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I. INTRODUCTION 

In the last decades it was realized that certain features of the nuclear problem 
can only be described by going beyond the nonrelativistic approach. Relativistic 
treatments of the nuclear many-body problem have advantages in several respects, for 
instance!' 2: An extremely useful Dirac phenomenology in the description of nucleon
nucleus scattering3; the shift of the equilibrium density from the so-called "Coester 
band" towards the "experimental" value via a new saturation mechanism4. 5; the 
natural incor:I~oration of the spin-orbit force!' 2 and the successful description of 
finite nudei6• 7, etc. . 

Naturally, there is a great desire to explore the relativistic many-body quantum 
field approach in many respects. Among them is the fundamental challenge to under
stand the properties of nuclei in terms of the interactions between its constituents. A 
reliable microscopic calculation of the equation of state would be a great benefit for 
many branches of physics, as for instanceO in the physics of supernova explosions8, 
neutron stars9 and heavy-ion scattering! . One of the basic attempts in this di
rection is the relativistic treatment of symmetric and asymmetric nuclear matter in 
many-body approximations with dynamical two-body ·correlations with modern one
boson-exchange potentials adjusted to the two-nucleon problem. In the next sections 
we are going to address this problem in the frame of the Green's function approach 
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and discuss some problems as, for instance, consistence questions, predictive power, 
limitations etc. 

II. GENERAL THEORY 

In the model . the forces between the nucleons are mediated by the exchange of 
mesons, hence the dynamics of the particle is governed by a Lagrangian density of 
the following form1, 2, 4, 5, 11-15: 

L,N denotes the Lagrangian density of noninteracting nucleons; similary, L,M de
scribes the different free meson fields, which interact via L,M with the nucleons. 

A suitable tool for the treatment of many-body systems is the Green's function 
scheme. The formulation of the problem in ladder-type approximation is an estab
lished procedure and resembles in its formal structure closely to the nonrelativistic 
treatment 16, 17. One obtains a coupled system of the Dyson equations for the G
function and the effective scattering matrix T in matter 

{( 00)-1(1,2) - E(I, 2)}G(2, 1') = <5(1,1'), 

< 12ITll'2' >=< 12IVll'2' - 2'1' > + < 121Vl34 > A(34,56) < 56ITll'2' > . 

We employ the convention to sum or to integrate over all doubly occuring variables. 
Here V denotes the OBE-potential 

< 12IVll'2' >= L < 12IVMll'2' >, 
M=(O',w, ... ) 

and the self-energy is given by 

E(I,2) = -i < 141TI52 > G(5,4). 

The H- or HF-approximation are defined by T = V(VAS ), respectively. 
For the intermediate 15\-propagator a standard choice is the Brueckner pro~aya

tor (cf. Refs.4, 5,11-13, ); but one also use the so-called A-approximations1 , 4, 
defined as (00 denotes the free propagator; i j = 00, 01, 11 ): 

. { 00(1,3)00(2,4) 
-iAi i(12,34) = ~(GO(I,3)G(2,4) + G(I,3)00(2,4)) 

G(I, 3)G(2, 4) 

which are obtained from the Martin-Schwinger approximation scheme18 by taking 
dynamical correlations into account, which are connected with the potential (for 
instance, < 121VI34 > G(34, 1'2') is included but < 121V134 > G(I'4,32') is replaced 
by < 121VI34 > (G(l', 3)G(4, 2')-G(I', 2')G(4, 3)), for more details and a comparison 
between the different approximations, see Refs. 13, 17, 18, 19, 20. It turns out that 
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all relativistic approximations give a shift towards the semiempirical values and the 
RBHF-results are located between the Aoo_ and the AOl-results (N)() gives the lowest 
values for E/AI3; for the treatment of the full ladder approximation see Ref.14). 

A useful simplification can be achieved by utilizing the spectral representation of 
G, i.e. 

A(p,w) 
G(p) = J dw (Po - JL)(1 +i7]) -w' 

since all desired quantities can be determined by the self-energy :E and the spectral 
function A aloneI3, 17. 

III. DISCUSSION 

Despite the formal similiarity to the nonrelativistic case the relativistic situation 
is much more complicated; due to, for instance: 

1. Energy-dependent meson-potentials (retardation) 

2. Bethe-Salpeter equation in four dimensions 

3. Dirac algebra (T-matrix has in principle 256 elements with respect to spin); 
:E (and A) has scalar, vector and time-like contributions with the following 
structure: 

4. Self-consistent single-particle basis (spinors) are not a priori known; there
fore the solution in the self-consistent basis in the full Dirac space is rather 
complicated 13, 15. 

First of all one needs self-consistent spinors, since the relativistic saturation mech
anism depends strongly on the lower parts of the spinors, and give a decreasing (in
creasing) contribution for the cr - (w-) mesons with increasing density. This feature 
leads to a non-monotonic behaviour of the kinetic and potential part of the energy. 
If one uses free spinors one gets back the nonrelativistic features (see Fig. 1). 

The consistency problem whether a quasi-particle picture is applicable depends 
on the energy-dependence of the self-energy. For obtaining a single-particle energy
momentum relation it is necessary, that I ~: I is smaller than 0.5. This question is 
treated in more detail in Refs. 13, 17. For instance, the momentum baryon distribution 
in the relativistic case is given by: 

{ 
W(p) } 

(!B(ii) = IW - [m*~ + k8~y + W~]I ' 
8w 8w 8w po=w(P) 
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Figure 1. Illustration of the influence of the self-consistent basis (relativistic saturation mechanism): 

Kinetic (Dirac) and potential energy in RBHF-approximation for the OBE-potential Ho213. The 
dotted curves correspond to the self-consistent basis (i.e. non-monotonic behaviour); the solid curves 

give the outcome with free spinors (i.e. similiar to the non-relativistic treatment). 
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Figure 2. Energy derivatives 88:$ (solid curves) and -~ (dashed curves~ vs. p/PF for different 

Fermi momenta in A 00 - approximation (OBE-potential Ho213). 
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Table 1: Saturation properties of nuclear matter in different approximations (Brock
mann potential B5): RBHF(l) (full basis; momentum dependent self-energy), 
RBHF(2) (full basis; momentum averaged self-energy), RBHF(3) (positive spinors 
only; momentum independent self-energy5); Aoo (AOO_ approximation); For com
parison we also give the outcome of the relativistic HF -approximation, where p and 
EjA are adjusted22 : RHF(l) (u-,w- mesons only), RHF(2) (u-,w-,7r- and p
mesons; /pjgp = 6.6), RHF(3) (u-,w-,7r- and p- mesons; /pjgp = 3.7). 

Method EjA p K a4 
[MeV] [fm-3] [MeV] [MeV] 

RBHF(1) -14.8 0.170 263.7 33.9 
RBHF(2) -15.7 0.172 248.9 32.8 
RBHF(3) -13.6 0.174 249.0 

Aoo -21.9 0.210 259.6 33.8 
RHF(I) -15.75 0.148 610.0 28.9 
RHF(2) -15.75 0.148 360.0 43.3 
RHF(3) -15.75 0.148 460.0 38.6 

which reduces to the step function for ~: = o. It turns out that the energy
dependence is sufficiently weak for the applicability of the single-particle description 
(see Fig. 2). 

In the pioneering work of the Brooklyn groupll the problem was treated in the 
full Dirac space but the relativistic effect was only included in first-order perturbation 
theory, so avoiding the complicated self-consistency problem. Therefore a comparison 
with other treatments is rather difficult. 

Due to the complexity of the problem one has tried in most treatments to avoid 
the solution in the full Dirac space. 

The standard method, applied in Refs.4, 5, 12, 14, makes a non-unique ansatz 
for the T-matrix in terms of five independent Fermi invariants (in Refs.4, 14 the 
pseudoscalar invariant is replaced by the pseudovector invariant) 

and obtains the solution in the c.v. frame for positive spinors only. Afterwards they 
transform the T-matrix into the nuclear matter frame. Once a specific value of m* is 
chosen and Lorentz boosting mixes only positive-energy helicity spinors themselves 
one determines only the positive-energy matrix elements. For that reason the full 
matrix structure of T, and hence of E , is not uniquely determined. It was shown 
that the results for E depend on the chosen decomposition20. 

The other method, used by Brockmann and Machleidt5, avoids this procedure by 
the ~sumption that the scalar and time-like parts of E are momentum independent 
and approximate the positive-energy matrix elements of E, obtained from the RBH
solution via 

m* 
< </>IEI</> >= E* Es + Eo. 
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Both approaches have been discussed and critized in more detail in Ref.21. Despite 
the weak momentum dependence of Eo for the whole range of m*(0.5 -1.0 mN) the 
absolute values for Eo differ strongly (393-(-117) Me V)21 and there is no a priori . 
reason to prefer a m*-value with the smallest deviation from a constant; or otherwise 
expressed a direct calculation of m*(pF) is necessary. 

IV. RESULTS 

In order to clarify the situation we have calculated for a modern OBE-potential 
(Brockmann B)5 the properties of nuclear and asymmetric matter in the full Dirac 
space. The results with comparison between the different approaches are shown in 
Table 1. It turns out that, at least for the chosen potential, the differences between 
the full Dirac space results and the Brockmann treatment are not very large. The 
Aoo-approximation gives, as expected, a higher density and energy, respectively. Also 
the bulk symmetry energy a4 agrees reasonable with the semiempirical value. The 
phenomenological HF-treatment, it seems, is not capable to reproduce the incom
pressibility K and a422 . (A further increase in the p-meson tensor coupling jp/gp 
would decrease K). In Figs. 3 and 4 we show the EOS of state in the RBHF- and Aoo_ 
approximation for different aysIIimetry parameters h = (Pn - pp) / p. Furthermore we 
tested the validity of the quadratic dependence of the energy upon the asymmetry 
parameter h. Our results confirm this empirical law also for higher values of h (see 
Fig. 5). 
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Figure 3. Binding energy per nucleon versus density for different asymmetries in the RBHF

approximation (Brockmann potential B5). The solid (dashed) curves correspond to the treatment 

with (or averaged) momentum dependency of the self-energies. 
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In conclusion, we have investigated the properties of symmetric and anti symmetric 
nuclear matter by solving self-consistently the relativistic problem with dynamical 
two-body correlations for a modern OBE-potential in the full Dirac space. It seems. 
that the case of momentum averaged self-energies is applicable for densities equal 
or below the nuclear matter equilibrium density but for higher densities one should 
include the momentum-dependence of the self-energy. 

v. SUMMARY 

In the framework of relativistic nuclear field theory we discuss and compare the 
different approaches in the treatment of the nuclear-many-problem with inclusion of 
two-body correlations. The equations are solved self-consistently in the full Dirac 
space, so avoiding the ambigliities.in the choice of the effective scattering amplitude. 
The results are compared with the standard method, where one only determines the 
scattering amplitude for positive energy spinors. Furthermore we tested the assump
tion of momentum independent self-energy. The results for asymmetric matter are 
in the structure similiar to the outcome of the relativistic Hartree-Fock approxima
tion, but differ from the nonrelativistic treatment. The agreement with the empirical 
values is quite satisfactory. 
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