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ABSTRACT 

We describe the process used in combining an existing computer simulation with both Virtual 
Reality (VR) input and output devices, and conventional visualization tools, so as to make the 
simulation easier to use and the results easier to understand. VR input technology facilitates di
rect user manipulation of three dimensional simulation parameters. Commercially available vi
sualization tools provide a flexible environment for representing abstract scientific data. VR 

· output technology provides a more flexible and convincing way to view the visualization results 
than is afforded in contemporary visualization software. The desired goal of this process is a 
prototype system that minimizes man-machine interface barriers, as well as enhanced control 
over the simulation itself, so as to maximize the use of scientific judgement and intuition. 

In environmental remediation, the goal is to clean up contaminants either by removing them or 
rendering them non-toxic. A computer model simulates water or chemical flooding to mobilize 
and extract hydrocarbon contaminants from a volume of saturated soil/rock. Several wells are 
drilled in the vicinity of the contaminant, water and/or chemicals are injected into some of the 
wells, and fluid containing the mobilized hydrocarbons is pumped out of the remaining wells. 
The user is tasked with finding well locations and pumping rates that maximize recovery of the 
contaminants while minimizing drilling and pumping costs to clean up the site of interest. 

1. HISTORICAL BACKGROUND OF VIRTUAL REALITY 

In 1965, Ivan Sutherland charted a course for research in computer graphics, which has yet to 
be fully achieved. He defines the "Ultimate Display" as "a window through which one beholds 
a virtual world. The challenge to computer graphics is to make the picture look real, sound real 
and the objects act real." [see 1] Added to this lofty and elusive goal is the notion that we, as 
human beings, can interact with the objects in this virtual world in a way which is "natural." 
These two concepts come together to define, in broad terms, computer "Virtual Reality." Suther
land's vision has guided the computer graphics industry for nearly thirty years. 

In contrast, one of the goals of scientific visualization [2] is to "see the unseeable." Rather than 
pursue the Grail (exactly producing what we can already see) of the ultimate renderer and the 
ultimate motion or deformation model, it is desirable, through abstraction, to make images of 
what was previously unseeable, or nonexistent. Mathematical formulas, theoretical molecular 



structures, structures of the galaxies evolving over time, behavior of algorithms, and so forth, 
are all things that are simply "unseeable." As humans, we tend to accept what we see, and when 
we see an image of a complex mathematical formula, we tend to believe that the shape that we 
see is "real." Oui acceptance of the images of the "unseeable" is further reinforced when the 
objects representing the unseeable behave in the same way as objects in the "real" world. They 
can be picked up, moved around, and so forth. At this juncture, VR and scientific visualization 
overlap and provide natural complements for one another. 

Over the years, the visual and interactive aspects of VR have received much attention. More 
recently, studies have been undertaken that explore beyond the better-understood visual and in
teractive aspects ofVR. Such studies explore haptic systems that provide tactile feedback ([3], 
[4]), and the use of sound [5]. 

2. INTRODUCTION 

We consider the terms Virtual Reality and Virtual Environments to be synonymous, and consist
ing of three broad components: a: computer model which is rendered into an image; the process 
of user-model interaction; and the process of model viewing. 

The model itself is, in broad terms, independent of any VR hardware. A model can come from 
a variety of sources; a CAD package, visualization tools, imaging tools, and so forth. The model 
can include, in addition geometric information, dynamic information, such as motion paths or 
kinematics. The model is something the user can "see" in the virtual world and can directly ma
nipulate. In our prototype application, the model consists of visualized simulation output, con
sisting of geometry and volumetrics, along with simulation parameters represented geometrical
ly. The model, in general, consists of geometric (and possibly volumetric) information. (The 
simulation itself is also a model in it's own right. However, the simulation doesn't appear on 
the screen as an "object" in the same way as the simulation parameters, such as the wells, for 
example.) The simulation is manipulated indirectly, while the parameters are directly subject 
to user control. 

Model interaction includes at least two subcomponents. Implementing this man-machine inter
face requires some type of input device and software which supports updating the model based 
upon user input. For now, we assume that the final image presented to the user changes whenever 
the model is changed. We permit the user to directly manipulate only a select set of visualized 
simulation parameters. Manipulation requires a pick operation, to indicate which of the parame
ters to edit, and then modifying a location value. 

Viewing the model involves three subcomponents. A rendering system is needed which is capa
ble of producing images from a model. Display hardware is used to present the image to the user. 
Input devices gather user input about viewing parameters. The configuration of hardware and 
software that we use, along with an overview of design decisions and goals, will be discussed 
in a later section. 

There are numerous software tools that may be used for creating a Virtual Reality (using the defi
nition we have adopted), numerous gadgets that may be used for getting input from the user and 
for displaying images of this virtual environment. Enumerating these, and providing a taxono
my of devices and the different shades of VR is beyond the scope of this paper .. In this paper, 
discussion of these devices is limited to the actual hardware and software used. See [ 6] and [ 1] 
for more information, such as taxonomies of input and output devices, ranges of VR from Win
dow-on-a-World through complete immersion. 
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To achieve our goal, namely a VR interface to an existing simulation, we extended a commercial
ly available package for scientific visualization to include VR input, and ported the simulation 
into this environment. We gain the benefits provided by VR input, namely enhanced control over 
three dimensional information (the simulation input, and user viewpoint), as well as the benefits 
of a flexible environment for visualizing scientific data. 

We will explore some of the previous work in combining VR with scientific visualization and 
indicate the relationship between our work and previous studies. A discussion of site remedi
ation, the specific simulation, its parameters, output and how they are visualized and manipu
lated follows. Finally, number of observations about the process of combining VR technology, 
a simulation and a dataflow visualization package, and the results of the project are discussed. 

3. SCIENTIFIC VISUALIZATION AND VIRTUAL REALITY 

Cruz-Neira, et al, describe the CAVE, an immersive environment that employs three-dimen
sional tracking devices, three-dimensional picking devices, auditory feedback, and a number of 
projections screens that surround the user, thus forming a "cave" [7]. The CAVE has been used 
for architectural walkthroughs, cosmic exploration, fractal exploration, viewing the behavior of 
algorithms implemented on parallel machines, and understanding weather and molecular dy
namics [8]. Among the advantages of this type ofVR system are the ability to track the user in 
a confined space providing control over the user environment, a high-resolution stereo display 
in which each screen has a resolution on the order of 1 K by 1 K pixels displayed in stereo at 
120hz, as well as providing an environment for an immersive experience for a group of partici
pants. . 

Bryson and Levit have implemented a system called the "Virtual Wind Tunnel" [9]. The purpose 
of this system is to facilitate the study of flow fields using immersive technology such as the Fake 
Space BOOM for display and a glove for providing three-dimensional input. A glovejs used 
to specify seed points for releasing particles into the flow field in order to trace their trajectories. 
The boom-mounted display makes it easy to enter/exit ("unsuit") to/from the virtual environ
ment. Additionally, the BOOM provides the benefit of delivering high-resolution stereo images 
to the user and has a wide field of view (in contrast to consumer grade head-mounted displays). 
This system facilitates user study of regions of interest in the flow field. 

Sherman [10] reports VR extensions to two systems for scientific visualization that employ the 
dataflow paradigm [ 12]. Dataflow-based packages consist of reusable program modules, which 
have a consistent interface for inter-module data communication. These systems facilitate ex
perimentation and allow for rapidly bringing new data into the system for viewing and interac
tion. Dataflow packages are extensible through user-written modules. Sherman's work de
scribes extensions to one such package to support VR input (VPL dataglove) with an input mod
ule, and VR output (to the Fake Space BOOM) with a custom rendering module. An important 
conclusion of this work is that the same environment that is used to create visualization programs 
can be used to create VR applications for viewing and interacting with scientific data. Hence, 
users already familiar with the use of one of the dataflow packages will require minimal addition
al training to use VR. 

Our work is most similar to that of Sherman's in the respect that we extend a dataflow package 
to incorporate VR input and output. Using stereo window-on-a-world VR output (see [1] or 
[6]), we are able to successfully merge a window into our virtual world with traditional window
system-based GUI's for access to menus, dials and sliders. The combination of control over 
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three dimensional parameters using VR input devices, along with access to scalar parameters via 
a mouse, allow us to effectively control a simulation for chemical flooding which executes with
in the dataflow model. The menus, dials and so forth which provide control over one- and two
dimensional parameters all appear on the same screen as the window into the virtual world. A 
presentation of this type dispenses with the problems encountered in those system that require 
"unsuiting" in order to change parameters. 

4. COMPUTER SIMULATION OF CHEMICAL FLOODING IN A 
VIRTUAL ENVIRONMENT 

In this section, we discuss the chemical flooding simulation, describing its inputs and outputs, 
some porting issues, and the extensions we made to a dataflow visualization system. 

Site remediation is the process of removing a contaminant from the subsurface. The simulation 
for this project models water or chemical flooding to remove hydrocarbon contamination. Hy
drocarbon contamination can occur as a result of a leaking oil tank or from years of dumping jet 
fuel on the ground. The parameters that are of primary interest in site remediation are the loca
tions of injection wells into which water or chemicals are injected, in order to mobilize the hydro
carbon, and the locations of production wells from which the fluid containing the hydrocarbon 
is pumped. The most crucial problems encountered in this type of work are to determine the opti
mallocations of the injection and production wells together with suitable pumping rates. Opti
mal placement of wells and pumping rates will result in reduced drilling and remediation costs. 

At the start of this project, the simulation itself was in the form of a batch program. The major 
modifications required to this code involved changing the manner and means by which it ob
tained input and how it disposed of its output. Such an activity is typical of porting any code into 
a dataflow package: 

The simulation requires as input a three dimensional finite-difference grid, a description of the 
initial state of subsurface parameters (e.g., permeability, porosity, and initial hydrocarbon dis
tribution and concentration), locations of each of the injection and production wells, the rates 
of injection and production, and the type of fluid injected (water or a chemical mix). 

Given that we wanted to provide visualization tools for not only the input parameters (e.g., the 
grid, the values of the subsurface parameters at each grid node, etc.), but also allow some of these 
parameters to be edited by the user (the wells) as well as display simulation output, the following 
breakdown of tasks was identified. 

A custom module was written which parses the simulation "grid file." The grid file contains 
information about the spatial structure of the three dimensional finite-difference grid, as well 
as values of permeability and porosity at each grid node. The grid-reading module produces as 
output a structure which can then be visualized in a number of ways. The simplest manner of 
visualizing the grid is as a wireframe mesh, which simply shows the spatial structure of the grid. 
Figure 1 shows a visualization of a three dimensional finite-difference grid, along with an initial 
placement of wells. In addition, the initial permeability distribution in the grid is visualized us
ing direct volume rendering [11]. Areas of low permeability are more opaque, while areas of 
higher permeability are more transparent. It is possible to permit the line segments forming the 
visualized grid to be color-coded according to the values of one or more of the parameters, but 
in practice, this tends to not work out well (it is hard to interpret), especially when other data is 
visualized simultaneously with the grid, such as output from the simulation. As an alternate way 
of visualizing the grid, the grid-reading module also constructs a cell-based model of the grid. 
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The cell-based model is composed of a number of hexahedral-shaped cells. Permeability and 
porosity values, from the input grid file, are associated with cell nodes. The user is free to use 
either of these structures, and a variety of visualization tools, to represent the grid visually as they 
see fit. · 

Figure 1 

The three dimensional finite-difference grid, iconic representations of the wells, 
and permeability visualized using direct volume rendering. 

A second module was written which parses the simulation "wells file.' ~ This file contains in
formation about the locations of the wells with respect to the grid, the well type (production or 
injection), injection or production rates, as well as other well parameters. For each well read in, 
a geometric representation of the well is constructed and passed on as output (to the rendering 
module of the system). Using feedback loops within the dataflow package, it is possible to detect 
when the user has performed a pick operation on a particular well. In AVS, pick information is 
detected by the rendering module, and is performed using the mouse. When a well pick is de
tected, that well is highlighted. Information about that well, such as it's location in the finite-dif
ference grid, is displayed. The user may then make use of the Spaceball to move the well around 
in the grid (the wells module contains code which reads information from the spaceball device). 
After completing the editing operation on one well, the user may elect to move another well 
around, or to run the simulation using new well parameters. In addition to creating the output 
geometry used to visualize the well locations, this module also creates a text file describing the 
wells, and associated parameters, for the simulation. 
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The third component is the simulation module. The process of porting the simulation code into 
the dataflow environment presents several software engineering challenges, not the least of 
which is segregating input/output tasks from the rest of the code into structured interfaces. Due 
to time constraints, and a high level of interdependencies within the code, we elected to leave 
the simulation inpuiloutput facilities in a fairly unmodified form. This means that the simulation 
still gets its input from text files. 

In terms of"porting" the output of the simulation into a form suitable for use in the dataflow envi
ronment, the simulation module will accept as input the grid structure produced by the grid mod
ule, "throw away" the permeability and porosity values associated with each grid node, and "fill 
in" values on the grid with chemical concentrations as the simulation proceeds through time. 
Thus, the user has two grids to visualize. The first , as described in above, contains the structural 
information about the grid, as well as initial parameters about the subsurface. These parameters 
are static for the duration of the simulation. The second, computed by the simulation module, 
contains new values for oil, water, and other chemicals, at each time step at each grid location. 
Thus, the two grids are identical topologically, but contain different types of information at each 
node. 

Figure 3 
As the simulation proceeds, the water 
begins to mobilize the contaminant. 
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Figure 2 
Early in the simulation, water con
centration is high near the top of the 

injection well. 



The simulation module executes asynchronously (once it has all its input parameters specified) 
from the rest of the dataflow network. As each time step is finished, a new chemical concentra
tion grid is passed as output to the downstream modules in the dataflow network. At the present 
time, the simulation executes on the same CPU as the dataflow package and the rendering sys
tem, which is a graphics workstation. Future plans include porting the simulation to a massively 
parallel machine, while leaving the visualization and dataflow scheduling tasks to the graphics 
workstation. 

Figure 5 

The shape of the water isoconcentra
tion surface is affected by perme
ability within the ground. Areas of 
low permeability appear visually to 
be more opaque, while areas of 
higher permeability appear as being 
more transparent. 

The user is free to experiment with alternate methods of visualizing the grids. In Figures 2 and 
3, we show, from two time steps in the simulation, the grid, the wells used in this particular run 
of the simulation, along with two isosurfaces. The isosurface closer to the top of the injection 
well represents a surface of constant water (injectant) concentration, and the lower isosurface 

7 



represents a surface of constant hydrocarbon concentration. Figures 4 and 5 show the use of vol
ume rendering [11], combined with isoconcentration surfaces, for the same time steps as Figures 
2 and 3. Hydrocarbon concentration is represented with opacity: in areas of high concentration, 
the volume appears more opaque, in areas of low concentration, the volume appears more trans
parent. These static images are difficult to interpret, but when the objects in the image are rotated 
by the user, the physical structures represented by the volume rendering become easier to under
stand. 

In summary, porting the "simulation" into the dataflow environment required three custom mod
ules . One is the simulation itself, which computes chemical concentrations on a grid at each time 
step. A "grid" module reads the grid information, and creates two structures. The user is free 
to experiment with different visualization techniques to depict either the simulation input grid, 
along with associated static parameters, or the simulation output grid. The freedom to choose 
and experiment is a benefit of using the dataflow environment. A "wells" module is the interface 
to the well editing operation. 

5. DISCUSSION 

At the onset of this work, we were faced with a number of interesting problems. First, UTCH
EM, the simulation code used for this project [ 13], can be characterized as" dusty-deck Fortran", 
which was developed over time by a number of discipline-science researchers and which was 
built to be run on a vector machine. Interactivity was not a part of the design of this code, nor 
was graphical output. Porting this code into a dataflow visualization system required special 
attention to compatibility issues with regard to simulation input and output. The simulation was 
written to perform all input and output operations to text files. The dataflow packages make use 
of data structures or data models for data communication between modules. 

Second, at LBL, we make use of dataflow based visualization systems for most of our visualiza
tions tasks. Given the flexibility and extensibility of these packages, as well as for support for 
distributed computing (modules to execute on remote systems), these environments for visual
ization and computing make efficient use of existing resources. We wished to leverage upon this 
efficiency by extending these systems to not only include simulations, but to also act as a testbed 
or "breadboard" for including VR operations. 

Third, we wanted to explore the use ofVR as applied to scientific research and the visualization 
cycle. We wanted to provide for more natural and intuitive manipulation of three dimensional 
information, such as well locations for the chemical flooding simulation. Application of VR in
put technology produced satisfactory results in this project. 

Fourth, we wanted to integrate all of these items into one environment that would support mak
ing a relatively seamless transition from "desktop" VR (in as much as VR can be done on the 
desktop) to VR "in the graphics lab." When the first of the dataflow-based visualization systems 
appeared, they were built to run on a single machine, typically a high-powered graphics 
workstation. The scientist had to be physically at the console of the workstation to run the sys
tem. Aside from being an inconvenience at a large research facility, there was the constant prob
lem of competition for access to the workstation. As the visualization systems evolved to use 
network-based window systems (e.g., the X windowing system), scientists were then able to do 
visualization on the desktop. This was immensely popular; the problems of competition and 
having to be physically in front of the graphics workstation disappeared. The tradeoff, obvious-
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ly, is one of performance, but the degraded performance was, by and large, acceptable most of 
the time and viewed as the cost of convenience. 

In our graphics laboratory, the dedicated graphics hardware consists of a DEC Alpha 3000/400, 
with a Kubota Pacific Denali 6/20 (the graphics engine), a Tektronix stereo shutter, cardboard 
polarizing stereo glasses, and a Spaceball Technologies, Inc. spaceball. The desktop system is 
a Sun Spare 2 with a GX graphics adapter, and a spaceball. We use AVS as the dataflow visual
ization system. A single module was written for acquiring spaceball events and injecting them 
into the dataflow network, where they were further processed by modules that place the wells 
and specify a camera position for the rendering module. 

6. CONCLUSIONS 

This has been an experiment in which we wanted to maximize the use of very valuable resources, 
namely scientific knowledge and human intuition. In the virtual environment, the scientist may 
experiment with simulation parameters and get immediate feedback as to their effect on the sim
ulation. The VR extensions provide a means to easily control three dimensional parameters, 
something which has been missing in computer simulations. 

A set of reusable software tools, combined with commercially available VR gear, commercially 
available computing equipment and visualization software has been integrated into an environ- . 
ment for experimenting with parameters for a simulation of water/chemical flooding, resulting 
in enhanced scientific productivity and new insights into a physical system. 
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