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Solving the Estimation-Identification Problem 
in Two-Phase Flow Modeling 

STEFAN FINSTERLEl AND KARSTEN PRUESS 

Earth Sciences Division, Lawrence Berkeley Laboratory 

University of California, Berkeley, CA 94720 

In this paper a procedure is presented to solve the estimation-identification problem in 
two-phase flow modeling. Given discrete observations made on the system response, an 
optimum parameter set is derived for an appropriate conceptual model by solving the 
inverse problem using standard optimization techniques. Subsequently, a detailed error 
analysis is performed, taking nonlinear effects into account. We discuss the iterative process 
of model identification and parameter estimation for a ventilation test performed at the 
Grimsel Rock Laboratory, Switzerland. A conceptual model is developed which allows 
accurate simulation of the evaporation of moisture at the drift surface and the induced 
propagation of the unsaturated zone into the formation. Two-phase flow parameters are 
estimated based on measurements of negative water potentials observed in granite rock near 
the ventilated drift. The error analysis reveals strong interdependencies among the 
parameters. These correlations can be reduced by appending additional information to the 
model, improving the overall quality of the estimation. The system behavior is discussed in 
detail for the optimum parameter set. 

1. INTRODUCTION 

Mathematical-numerical models commonly used to analyze or predict the response of 

groundwater systems have increasing capabilities for dealing with complex flow and 

transport processes. Simulation tools for non-isothermal flow of multi phase, multicomponent 

fluids have been developed for various applications to geothermal reservoir engineering, 
_. 

nuclear waste isolation studies, and unsaturated zone hydrology. However, greater model 

sophistication is usually accompanied by an increasing number of hydrogeologic parameters 

which enter the governing equations to describe the interaction between the fluids and the 

porous media. While some of the parameters affecting fluid flow in partially saturated 

formations can be directly obtained from laboratory experiments, such measured parameters 

may significantly differ from their model counterparts both conceptually and numerically 

mainly because of scale effects. In order to obtain model related formation parameters, the 

strategy is to calibrate the numerical model using observations of the system response at 

I Previously at Laboratory of Hydraulics, Hydrology and Glaciology (VA W), Swiss Federal Institute of 

Technology (ETH), Zurich, Switzerland. 



-2-

discrete points in space and time. The methodology of parameter estimation for saturated 

flow was reviewed by Carrera and Neuman [1986] and Yeh [1986]. Similar techniques have 

been applied to estimate parameters for unsaturated flow and transport processes [for a 

review see Kool et al., 1987]. 

Three main aspects have to be considered when dealing with inverse modeling. The first 

and most important is referred to as model conceptualization. Model conceptualization can be 

defined as the process of approximating the relevant factors that control the behavior of the 

real flow system. It includes the specification of flow system geometry, formulation of 

constitutive relationships for multi phase flow, parametrization of the model domain, and the 

definition of appropriate initial and boundary conditions. While conceptualization is part of 

any modeling effort, it is important to realize that the parameters estimated by means of 

calibration procedures are only meaningful within the framework of the given conceptual 

model. Strictly speaking, they are model parameters rather than aquifer parameters. The 

second input to inverse modeling is the data. The type of quantities to be measured, the 

location of the observation points, and the duration of each measurement period have to be 

selected such that the parameters to be estimated are sensitive with respect to the data. 

Furthermore, most optimization procedures require some prior estimates of the measurement 

errors. The third aspect deals with the actual procedure of how to derive model parameters 

from the data observed in the field. 

Modeling is an iterative process of developing model structures, for which an optimum 

parameter set is sought, followed by an interpretation of the remaining residuals which may 

point towards aspects of the model that need to be modified. Residual analysis for model 

identification requires a good deal of expertise and a sound understanding of the system 

· behavior under two-phase flow conditions. Note, however, that the step of quantifying the 

parameters for a given model structure can be carried out based on rather objective 

mathematical criteria. On the other hand, model conceptualization involves more qualitative 

information and may be guided by the overall purpose of the modeling effort. We therefore 

first describe the procedure of solving the inverse problem to estimate parameters for a two­

phase flow system. The modification of the underlying conceptual model will be discussed 

for a specific application. 

The most widely employed approaches to solve the inverse problem minimize some norm 

of the differences between observed and model predicted state variables. If the view of 

maximum likelihood is taken, the performance criterion reflects the probability density 

•. 
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function of the final residuals. For normally distributed residuals correlated in space and 

time, it can be shown that maximizing the probability of reproducing the observed data leads 

to a method known as generalized nonlinear least squares estimation, for which a variety of 

optimization procedures have been developed [see e.g. Scales, 1985]. If the model is 

nonlinear in the parameters, minimization of the objective function is an iterative process in 

which information about the gradient and the convexity of the objective function is used to 

perform a downhill step toward the local minimum. One of the most generally applicable 

algorithms is the one proposed by Levenberg [1944] which was improved by Marquardt 

[1963]. The basic idea of the Levenberg-Marquardt method is to move along the steepest 

descent direction far from the minimum, and to switch continuously to the Gauss-Newton 

algorithm as the minimum is approached. 

The strong nonlinearities inherent in two-phase flow make it difficult to minimize the 

objective function in an efficient and stable way. Reparametrization, such as logarithmic 

transformation of absolute permeabilities, and the incorporation of prior information about 

the parameters have been proposed to improve the properties of the objective function. 

Additionally, the robustness of the solution has to be questioned because the residuals almost 

never obey a Gaussian distribution. The assumption of normally distributed residuals, 

convenient because it leads to very powerful optimization procedures, may not be justified 

for two reasons. First, the errors associated with field data typically show much more outlier 

points than one would expect from the tail of the normal distribution. Secondly, a simulation 

model is only able to reproduce an average trend of the true system behavior due to the 

incompleteness and inaccuracy of the underlying conceptual model. As a result, the residuals, 

which contain both model and measurement errors, may have a substantial contribution from 

deviations which are systematic rather than random; consequently, they cannot be properly 

described by statistical measures. Nevertheless, least squares optimization has proved 

successful in many applications. Only a few alternative approaches have been proposed in the 

field of groundwater hydrology (for an example see the recent work by Xiang et al. [1993]). 

The numerical model used to simulate non-isothermal two-phase flow is described in the 

next section. Subsequently, the standard least squares formulation and the minimization of 

the resulting objective function is summarized. The linearity assumption of the standard error 

analysis will be discussed in detail. Finally, the proposed method is applied to field data from 

an experiment performed at the Grimsel Rock Laboratory, Switzerland. Two-phase flow 

parameters are estimated based on measurements of negative water potentials observed in 

crystalline rock near a ventilated drift. 
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2. THE DIRECT PROBLEM 

Given a conceptual model of the physical system and a set of values of the model 

parameters, the prediction of the system response for arbitrary initial and boundary 

conditions is referred to as the direct problem. In this work, the direct problem is solved with 

the two-phase two-component numerical simulator TOUGH2 [Pruess, 1987, 1991]. 

Consider a system with two mobile phases ~ (~=g: gas; ~=1: liquid), and two components K: 

(K:=a: air; K:=w: water). The governing mass-balance equation for each component can be 

written in the following integral form [Pruess and Narasimhan, 1985]: 

asK IK IK - M dv = F ·n dr + q dv 
otv r v 

(1) 

The integration here is over an arbitrary subdomain V of the flow system which is bounded 

by the closed surface r with inward normal vector n. MK is the mass accumulation term for 

component K:, FK is the mass flux term, and q K is a term representing sinks and sources. The 

mass accumulation term is 

MK = <!>· Ls 13 -p 13 -x~ (2) 

~=l,g 

where <1> is porosity, S13 is phase saturation, p~ is density of phase ~' and X13K is the mass 

fraction of component K: in phase ~- Thus, MK is the total mass of component K: present per 

unit volume. 

The mass flux terms contain a sum over the two phases: 

FlC = LF ~-X~ (3) 

~=l,g 

where the flux of phase !3 is: 

(4) ' 
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. Here, k denotes absolute permeability, kr~ is relative permeability of phase ~ as a function of 

saturation, Jl~ is dynamic viscosity of phase ~. P~ is the pressure in phase ~. and g is 

gravitational acceleration. The last term in ( 4) contributes only to gas phase flow and 

represents an opposite diffusive flux for each of the components, with Dva the diffusion 

coefficient for vapor-air mixtures in porous media [Vargaftik, 1975; Walker et al., 1981]: 

D = QK.Do Po (L)e 
va vaPg To (5) 

where Dvao is the vapor diffusivity at standard conditions To and Po, and e is a material 

parameter to account for temperature dependency. The parameter QK specifies properties 

relevant to binary diffusion in a porous medium. For air, it describes the restriction of the 

molecular diffusion to the gas filled fraction of the pore space, Qa='t·<j>·Sg, where 'tis a 

tortuosity factor. However, there is a great deal of evidence from studies in soil sciences for 

enhanced vapor diffusion from pore-level phase change processes [see e.g. Walker et al., 

1981]. The experimentally determined values Qw = 1 for vapor diffusion are orders of 

magnitude larger than the parameter group 't·<j>·Sg for air diffusion. If no reliable 

measurements are available, mK may be subjected to the estimation process. 

Binary diffusion becomes an important factor for moisture transfer if large temperature 

gradients or strong capillary forces are present. The latter induce a decrease of the vapor 

partial pressure Pv according to Kelvin's equation: 

(6) 

where Psat is saturated vapor pressure for a given absolute temperature T, Pc = P1- Pg is the 

capillary pressure, R is the universal gas constant, and Mw is the molecular weight of water. 

As a result, a capillary pressure gradient leads to a mass fraction gradient VXgK which is the 

driving force for binary diffusion. 

As part of the model conceptualization, a relatively simple parametric relationship has to 

be chosen to describe the two-phase hydraulic properties. Luckner et al. [ 1989] derived a 

consistent set of capillary pressure and relative permeability curves based on van 

Genuchten's model [van Genuchten, 1980]. The macroscopic capillary pressure Pc is a 

function of liquid saturation as follows: 



with the effective liquid saturation 

-6-

Pc =- _!_ (Se-1/m- 1)1/n 
a 

(7) 

(8) 

where S1r is the residual liquid saturation. The parameter a can be interpreted as the 

reciprocal of the air entry pressure, and parameter n reflects the pore size distribution of the 

porous medium. With m=1-1/n, and applying Mualem's predictive hydraulic conductivity 

model [Mualem, 1976], expressions for liquid and gas relative permeabilities can be derived: 

k =S 11.[1- (1- S 1/m)m]2 
rl e e (9a) 

k = (1 _ S ) 'Y. [ 1 _ S 11m] 2m 
rg e e (9b) 

where 11 andy are pore connectivity parameters for the wetting and nonwetting phase, 

respectively. 

The formulation of the direct problem must include appropriate equations of state. The 

thermophysical properties of liquid water and vapor are obtained from steam table equations 

[International Formulation Committee, 1967]. Air is treated as an ideal gas, and gas phase 

pressure is assumed to be the sum of air and vapor partial pressures. Air dissolution in liquid 

water is represented by Henry's law. The governing transport equations are discretized in 

space using an integral finite difference formulation [Narasimhan and Witherspoon, 1976]. 

Time is discretized fully implicitly as a first-order finite difference. Local thermodynamic 

equilibrium is assumed so that the conditions in each volume element (grid block) can be 

characterized by a set of thermodynamic state variables. Discretization results in a set of 

nonlinear coupled algebraic equations which are solved by means of Newton-Raphson 

iteration. A generalized minimum residual conjugate gradient solver is used to solve the linear 

equations arising at each iteration step [based on Seager, 1988]. 
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3. THE INVERSE PROBLEM 

3.1 Objective Function 

The estimation of parameters for a given system model and a set of observed state 

variables is referred to as the inverse problem. The parameters to be determined are those 

which enter the numerical model that solves the direct problem. In the case of a drift 

ventilation experiment, these are the absolute permeability, the parameters of the capillary 

pressure and relative permeability functions, porosity and compressibility of the rock m~trix, 

diffusion coefficient etc. Furthermore, initial and boundary conditions as well as geometrical 

features such as fracture spacing can be considered as unknown parameters. The parameters 

may refer to individual points, to elements of the discretized flow region, or to zones for 

which values are assumed constant. The objective of the inverse model is to provide 

improved estimates of these parameters by relying on certain measurements. Again, potential 

observation types are those for which a corresponding model output is calculated, e.g. gas 

pressure, water potential, gas and liquid flow rate, temperature and saturation measurements. 

Prior information about each of the parameters mentioned above can be added to the vector of 

observable variables. The indirect approach to inverse modeling consists of minimizing a 

performance criterion that measures the differences between observed and 'Computed system 

response. The residual vector r summarizes the contributions from observations of different 

types i, ie {prior information, pressure, flow rate, saturation, ... } : 

(10) 

Here, Yi* is the vector of the observed state variables of type i, and Yi contains the 

corresponding model output which is a function of the unknown parameter vector p. The 

number of elements in ri is equal to the number of points in space and time at which data are 

available. The error structure of the residuals is assumed Gaussian and can therefore be 

described by a covariance matrix as follows: 

(11) 

The scalar cro2 is termed prior error variance. It can be used to scale observations of 

different type against each other. With Vi being a positive definite matrix which represents 

the relative error structure, Ci reflects the expected uncertainty of the residuals of type i. If 

the quality of the data is not well known, one might consider estimating the statistical 

parameters along with the other model parameters. Provided that observations of different 
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types are uncorrelated, the objective function to be minimized can now be written as follows: 

(12) 

Equation (12) is the sum of the squared residuals, weighted by the inverse of the prior 

covariance matrix. The index i denotes the type of the data being used for calibration, 

including prior information about the model parameters. The corresponding estimator is 

known as the generalized nonlinear least squares estimator. Based on maximum likelihood 

theory, it can be shown that minimizing~ is equivalent to maximizing the probability of 

reproducing the observed system state, if the residuals follow a Gaussian distribution. Note 

that due to the normality assumption inherent in least squares, the corresponding estimator 

leads to biased parameters if large residuals occur more frequently than predicted by the 

normal distribution. In these cases, the objective function should be appropriately modified to 

improve the robustness of the estimator. 

3.2 Minimization Algorithm 

An appropriate algorithm is needed to minimize the objective function ~· The least 

squares formulation suggests use of Newton-type minimization algorithms with quadratic 
convergence near the optimum. In Newton's method, the objective function ~ is locally 

. approximated by a quadratic form which allows iterative computation of an improved 

parameter vector Pnew from a previous estimate Pold as follows: 

Pnew = Pold- H-1(Polct)·g(pold) (13) 

where g is a gradient vector, and His the Hessian matrix. We mention in passing that (13) is 

a closed form solution for the unknown parameters if the model is linear. The Hessian matrix 

H is not only expensive to calculate, but may also become negative-definite if the model is 

strongly nonlinear. Levenberg has proposed a method to approximate the Hessian by a 

matrix H' that is easy to calculate and always positive-definite: 

H' = JT C-1 J + Jl· D (14) 

Here, J is the mxn Jacobian matrix with elements Jij = ari, where m is the total number of 
apj 

observations, and n is the number of parameters to be estimated. D denotes a diagonal matrix 
of order n with elements equivalent to the diagonal elements of matrix JT C-1 J. The scalar Jl 

~ 0 is the so-called Levenberg parameter. If Jl=O, (13) results in a Gauss-Newton step, 
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while a large value of Jl represents a small step in the steepest descent direction. Marquardt 

[1963] has given a simple rule of how to continuously update the Levenberg parameter Jl 

during the optimization procedure, switching from a gradient step far from the minimum to a 

Gauss-Newton step if the minimum is approached. The reason for choosing the Levenberg­

Marquardt algorithm to minimize the objective function is its robustness far from the 

optimum, where the topology of the objective function may be complicated due to the nature 

of the two-phase flow formulation. Furthermore, when approaching the optimum, nonlinear 

effects are somewhat reduced which allows use of Gauss-Newton steps near the minimum. 

3.3 Error analysis 

An uncertainty measure of the estimated parameter values is usually obtained under the 

assumption of normality and linearity. The normality assumption is based on the fact that the 

distribution of a sum of random values always tends to normal if the sample size is 

sufficiently large. The linearity assumption postulates that the model output can be 

approximated by a linear function of the parameters within the area covered by the confidence 

region. Both assumptions have to be questioned for parameter estimation in groundwater 

hydrology because the sample size is usually small and the two-phase flow model is highly 

nonlinear. In this section, we first' derive the covariance matrix for the linear case. We then 

discuss a procedure originally proposed by Carrera [1984] to better approximate the true 

confidence region in the nonlinear case. 

The 100(1-a)% confidence region for the true but unknown parameter vector p contains 

those values p for which [Donaldson and Schnabel, 1987] 

(15) 

where p is the vector holding the optimum parameter set, so2 is the estimated residual 

variance, and Fn,m-n,l-a. is a quantile of the F-distribution. Here, a is the probability to 

reject the hypotheses even though it was true. In the general case, this confidence region is of 

arbitrary shape bounded by the points of constant likelihood. Its construction requires 

solving the direct problem many times in order to produce the corresponding contour of the 

objective function. Linearization methods have the advantage that their resulting confidence 

region is ellipsoidal, making it inexpensive to construct and easy to report. For a maximum 

likelihood estimator, the variance-covariance matrix is asymptotically given by 
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1\ 1\ 
C = so2 H(p)-1 (16) 

where 1\ indicates, that the quantity is an a posteriori estimate of the corresponding variable. 

By linearizing the model y(p) by the affine approximation around p 
1\ 1\ 1\ 

y(p) = y(p) + J(p)·(p- p) (17) 

we obtain for the covariance matrix of the estimated parameter set the following expression: , 

(18) 

with 

(19) 

Since the estimated error variance so2 is a random variable, it can be tested against the prior 

error variance cro2. If the deviation between the two values is statistically significant, then the 

conceptual model provides an unlikely match to the data. Consequently, the estimated 

parameter set has to be questioned as well. However, a failure of the model test may also 

indicate that the assumption about the error structure of the residuals was too optimistic. 

We can now construct the confidence region for the linearized case consisting of those 

values p for which 

"T"-1 A (p- p) C (p- p)::;; n·Fn,m-n,1-a (20) 

The confidence region given by (20) is a succinct representation of the region defined by . 
1\ 

(15). Recall that the covariance matrix C approximates the actual surface of the objective 

function at its minimum by a tangent hyperellipsoid under the assumption of normality and 

linearity. If the model is nonlinear, the coverage of the confidence region by the linear 

approximation may be very poor with respect to both its size and its shape. Reparametrization 

is a possibility to reduce nonlinearity effects and the asymmetry of the confidence region. 

Let us now assume that the shape of the confidence region is close to ellipsoidal, and that 

the orientation of the hyperellipsoid in the n-dimensional parameter space is accurately 

obtained from the linear error analysis. Then, by only adjusting the average size of'the 

hyperellipsoid, we can better approximate the confidence region without losing the advantage 

of producing easily understandable results which are also simple to report. Carrera [1984] 

proposed a correction for the covariance matrix to account for nonlinearity. We adapt his 
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basic idea of comparing the actual likelihood function with the results from the linear 

approximation at discrete points in the parameter space. These test points are preferably 

located along the axis of the hyperellipsoid: 

(i=l..n) (21) 

Here, Pi± are two test parameter sets on the i-th axis, the direction of which is given by the 
I\ 

eigenvector Ui of the covariance matrix C. Note that the distance from the optimal parameter 

set p is selected as a multiple of the corresponding eigenvalue ai2 and the quantile of the F­

distribution. This means that the correction is tailored to approximate the confidence region 

on a certain confidence levell-a. The eigenvalues ai2 which represent the length of the 

serniaxis are now corrected as follows: 

I 2 2 2 (A++ A_) 
a i = ai ·so . 2 i (22) 

with 

(23) 

Finally, the new covariance matrix is back-calculated from the eigenvectors Ui and the 

updated eigenvalues a'i2· The proposed correction requires 2n additional solutions of the 

direct problem and is thus relatively inexpensive. While the resulting confidence region is 

ellipsoidal by definition, the differences between s<P+) and s<ii-) provide, as a byproduct of 

the correction procedure, some insight into the asymmetry of the true confidence region. 

, 
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4. APPLICATION TO FIELD DATA 

4.1 Introduction and Problem Description 

The inverse modeling formulation outlined in the previous section has been implemented 

in a computer program named ITOUGH2 [Finsterle, 1993b] which has been verified by 

applying the code to synthetic test cases [Finsterle, 1993a]. The purpose of this section is to 

illustrate the applicability of the proposed methodology to field data that reveal strong two­

phase flow effects. 

A series of ventilation tests has been conducted at the Grimsel Rock Laboratory, 

Switzerland, a research facility operated by Nagra, the Swiss National Cooperative for the 

Disposal of Radioactive Waste. Ventilation tests were originally conceived to determine the 

macro-permeability of crystalline rocks by measuring the total inflow into drift sections with 

controlled ventilation. In these tests, ventilation is simply viewed as a convenient means to 

convey the incoming moisture to a measuring device [Kull et al., 1991]. Accordingly, the 

standard interpretation of these tests is based on assuming that flow toward the drift is single­

phase liquid. However, the estimated matrix permeabilities may be affected by partial drying 

of the drift wall leading to substantial regions with two-phase flow conditions. In order to 

quantify the extent of the two-phase region and study its hydraulic properties, a joint project 

between the Institute of Terrestrial Ecology, ETH ZUrich, .and Nagra has been initiated. In­

situ measurements of water potential, water content, temperature, and ambient air humidity 

were performed during a ventilation test starting November 26, 1991, reported in Gimmi et 

·al. [1992]. 

The ventilation experiment is conceptualized as follows (see Figure 1). We expect the 

flow regime to be radial in the vicinity of the drift. The computational region extends from the 

drift wall of radius 1.75 m to a presumably unaffected outer boundary at a distance of 

6.75 m. A constant pressure of 0.37 MPa is prescribed at the outer boundary, reflecting the 

undisturbed pressure at drift level. Gravity effects are neglected. The flow region is 

partitioned into 200 grid blocks with logarithmically increasing radial distances. The 

experimental site is located in mildly deformed granodiorite that is considered homogeneous . 

on the scale of interest. Two boreholes (BOVE 84.011 and BOVE 84.018) were drilled 

parallel to the drift. They are equipped with conventional pressure transducers to observe the 

hydraulic head. Thermocouple psychrometers (TP) were installed at six different depths (2, 

5, 10, 20, 40, and 80 em from the drift wall). They measure negative water potentials in the 

partially saturated region as a function of time. An estimate of the total inflow to large, sealed 
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off sections of the drift is obtained from measurements of the moisture extracted from the 

circulated air in a cooling trap. On a much smaller scale, the evaporation rate at the drift 

surface is estimated by measuring gradients of relative humidity and temperature. 

Figure 1: Schematic of model domain 

4.2 Simulation Results 

In this section, we discuss the formulation of the direct problem and the results of the 

forward calculation using the optimum parameter set. Prior to ventilation, the system is run to 

steady-state in orde~ to obtain the initial pressure and saturation distribution and to evaluate 

the inflow to the drift under single-phase flow conditions. However, by reducing the 

pressure in the drift, air which is dissolved in the liquid phase from previous ventilation 

experiments comes out of solution, leading to a very small initial gas saturation throughout 

the model domain. Starting ventilation, formation water evaporates at the surface due to the 

reduced relative humidity which is the main physical process that drives the desaturation of 

the formation. Connell and Bell [1993] show that the transfer of moisture at a free surface is 

a complicated, mechanism which depends on factors such as relative humidity, temperature 

gradient, wind velocity in the drift, and surface roughness, the latter two defining the 

thickness of the laminar boundary layer and the magnitude of the effective vapor diffusion 

coefficient in the drift. Rather than explicitly model the moisture transfer across the drift 

surface, the reduced relative humidity is imposed as a boundary condition at the drift wall, 
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giving rise to an equivalent capillary suction according to Kelvin's equation [Edlefsen and 

Anderson, 1943]: 
R-T 

Pc,equ =In (h) PI· Mw (24) 

The relative humidity h in the drift is 68% at a temperature of 12.5 ·c during the first .1 0 days 

of the experiment, 71% at T=13.0 ·c for the next 50 days, and 75% during the remaining 20 

days, invoking an equivalent capillary suction of -50.0, -46.0, and -38.0 MPa, respectively. 

By prescribing these values directly at the drift wall, we neglect the variation of the vapor 

content in the boundary layer as a function of wind velocity and the actual evaporation rate. A 

sensitivity study was performed to assess the robustness of this model conceptualization. It 

turned out that the system behavior is relatively insensitive with respect to the boundary 

suction pressure and the strength of the vapor diffusion at the drift wall. This is mainly due to 

the fact that the evaporation rate is limited by the water supply from the formation which is 

governed by the two-phase characteristics of the rock. Increased evaporation at the surface 

immediately leads to higher gas saturations at the drift wall which reduces the liquid relative 

permeability, thus limiting the water supply for evaporation. On the other hand, vapor 

diffusion toward the drift is increased because of vapor pressure lowering effects which lead 

to larger concentration gradients for binary diffusion. However, the contribution of vapor 

diffusion to the total mass flow of water is small, except at the surface itself. The finding that 

the water inflow to the drift is relatively stable is also confirmed by the results of discrete 

evaporation measurements near the drift wall [Vomvoris and Frieg, 1991]. This data shows 

that the temporal variations of evaporation rates due to changing climate conditions m the drift 

are very minor compared to the dramatic change of the equivalent suction pressure that has 

been applied in that experiment. 

Figure 2 shows the calculated flow rate into the drift as a function of time. It can be seen 

that the flow rate does not seem to be affected by the changes in the relative humidity and 

associated capillary pressure at the drift wall. The average flow rate of water over 80 days in 

both liquid and vapor phase is 0.34 mg·m-2·s-1 which is larger than the steady-state inflow 

· under single-phase liquid conditions. Obviously, there is an increase of the amount of 

moisture that is removed from the formation due to evaporation. However, since the flow 

regime is radial and finite, the system tends towards equilibrium between the evaporation rate 

at the drift surface ~d the incoming liquid from the formation so that the expansion of the 

unsaturated zone slows down over time. The net loss of liquid in the model region is 

compensated by a counterflow of gas from the drift into the rock. 
., 
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Figure 2: Flow rates and suction pressure at the drift wall as a function of time 

Figure 3 depicts the pressure profile prior to ventilation, and the final distribution after 80 

days. The gas pressure throughout the partially saturated zone is close to atmospheric. It 

does, however, remain slightly above the fixed pressure in the drift, mediated by diffusive 

flow of air and vapor across the drift wall. The presence of a low pressure region - with 

respect to the profile from single-phase liquid flow - has been observed in the two parallel 

boreholes BOVE 84.011 and BOVE 84.018, leading to speculation about the impact of the 

unsaturated zone on head and inflow measurements [Vomvoris and Frieg, 1992]. The 

computed gas pressure at the location of the two boreholes is 0.148 and 0.296 MPa which 

compares reasonably well with the observed value of0.12 and 0.28 MPa, respectively. Note 

that the formation is partially desaturated by evaporation to a depth of about 1.5 m. However, 

significant gas saturations (e.g. > 50 %) are found only to a depth of a few centimeters from 

the surface. The shape of the saturation profile strongly depends on the parametric model that 

describes the capillary pressure as a function of liquid saturation. 
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Figure 3: Gas saturation and pressure profiles 

4.3 Inverse Modeling Results 

For the conceptual model described above, and based on the water potentials measured at 

25 logarithmically spaced points in time during a ventilation period of 80 days, we estimate 

three parameters, namely the absolute permeability k, and the parameters n and 1/a. of van 

Genuchten's characteristic curves described by Eqs. (7) and (9). Besides developing a flow 

simulation model, inverse modeling requires assigning prior variances to the residuals 

reflecting both errors from the measurements and errors from the model conceptualization. 

We assume that the standard deviation of each residual is 10% of the measured value, and 

that the residuals are uncorrelated. Furthermore, we employ a reparametrization for absolute 

permeability and estimate its logarithm instead of the value itself. An initial guess is provided 

for each of the unknown parameters, and the ITOUGH2 code is run applying least squares 

optimization. Figure 4 shows observed and computed water potentials for the calibrated 

model. 

C> 
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Figure 4: Fit between computed (lines) and measured (symbols) water potentials 

First, we note that our model is capable of reproducing the overall behavior of the two­

phase flow system. Both the magnitude and the trend of the capillary pressures are well 

reproduced by the model results. This visual finding is confirmed by the estimated residual 

variance, s02 = 1.07, which indicates that the achieved match is consistent with our 

expectations regarding the final residuals. The results are summarized in Table 1 (estimated 

parameter set, eigenvalues and eigenvectors of covariance matrix) and Table 2 (covariance 

and correlation matrices). Identical results were obtained starting the minimization procedure 

from different points in the parameter space, ranging from -17.0 to -21.0 for log(k), 10.0 to 

20.0 bar for 1/a, and 1.0 to 3.0 for n. This indicates that the inverse problem is well-posed 

and that the solution is unique. 
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Parameter Estimate Eigenvalue Eigenvector 

lo_g_ (k) -18.29 2.10x10-4 0.851 0.512 0.115 

n 2.38 1.68x10-3 -0.495 0.856 -0.147 

lla [bar] 15.77 1.41x1Q-I -0.173 0.068 0.982 

Table 1: Parameter estimates, eigenvalues and eigenvectors of estimation covariance matrix 

log (k) n 1/a 

log (k) 4.81x10-3 -0.75 -0.93 

n -2.28xw-3 1.94x1Q-3 0.57 

1/a -2.39x1Q-2 9.23x10~3 1.36x10-I 

Table 2: Covariance (diagonal and lower triangle) and correlation (upper triangle) matrices 

The correlation matrix reveals strong interdependencies between all parameters. Since 

decreasing the value for n reduces the liquid relative permeability, the absolute permeability 

has to be increased in order to maintain a certain water flow rate. This explains why n and 

log(k) are negatively correlated. Similarly, the water potentials decrease with higher air entry 

pressure and higher permeability, leading to a negative correlation between these two 

parameters. The correlation between n and 1/a is difficult to predict because the effect of 

these parameters on capillarity changes with saturation. Since the propagation of the 

unsaturated front depends on absolute permeability, thus determining the saturation at each 

of the tensiometers, the correlation between the two van Genuchten parameters is indirectly 

affected by their correlations with log(k). The parameter 1/a is almost entirely associated 

with the largest eigenvalue, indicating a relatively uncertain estimate. Parameter combinations 

along the corresponding eigenvector are therefore most unreliable. Furthermore, the 

eigenvector associated with log(k) shows relatively large components in the two other 

parameters. 

From this correlation structure it can be concluded that determining the absolute 

permeability by means of independent data may greatly reduce the correlations among all 
' three parameters and therefore improve the quality of the estimation. In order to do this, we 

select the total inflow rate of moisture to the drift as an additional data point, expecting th,at it 

.. 
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is a very sensitive measure with respect to changes of the absolute permeability. However, 

inflow measurements from larger drift sections contain significant contributions from highly 

conductive shear zones, which would lead to systematic errors. By covering these shear 

zones with plastic sheeting, the mean flow rate of water extracted from the granodiorite 
matrix is estimated to be in the order of 0.3x1Q-6 kg·s-l.m-2 [Kull et al., 1991]. This is 

consistent with small scale measurements of evaporation rates at the drift wall, where values 
between 0.4x10-6 and 1.3x1Q-6 kg·s-l.m-2 were observed during a short-term ventilation 

experiment with a relative humidity of 65% [Vomvoris and Frieg, 1991]. These values are 

higher than the average rate because they are taken at the beginning of a climatic change 

where increased inflow is expected (see Figure 2). 

For our inverse modeling study, we calculate the total inflow to the drift as a TOUGH2-

model result and compare it to the measured value given by Kull et al. [1991]. Even though 
relatively uncertain, a low standard deviation of 10-8 kg·s-l.m-2 is assigned to this 

additional data point, accounting for the fact that it represents a mean value which has to be 

appropriately weighted against the 6x25 = 150 individual water potential measurements. 

Furthermore, we include two gas pressure measurements in our model, taken at boreholes 

BOVE 84.011 and BOVE 84.018 (see Figure 1). The extent of the reduced pressure zone as 

shown in Figure 3 is reflected in these data. A pressure of 0.12 MPa and 0.28 MPa, 

respectively, is observed in the corresponding intervals. They are compared with the 

computed pressure at the end of the modeled ventilation period. A standard deviation of 0.01 

MPa is assigned. Finally, we take the estimates of the previous run as prior information 

about the parameters. They are weighted by the inverse of the variances given in Table 2. 

The results of the inverse run using the extended data set are summarized in Tables 3 and 

4. First we note that taking into account the flow and gas pressure measurements results in a 

slightly lower value for the absolute permeability. The other two parameters are shifted 

according to the correlation rules discussed above. The resulting characteristic curves are 

shown in Figure 5. The variances of all estimates have been reduced due to the fact that more 

independent information is involved in the determination of the parameter values. The 

reduction of the variances is stronger than those of the eigenvalues, indicating that the 

improvement is also caused by weakening the correlations among the parameters, as is 

shown by the covariance matrix. Predicted water potentials are virtually indistinguishable 

from the previous calculation as plotted in Figure 4, because the parameter set has been 

shifted basically along the eigenvector associated with the largest scaled eigenvalue. 
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Parameter Estimate Eigenvalue Eigenvector 

log (k) -18.51 1.42x10-4 0.921 0.377 0.095 

n 2.46 1.09x1Q-3 -0.377 0.926 -0.022 

1/a [bar] 17.04 3.05x1Q-2 -0.097 -0.015 0.995 

Table 3: Parameter estimates, eigenvalues and eigenvectors of estimation covariance matrix 

log (k) n lla 

log (k) 5.61x10-4 -0.39 -0.71 

n -2.86x1Q-4 9.61x1Q-4 -0.09 

1/a -2.92x10-3 -4.85x1Q-4 3.03x10-2 

Table 4: Covariance (diagonal and lower triangle) and correlation (upper triangle) matrices 

II> 
.:: 0.4 ... 
Q) 
~ 

0.2 

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 

Liquid Saturation Liquid Saturation 

Figure 5: Characteristic curves estimated by inverse modeling 

1.0 

In the remainder of this paper we will show that the actual confidence region around the 

optimum parameter set can be accurately represented by a covariance matrix that is corrected 

to account for nonlinearities. The procedure is demonstrated for the two parameters n and 1/a 

of van Genuchten's characteristic curves whereas the absolute permeability is fixed at its 

optimum value. By evaluating the objective function for many parameter combinations, a 

contour map can be drawn (Figure 6), depicting the location and convexity of the minimum. 

From Equation (15) we see that the actual confidence region on a given significance level 
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a is bounded by the contour of the objective function on level ~(p~ + so2·n · F n,m-n, 1-a· For 

two parameters and 155 data points, the quantile of the F-distribution on the 95%-confidence 

level is F2,153,0.95= 3.054. The linear approximation of this confidence region is given by 

(20). We then increase the corresponding eigenvalues following the procedure outlined in 

Section 3.3. As a result, the actual confidence region is accurately represented by an ellipse 

the orientation of which is calculated from the standard linear error analysis, and its size is 

appropriately corrected to account for nonlinearities. The increase of the eigenvalues which is 

necessary to better approximate the actual confidence region shows that linear error analysis 

provides too optimistic a measure of the estimation error. This is due to the fact that (20) 

intrinsically describes a minimum variance bound. Furthermore, it is shown that the shape of 

the actual confidence region is close to ellipsoidal so that its description by means of a 

covariance matrix seems justified in this case. Finally, the approximation of the Hessian by 

the matrix'.JTV-1 J is accurate enough to obtain the orientation of the confidence region, i.e. 

the eigenvectors of the corresponding covariance matrix ( 18). This concludes the discussion 

of the nonlinear error analysis. 
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5. CONCLUDING REMARKS 

Three major aspects of inverse modeling in groundwater hydrology have been addressed 

in this paper: 

1 . The problem of parameter estimation is solved for the simulation of groundwater systems 

that contain two immiscible phases. While the direct measurement of two-phase 

parameters is both conceptually difficult and experimentally expensive, inverse modeling 

provides an appealing technique to obtain model-related parameters by calibrating the 

numerical model against sensitive observations of the system state. 

2. The inverse problem is formulated in the framework of maximum likelihood estimation 

theory. The objective function from generalized least squares optimization is minimized 

using the Levenberg-Marquardt algorithm. The efficiency of the procedure allows 

examination of different model structures and . different data sets, improving the 

understanding of the two-phase flow system. Furthermore, the analysis of sensitivity 

coefficients and the correlation structure provides some guidance for the design of future 

experiments. 

3. One of the main advantages of inverse modeling is that the quality of the estimation can 

be described by statistical measures. However, if the model is highly nonlinear, the 

standard linear error analysis overestimates the accuracy of the optimum parameter set. 

Based on an idea originally presented by Carrera [1984], we calculate a corrected 

covariance matrix which approximates the true confidence region in the nonlinear case. 

The procedure is computationally inexpensive and leads to easily reportable confidence 

regions. 

The method of parameter estimation by inverse modeling has been applied to data from a 

ventilation test performed at the Grimsel Rock Laboratory. The following major conclusions 

can be drawn from this field application: 

1 . We successfully modeled a field experiment conducted under two-phase flow conditions. 

The conceptual model incorporates a variety of physical processes, including evaporation 

at the drift surface, capillary forces and phase interferences, and binary diffusion of water 

vapor and air driven by vapor pressure lowering effects. A sensitivity analysis has been 
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performed to assess the main features of the conceptual model. Since the system response 

is sensitive with respect to the input parameters of the numerical model, observations of 

different types can be used to determine the properties of interest. 

2. Inverse modeling of the ventilation experiment provides reliable estimates of model­

related formation parameters affecting two-phase flow. If the absolute permeability can be 

determined independently, the parameters of van Genuchten's characteristic curves are 

estimated with less uncertainty because the indirect correlation ro the absolute 

permeability is reduced. 

3. If the model is strongly nonlinear in the parameters, the standard way of calculating error 

bounds on the parameters leads to too optimistic variances. The nonlinear error analysis 

proposed in this paper provides an improved estimate of the confidence region. 
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