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Abstract 

A generalization of the differential geometry of forms and vector 
fields to the case of quantum Lie algebras is given. In an abstract 
formulation that incorporates many existing examples of differential 
geometry on quantum spaces we combine an exterior derivative, in­
ner derivations, Lie derivatives, forms and functions all into one big 
algebra, the "Cartan Calculus". 
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1 Introduction 

The central idea behind Connes' Universal Calculus (1] in the context of 
noncommutative geometry was to retain the classical differential geometric 
properties of d, i.e. nilpotency and the undeformed Leibniz rule4 : da = 
d(a)+(-1)Pad for any p-form a. Here we want to base the construction of a 
differential calculus on quantum groups on two additional classical formulas: 
to extend the definition of a Lie derivative from functions and vector fields 
to forms we postulate 

£od=do£; (1) 

this is essential for a geometrical interpretation of vector fields. The second 
formula that we can - somewhat surprisingly - keep undeformed in the 
quantum case is 

(Cartan identity) (2) 

where {xi} are the generators of some quantum Lie algebra. 

2 Quantum Lie Algebras 

A quantum Lie algebra is a Hopf algebra U with a finite-dimensional biin­
variant subvector BRace Tq spanned by generators {Xi} with coproduct 

(3) 

More precisely we will call this a quantum Lie algebra of type II. Let { wi E 
Tq •} be a dual basis of 1-forms corresponding to a set of functions bi E A via 
wi = sb-[l)db-[2); i.e. 

A.6(Xi) - 1 ®Xi, 

.6A(Xi) - Xi® T3i, T3i E Fun(Gq), 

ix,(wi) - -(xi,slJ)=8{, 
A.6(wi) -

.6A(wi) 

1 ®wi, 

wi 0 s-lri3. 

(4) 

(5) 

(6) 

(7) 
(8) 

4 We use parentheses to delimit operations liked, ix and £x, e.g. da = d(a) +ad. 
However, if the limit of the operation is clear from the context, we will suppress the 
parentheses, e.g. d(ixda) = d(ix(d(a))). 
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If the functions bi also close under adjoint coaction ~Ad(bi) = bi ® s-lTij, 
we will call the corresponding quantum Lie algebra one of type I. 

We can derive two alternate expressions for the exterior derivative of a 
function from the Cartan identity (2) in terms of these bases: 

d(J) = wi £x;(J) = -£sx;(J)wi. (9) 

Combining the two expressions ford one easily derives the well-known f -w 
commutation relations 

(10) 

The classical limit is given by Oi ~ 18}, so that forms commute with func­
tions. 

3 Generators, Metrics and the Pure Braid 
Group 

How does one go about finding the basis of generators {xi} and the set of 
functions {bi} that define the basis of 1-forms {wi}? Here we would like to 
present a method that utilizes pure braid group elements as introduced in 
[2]. 

Let us recall that a pure braid element T is an element of U ®U that 
commutes with all coproducts of elements of U, i.e. 

T~(y) = ~(y)T, VyEU. (11) 

T maps elements of A to elements of U with special transformation properties 
under the right coaction: 

T : A ~ U : · b ~--+ T b = (T, b ® id) ; 

~A(Tb) = lb<2l ®S(b(t))b(3) = (i®id,r23(~Ad(b) ®id)). 
(12) 

An element T of the pure braid group defines furthermore a bilinear quadra­
tic form on A 

(,):A® A~ k: a®b~--+ (a,b) = -{Y,a®S(b)) E k, (13) 

with respect to which we 0ll construct orthonormal bases {bi} and {bi} of 
functions (i.e. (bi, bi) = cf) that in turn will give generators Xi := Tb; and 
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1-forms wi := S(~1))d~2). Typically, one can choose span{bi} = span{bi}; 
then one starts by constructing one set, say {bi}, of functions that close under 
adjoint coaction 

(14) 

If the numerical matrix 

'TJii := - (T, bi ® Sb;) (metric) (15) 

is invertible, i.e. det(rJ) f= 0, then we can use its inverse fJii·:= (rJ-1)ii to raise 
indices via 

bi = bj~i. (16) 

This metric is invariant - or T is orthogonal - in the sense that 

'TJii = 'fJkzTkiTzi· (17) 

Once we have obtained a metric fJ, we can truncate the pure braid"element 
T and work instead with 

(18) 

which also commutes with all coproducts. Casimir operators can also be 
constructed from elements of the pure braid group. The truncated pure 
braid element gives, for instance, the quadratic casimir 

(casimir) (19) 

Now we would like to show that we have actually obtained a quantum Lie 
algebra of type 15 : 

< 
") k" k" . ~. Xi, Sll = - (T, bi ® Sbk) 'fJ j = 'TJik'fJ 3 = 8f, 

~A(Xi) = Tb,<2) ® S(bi(I))bi(3) = Tbi ® T 3.i =Xi® Tii 

and 

(20) 

(21) 

5 Note, that Y has to be carefully chosen to insure the correct number of generators. 
Furthermore, we still have to check the coproduct of the generators. If they are not of 
the form .6.x• = Xi 0 1 + 0,3 0 Xj then we might still consider a calculus with deformed 
Leibniz rule. 
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3.1 Examples 

3.1.1 The R-matrix approach 

Often one can take bi Espan{tnm}, where tnm is a quantum matrix in the 
defining representation of the quantum group under consideration. If we are 
dealing with a quasi triangular Hopf algebra with universal 'R. = ai ® f3i, a 
natural choice for the pure braid element is 

(23) 

where the term n 21'R.12 has been introduced and extensively studied in [3] 
and later in [4, 5, 2]. These choices of bis and T lead to the R-matrix approach 
to differential geometry on quantum groups. The metric is 

(24) 

where X 1 = (T R, t1 ® id), R12 = ('R, t1 ® t2), and I is the identity matrix. 
In the case of GLq(2) we find 

0 
0 

-q -3 

0 

0 
-q -1 

0 
0 

~-] ) . 
-q 

(25) 

Using this metric we recover- as expected- the well-known [6, 7] expres­
sion of the exterior derivative d on functions in terms of the quantum trace 
over X and the Cartan-Maurer form n = t-1dt: 

{on functions). (26) 

(This follows essentially from D21TJ12 = P12, where D = (u, t} with u = 
S(pi)ai and Pis the permutation matrix.) 

3.1.2 Trace formula for the metric 

Again in the case where U is a quasitriangular Hopf algebra, there exists 
an alternate way of defining a Killing form; let p : U -+ Mn ( k) be an n x n 
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matrix representation of U with entries in k. Define the map fJ(P) : U ®U ~ k 
ass 

·(27) 

where x, y E U, tr P is the trace over the given representation, and u (see 
above) implements the square of the antipode [8]. The map TJ(P) has the 
following properties: 

TJ(P)(y ® :r;) _ TJ(P)(x ® S2(y)), 

TJ(P)((Z(t) c? x) ® (z(2) c? y)) - TJ(P)(x ® y)t(z), 

(28) 

(29) 

for all x,y,z E U. Respectively, these express the symmetry of TJ(P) and 
its inva.riance under the adjoint action. In the case when U is a quantum 
Lie algebra with generators {xi}, we can define the Killing metric for the 
representation p as 

(30) 

For the quantum group GLq(2), with p being the fundamental representation, 
a calculation gives the Killing metric (expressed as a matrix in the basis 
(Xt,X+,X-,X2)) as 

Cf 
0 0 

J) 0 -5 
TJ(fund GLq(2)) q. 

- q-7 0 
0 0 

-4 -q T/GLq(2), (31) 

so we see that the two differ only by a multiplicative constant (which is -q-2n 

for the GLq(n) case). If we reduce the two matrices (25) and (31) into 1 EB 3 
matrices, corresponding to the basis (Xt + q-2X2,X+,X-,Xt- X2), we find 

( 

-3+ -5 

71 
_ q47J{fund GLq(2)) _ q Q q 

•1GLq(2) - - - - 0 

0 

(32) 

6The map TJ(P) as defined in the Proceedings of the XXIIth DGM Conference differs 
from the one appearing here by an antipode. This can be compensated by choosing the 
contragredient representation in the former case. 
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Here we see the decomposition which in the undeformed case is expressed as 
GL(2)~U(1)xSL(2). 

Further properties of the Killing metric as defined in this subsection will 
be examined in a forthcoming paper [9]. 

3.1.3 The 2-dim quantum euclidean group 

This is an example of a quantum Lie algebra that seems to have no universal 
n and where the set of functions { bi} does not arise from the matrix elements 
of some quantum matrix. In [2] we constructed such a set of functions bo, 
b+, b_, bt, and a pure braid element T e = t ( Ac ~ c ® 1) from the casimir 
c := P+P- of eq(2). Now we can put the new machinery to work and calculate 
the (invertible) metric 

T/Eq(2) = ( ~ ~ ~ ~ j ) ' 

0 0 -q-2 0 

which immediately gives an expression for d on functions: 

d = WoXl + W1Xo -lw+X- - W-X+· 

3.1.4 Universal Calculus 

(33) 

(34) 

Given (countably infinite) linear bases {ei} and {Ji} of the Hopf algebras 
U and A respectively, we can always construct new counit-free elements 
~-1u€(~) and Ji-1.A€(ji) that each span (infinite) biinvariant spaces Tq and 
Cq respectively and have coproducts of the form (3); in fact 1u E9 Tq = U and 
1.A E9 Cq = A as vector spaces. Using some Gram-Schmitt orthogonalization 
procedure one can rearrange the infinite bases of U and A in such a way that 
eo = 1u, r = 1.A and ei, Ji with €(ei) = €{fi) = 0 for i = 1, ... '00 span 
Tq and Cq respectively. (In the rest of this section roman indices i,j, k, ... 
will only take on values from 1 to oo.) To avoid confusion with the finite­
dimensional quantum Lie algebras, we will use the symbol S instead of d for 
the exterior derivative. 

Given orthonormal linear bases { ei} ~d {fi} of Tq and Cq we can now 
express S on functions a E A as 

S(a) = -Ws-lji£e;-l((e;)(a); (35) 

6 



note, however, that all of these ws-1 1.s are treated as linearly independent 
and remain so even in the classical limit, because (35) in conjunction with the 
Leibniz rule for 6 only gives trivial commutation relations between forms and 
functions (awb = WbS-tac2>a(1)- €{b)ws-ta<2>a(1))i therefore, it is not generally 
possible to reorganize the infinite set of w5 -t1•s into a finite basis of 1-forms. 
This is the case for Connes' noncommutative geometry (1] and is in contrast 
to the ordinary "textbook" treatment of differential calculi that has forms 
commuting with functions. 

4 Calculus of Functions, Vector Fields and 
Forms 

Here we will generalize the Cartan calculus of ordinary commutative differ­
ential geometry to the case of quantum Lie algebras. 

As in the classical case, the Lie derivative of a function is given by the 
action of the corresponding vector field, i.e. 

£,"(a)= Xi 1> a= a(I) (xi,a(2)), 

£x,a = a(I) (Xi(l),a(2)) £Xi(2)" 

The action on products is given through the coproduct of Xi: 

Xi I> ab = (Xi(l) I> a)(Xi(2) 1> b). 

{36) 

(37) 

The Lie derivative along Xi of an element y E U is given by the adjoint action 
inU: 

ad 
£x.(Y) =Xi I> Y = Xi(t)YS(Xi(2))· (38) 

To find the action of ix; we can now use the Cartan identity {2): 

Xi I> a= £x,(a) = ix;(da) + d(ix;a). (39} 

As the inner derivation ix; contracts 1-forms and is zero on 0-forrns like a, 
we find 

ix;(da) =Xi 1> a= a(1) (xi,a(2)). (40) 

Next consider that for any form a, 
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which shows that Lie derivatives commute with the exterior derivative; £ "'d = 
d£"' (we will also assume £z commutes with d for all x E U as well). From 
this and (36) we find 

(42) 

To find the complete commutation relations of ix; with functions and forms 
rather than just its action on them, we next compute the action of £ "' on a 
product of functions a, b E A, i.e. 

(43) 

and compare with equation (37). Recalling that the Xi have coproducts of 
the form D.xi =Xi® 1 + O,J ®Xi, Oii E U, we obtain 

(44) 

if we assume that the commutation relation of ix, with d(a) is of the general 
form 

i:x:,d(a) = ix;(da) +"braiding term" · ix?. ...___,_....... 
eA 

A calculation of £;x:,(d(a)d(b)) along similar lines gives in fact 

i;x:,d(a) = (Xi t> a)- d(Oi t> a) ix1 

= ix,(da)- £o,i(da) i"i' 

and we propose for any p-form a: 

(45) 

(46) 

(47) 

Using the Cartan identity we can derive commutation relations for (Lie) 
derivatives and functions from equation (44), which can be written in Hopf 
algebra language as 

(48) 

This actually defines the product in the cross-product algebra A><lU of general 
vector fields that one obtains by combining the Hopf algebras A and U; see 
e.g. [2]. 
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4.1 Maurer-Cartan Forms 

The most general left-invariant 1-form can be written as [iO] 

Wb := S(b(l))d(b(2)) = -d(Sb(l))b(2) (49) 

(left-invariance: .AD.(wb) = S(b(2))b(3) ® S(b(l))d(b(4)) = 1 ® wb), (50) 

corresponding to a function bE A. If this function happens to be tik, where 
t E Mm(A) is an m X m matrix representation of U with D.(tik) =ti; ® tik 
and S(t) = rl, we obtain the well-known Cartan-Maurer form Wt = r 1d(t). 
Here is a nice formula for the exterior derivative of wb: 

The Lie derivative is 

£x;(wb) = wb<2> (xi, S(b(l))b(3)). 

The contraction of left-invariant forms with ix is 

4.2 Tensor Product Realization of the Wedge 

From (52) and (53) we find commutation relations for ix; with wi, 

ix;wi - Sf- £o;k(wi)ixk 
= Sf- wm ( Oik, S-1(Tim)) ixk, 

(51) 

(52). 

(53) 

(54) 

which can be used to define the wedge product 1\ of forms as a kind of 
antisymmetrized tensor product 7 • As in the classical case we make an ansatz 
for the product of two forms in terms of tensor. products 

(55) 

with as yet unknown numerical constants &iimn E k, and define ix; to act on 
this product by contracting in the first tensor product space, i.e. 

· (· .i k) d k -::...ik em n tx; w- 1\ W = uiw -a· mnUi W • (56) 
7 So far we have suppressed the /\-symbol; to avoid confusion we will reinsert it in this 

paragraph. 
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But from (54) we already know how to compute this, and we find 

Aij (o j s-l(fT'i )) cr mn = m ' .L n ' (57) 

or 
wi A wi = (I - U )ii mnWm @ Wn 

= wi ®wi -wk@ £o"j(wi). 
(58) 

These equations give implicit (anti)commutation relations between the wis. 
Note that (I- u) has a sensible classical limit -it becomes (I- P) where 
Pis the permutation matrix. Using the same method as for w we can also 
obtain a tensor product decomposition of products of inner derivations. 

Example: Maurer-Cartan Equation 

(59) 

In the previous equation we have introduced the adjoint action of a left­
invariant vector field on another vector field. A short calculation gives 

S-l ad (cccb AdJ ) (S:...l Ta) J' a Xk I> Xl = XbXc ukuz - cr kl = Xa Xk, l = Xa k l (60) 

as compared to 

with flcb kl = ( Ok b, Tcz). The two sets of structure constants are related 

by (Xk, Tal) = !k al = - J:az R-i kl· See [11) for a detailed discussion of such 
structure constants. 
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4.2.1 The "Anti-Wedge" Operator 

There is actually an operator W that recursively translates wedge products 
into the tensor product representation: 

for any Jrform a. Two examples: 

wi 1\ wk - wn ® ix .. (wi 1\ wk) 
- wn ® (8~wk- £onm(wi)8~) 
- wi ®wk -wn ® £On"(wi) 
- wi ®wk -wn ®wmajknm 

and, after a little longer computation that uses W twice, 

wa. 1\ wb 1\ we - wa. ® (wb 1\ we)- wi ® (wi 1\ wc)ffa.bij 
+wi ® (wi 1\ wk)ffa.lijf!bclk 

- wa. ®wb ®we -wa. ®wi ®wkffbc.k 
. j 

-wi ® wi ® wcffa.bij + wi ® wi 0 wkfflcjkffa.bil 

(62) 

(63) 

+wi ® wi ® wkffa.lij(Jbclk - Wi 0 wi ® wkffa.nil(Jbc nmfflm jk· 

(64) 
In some cases this expression can be further simplified with the help of the 
characteristic equation of a. 

4.3 Summary of Relations in the Cartan Calculus 

Commutation Relations For any Jrform a: 

da - d(a) + ( -1)1>ad 

- ix,(a) + (-l)P £o,i(a)ixi 

£x,(a) + £o,i(a)£x1 

(65) 
(66) 
(67) 

Actions For any function f E A, 1-form WJ = Sf{l)dfc2) and vector field 
</> E A><1U: 

(68) 
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ixi(df) - df(l) (xi, !(2)) (69) 

ixi(WJ) - -(xi,Sf) (70) 

£Xi(!) - Xi(!)= fc1> (xi,/(2)) (71) 

£xi(wJ) - w/<2> (xi, S(f(l))!cs>) (72) 

£Xi ( 4>) - Xi(t)4>S(Xi(2)) (73) 

Graded Quantum Lie Algebra of the Cartan Generators 

dd - 0 (74) 

d£x - £xd (75) 

£Xi - dixi + ixid (76) 

(£xi' £xkL - £xJ/k (77) 

[ £x,, ixkt - . f.( 
'-xz i k (78) 

The quantum commutator [, ]q is here defined as follows: 

(79) 

This quantum Lie algebra becomes infinite-dimensional as soon as we intr<r 
duce derivatives along general vector fields. 

4.4 Universal Cartan Calculus 

In the case of a Universal Calculus (see section 3.1.4) the relations of a Cartan 
Calculus can be expressed in a basis-free form in Hopf algebra language. 
Here is a summary of commutation relations valid on any form. All of these 
equations are identical to the corresponding quantum Lie algebra relations 
when written in terms of the bases { e13} and {fl3}, where {3 = 0, 1, ... , oo. 
x,y E U, a E A, a is a p-form and 4> E A><JU is a vector field. 

£xa a(t) (x(t),a(2)) £x<2> (80) 

£x6(a) - 6(a(t)) (x(l),a(2)) £x<2>· (81) 

£xa - £X(l)(a) £X(2) (82) 
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'-xa - a(l) ( X(t), a{2)) ixc2> (83) 

ixc5(a) - a(l) (x -1t:(x),a(2))- c5(a(1)) (x(t),a(2)) ixc2> (84) 

1-:z;a ix( a) + ( -1 )P £ x<1> (a) ixc2> (85) 
c5a - c5(a) + ( -1)Pac5 (86) 

c5c5(a) -( -1)Pc5(a)c5 (87) 

£x(</>) - X(t)<!>S(x(2)) (88) 

c52 - 0 (89) 
c5£:z; £:z;c5 (90) 

£:z; - c5i:z; + lt:( X)+ ixc5 {universal Carlan identity) (91) 

£:z;£y £y{l) (x(l),Y(2)') £x(2) (92) 

£:r:iy - . < (2)') £ '-y(l) X (1)' y X(2) (93) 

This type of Cartan calculus on an arbitrary Hopf algebra will be treated in 
detail in an upcoming paper (12]. 

4.5 Lie Derivatives Along General Vector Fields 

So far we have focused on Lie derivatives and inner derivations along left­
invariant vector fields, i.e. along elements of Tq. The classical theory allows 
functional coefficients, so that a general vector field need not be left-invariant. 
Here we may introduce derivatives along elements in the A><1Tq plane by the 
following set of equations valid on forms (recall t:(X) = 0 for x E Tq): 

"Jx; - fixo (94) 

£fXi di !xi + i fxid, (95) 

£fXi f £xi+ d(J)ixn (96) 

£fxid d£1Xi" (97) 

Equation (96) can be used to define Lie derivatives recursively on any form. 
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