx')= - ~(x'2) = - (35) +- +-

fI E(x)1
2

dx f 1£(X')1
2 

dx' -- --
As with any signal represented in the direct and frequency domains, the widths of the two 
representations are reciprocally related. In fact, the product of the widths has a minimum value 
that corresponds to a signal with minimum infonnation content. Specifically, the rms widths that 
we have just defined are related (as shown, for example, by Bracewell, 1978) in the following 
way: 

(36) 

The minimum infonnation signal, corresponding to the equals sign in Eq. (36), can be shown to 
be a Gaussian wave packet. Physically, Eq. (36) represents the fact that, if the width is restricted, 
the angle (Le., the frequency) will increase because of diffraction. The minimum allowed value 
of the width-angle product corresponds to the single-mode beam we are seeking to define, and 
this, therefore, has the emittance fe, characteristic of a spatially coherent beam, given by 

, A 
Ec=CT,O",=-

4" 
(37) 

Equation (37) is the same as Eq. (33), which was derived from the Gaussian-laser-mode 
representation. The rectangular function of equal area to a Gaussian has a width -ffii CT, so, 
assuming we are dealing with Gaussian-distributed beams, we find that the phase-space area of a 
single-mode (spatially coherent) beam is given by 
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(38) 

The above results are derived from fundamental considerations and represent a physically 
correct measure of the size of the coherent phase space. However, in practicaJ experiments, one 
usually needs to choose the amount of phase space to accept on the basis of a resolution-flux 
trade-off. Insufficient spatial coherence (accepting too much phase space) leads to a loss of 
resolution in a hologram, for example, while accepting too little phase space is equivalent to a 
Joss of flux. A common compromise is exemplified by the case of illumination of a zone plate 
lens by a pinhole of diameter d at distance z. The complex coherence factor (Born and Wolf, 
1980) of the pinhole source (taken to be incoherently illuminated) is a circular Airy function 
peaked at zero separation of the two test points. This function is of the same form as the 
amplitude distribution of the pinhole Faunhofer diffraction pattern that has a zero at a radius 
1.22Az1d. The bright region inside the zero is known as the Airy disk. To maintain a high degree 
of spatial coherence over the whole zone plate, it would be necessary to accept light only within a 
region near the central peak of the complex coherence factor. However, a compromise that 
causes only slight loss of resolution is to set the diameter of the zone plate equal to the radius of 
the Airy disk. This choice maximizes the so·called "reSOlution-luminosity" product of the system 
and js equivalent to accepting phase-space areas in x and y of (1.221)2 instead of (A./2)2, roughly 
a six-fold flux gain. As an example of the consequences of these ideas, we show in Fig. 10 a 
graph of the spatially coherent fraction of the light from ALS undulators for both the single-mode 
and the half-the·Airy·disk definitions of coherent phase space. The main point, of course, is that 
undulators are capable of delivering enough coherent flux to do many interesting coherence 
experiments. 

5.3. THE DEGENERACY FACTOR 

We traditionally characterize the usefulness of an undulator by quoting its time-averaged spectral 
brightness B, which is the number of photons per unit phase-space volume per unit fractional 
bandwidth per unit time. However, a more fundamental quantity would be its degeneracy 
parameter Ow (Goodman, 1985). This dimensionless quantity is defined as the number of emitted 
photons per coherent phase-space volume per coherence time or the number of photons per mode. 
The coherent phase-space volume is (A.!2)2 and the coherence time is 12/(LlA. c), so Ow is given by 

o = DB(3.)'(£.)(.:IA) = DBA' 
w 2cL11A 4c' 

(39) 

where D is the duty cycle of the storage ring. In practical units, this is 

Ow = 8.33 x 10-" DB(ph/mm' Irnr' 10.1 %BW IS)A(A)' (40) 

It is significant that the bandwidth cancels out and we are left with a measure of the probability 
that two wave trains will overlap in the same wave mode. Since photons are bosons, Ow is 
allowed to be greater than unity; however, it is only with the advent of undulators on modem 
storage rings that values greater than unity have been achieved in the XUV spectral region. As an 
example, the ALS undulators will achieve Ow values greater than unity for wavelengths longer 
than about 50 A. 
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Figure 10. Coherent fraction of the central cone radiation from ALS undulators for the two definitions of 
coherent phase space discussed in the text. 

One of the phenomena that are understandable in terms of 0.,." is the bunching of photoelectron 
counts dU'e to the stochastic variations of the classical electromagnetic field. This is expected to 
be observable with thermal light for which the intensity fluctuates in a chaotic way, but not with 
light from a good-quality laser for which the intensity is stable. Bunching is a separate effect 
from shot noise, which affects all types of light beams equally. Undulator radiation is produced 
as a coherent sum of the fields radiated by one electron, but an incoherent sum of the wave trains 
emitted by the population of electrons. The resulting intensity, therefore, has chaetic fluctuations 
like thermal light, but does not have the black-body spectral distribution. Accordingly, an 
undulator beam should be described as pseudo thennal light with a high Ow indicating a high 
effective temperature. This combination of qualities is more unique than one might suppose. 
Based on the Planck thermal distribution function for a black body, one can show that the 
degeneracy parameter for thermal sources, even very hot ones like the sun, is much less than 
unity (Goodman, 1985). Moreover, it can be shown that 6w is equal to the ratio of the size of the 
photo count fluctuations due to the stochastic variations of the classical electric field to the size of 
those due to shot noise. Therefore, for sources with a very small value of 6w the shot noise 
dominates and bunching is essentially not observable. Thus, even in the visible' region, neither 
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lasers nor thermal sources produce easily observable photo count bunching under normal 
conditions. The only way to imitate a pseudo thermal source with strong bunching is to pass laser 
light (which also has a very high Sw) through a moving diffuser. 

In view of the above conclusions, we expect the measured instantaneous and time-integrated 
intensity in an undulator beam to show chaotic behavior. Specifically. we expect that the 
probability-density function of the instantaneous intensity will be negative-exponential, while that 
of the intensity integrated over a finite time will be Gaussian. The time scale of these fluctuations 
would be on the order of the coherence time of the wave field, which is in the femtosecond region 
for cases of practical interest. These physical quantities would be constants for a well-stabilized 
laser beam. Thus, in spite of the practical similarities between undulator beams and laser beams 
based on their low phase-space volume, the physics of their emission processes and the statistical 
properties of their radiations are very different. 

The degeneracy parameter has importance in other matters as well. For example. it determines 
the detectability of the intensity fluctuations of the classical field in an intensity-interferometer 
experiment (Gluskin et ai., 1992). This is a close parallel to its role in detennining the degree of 
bunching. The conclusion appears to be that soft x-ray intensity-interferometer experiments will 
be quite feasible with undulator beams on third-generation storage rings, while only ultraviolet 
experiments could be considered at older facilities. 

S.4. "DEPTH-Of-FIELD BROADEN1NG" EFFECTS 

Undulators and other sources of synchrotron radiation are essentially small transversely and very 
extended in the emission direction. With an intuition based on geometrical optics, one, therefore, 
expects that it will be impossible to make a perfect image of the source due to depth-of-field 
effects. This has been discussed by various authors, especially Green, 1977, and Coisson and 
Walker, 1985. As discussed by the latter, the effect can be described using the phase-space 
representation. An electron with coordinates (x, x') at z = 0 transforms to (x+x'z, x') at z = z. If, at 
this point, it emits a photon at an angle xe' to its trajectory, then the apparent emission point of the 
photon in the z = 0 plane is x - xe'z. If the trajectory was steered by an angle xs' in traveling to z, 
then the apparent emission point would be x - (xe' + Xs 1z. The point to note is that this 
expression is independent of x'. This implies that depth-of-field broadening is not caused by the 
electron beam angular spread. Rather, it results from the emission angular spread or from 
steering of the beam, as in a wiggler, and is still present even for a zero-emittance beam. The 
calculation of the form of the depth-of-field-broadened source is rather cumbersome. Even for 
the case of a zero-emittance beam (treated by Caisson and Walker), the expression must be 
written in terms of the exponential integral and is infinite at its center point. The more realistic 
case, including a finite emittance but still within the geometrical optics approximation, is treated 
by Green, who represents the source by a new function ef(a, Y) (see Appendix 3), The function 
ef(a, Y) has a finite peak at the origin and, for long sources, has Jarge non-Gaussian tails 
extending out to many sigmas of the original unbroadened source. 

For the case of an undulator, the ·amount of steering is negligible and the possibility for depth­
of-field effects rests on the angular spread of the emission from a single electron. However, we 
have already noted that such spreading of the one-electron pattern is a diffraction effect and its 
counterpart is a broadening of the source (to ~)..mL 14n). Both effects are included in the 
representation of the source as a Gaussian laser mode. The diffraction picture thus includes 
essentially the same broadening effects that we discussed in the previous paragraph. We 
conclude that the "depth-of-field broadening" is simply the geometrical optics approximation of 
the diffraction picture of the single-electron pattern and its convolution with a realistic source 
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with finite emittance. Therefore, diffraction and depth-of-field broadening represent the same 
thing and should not be added in calculations. 

On this basis, we can get some idea of what will happen when we try to image the one-electron 
undulator source. It will behave like any other diffraction-limited source, and we will not see 
evidence that the source had a great depth. As a consistency check, we compute the transverse 
and longitudinal resolutions (J and .61) to be expected from an imaging system at wavelength A. 
and numerical aperture NA = A. I L. This yields 

(41) 

Thus, roughly speaking, the resolution of the optical system would be such that it could not tell 
the difference between a point and an object of the size and shape of the undulator. In summary, 
we expect no hannful depth effects in imaging the undulator source. 

5.5. PARTIAL COHERENCE EFFECTS IN UNDULA TOR BEAMS 

We have already noted that geometrical ray tracing is not adequate to represent all behaviors of an 
undulator source because of diffraction. Nevertheless, it is very desirable to have a way to model 
the perform·ance of undulator beamlines with significant partial coherence effects, and such 
mOdeling would, naturally, start with the source. The calculation would involve a knowledge of 
the partial coherence properties of the source itself and of how to propagate partially coherent 
fields through space and through the optical components used in the beamline. We discuss the 
source properties further below, but it is important to recognize that, although most of the these 
calculations are, in principle, straightforward applications of conventional coherence theory (Born 
and Wolf, 1980; Goodman, 1985), there is not much current interest in this type of problem in·the 
visible optics community. Therefore, there is not a large body of literature to help us with 
solutions to specific cases. For example, even for the rather simple problem of diffraction by an 
open aperture with partially coherent illumination. we have found published solutions only for 
circular and slit-shaped apertures and only for sources consisting of an incoherently illuminated 
aperture of similar shape to the diffracting aperture. Thus, there is no counterpart in these types 
of Fourier optics problems to the highly developed art of ray tracing in geometrical optics, nor is 
there anything as simple as a ray to which an exact system response can be calculated. 

This is not to say that no progress has been made. One of the difficulties of coherence-theory 
calculations is that integration over a large number of variables and a high degree of complication 
is often encountered. A major simplification of the problem for cases where the small-angle 
approximation applies has been achieved by Kim, 1986, 1989. This author has deyeloped an 
extension to the normal coherence theory based on the use of the frequency-space representation 
of the mutual intensity (see Appendix 2) rather than the usual direct-space representation. The 
Fourier transform of the mutual intensity (called the "brightness" by Kim) is shown to be 
invariant with respect to propagation through free space and simple lenses. This means that 
representation of such propagation is very simple and consists of linear operations on the phase­
space coordinates. This allows the brightness to be calculated anywhere without multiple 
integrals. It would take us too far away from our main subject to give a full presentation of this, 
but we do consider in the next section the coherence properties of the source itself. 

We first recall that the undulator source consists of an incoherent superposition of many one~ 
electron patterns, each of which is to be represented as a Gaussian laser mode with rms width and 
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angular width err and err' as given by Eq. (33). Therefore, throughout the source area, there is an 
nns coherence width err with a complex coherence factor p(.1x, L1y) of Gaussian form. Thus, 
apart from the Gaussian intensity distribution of the source. its field correlations are spatially 
stationary. We, therefore, consider the undulator to be a quasi homogeneous source (Gocx:lman, 
1985). The latter is defined as one for which the mutual intensity can be written as 

(42) 

The expressions we use in this section are all separable in x and y so, starting with Eq. (42), we 
give only the x part. Substituting the above Gaussian forms into this equation gives 

( & &) [_x2 _&2] 
'12 x+- x-- =exp --+--

2' 2 2er; 2er1 ' 
(43) 

where 

1 1 1 --=--+-
er2 40-2 er2 

"" x , 

and i12 is a function of the spatial variables (x, Lh). The propagation law for il2 is a standard 
result of coherence theory (Born and Wolf, 1980; Goodman, 1985) and involves a multiple 
integral over four variables altogether, including y and L1y. In general, this is difficult and can be 
avoided by using the brightness function defined by Kim, which is valid for many practically 
interesting cases. The brightness function is denoted by B(x, x';O). It is a function of both 
position and angle coordinates and is defmed by 

+-

B(x,x';O)=C J J12(X+~.x_~)e-ik4:a:'d& (44) --
where k = 2w'J. and C is a constant Using Eq. (43) in Eq. (44), we find 

[
_k2er2 x'2 x2] 

B(x,x';O) = -.fiiCer 1u exp .ax + ~ . 
2 2erx 

(45) 

This forms the starting point for the simplified propagation and optical calculations that are 
enabled by knowledge of the brightness function. It is noteworthy that the brightness function 
used by Kim is not a physically measurable quantity, although several such quantities can be 
obtained from it. It is, therefore, necessary to pay special attention to the meaning of the 
brightness function as described in the published accounts (Kim, 1986. 1989) before using the 
results derived from it. 

As an example of the use of the brightness function, we calculate the mutual intensity at a 
plane distance z downstream of the source. We begin by propagating the brightness a distance z 
using the transform (x ~ x - x'Z, x' ~ x'). This gives 
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(46) 

from which we obtain J12 via the transform that is the inverse ofEq. (44); 

( J
' Xl - Ax+-

J12(X+ & x- Lix)= CT,1r exp -x
2 

+ kai 
2 • 2 XilxC 2ui 2IL 

(47) 

where 

It is noteworthy that 112 is no longer spatially stationary (.:1xpart separable). For the special case 
x = 0, meaning that the two test points are disposed symmetrically about the axis, we see that lt2 
is a Gaussian with a width consisting of the quadratic sum of two terms. The frrst term is equal to 
the van-Cittert-Zernike-theorem result for an incoherent Gaussian source of nns width ax- The 
second term is a constant width of...[2 times (Jr. This shows that the van Cittert-Zernike theorem 
result is a good approximation when it predicts a large coherence width (»..fi err) such as in the 
far field of small sources (the ALS, for example). On the other band, at shorter distances from 
larger sources, the van Cittert-Zernike theorem predicts a very small coherence width, and the 
constant term then dominates. The failure of the van Cittert-Zernike theorem should not be 
surprising since the strong directionality of the undulator beam shows that the incoherent 
representation must break down eventually. 

Before leaving this subject, we should point out that, for designing coherence experiments, it is 
essential to know the shape and extent of the function J]2 [or its normalized fonn, the complex 
coherence factor Jl12 = JI2/(JlIh2)1/2)] at the location of optical components, microscope sam­
ples, etc. This is usually calculated by an approximation, the main one being the van Cittert­
Zernike theorem, in which (under suitable conditions) Jl12(L1x) is given by the Fourier transfonn 
of the source intensity distribution l(x). We show in Table 1 the nature of the available approxi­
mations to help in judging when they can be safely used. The main point is that the coherence 
character of undulator sources varies, in practical cases, over the whole range from essentially 
coherent, to essentially incoherent, so that no simple approximation can cover every case. 

6. Brightness: Compromises and Limitations 

6.1. OPTIMUM: CHOICE OF BETA FUNcnONS 

High brightness is one of the most desirable properties of undulators, and a great deal of effort is 
devoted to optimizing it. One question which arises is whether the P functions at the undulator 
location have a large effect on the brightness. When £ » A, i.e., the source is far from 
diffraction-limited, the brightness is dominated by the electron beam emittance. Conversely, 
when £« A, the source is extremely diffraction-limited, and the brig~tness is dominated by 
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TABLE 1. Methods to find the complex coherence factor downstream of an undulator source. 

RMS 
Coherence 

Assumed Source Width at the 
Character Source* 

Coherent =u, 
(diffraction-limited) 

Quasi homogeneous < u, 
(general case) 

Almost incoherent « as 

Incoherent (electron- = 0 
beam-limited) 

Complex Coherence 
Factor Distance z 

Downstream 

Constant 

Jd(J"iz2)'12 
from Eq. (47) 

~[l(x)l ~[JL12(,1x)ll;'z" 

~[I(x)lIIO" 

*The source is taken to have an nns width as. 
u/0 is the integrated flux, ':F represents the Fourier transfonn. 

Method of Calculation 

None 

Brightness function 

Generalized 
van Cittert-Zernike theorem 
(Goodman, 1985) 

van Cittert-Zernike theorem 

diffraction. In both cases, the brightness is relatively insensitive to p, although there is a shallow 
minimum. On the other hand, when E - A., it is possible to suffer a major loss of brightness by a 
poor choice of /3. To see the effect of the /3 functions, consider the dimensions of a diffraction­
limited x-ray beam. Its phase-space ellipse has semiaxes a" a; while that of the electron beam 
has semiaxes (e.g.) ax, a;, and the two would have similar area because £ - A.. The optimum 
value of the /3 function would match the two ellipses by having a; - a; and ax - a, while the 
worst choice would mismatch them in the manner of a cross. In the latter case, the resulting 
photon phase-space area would be approximately a circle with the crossed ellipses inside it! To 
find the optimum /3, we set the ratio of the major to minor axes equal for the two ellipses 

a; a~ -:- or 
a, ax 

(48) 

leading to 

(49) 

In practice, this is a rather low but possible value for /3. 

6.2. INTENSITY DISTRIBUTION NEAR THE CENTRAL CONE 

It comes as a slight surprise to learn that there is somewhat of a shortage of central-cone radiation 
at the exact frequency of a harmonic even in the one-electron pattern. The angle-integrated flux 
per unit fractional bandwidth is actually twice as high at a frequency Wpeak = mWl(O)(1-1/mN) as 
it is at the exact harmonic frequency mWI (0). This arises because the exact harmonic intensity 
on-axis can only receive contributions from the sine functions in Eg. (22) centered on directions 
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at higher angles, whereas, the hollow cone of frequency OOpeak can receive contributions from 
beams at both higher and lower angles. Thus, there is a peak of intensity on the axis at moo1(O) 
with an approximately Gaussian angular-distribution, but a decidedly non-Gaussian, hollow-cone 
distribution at OJpeak' From a practical standpoint, OJpeak is better for flux while mW1(O) is better 
for brightness. This is illustrated quantitatively for an ALS 5-cm-period undulator in Fig. 11. 

It is important to note that Eq. (33) is true for the frequency OJpeak. The corresponding 
equation at the exact harmonic frequency mcol(O) (Kim, 1993) is 

(50) 

6.3. FAlLURE OF THE FAR-AELDAPPROXIMATION C'NALKER, 1988) 

The far-field approximation is widely used to simplify the calculation of undulator spectral and 
angular distributions, allowing, in particular, their expression in closed form. It consists 
essentially of assuming that the observation direction is constant as the electron traverses the 
undulator, or that all parts of the undulator are at the same distance from the observer. However, 
there are many practical cases, including some at the ALS (which has especially long undulators), 
where the far-field approximation is not satisfied. To evaluate the effect, consider the situation 
depicted in Fig. 12. The observer angle changes from 91 to 82 as the electron traverses the 
undulator, and so, according to Eq. (12), the emission wavelength changes. The result is a 
"chirped" spectrum as shown in the figure. From Eq. (12), the change in wavelength L1A. is given 
by 

(51) 

From Fig. 12, we can also see that 91 = 8/(1+U2D) and (h = 8/(l-U2D). Therefore, the 
spectral lines will be broadened by their own fractional width limN when 19 is given by 

r282{ 1 _ 1 } 
_1_= __ ~~(I~-~L~/2~D~)~2~(I~+iL~/~2D~)~2L 
mN I+K2/2+r2e2 (52) 

After some reduction, this leads to 

(53) 

If we take 19 = (J; as a reasonable collection half angle, then the conclusion is that the spectral 
lines will be broadened significantly. 

6.4. LIMITATIONS ON TWO-PHOTON EXPERIMENTS 

There are two kinds of two-photon experiments that one might consider suited to undulator 
radiation. The first is a two-color experiment involving two coaxial undulators giving two 
different photon energies. This experiment might be imagined as a way to probe a short-lived 
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Figure 11. One-electron intensity distributions near the axis for the ALS 5-cm-period unduJator in the third 
harmonic. Curve (a) is for the ex.act hannonic energy (E) and curve (b) is for an energy EO - limN), 
which is the energy of the peak of the angle-integrated spectrum . .1E is the energy difference between (a) 
and (b). Note that the fonner has a peaked and the latter a hollow-cone shape. 
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FI"') 

Figure 12. Illustration of the effect of the change in observer angle from one end of the undulator to the 
other and the resulting chirped spectrum, which becomes impqrtant when the far-field assumption is not 
satisfied. 

intermediate state, but is not promising for the following reason. Considering that, for a single 
mode, we would have dD"" 2nG'. L1a)1co "" limN, and n(l +K212)Fm(K) is approximately unity, 
then Eq. (27) shows that the number of radiated photons per incident electron is about a "" 1/137. 
Therefore. the probability of getting two photons from two undulators is proportional to (i/137)2, 
which would give a very low rate. 

In the second type of two-photon experiment, two nominally identical photons of energy E 
would do something that needed energy 2E. This experiment is much more promising because 
the probability of getting two photons in the same mode at the same times (from a single 
undulator) is equal to the degeneracy factor Ow, which, as discussed earlier, can be much larger 
than unity for some conditions. This type of experiment can be considered for samples with 
sufficiently high interaction probability. 

6.S. BENDING MAGNET BACKGROUND 

An observer near an undulator axis wiIl see radiation from both the upstream and downstream 
bending magnets. The nature of this radiation will vary from a spectrum characteristic of the 
bending magnet fringing fields at zero and small angles to that characteristic of the bending 
magnet full field at sufficiently large off-axis angles. As an example, we show in Fig. 13 the 
power density due to an ALS 3.65-cm undulator and that due to its upstream and downstream 
bending magnets as calculated by the POISSON magnetic field code. It is noteworthy that the 
two bending magnet beams are unequal and very much weaker than the undulator beam. This has 
important consequences for the operation of beam position monitors, although the situation is not 
as good as it seems because the monitors respond to photons in proportion to their photoelectron 
yield, not their energy. One can also see that the full bending magnet power density is not 
achieved until several milliradians off axis. Another feature with implications for beam position 
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Figure 13. The power density distribution near the axis of an ALS 3.65-cm undulator showing the 
undulator total-power and central-cone distributions and the power density from the fringing fields of the 
upstream and downstream bending magnets using magnetic fields from POISSON. 
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stabilization is that the central cone is a narrow and relatively weak beam buried in a much wider 
and stronger power-density distribution; however, it is the broad power distribution that will be 
sensed by the beam position monitors. 

6.6. IMPERFECf UNDULA TORS: MEASUREMENT AND ANALYSIS OF DEFECfS 

Until now, we have assumed that we were dealing with a perfect undulator. We now tum to 
assessing the effects of the inevitable imperfections of real undulators. The consequences of 
departures of the undulator magnetic field from its nominal fonn are illustrated qualitatively in 
Fig. 14. This figure shows a calculated electron trajectory for a realistic imperfect undulator 
field. Obviously, if one wants to obtain near-theoretical perfonnance from the undulator, one 
must pay careful attention to the size of the field errors and their effects. In seeking to maintain 
good field quality, it is worth considering the consequences of failure. Electrons traversing even 
the most imperfect undulator still radiate, and the power must go somewhere. ]n the worst case, 
all coherent superposition of the one-electron signals from successive periods of the undulator is 
lost and the coherent sum is replaced by an incoherent one. In this case, each half-period of the 
undulator acts like a small bending magnet, and the resulting power output is equal to 2N times 
the output from each half-period. The spectrum then loses the undulator peaks and becomes 
smooth like the spectrum of a wiggler. 
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Figure 14. Three sample orbits for a 50-period undulator with nns field errors of 0.5%. The orbit deviation 
is expressed in units of the amplitude of its ideal sinusoid. 
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The consequences of field errors fall into two main classes: (1) effects on the storage ring, and 
(2) effects on the radiated spectrum. We consider the first category in Section 6.7 and the second 
in Section 6.8. However. the prerequisite for any rational approach to these effects is an ability to 
measure the undulator fields accurately enough to compare the fields of real devices with their 
nominal values and the error tolerances derived from experience or calculation. The first two 
ALS undulators have been extensively measured, and the analysis of the measurements has been 
reported by Marks el at., 1993B. We use the results of this work to illustrate the following 
material. 

Like their counterparts in other laboratories, the ALS group has developed a magnet 
measurement facility for qualification of undulators (Marks et at., 1993A). The measurement 
system consists of two primary elements. The first element is a moving stage with precise 
position measurement and control. This moving stage carries Hall probes capable of measuring 
Bx and By; it can map Bx and By throughout the three-dimensional region between the undulator 
poles with an accuracy of ±D.5 Gauss. Bearing in mind that the undulator gap varies from 14 mm 
to 210 mm and that a single scan of the 4.5-m length of the undulator generates 2500 data points, 
one can see that a great many scans and a large quantity of data are involved in fully 
characterizing the undulator at a reasonable range of gaps. The second measurement system 
element is an integral coil used to measure the field integrals JB)dz and JBxdz, where the z axis is 
the undulator axis. The coil is 550 x 1 cm2 in area and measures the field integrals with an 
accuracy of ±20 Gauss·cm. 

Figure 15 shows an example of a spline fit to a data set~ derived from a scan of the Hall probe 
measuring By as a function of z. This type of data can be analyzed using a variety of processing 
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Figure 15. Measured By as a function of zfor an ALS 5-cm-period undulator. 
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tools including tools to identify field peaks, truncate the data to eliminate end fields, least-squares 
fit the data to a set of harmonics, take the Fourier transform, half-period filter the data, calculate 
the optical phase errors, and calculate the expected radiation emission. We discuss some of these 
tools further below. 

Given that the undulator structure is nominally a periodic function with a symmetry of the 
formj{z + ~2) = -j{z), its field (without the non-periodic parts at the ends) should fit a cosine 
Fourier series with only odd harmonics: 

BheZ)= LBmcos(mkuZ+¢m) • m=l, 3, 5,,, .• (54) 
m 

where ku = 2w"-u. A nonlinear least-squares fit routine is used to fit Bh to the measured data with 
Bm and tAn as fitting parameters. The rms value Ge of the residual By-Bh between the fit and the 
measured data is then defined as the measure of the overall size of the field errors. It includes 
both local errors and global effects such as taper and sag. 

Another interesting technique is the half-period filter, which is applied to the spline fit to the 
measured Bx or By data. This is defined, for example. by 

(55) 

It is implemented in the frequency domain by means of the convolution theorem. For any 
function that is exactly periodic with period Au and that has only odd harmonics, we can see that 
Fh(Z) will be zero. The output of the filter provides a measure of the field errors over a half· 
period range (Le .• local errors). Figure 16 shows the half-period·filtered output corresponding to 
half of a data set similar to the one in Fig. 15. One can see the small values representing local 
errors in the periodic part of the undulator and the large values representing the transition to a 
nonperiodic field at the end. Examination of the above equation also shows that the integral of 
Fh(Z) is equivalent to the integral over Bx or By, provided the limits of integration correspond to 
constant field regions. Therefore, this procedure also allows separation of the contributions to 
IBx dz, IBydz IOto portions corresponding to the periodic and nonperiodic parts, a capability 
which is useful in correcting the field integrals. Integrals like IBy dz are important in considering 
the effect of the undulator on the electron beam as discussed in the foJIowing section. 

6.7. IMPERFECTUNDULATORS: EFFECT ON THE STORAGE RING 

An undulator is generally short compared to a betatron wavelength, so the primary effect of the 
undulator magnetic fields on the electron beam is via their line integral through the device and its 
variation with horizontal and vertical position. We first note that in free space, B(x, y, z} satisfies 
the three-dimensional Laplace equation, a fact which follows from Maxwell's equations. 
Therefore. B(x, y) = iB(x,)" z)dz satisfies the two·dimensional LapJace equation as do its 
components, Bx and B), separately. The values of the line integrals of Bx and By can, therefore, be 
expressed as general solutions of Laplace's equation in polar coordinates (r. 8) as follows 
(Jackson, 1975): 

m=-J B)'dz= LamrmPm(cos9) and 
m=O 

m=_ 
JBxdz= LbmrmPm(cos9) 

m=O 
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Figure 16. Half-period filter output corresponding to a curve like that of Fig. 15. 

where we have imposed the condition that IBydz. and jBxdz are finite at the origin. These are 
essentially Taylor-series representations of the functions JB)' dz, JBxdz. and are equivalent to two­
dimensional multipole expansions of the integrated magnetic fields as shown in Table 2. 

The radius of convergence of the series in Eq. (56) is equal to the magnetic half-gap. The area 
of validity includes the central region where the electron beam core is always located. but does 
not include some regions that lie outside the circle of convergence but still inside the dynamic 
aperture. The latter can contain scattered electrons that are not lost and are in the process of being 
returned back into the central region by radiation damping. If these particles get lost as a result of 
undulator magnetic field errors not represented by the mUltipole expansion, then the beam 
lifetime will be reduced. The field integral variations that are represented by mUltipoles are 
described by the coefficients am and bm, which can be determined from the integral coil 
measurements. The size of the unwanted multipoles, as defined by these coefficients, can then be 
compared to a calculated tolerance value. Table 3 shows the tolerance values calculated for the 
ALS and the storage ring operational consequences expected for each type of unwanted 
multipole. 

In general, it is difficult to correct the errors listed in Table 3 by means of adjustments to the 
accelerator optics because the errors change in value as the undulator gap is tuned. Consequently, 
the best strategy is to make the errors negligible for each undulator. Two exceptions to this are 
the horizontal and vertical dipole components for which there are both fixed corrections (by 
means of permanent magnet rotors) and tunable corrections (by means of the horizontal and 
vertical bump-coil systems). These correction mechanisms are already installed at the ALS and 
other third-generation storage rings to achieve beam stability. 
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TABLE 2. Field integral multipole terms. 

m Field Integral Term Multipole Character 

0 J Bydz=ao dipole 

I j Bydz=alx quadrupole 

2 f Bydz = a; (2x'- y2) 
sextupo!e 

3 f Bydz = ~ (2 x 3 _3xy2) 
octupole 

4 f Bydz = a; (5x'-30x2y2 +3) 
decapole 

0 f Bxd, = bo skew dipole 

I f Bxdz = h,x skew quadrupole 

2 f Bxdz = i (2x'- y2) 
skew sextupole 

3 f Bxdz = i (2x 3 - 3xy2) 
skew octupole 

4 f Bxdz = ~ (5x4 _30x2y2 +3) 
skew decapole 

As an example of the magnitudes of the errors, we show in Table 3 the tolerances used at the 
ALS. The as-built undulators had values of the multipole terms about two to three times larger 
than those in Table 2, so a correction system comprising several small, individually adjustable, 

TABLE 3. Storage ring effects ofundulator magnetic field integral errors. 

Integrated 
Multipole Term 

Horizontal (vertical) dipole 

Quadrupole 

Skew quadrupole 

Sextupole 

Skew sextupole 

Octupole 

Skew octupole 

Tolerance Values Operational Consequences 
atALS 

100 Gauss'cm Vertical (horizontal) steering 

100 Gauss Tune shift 

100 Gauss Horizontal-Io-vertical coupling, beam 
rotation 

50 Gauss! cm Amplitude-dependent tune shift; loss 
of dynamic aperture 

Amplitude-dependent tune shift; loss 

20 Gauss! cm2 
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of dynamic aperture 

Higher-order tune resonances; loss of 
lifetime 

Higher-order tune resonances; loss of 
lifetime 



permanent magnets (Hoyer, ] 992) was instaIled at each end of the devices. By this means, the 
multi poles were brought within tolerance or within the range of adjustment in the case of the 
dipoles. 

6.8. IMPERFECT UNDULA TORS: EFFECT ON TIlE SPECTRUM 

The main purpose of an undulator is to deliver a spectrum as close as possible to theoretical. 
Thus, there is a need for a theoretical analysis of the errors that impair its ability to do this. Such 
an analysis has been provided by Kincaid, 1985. A primary conclusion of this study was that the 
perfonnance of the undulator source is degraded by random field errors and that the degradation 
increases like the square of the harmonic number. The peak value of the flux per unit solid angle 
(and hence also, via Eq. (27), the brightness) of the nth harmonic is degraded by a factor G~ or 
F ~ as follows: 

where 

GLi == e-30gp2 

FLi varies like (gp)-2 

n 

g=a2NJ ,p= N2 
1+­

K2 

g~1 

g;' 1 
(57) 

and C1 is the nns field error. The regime g::;; 1 corresponds to a small degree of wandering of the 
orbit (Fig. 14) while g ~ 1 corresponds to a large one. Some of the conclusions of Kincaid's 
paper are summarized in Fig. 17, which shows the contours G~ = 0.7 and FLi = 0.7 on a log-log 
plot of g against p. The circular plotted points represent harmonics of actual undulators for which 
p and g are known. The fact that the points lie to the left of the contours shows that the predicted 
losses of intensity are less than 0.7. Note that all these examples are in the regime of small 
walking of the orbit, which implies a Gaussian dependence of the degradation factor on the size 
of the field errors. 

The ALS group set a goal of achieving at least 70% of theoretical flux in the 5th harmonic, 
which, according to the above equation for GL1, implies that C1 must be less than 0.25%. There is 
some difficulty in finding a rigorous procedure for determining a value for C1 from measured 
magnetic field data, but roughly speaking, we could identify it with (fe. At the time the ALS 
undulators were started, the 0.25% value was about a factor of 2 beyond the state-of-the-art. 
Nevertheless, it was achieved, even at the minimum gap of]4 mm. 

In view of the arguments following Eg. (16), it is also clear that another factor that can lead to 
degradation of the brightness is the electron beam angular spread resulting from its finite 
emittance. The emittance sets a limit to the quality of undulator fields beyond which further 
improvement to the undulator does not improve its performance. We show an example of the 
effect of emittance in the following paragraph. 

Once an undulator has been built, there is no longer a need to study it by means of a general 
theory. One can simply calculate the radiation output using the actual measured field of the 
device. This can be accomplished more easily than hitherto using the simplified radiation 
equation derived by Wang, 1993B [Eq. (21)]. As an example of the procedure, we show in 
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Figure 17. Curves of constant G.6 and FA on a plot of p against g as explained in the text. The circles 
represent the hannonics of various real undulators as follows: TOK means the transverse optical klystron 
undulator at Brookhaven, BL X means the Beamline to wiggler at Stanford, BL VI means the 54-pole 
wiggler at Stanford, UIO.O means a putative }Q..cm-period undulator at the ALS, and U5.0 means an actual 
5-cm-period undulator at the ALS. 
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Fig. 18 the flux per unit solid angle of an ALS 5·cm·period undulator operated at a magnetic gap 
of 23 rnm (K = 2.13) for three cases: (1) ideal field and zero emittance. (2) actual field and zero 
emittance. and (3) actual field and actual emittance. The spectra are taken from Wang, 1993A. It 
is noteworthy that all the hannonics are reduced by both field error and emittance effects and that 
the size of the reduction increases rapidly with harmonic number as predicted by the theory. The 
first, third, and fifth hannonics are all still large enough.to be useful, consistent with the goals of 
the ALS undulator design and manufacturing program. 

7. Undulator Performance Trade-Offs: Discwsion and Conclusions 

7.1. UNDULATORDESIGN STRATEGIES 

To give an overview of the material presented so far, we consider some of the scaling laws that 
prevail under various conditions. Equation (25) shows that the on·axis intensity scales like N2, 
while Eq. (27) shows that the central·cone flux scales like N. The brightness scaling, given by 
Eq. (33), requires a closer examination. The value and scaling of the I 's depend on whether t~e 
beam size and angle are dominated by diffraction or by the electron beam dimensions. Four cases 
can be distinguished (Kim, 1989): 

(1) ax, cry « err and a;, a;.« er; (size and angle are bo~h diffraction limited) 

(58) 

(2) O"x- O"y» O"r and a;, a y« er; (size is electron·beam limited and angle is diffraction 
limited) 

(59) 

(3) ax, Gy « err and er;, a),» a; (not realistic in cases of interest to us), and 

(4) o"x. O"y »O"r and a;. cry» a;- (size and angle are both electron beam limited) 

(60) 

From these cases, we see that the brightness scales like ~m (which scales like N) when the size 
and angle are either both diffraction limited or both electron·beam limited. On the other hand, if 
the size is electron·beam limited and the angle diffraction limited, then the brightness scales like 
N2. The latter is a common case of which there are several examples at the ALS. 

The conclusion of this discussion for the undulator designer is to use the largest possible N for 
a given L (i.e., the smallest possible Au) consistent with achieving enough field to get to the 
longest wavelength desired. This implies that the gap has been reduced to the minimum 
consistent with storage ring operation. This same philosophy of using the minimum possible Au 
also maximizes the required K, which increases the total power output. 
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Figure 18. On-axis flux per unit solid angle of an ALS 5-crn undulator at K = 2.13 (a) for the ideal field 
and zero emittance, (b) for the actual field and zero emittance, and (c) for the actual field and actual 
emittance. 
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As a final example to illustrate these principles, we show in Table 4 three ALS undulator 
schemes that provide 50-eV photons. Table 4 illustrates two important points: (1) it is possible 
to gain flux by producing low-energy photons at high K, but there is a significant price in higher 
power output, and (2) such unfavorable trade-offs generally happen when trying to generate 
photons at an energy well below that for which the storage ring is optimized. 

TABLE 4. Various designs to generate 50-eV photons using an ALS undulator. 

Existing 8-cm Existing 5-cm Bending Magnet 
Characteristic Low-K Device Device Device for Comparison 

Undulator period (cm) 36 8 5 
Number of poles 12 55 89 
K value at 50 eV 1.2 3.0 3.9 
Field at 50 eVen 0.036 0.40 0.83 
Useful flux (usual units) 4.5 x 1014 3 x 1015 5 x lOIS 9.2 x lOll 

(per 10 mr) 
Brightness (usual units) 5.5 x 1016 5 x 1017 9 x 1017 2 x 1014 

Unwanted power low high higher 
Wiggler Eerit (eV) not a good 600 1250 

measure 
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Appendix 1 

We want to prove that the K2 that should be used in Eq. (12) is LK~. We start with Eq. (10). 
m 

To obtain /3" we use Eq. (3) for /3 so /3, = ~/3' - /3i = ~1-1I r' - /3i and Eq. (9) for /3x 

(including all the hannonics) so /3; = :' ( ~ Km sin mk" r. We then expand sin'mk" = (I -

cos2mkuz)/2 and take the average over z. All the cosine and cross t~rms of the r2 then vanish, 

and we are left with Pl = ~ L K~. Substituting this in the square root and expanding by the 2r m 

binomial theorem (1/y2« 1), we finally get 'Pz = l-~(l +! LK~). When this is inserted 2r 2 m 

in Eq. (10), we obtain Eq. (12), provided that we define K= ~~K~' which completes the 

proof. The equation for Befffollows from Eq. (13). 

Appendix 2 

The mutual intensity h 2 is a measure of the spatial coherence of light at two transversely 
separated points, 1 and 2. It is assumed that the points are illuminated by quasi-monochromatic 
light and that the optical paths to the two points differ by an amount that is much Jess than the 
coherence length of the light. This implies that, in using '12, it is understood that there is full 
temporal coherence and only spatial coherence is to be considered. The mutual intensity '12 is 
then equal fo the correlation function of the optical fields at the points] and 2. 

Appendix 3 

In Green, 1977. the author represents the finite-emittance, depth-broadened source as a function 

ef(a, y), where a = ylay and tan Y = (J L 12, where L is the length of the source and (J is the rms 
Gy 

opening angle of the radiation emission. The value of ef(a, Y) is defined by 

Y { } 
a2 dt 

ef(a,Y) = f exp --cos2 t --. 
o 2 cost 

+-

It is normalized by f ef(a, Y)da = -J2i tan Y. has the 
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value ef(O,y) = -In . at a = O. and asymptotically approaches Yexp(-a 12) for Y < 0.1. 1 (l+SinY) . 2 
2 l-smY 

Graphs and numerical tables are provided by Green for a comprehensive range of values. 
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