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Abstract 

A phase diagram is mapped out for a "2!" dimensional vortex lattice model, in 
which vortex filaments lie in a plane, while both the velocity field and the Green func
tion are three-dimensional. Both positive and negative temperatures are considered. 
Various qualitative properties of turbulent states and of the superfluid A transition are 
well verified, within the limitations of the model; the percolation properties of vortex 
transitions are exhibited; the differences between superfluid and classical vortex motion 
are highlighted as is the importance of topological constraints in vortex dynamics; an 
earlier model of intermittency is verified. 

Key words: Vortices, transitions, turbulence, superfluids, polymers, percolation. 
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1 Introduction 

Statistical analyses of turbulent flows and of three-dimensional superfluid dynamics based on 
vortex lattice representations began to appear almost simultaneously and rely on strikingly 
similar tools. In the superfiuid case, a three-dimensional analogue of the Kosterlitz-Thouless 
renormalization analysis of the A transition has been offered by Williams [1] and Shenoy 
[2]; it relies on Shenoy's ansatz which assumes a polymer-like structure for vortex filament 
near the critical temperature, and uses a "magnet" representations, see below. (A "poly
mer", here and below, means "equal probability self-avoiding walk"). In the case of Euler 
(non-quantum) turbulence, vortices are attracted to an infinite temperature state, whose 
properties are related, in an appropriate model, to properties of polymers [3],[4]. In both 
cases, 'critical exponents are related to the Flory exponent of polymer theory, and transition 
points can be characterized as percolation thresholds; indeed, a simple model has been used 
[5] to suggest that the A-transition and the "turbulent state" can be connected by "uni
versality curves" in a certain phase diagram, and a generalization of the Shenoy-Williams 
analysis to classical fluids has been offered [6]. 

Both analyses, as well as their mutual relation, are somewhat speculative, and an effort 
has been made to back them by numerical analyses of lattice vortex models [5],[7],[8] as well 
as by XY model calculations [9] and by theoretical analyses of simplified models [4]. In the 
present paper we pursue the analysis of vortex theory in both the turbulent and the superfluid 
cases, as well as of their mutual relation, by examining a still-simplified vortex model with 
long-range interactions in "2t" dimensions. The numerical method is a fairly standard 
Metropolis canonical sampling based on a "magnet" representation of vortex filaments. The 
present model is a useful intermediate step before a full three-dimensional calculation because 
it is much cheaper to run and the results are relatively easy to interpret; it allows careful 
convergence studies and bypasses some of the difficulties connected with the gauge freedom 
of the magnet representation. It also allows for dense collections of vortex filaments, unlike 
some of. the previous work, and with the appropriate caveats, the results appear to be 
physically relevant. 

In two and three space dimensions ,at positive temperatures, the vortex/magnet lattice 
model with no topological constraints is dual to the XY model [10], and earlier phase 
diagrams for that model [11] provide a useful source of comparisons. 

The numerical results below support, in the main, the theories quoted above, especially 
when allowances are made for the unusual dimensionality of the model. The differences 
between classical and superfluid vortices are highlighted, and this contrast constitutes one 
of the main results of the present paper. The main surprise is that the A-transition and 
the turbulent state turn out to live on the same branch of a transition curve in a temper
ature/chemical potential phase diagram, and not on two different branches as suggested in 
the short-range interaction model of [5]. The displacement of that branch from ITI = 00 

(classical fluids) to T small (superfluids) appears to be a consequence of the difference in 
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topological constraints between Euler vortex motion and XY -model vortices. This difference . 
may also account for the difference between the values of the standard Flory exponent and 
the one observed in the XY model. 

The paper is organized as follows: after a brief review of negative temperatures (needed 
in the sequel), of earlier work on vortex models of turbulence and of the superfluid transition, 
and of basic facts about the magnet representation, we present our model, its phase diagram 
and other properties. Conclusions are then presented regarding the relation between vortex 
phase transitions and correlated percolation, and regarding vortex and superfluid phase 
transition, intermittency in turbulence, and the non-Euler nature of superfluid vortex motion. 

2 Negative temperatures 

We shall use below negative temperatures Tj for the sake of completeness, we begin by a 
short account, following Landau and Lipshitz [12]. If S is the entropy of an isolated system 
and E the energy, T-1 = ~~; in principle, T can be positive or negative. 

Suppose two isolated systems, one with energy E1 and entropy S1, and one with energy 
E2 and entropy S2, are brought into contact at time t = O. E = E1 + E2 remain constant, 
while ~; > 0, where S = Sl + S2 at t = o. A quick calculation yields 

(with a symmetric equation involving E2 ). If T1 > 0 and T2 < 0, ~ > OJ thus T < 0 
is "hotter" than T > o. Define /3 = T-1 j in terms of /3, one moves from colder to hotter 
temperatures asf3 varies from +00 to 0 through positive values, and then from 0 to -00 

through negative values. /3 = 0 (ITI = 00) in the boundary between T > 0 and T < 0, and 
the maximum of S = S(E). 

As was discovered by Onsager [13] (modern treatments can be found in [4],[14]), the 
temperature of a classical vortex system in the plane is usually negative. A similar conclusion 
was reached in [3] for sparse (i.e. low density) vortex; filament systems in three dimensions, 
and it was conjectured that the conclusion holds for dense systems as well. On the other 
hand, superfiuid vortices belong to a system with positive temperature T. 

Note that if T > 0, the Gibbs probability, proportional to e-E / T , favors states with low 
energy E, while for T < 0, it favors states with high energy E. 

4 



3 Self-avoiding walks and the equilibrium statistics of 
classical vortices 

A self-avoiding walk (SAW) on a cubic lattice is a sequence of N lattice bonds and such 
that no site is visited twice (Fig. 1). A family of SAW's is a polymer if all configurations 
are equally likely. For a polymer, the root mean square average (TN) of the length of the 
straight line that joins bond 1 to bond N on the SAW satisfies the scaling law (TN) I'V NOt 
for large N, where 0' is the Flory exponent. Flory's approximate mean field theory yields 
0' = 3/5 [15]; modern computing yields 0' I'V 0.59 [16]. D = 1/0' is the fractal dimension of 
the polymer. 

A lattice vortex is a family of oriented SAW's, each configuration 4aving probability 
Z-lexp( -E/T), where Z is the partition function, T is the temperature, and E is the hy
drodynamic energy that is produced by a vorticity field supported by the oriented SAW. We 
shall refer to a configuration of a lattice vortex as a (lattice) vortex filament. Lattice filaments 
should be closed; this constraint is easily added to what follows and will be disregarded. An 
appropriate energy can be calculated as follows: the energy of a fluid is E = I dxu2

, where 
u is the velocity. Integration by parts and use of a Green function for a three-dimensional 
Laplacian yield [17] 

E = ~ J dx J dx' e (x) . e( x') . 
811" Ix - x'i (1 ) 

Where e is the vorticity, e = curl u. To find a lattice version of (1), suppose each vortex 
bond is smeared into a thin tube of vorticity. E can be approximated by 

E - (2) 

(3) 

where I, J are multi-indices denoting the origins of bonds occupied by the vortex, r[ is 
a vector pointing in the direction of the bond issuing from I whose magnitude Ir[1 = r[ 
equals the circulation of that vortex, II - JI is the straight-line distance between the bonds 
issuing from I and from J, and the double sum Ei is the "interaction energy", which one 
gets from (1) when x, x' do not belong to the same smeared bond. /1 is the contribution to 
the energy of that part of the Lamb integral (1) where x, x' do belong to the same bond; it is 
a function of the radius of the ~meared bond and of the distribution of vorticity in that bond 
[18]. We assume all such contributions are equal, and if there are N bonds, their "diagonal" 
contribution to the energy is N /1. /1 is also known in this context as the "chemical potential". 
It is analogous to the two-dimensional "chemical potential" of two-dimensional vortex theory 
[19], which is an approximation to the chemical potential for sparse vortex systems. This 
name is a misnomer, as is the other name for /1, "energy per unit length", since the energy 
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associated with a bond depends on all its interactions and, further, a refinement of the lattice 
takes some of the energy associated with a bond from J.l into the double sum Ei . However, 
in the absence of a better word, we shall call J.l the chemical potential without quotation 
marks or further comment. 

The probability of each lattice vortex configuration C is now P( C) = Z-l exp( -E( C) /T), 
E(C) given by (2). If N,J.l are constants, both Z and exp(-E/T) have a factor e-Np./T which 
cancels out, and only the interaction energy Ei matters. A lattice vortex filament with N 
finite models loosely a smooth vortex [3]. A vortex imbedded in an Euler flow typically 
stretches and folds, and N increases. If the mean energy of the vortex remains constant, 
T decreases. A simple argument shows that a smooth vortex corresponds to T < 0, and 
as T decreases, the temperature of the vortex tends towards ITI = 00 (f3 =0). For Euler 
flow, in the limit N --+ 00, f3 = 0 is an uncrossable barrier [3],[4]. For T > 0, vortex 
filaments become very folded, with a fractal dimension 3 (0:' = 1/3); in the presence of a 
small viscosity, folded vortices reconnect into small loops, and f3 = 0 is then the boundary 
between states with long, smooth vortices and states with small disconnected vortex loops, 
i.e., a phase transition. This phase transition also looks like a percolation threshold: long 
vortices for T < 0, small vortices for T > 0 (see below). At f3 = 0 (ITI = 00), the vortex 
is a polymer (E/T = 0), and one obtains a self-similar spectrum of the Kolmogorov form 
E( k) f'V k-'Y, I = Kolmogorov exponent. The heuristic analysis of [20], together with scaling 
relations of [21], yield a relation between I and 0:', the Flory exponent: I = 5 - 2/0:'. Thus the 
Flory mean field value 0:' = 3/5 yieldsthe Kolmogorov value of the exponent, 0:' = 5/3; the 
numerical value of the exponent yields a small correction to this value, in the right direction 
[22]. The f3 = 0 transition point is the only physically relevant equilibrium, as is consistent 
with general considerations on lattice field models [23]. 

One may well wonder why the support of the vorticity has to be self-avoiding. If a lattice 
vortex covers a lattice bond more than once, the energy (2) is infinite, violating an obvious 
requirement. On a cubic lattice, a lattice vortex could visit a lattice site more than once 
without incurring an infinite energy; local interactions vanish because the lattice bonds that 
meet at a given site are orthogonal. We do not allow repeated site visits both because the 
local orthogonality is non-generic in a continuum theory and because the approximation (2) 
misrepresents the interaction between nearby vortex bonds. A generic vortex with accurate 
interactions on all scales would associate a large energy with any type of self-intersection. 

As always, changes in J.l are connected with changes in N. For a classical incompressible 
fluid, conservation of volume reduces the cross-section of a vortex filament as it stretches; an 
argument given in [8], based on a a micro-canonical sampling of vortex configurations, shows 
that stretching, folding and conservation of volume are incompatible for vortex filaments 
that remain on a regular lattice. They become compatible on appropriate irregular lattices, 
giving rise to intermittency. A continuum version of this argument can be found in [22]. 

The analysis just sketched applies to a single filament or to a sparse collection of fila
ments. The present paper is a step towards the analysis of dense systems of vortices in three 
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dimensions. 
Finally, turbulence in a classical fluid is not an equilibrium process. The establishment 

of a Kolmogorovspectrum is irreversible [4]; once that spectrum is established, one can 
conjecture that turbulence can be described as a perturbation of the asymptotic f3 = 0 
equilibrium, without the equilibrium description being changed in drastic ways. 

4 Superfluid vortices and the XY model 

Another system with vortices is a superfluid away from absolute zero. At temperatures 
below the critical temperature TA a superfluid has elementary excitations that consist of 
small-diameter vortex loops, as well as several kinds of sound waves. Long vortices appear 
at T = TA, destroying superfluidity. Long vortices can also appear for T < TA if the external 
circumstances are appropriate (e.g., in the presence of rotation or heating). 

It is often claimed (see e.g. [24]) that though superfluidity is a quantum effect, super
fluid vortices behave like classical vortices. It is further claimed that the main difference 
between classical and quantum vortex motion is the quantization of superfluid circulation; 
it can however be easily deduced from the convergence theory for vortex approximations 
(see e.g.[25],[26]) that under most circumstances, this quantization has a very minor effect. 
We shall bring out below much more important differences between classical and quantum 
vortices: They have different topological constraints, different stretching properties, and 
different ranges of possible temperatures and chemical potentials. 

The order parameter in the A-transition being a complex wave function, of constant 
amplitude for a given T, the superfluid vortex transition is believed to belong in the same 
universality class as the transition in the XY model, which ~s a lattice model in which every 
lattice site is occupied by a vector spin 0" of unit modulus, with a Hamiltonian H = -KL,O"i' 
O"j, where the dot denotes inner product, ]( is a coupling constant, and the summation is 
over all sites and all near-neighbors. A vortex in the XY model is a plaquette around which 
the angle between 0" and a fixed direction varies by 27l'. On a three-dimensional lattice, the 
centers of these plaquettes can be connected into vortex lines. The XY model is dual to a 
vortex model [10], i.e. the partition function can be rewritten as the partition function of 
a vortex system with a Hamiltonian just like (2), with J.t = jJ, a positive number. This dual 
model does not allow a lattice bond to be covered twice with a positive probability, but does 
allow a site to be visited twice; in addition, there is no requirement that circulation around 
vortex lines be preserved, as is necessary in classical flow. 

One can generalize the XY Hamiltonian to H = -](L,O"i·O"j+J.tN, where N is the number 
of vortex points and J.t is the added chemical potential (remember that even when J.t = 0 in 
this last formula, the corresponding vortex model has a positive chemical potential). The 
resulting model has two parameters (T and J.t), and its phase diagram has been mapped out 
for T > 0, in two dimensions in the original Kosterlitz-Thouless analysis [19], and in three 
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dimensions by Kohring and Shrock [11]. (Note that in [11] the authors also map out the 
f{ < 0 region which, as far as is known, is not dual to a vortex system with T < 0.) 

A widely believed vortex picture of the transition from a superfluid state to a normal 
helium state is as follows [1],[2],[27]: As T increases towards T)., the number of vortex 
excitations increases, and they allay each other's energy through polarization, i.e. large 
loops arrange smaller loops so as to reduce the energy. Eventually, at T = T)., large loops 
form and superfluidity is lost; T>.. thus resembles a percolation threshold for vortex loops 
(see below). The Shenoy-Williams theory builds a renormalization flow on this picture; 
the resulting parameter flow is incompletely described (as can be predicted from general 
principles [27]); to complete its specification, Shenoy introduced an ansatz that relates vortex 
radius to vortex scale; this ansatz can be related to an assumption that vortex lines at T). 
have the structures of polymers; the critical exponents depend on the value of the Flory 
exponent Q. The Shenoy-Williams theory is formulated in magnetization variables, about 
which more will be said below. 

The apparent similarity between the superfluid transition at T). and the turbulent state 
at ITI = 00 is of great interest, in particular because the fractal properties of the turbulent 
state are better understood, and because a relation between the two states can justify the 
translation of the Shenoy-Williams theory to the classical case, as in [6]. An earlier analysis 
of this relation, in a model with short-range interactions, was presented in [3]. 

5 Magnetization variables and vortex percolation 

We now present some technical material needed to present our model and to explain the 
percolation aspects of vortex phase transitions. 

The general formulation of magnetization variables and their gauge invariance can be 
found in [28]. Earlier work can be found in [1],[2],[29],[30]. Consider the Euler equation for 
incompressible flow: 

OtU + (u . ~)u = ~grad p , 

div U = 0, 

(4) 

(5) 

where U = (UI' U2, U3) is the velocity, p is the pressure, t is the time, and ~ is the differenti
ation vector. At t = 0, write m = (mI' m2, m3) = U + grad q, where q is an arbitrary scalar. 
One can verify that m satisfies 

atm, + (u . ~)m' - -m,!l,u' , t - tV, j , (6) 

where u= Pm, and P is the orthogonal projection that projects arbitrary vector fields on 
their divergence-free part [31]. Equation (6) is equivalent to the Euler equation (7); since u 
is the vector potential for the vorticitye = curl u, the addition of grad q to u is a gauge 
transformation; the gauge freedom in equation (6) gives rise to the constraint div u = O. 
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One can use this gauge freedom to "localize" the vorticity. For example, consider a 
vortex ring. Its exterior is not simply connected. Pick a surface E that spans the ring. In 
its exterior, which is simply connected, one can write u =-grad q, and use this q in m=u + 
grad q. m will be supported on E. One can further break E into small pieces, and calculate 
.the velocity field induced by each piece. A comparison of that velocity field with the velocity 
field due to a small vortex loop shows that what one has obtained is a representation of a 
large vortex loop in terms of small vortex loops. The equations of motion for the loops, 
which can be deduced from (6), form a Hamiltonian system. 

The lattice version of this construction is straightforward: Consider a closed lattice vor
tex. Span it by a union of lattice plaquettes. If the vortex is knotted, it may have to be 
simplified by simple surgery so that the spanning set of plaquettes does not self-intersect. 
Attach to each plaquette in the span a "magnet" or "elementary vortex", with the same cir
culation r as the original vortex, and oriented so that the union of the elementary vortices 
yields the original vortex (Fig. 2). Note that vortex bonds may cancel at edges common to 
two "magnets". The result is the representation of large loops as unions of magnets (the 
quotation marks are now dropped). 

It is obvious that this representation is not unique, just as q above was not unique. This 
non-uniqueness, a residual gauge freedom, may present interesting problems when a magnet 
representation is used to calculate entropies and free energies for vortex systems. 

The magnet representation gives rise to a percolation problem for vortex filaments. Vor
tices are edges of clusters of same-orientation magnets. There exist infinitely long vortices 
when the occupied plaquettes form infinite connected same-orientation clusters while empty 
plaquettes also form an infinite cluster. What is a connected cluster depends on whether 
two magnets that touch at one point only form one vortex or two vortices (Fig. 3); we shall 
decide this issue when we discuss the numerical results. This decision affects the value of 
the corresponding Flory exponent (see e.g. [32]). 

6 The 2~ dimensional model 

We now present our simplified vortex model. All vortex filaments lie in a plane (unlike the 
vortex filaments in a two-dimensional flow, which are orthogonal to the plane of the motion); 
r = 1. The velocity field is given by the three-dimensional Biot-Savart law 

(7) 

where XI is the center of the vortex bond issuing from I, X is an arbitrary point, and x 
denotes a cross-product. This is the discrete version of the usual relation between vorticity 
and velocity in three dimensions; u(x) has typically three non-zero components. The energy 
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of the system is given by (2). Both (7) and (2) are based on the three-dimensional Green 
function. 

The vortex configurations in their plane are generated by magnets of one orientation. We 
shall refer to the resulting vortex filaments, the edges of magnet clusters, as "macroscopic 
vortices". It is easy to see that even when the magnets all have one orientation (say, coun
terclockwise), the resulting macroscopic vortices can have either clockwise or anticlockwise 
orientation (for example, assume all plaquettes in the plane but one are occupied). However, 
some possi.ble macroscopic vortex configurations cannot be generated by one-orientation 
magnets (see, for example, Fig. 4). To make sure that all macroscopic vortices can appear, 
one has to accept that some of them can be generated in more than one way, and the choice 
has been made not to do so. All the magnets have circulation 1, and thus all the macro
scopic vortices have circulation 1. Thus, in this model, the non-uniqueness of m can· be 
circumvented. 

Consider in particular an m x m sublattice in the plane, with bond length 1. The energy 
of this lattice is, as in (2), E = Er1 . r Jill - JI + p,N, where N is the number of occupied 
bonds (remember that the cancelled vortices between occupied plaquettes are not counted). 
p, is the chemical potential. The problem has two physical parameters: T (or f3 = T-1

) and 
p,. 

The problem presented by the boundary condition at the edges of a finite sublattice is 
severe: the Green function decays like 11m, while the boundary length grows like m. If 
the correlation functions decay rapidly, this may not matter, and if the correlation functions 
decay slowly, they may do so even if the domain is finite. What we did was make the vorticity 
periodic, and cut the Green function off at separations greater than m/2, so that each vortex 
bond interacts only with one other bond, and not with an infinite array of images. We shall 
check that the results are independent of m, and thus that the approximation involved is 
presumably harmless. 

The model just formulated will be solved by a straightforward Metropolis sampling, in 
which the steps consist of an addition or subtraction of individual magnets. Each such 
move changes the status of four vortex bonds; the corresponding interaction energies and 
chemical potentials must be added or subtracted, which costs O(m2 ) operations per move. 
The number of moves for convergence is relatively modest - a few thousands of steps 
for m = 20. All quantities we shall calculate converge rapidly in m: none of the results 
below changes by more than the modest statistical error when m increases beyond 20, and 
some remain substantially unchanged as m goes down to m = 6 (!), in agreement with the 
observation in [11] that a relatively small lattice is sufficient to provide information about 
the phase diagram. All the results below come from runs with either m = 20 or m = 30. 

Note that in the phase diagram the factor (87r)-1 in the energy has been omitted, thus 
redefining the temperature in the case of the classical fluid; the absence of this factor is in 
agreement with usual practice in the case of the XY model. 
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7 The phase diagram 

The numerical calculation produces the phase diagram in the ((3, /J) plane shown in Fig. 5. 
Note that the (3 axis is labeled so that the temperature increases from left to right; T > 0 is 
on the left. Phase I is a "solid" phase, as shown in Fig. 6a, that exists for T low enough and 
/J low enough, when the interaction energy Ei is at a minimum which produces this phase. 
Another branch of phase I is produced for /J large and T < 0, ITllarge, when the high energy 
/IN can overwhelm any negative contribution from Ei . Phase II is a "gas" phase (Fig. 6b). 
Vortex loops are few and far between. Phase II is produced for T small enough and /J large 
enough. 

Phase III is the intermediate "vortex liquid" phase, and has several subregions. In region 
lIIe the mean energy (E) is negative, which is nonphysical. In region IlIa (Fig. 6c) the vortex 
system is more disordered than in region IUb (Fig. 6d); the transition between IlIa and IIIb 
is gradual. 

The transitions between phases I and III, II and III, I and II are second-order, as is the 
case in three space dimensions [11] but not in two [19]. To show the nature of the transition, 
we exhibit in Fig. 7 the specific heat C as a function of /J for (3 = 1. The sharp peaks are 
well defined, and the I---tIII, III---tII transitions are well separated. 

. r--. 

Note that the "liquid" phase transition BD in Fig. 5) is located ,in the T > 0 region. In 
r--. 

the region between the arc BD and the 11- axis longer vortices can exist because interactions 
r--. 

cancel each other, i.e., polarization and screeninIL appear. The transition along BD fits the 

description of the A-transition. The boundary AB of the "solid" phase in the T > 0 half
plane presumably has a horizontal asymptote /J = jlj if there is an analogous phase transition 
in three dimension, then jl S 11-0, where po is the chemical potential in the vortex model that 
corresponds to zero added chemical potential in the XY model. Th,:.re is no direct way to 

evaluate Po in 2! dimensions. We shall argue below that the arc BD also corresponds to 
the phase transition in the classical vortex systems; this transition has been displaced from 
the line (3 = 0 by the assumptions in our model, which allows self-intersection (see Fig. 6). 

Note that in three dimensions the arc analogous to the arc BD crosses the p axis [11], but 
its analogue in two dimensions does not [19]. 

There may be another transition in the region T < 0, /J < 0; it is of no physical interest 
and has not been mapped out. 

In Fig. 8 we reproduce the lines of constant (E) in the ((3, p) plane (note the change of 
scale). On the whole, if T decreases (allowing for the unusual meaning of this phrase when 
T < 0), and (E) remains constant, p must increase, as is heuristically obvious. 

In Fig. 9 we display the average bond occupation fraction s (number of vortex legs divided 
by m2

). In phase I, when all the bonds are occupied,. s = 2. Along the p axis, the model 
is not well defined, but one can check that the limit of the model as (3 ~ 0 from either side 
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is indistinguishable from what one would get by placing magnets on the plaquettes, with 
a probability P = t of any plaquette being occupied and each plaquette being independent 
of the others. In this case, S = .91.(8 =J. 1 because of leg cancellation between neighboring 
plaquettes). Except for large J.L, s increases as T decreases or as J.L increases, as intuition 
would indeed suggest. 

No effort has been made to determine the critical exponents at the transitions, since they 
are not likely to be independent of the dimensionality of the problem. 

In Fig. 10 we display the "spin-spin" correlation function at several pairs of values (/3, J.L). 

In a two- or three-dimensional XY model, a phase <P (angle between spin and a fixed di
reCtion) is defined at every lattice point, with grad cP = u, u = local velocity field. In 2! 
dimensions we defined, by analogy, a spin u = (U3 + £)jlu3 + £1, if U3 + £ 1= 0, u = 0 if 
U3+£ = 0, where U3 is the velocity out of the plane as given by (7), and £ is a small parameter 
(here, £ = 10-6 ). u is then either +1 or -1. The sign of u changes as vortices are crossed, 
in analogy to the effect of vortices on <p; £ is here to make sure that if there are no vortices 
all the spins are aligned. The correlation function S(x) at x is S(x) = (u(x)u(0»j(u 2 (0», 
where the origin is arbitrary, and x is less than mj2 to avoid edge effects on the periodic 
lattice. In Fig. 10 we summarize the variation in S{x) as one moves in the phase diagram. 
Curve 1 corresponds to /3 = 1.5, J-l = 1, i.e., a point in the. vortex "gas" phase; one can 
see long-range order. Curve 2 corresponds to /3 = -0.1, J.L = 1.75; (region IlIa); the order 
is lost. Curve 3 corresponds to /3 = -2, J.L = 1 (region IIh); some order is recovered, in 
agreement with what we know from the sparse vortex model [3], where order is found for 
T«O. 

8 Phase transitions as percolation thresholds; the Flory 
exponent 

Both the A-transition and the turbulent state were described earlier as percolation thresholds, 
in which large organized vortices give way to isolated vortex loops (or vice versa, depending 
on which side one is coming from). In [5],[33] the phase transition was identified by percola-

....... 
tion properties. Does this identification of the transition along the BD arc of Figure 5 hold 
up in our model? 

In site percolation problems, a set of occupied sites that can be reached from one of 
them by stepping only on occupied sites is called a cluster; a similar definition holds for 
bond percolation. In independent percolation, in which sites or bonds are occupied with 
probability p and the probabilities of two sites being occupied are independent of each other, 
the probability P that there exists an infinite cluster is 0 for p < Pc and 1 for p > Pc; 
Pc is the percolation threshold. Connections between polymer theory and percolation have 
been explored, e.g. in [34]. Our vortices here have boundaries of clusters in a "correlated" 
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plaquette percolation problem, where the probability of two plaquettes being occupied are 
not independent. 

On a finite m x m lattice, the probability of a numerically generated cluster in an inde
pendent percolation problem crossing the lattice from sid~ to side is near 0 for P < Pc - c:( m), 
near 1 for P > pc + c:(m), where c: is a small quantity that decays with m. At P = pc, one .,. 
might expect a probability q, 0 < q < 1, that a cluster cross the lattice, as a result of 
edge effects. Efficient algorithms for calculating Pc accurately in independent percolation 
problems exist, but do not readily generalize to correlated percolation. 

The presence or absence of vortex percolation (i.e., of very long vortices) depends on 
what one defines as "neighboring plaquettes". If two plaquettes are viewed as neighbors 
only when they have a common bond, there will be very few large clusters. Here we use 
the same convention as was made in [5]: Suppose the plaquettes have centers at (i,j), i,j 
integers. The plaquette at (i,j), i + j even, is connected to the plaquettes at (i + 1,j + 1) 
and (i - 1,j - 1) (to the northeast and southwest), but is not connected to the plaquettes 
at (i + l,j - 1) (southeast) or (i - 1,j + 1) (northwest). The opposite is assumed when 
i + j is odd. One can verify that the resulting percolation problem is equivalent to a bond 
percolation problem on a square lattice, with Pc = !. Other connections can be found that 
also lead to Pc = !. Vortex lines (edges of clusters) with our convention look as in Fig. 11. 

In Fig. 12 we display the variation of the p!obability P that there exists a vortex that 

crosses the m x m lattice, as one crosses the BD transition line. In the example, f1 = 1.75 
and f3 varies. The transition, marked by an arrow, is near f3 = 0.85. P = 0 in the "gas" 
phase I, and P > 0 in phase III. P remains less than 1 for all f3 in phase III; indeed, one 
expects 0 < P < 1 on the line f3 = 0, when the percolation is independent with p = Pc = ~. 

,-. 

It is as if the whole region III were at the threshold, with the arc BD as the threshold of 
the threshold. The characterization of the transition by means of a percolation property 
survives; the vortices have an increasing probability of crossing the lattice as f3 -+ -00 or 
f1 -+ o. 

The Flory exponent a (which can be defined here as the inverse of the fractal dimension 
of the percolating vortices) is calculated at the transition line as 0.55 ± 0.02, a fair agreement 

. with the value 4/7 ~ 0.57 ... of independent percolation [35]. However, this determination is 
not accurate, and one should not jump to conclusions. One can readily estimate the amount 
of work required to yield several good digits in a, ~nd see that it is beyond reach at the 
moment. 

This exponent is below the a = 0.75 value for two-dimensional polymers, as can be 
expected from the fact that the vortices can self-intersect. The topology of the vortices is 
that of XY model vortices (see below), and this observation is in qualitative agreement with 
the numerical observations of Epiney [9], who found an a markedly below the Flory value 
for XY vortices in three dimensions. Thus the Shenoy ansatz [2] may have to be slightly 
revised. 
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9 Correspondence with the sparse classical vortex model 
intermittency 

.,. We now compare the results obtained here with the sparse vortex model [3],[4],[20]. In 
the sparse model, as the number of vortex bonds increases with energy remaining finite, 
the temperature T decreases; this is the case here too (contrast Fig. 8 with Fig. 9). As a 
consequence, if a vortex "liquid" is imbedded in a Eulerian flow, in which vOltex lines are 

stretched, the temperature of the vortex will decrease until the transition line ED is reached. 
The system cannot g9 any further without energy loss or a discontinuity in the number of 
vortex legs. This situation is discussed at length in [4]. 

Along the constant energy line p, increases as s, the fraction of bonds that are occupied, 
increases. The relation p, = p,( s) is determined by the statistics. In a· classical fluid, p, 
increases as the vortices are stretched, because incompressibility reduces vortex cores and 
increases the corresponding energy_ Under plausible assumptions on the distribution of 
vorticity in a vortex cross-section, one can also calculate p, = p,( s), and the two functions of 
s do not coincide. This observation has been made before, in the context of a micro canonical 
model [8]. The conclusion is that to accommodate a constant or slowly varying energy with 
vortex stretching, vorticity must stretch into a non-uniform grid, creating non-uniformly 
active subregions and thus intermittency [4],[8],[22]. 

The main differences between the model here and the sparse model are (i) the phase 
transition has shifted from the (3 = 0 line into the {3 > 0 region, and (ii) the transition 
from order to disorder is more abrupt in the sparse model. Both phenomena are probably 
the consequences of the freedom to self-intersect that the vortex lines have here; circulation 
is no longer a constant of the Monte-Carlo "motion" and reconne<;:tion is freely allowed. 
Reconnection is well known to mitigate energy variations (see e.g. [36]). To the extent 
that the model here is a better cartoon of XY vortices than of hydrodynamical vortices, it 
highlights the differences between classical and quantum vortices. 

10 Consequences for the dynamics of superfluid 
vortices 

Our model, though it has a peculiar dimensionality and fails to exhaust all vortex configu
rations, provides a qualitative description of superfluid vortex motion, if that motion can'be 
assumed to be in some correspondence with the behavior of XY model vortices. 

Superfluid systems can maintain a constant temperature, and the behavior of their vor
tices is affected, and indeed controlled, by the temperature of the ambient fluid. Super
fluid vortices are then coupled to the molecular degrees of freedom of the fluid, presumably 
through vortex/wave interactions; thus vortex stretching is limited (see Fig. 9). This con-
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clusion agrees well with the visual observation of superfluid vortices, which look smooth, 
and with standard results on their stretching behavior; for example, the rate of change ~~ 
of the line length L per unit volume is ~~ '" L in a classical fluid [4], while it is '" L 3

/
2w in 

a superfluid, where w is a "counterflow" velocity that vanishes at Tx [37]. 
These observations raise the question of what equations of motion describe the tempo

ral evolution of superfluid vortices. The Euler equations for incompressible flow are not 
compatible with constant T, and we have already pointed out above that the quantization 
of circulation is not a major effect. The important qualitative difference between classical 
and superfluid vortices is that the latter do not have to move at the velocity of the fluid 
that surrounds them [37]. Schwarz [38] has proposed that superfluid vortex motion can be 
described by the local self-induction approximation with Hall-Vinen friction and reconnec
tion added. Unfortunately, his paper is marred by numerical errors and an irrelevant, and 
erroneous, claim that the self-induction approximation approximates Euler (i.e. classical) 
vortex motion (39),[40). The self-induction approximation preserves arc-length and thus for
bids stretching, and may well be a better basis for a phenomenological description than 
Euler vortex motion. Reconnection, not allowed by the Euler equations, has been seen to 
be an important feature of XY vortices and thus presumably of superfluid vortices (as well 
as of viscous vortices, not discussed here (4)). It is likely that the correct description would 
be something intermediate between Euler vortex motion and self-induction motion; possi
ble candidates can be found e.g. in Klein and Majda [41). We shall present an exhaustive 
analysis of the possibilities, as well as an analysis of the effect of Hall-Vinen friction, in a 
separate publication. 

11 General conclusions 

We have presented a simplified model of vortex equilibria on a lattice, which has reasonable 
qualitative properties, and provides information about the properties of the "polymeric" 
models of turbulence, as well as a useful basis for speculation on superfluid vortex motion. 

The methodology can be extended to three-dimensional vortex equilibria as well as to 
other defect-dominated statistical phenomena, as will be shown in subsequent work. 
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List of Figure Captions 

1. Self avoiding walk on a lattice. 

2. A vortex as the edge of a magnet cluster. 

3. Neighbors or not? 

4. A vortex configuration that cannot be built up with one-orientation 
magnets. 

5. The phase diagram. 

6. The phases: 

(a) "solid" I; 

(b) "gas" II; 

(c) "liquid", IlIa; 

1\ 

(d) "more organized liquid" , I1Ib. 

7. Specific heat as a function of chemical potential, f3 = 1. 

8. Constant energy curves in phase diagram. 

9. Curves along which the fraction of occupied bonds is constant. 

10. Spin-spin correlation functions: 

(1) f3 = 1., J.l = 2. (phase II); 

(2) f3 = -2., J.l = 1. (phase IlIa); 

(3) {3 = -0.1, J.l = 1.75 (phase IIIb). 

11. Magnet cluster edges according to the convention in the text. 

12. Percolation probability as a function of chemical potential as one crosses a phase tran
si tion line. 
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