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Abstract 

This dissertation describes nuclear magnetic resonance experiments and theory 

which have been developed to study quadrupolar nuclei (those nuclei with spin greater 

than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning is 

extensively reviewed and expanded upon in this thesis. Specifically, the improvement in 

both the resolution (two-dimensional pure-absorptive phase methods and DAS angle 

choice) and sensitivity (pulse-sequence development), along with effective spinning 

speed enhancement (again through choice of DAS conditions or alternative multiple pulse 

schemes) of dynamic-angle spinning experiment were realized with both theory and 

experimental examples. The application of DAS to new types of nuclei (specifically the 

87Rb and 85Rb nuclear spins) and materials (specifically amorphous solids) has also 

greatly expanded the possibilities of the use of DAS to study a larger range of materials. 

This dissertation is meant to demonstrate both recent advances and applications of the 

DAS technique and by no means represents a comprehensive study of any particular 

chemical problem. 
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Chapter 1 

Introduction 

Nuclear magnetic resonance (NMR) spectroscopy is one of the most important 
.• 

techniques used in chemistry today. The use of liquid state lH spectra to identify organic 

compounds, along with infra-red spectroscopy, mass spectrometry and x-ray diffraction, 

has essentially replaced the chemical techniques used in previous decades. In addition, 

the use of NMR to examine large biologically active peptides, proteins, nucleic acids and 

sugars has greatly enhanced the speed and accuracy of structure determination, as well as 

giving site specific dynamical information. .Finally, the use of magnetic resonance to do 

medical imaging has significantly improved the diagnostic capability of the medical 

community. Magnetic resonance imaging has provided a tool to do non-invasive exami-

nation of patients without the use of harmful high-energy radiation (i.e. x-rays) or ra

dioactive chemical isotopes (i.e. positron emission tomography). However, all of these 

techniques primarily deal with molecules in solution. The application of magnetic reso

nance to solid state samples has been limited mostly to chemical physics and physical 

chemistry laboratories at large research institutes. The last ten years have seen an explo-

sion in the use of solid state NMR. Primarily this has come about due to advances both in 

multiple-pulse techniques and in sample reorientation experiment~. The single most im-

portant solid state NMR technique to be developed is cross-polarized magic-angle spin

ning (CPMAS). This experiment allows routine rapid collection of proton decoupled 

carbon-13 spectra with nearly liquid-like resolution. The last five years have seen the 

further advances of multi-dimensional solid state experiments which have continued to 

enhance information content in solid state NMR spectra. 

Throughout this thesis, I will discuss experiments I carried out in the laboratory of 

Prof. A. Pines at the University of California, Berkeley. In particular, I will describe the 

advances we made with the technique of dynamic-angle spinning NMR. This technique 

1 



was designed to obtain high-resolution liquid-like spectra of solid samples containing 

quadrupolar nuclei. In this work, I will show the application of this technique primarily 

to 87Rb and 17 0 containing compounds. This is by no means a complete or systematic 

study of all such compounds, but merely a demonstration of the possibilities for the ulti

mate use of dynamic-angle spinning experiments once these experiments become as rou

tine as CPMAS. 
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Chapter 2 

Theory of Nuclear Magnetic Resonance 

To understand the techniques of nuclear magnetic resonance spectroscopy which I 

will discuss throughout this thesis, I will first need to introduce some of the fundamentals 

of quantum mechanics which will be used to describe the application of static and rotat

ing frame magnetic fields to a system composed of a large number of spins. There are a 

large number of good fundamental and more advanced texts on quantum mechanics.1-5 

Also I would direct the reader to additional books written specifically about nuclear mag

netic resonance which provide the basis for much of the theory presented in this chapter.6-

13 Finally the doctoral theses of Sun, Mueller and Chmelka all provide additional de

tailed information about the techniques presented here. 14-16 Before doing a complete de

scription of NMR in terms of quantum mechanics, I will first introduce the classical mag

netization vector picture. 

Classical Magnetization Description 

The magnetization picture assumes that an ensemble of spins may be treated as an 

overall macroscopic magnetization which rotates about the axis of the applied magnetic 

field at a characteristic Larmor frequency. This description may adequately characterize 

some simple single- and multiple-pulse experiments. The Larmor energy splitting is 

given by the formula 

(2.1) 

where 1i is Planck's constant, r is the gyromagnetic ratio and B0 is the static magnetic 

field. A useful concept in describing NMR experiments is the rotating frame of the Lar

mor frequency. Mathematically we transform from a fixed laboratory frame to a frame 

which is rotating at the Larmor frequency about the Ztab axis defined by the static mag-

3 



netic field. In this frame the Cartesian coordinates { xlab, Ytab, Ztab) will be transformed 

according to the following relationships: 

X rot = xlab cos m 1t + Ytab sin m 1t 

Yrot = Yiab cos m 1t- xlab sin m 1t 

Zrot = Zlab 

(2.2) 

where {X rot> y rot, Zrot) are the rotating frame coordinates and Olt is the Larmor frequency. 

First, in this frame the effective Zrot axis magnetic field is exactly canceled for on reso

nance spins and appe¥s as a much smaller field Boffset = B0 - ( ro,;o) to spins off reso

nance by ~. Second, in the rotating frame a magnetic field oscillating about the labora

tory x-axis (i.e. the applied radio frequency pulse) will appear as the sum of two oscillat-

ing magnetic fields. One oscillates at a frequency meffective = mapplied - m1 and the other 

at a frequency meffective = -mapplied - m 1. Only the former, low frequency, rotating 

frame magnetic field can affect the net magnetization of the sample. In the presence of a 

strong radio frequency (RF) pulse, the net z magnetization will begin to process about the 

effective magnetic field which is the vector sum of the Boffset along the Zrot axis and B 1 

along the Xrot axis. For on-resonance spins, a 7r/2 pulse consists of RF field applied for a 

time such that T = r Beffectivi. For spins which are only slightly off resonance 

( ~ > Boffset ). this RF pulse will effectively be a "90" pulse" to a good approximation and 

the Zrot magnetization will rotate about the Xrot axes to generate a large Yrot magnetiza-

tion. When the strong RF pulse is turned off, the effective magnetic field returns to the 

purely Boffset state along the Zrot axis. At this point, the net Yrot magnetization will begin 

to process about the Zrot axis. This rotating magnetization will appear as an oscillating 

magnetic field in the laboratory frame and can be detected with the same coil used to 

generate the RF pulse. The detected signal called a free induction decay (FID) contains 

the Fourier sum of all the frequencies present in the sample. The rotating frame Bloch 

equations describe thi~ magnetization evolution in classical terms and are shown below. 

4 

I 



(2.3) 

These equations show the excitation and free induction decay behavior described. In ad-

dition, they include relaxation terms not yet discussed. The Tt (longitudinal) and T2 

(transverse) relaxation rates are described more completely in some of the basic NMR 

texts. For the purpose of this thesis, they will always be treated classically, meaning, an 

irreversible exponential loss of coherence of both transverse (Mx and My) and longitudi

nal (Mz) magnetization components. In quantum mechanical terms, they will lead to an 

overall exponential damping of density matrix elements (such as lx. ly or lz) to equilib-

rium (lz). 

Quantum Mechanical Description 

Any discussion of NMR will ultimately be limited if only the Bloch equations are 

used to describe the system. To this end, the quantum mechanical fundamentals will be 

discussed in the next section. 

Rotations and Tensors 

One of the most fundamental concepts in NMR is that of rotations. Many rather 

complex problems in NMR spectroscopy (and other physical sciences) are greatly simpli

fied by judicious choice of reference frame. The use of Wigner rotation matrices to sim

plify the mathematics of rotations has been well described in books by Rose 17 , 

Edmonds 18 and Zare 19• Figure 2.1 shows the definition of the three Euler angles 

( a,f3, r) as used in Wigner rotation matrices D~!n ( a,f3, y). One use ofWigner rotation 

matrices is to rotate an object with tensor properties between frames of reference. 
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Suppose we have a tensor A of rank l with elements A1m which we wish to rotate into a 

PAS 
(X,Y,Z) 

z 

(a,f3, r> 
..... LAB 

Figure 2.1 Euler Angle Definitions. The first rotation is of size a about the Z axis, 
followed by a rotation of size f3 about the rotated Y axis and finally a rotation of size r 
about the rotated Z axis to arrive at the new Xlab• Ylab and Zlab axes. 

new frame. In this new frame, the resulting tensor Rt will have elements R1m given by 

the following expression. 

I (I) 
Rim = L Dnm ( a,f3, r)Ain (2.4) 

n=-1 

This expression may be numerically simplified by expressing D~2 ( a,/3, r) in terms of 

exponentials and reduced Wigner rotation matrix elements, d~ (/3). 

(2.5) 

The expressions for each of the reduced Wigner rotation matrices can be found in any of 

the previously mentioned sources. For most of the work in this thesis, I will deal primar-

ily with second rank tensors in both spin and spatial coordinates. Therefore, for refer-
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ence, I include a table (2.1) of second-rank reduced Wigner matrices, but this is by no 

means a complete set of matrices for all possible applications. 

n 

2 

1 

0 

-1 

-2 

m 

2 1 0 -1 -2 

il+c~spy l+cosP . f3 --2-sm ..Jf sin
2 f3 1-cosp . f3 

--2-sm e-c~sP_)2 

l+cosp . f3 - 2-sm 2 f3 l-cosP cos --2- -..Jf sin2/3 1+cosP 2 f3 - 2--cos 1-cosP . f3 --2-sm 

..Jf sin
2 f3 {i sin2/3 

3cos2 P -1 -{i sin2f3 {i sin2 f3 2 

1-cosp . f3 
- 2-sm 1+cosP 2 f3 - 2--cos {i sin 2/3 2 f3 1-cosP cos --2-

l+cosP . f3 
--2-sm 

e-c~spy 1-cosP . f3 - 2-sm ..Jf sin
2 f3 1+cosP . f3 - 2-sm e+c~sP_)2 

Table 2.1 Second-rank reduced Wigner rotation matrix elements d~~ (/3}. These 
elements may be used in conjunction with equation 2.4 and 2.5 to facilitate rotation of 
tensors. 

Perturbation Theory 

To analyze the effect of adding a small internal Hamiltonian, like chemical shift, 

to the overall system described by a large external Hamiltonian, I will use standard static 

perturbation theory. Perturbation theory has been described previously in a large number 

of locations; any good quantum mechanics text will include a section on this topic. 

Briefly, I will sketch the basics and their application to NMR. Given an arbitrary 

Hamiltonian which is the sum of two parts, one large (for example the Zeeman interac

tion) and the other small (the chemical shift or quadrupolar interactions), a starting point 

is to assume that the eigenvalues and eigenstates are those of the large Hamiltonian only 

and then add correction terms, as in a Taylor series expansion. Shown below is the 

derivation of the correction to both the eigenvalues and eigenstates for a general 

Hamiltonian (equation 2.6) which is very similar to that found in Baym.1 

H=Ho+V (2.6) 
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where the eigenstates In) and eigenvalues en of H0 , the dominant interaction, are known 

exactly 

(2.7) 

It is assumed that the actual eigenvalues and eigenstates will be very similar to those of 

the large H0 Hamiltonian. This assumption will be analytically true as the size of the 

perturbation V goes to zero. Therefore, we will arbitrarily redefine our Hamiltonian with 

a parameter which may be varied between 0 and 1 (ultimately we will let A go to 1). 

H= H0 +AV (2.8) 

Now we can confidently expand the actual eigenvalues EN and eigenstates IN) below. 

IN)= In)+ AIN(l)) + A.21N(2
)) + A.31N<3>)+··· 

EN= en+ A.E~) + A.2E~) + A.3E~)+··· 
(2.9) 

Now we assume that the eigenstates of H0 are normalized to 1 ((nln) = 1) and we will 

choose the normalization of IN) so that (niN) = 1 also. 

(niN) = 1 = (nln) +A.( nl N(I)) + A-2 ( niN(2
)) + A.3 ( nl N(

3
) )+··· 

(2.10) 

This implies that for an arbitrary A each correction term I N(i)) is orthoganal to the origi

nal basis state In). 

(nl~i))=o for i=1,2,3, ... (2.11) 

Now we can write the Schodinger equation for the complete Hamiltonian. 

(2.12) 

Collecting terms on both sides of the equation with the same power of A yields the fol

lowing set of equations. 
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AP ~ Holn) = enln) 

.A-1 ~ HoiN(I)) + Vin) = E~)ln) + eniN(I)) 

.A-2 ~ HoiM2>) + viN(I)) = EJ>In) + E~)IN(I))+ eniN(2
)) (2.13) 

To determine the first order eigenvalue correction E~), we need to take the scalar product 

of the second equation with (nl. By our previously defined orthogonality and normaliza

tion equations, this produces the eigenvalue correction term. 

(niHoiN(I)) + (niVIn) = (niE~)In) + (nleniN(I)) 

en(niN(I)) + (niVIn) = E~)(nln) + en(niN(I)) 

(niVIn) = E~) 

(2.14) 

This result states that to first-order in perturbation theory, we need merely to calculate the 

eigenvalues using the original basis set. This is equivalent to simply ignoring the non-di

agonal matrix elements of V. For most NMR calculations we perform, this rather crude 

approximation is sufficient. In some cases where Vis large, however, higher order terms 

may be needed (for example the second-order quadrupolar shift). To calculate the higher 

order eigenvalue corrections, we take the scalar product of the A,k equation with (n j. This 

produces the following result. 

(2.15) 

This expression shows that once we know the (k-1 )th correction to the eigenstate, we can 

calculate the kth correction to the eigenvalue. The first step in calculating the correction 

to the eigenstates is to expand the kth correction eigenstate in terms of the complete basis 

set of H0 . Note that the sum excludes the m = n state but includes all other possible 

eigenstates of H0 , as this state is defined as orthogonal to the correction eigenstate. 

IN(k)) = :Lim)(miN(k)) (2.16) 
m;t:n 
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Now to calculate the second order correction (higher-orders are calculated in a similar 

fashion) we take the scalar product of the A) equation with a basis state (ml (but not (nl). 

(miHoiN(l)) + (miVIn) = (miE~)In) + (mleniN(l)) 

em(miN(l)) + (miVIn) = E~)(mln) + en(miN(l)) 

(miVIn) =(en- em)(miN(l)) 

(miVIn) = (miN(l)) 
(en- em) 

(2.17) 

Finally, we insert this result into equation 2.16 and take the scalar product with (niV. 

(2.18) 

At this point, a word of warning in general, accidental degeneracy in the Em 

eigenvalues can lead to problems and special precautions must be taken under those con

ditions (this actually happens when this type of theory is applied to nuclear quadrupole 

resonance (NQR) experiments13). However, for most NMR problems, this will not pre

sent any difficulties. An alternative way of writing our result is that the original 

Hamiltonian (H0 + V) may be approximated by a diagonal Hamiltonian, in which the 

higher order energy correction terms appear on the diagonal. 

H =I,{ En+ E~) + E~P+···)In)(nl (2.19) 
n 

In summary, the results of perturbation theory show that to first-order it is correct 

to truncate Hamiltonians, such as the chemical shift Hamiltonian in the presence of the 

Zeeman interaction, by ignoring all terms which do not commute with the basis (Zeeman) 

Hamiltonian (this is often refered to as dropping the non-secular terms). In cases where 

the first-order correction is very large, second-order (and possibly higher) corrections 

must be considered, but these must be considered using the entire perturbing Hamiltonian 

(as the truncated first-order Hamiltonian would actually give a zero result for any higher 

order correction, as it is entirely diagonal in the unperturbed basis set). 
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... · 

Zeeman Interaction 

In nuclear magnetic resonance, the single most important Hamiltonian is the nu

clear Zeeman Hamiltonian. This is expressed in the laboratory frame below in equation 

2.20. 

(2.20) 

The magnetic field, Bo, defines the Zlab axis, 1i is Planck's constant, yis the gyromagnetic 

ratio of the nucleus of interest and mt is the Larmor frequency. The spin operator, Io, is 

defined below, as well as the two other spherical operators which make up the complete 

Zeeman spin operator set. 

Io = Iz 

I - +-1 (I + ·1 ) ±1 - - ...fi X - l y 
(2.21) 

The most fundamental aspect of the Zeeman interaction in high magnetic field is that it is 

always (for the purposes of this dissertation) the largest nuclear spin interaction present in 

a system. This effectively means that the eigenvalues and eigenstates of the Zeeman 

Hamiltonian will act as a basis set for the perturbative expansion of the other important 

interactions. Them spin states (the Zeeman eigenstates) for an isolated I spin nucleus are 

II,m). The matrix elements in this basis set for the various operators are given below. 

I0 1I,m) = mii,m) 

I±di,m) =~~(I+ m)(l ± m + 1)II,m ± 1) 
(2.22) 

In this description any state with lml > I is equivalent to the null state. For many of our 

applications, however, we will also use a density matrix formulation of quantum mechan-

ics. In this formalism, operators can be represented as matrices which operate on a den-

sity matrix which describes the system. Matrices which represent operators are defined 

below. 
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I 

Ik = LII,m)(I,miikii,n)(I,nl 
m,n=-1 

I 

= Lcm,nll,m)(I,nl (2.23) 
m,n=-1 

A brief description of the density matrix formulation of quantum mechanics is 

merited here. Suppose we have a linear superposition state 1jf(t) (in Hilbert space) of 

the Zeeman Hamiltonian given below with complex coefficients am ( t). 
I 

1jf(t) = Lam{t)II,m) (2.24) 
m=-1 

This state will evolve under a time-independent Hamiltonian according to the 

Schrodinger equation. 

iii d1j!(t) = H 1jf(t) 
dt 

u (2.25) 

Alternatively, the same information may be presented in a density matrix formulation 

(Liouville space), where the density matrix which defines the system is given in equation 

2.26. 

I 

p(t) = 1jf(t) 1j!t(t) = Lam{t)aJ {t)II,m)(I,nl 
m,n=-1 (2.26) 

= e -iHtfh Vt( 0 ) 11' t ( 0) eiHt/h = e -iHtfh p ( 0) eiHtfh 

It is in this form that most NMR experiments will be described throughout this and other 

works. 

The initial density matrix at thermal equilibrium in a high magnetic field can be 

shown to be 

1 1 
Po= -exp{-HzfkT} = ( ) {1 + HzfkT} z 2/+1 (2.27) 

Z = tr{ exp{ -HzfkT}} = (2/ + 1) 
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where k is Boltzmann's constant, 1 is a (2/ + 1 x 2/ + 1) unit matrix, and Tis the spin 

temperature. It can be shown that only the second term is observable in an NMR experi

ment and therefore the unit matrix may be dropped from the expression leaving the re-

duced density matrix Pr that will be used throughout this work. (It may be noted that this 

represents a very small net population difference of only about 10-4.) 

- hrBo 1 
Po - (2/ + I)kT 0 -7 Pr = lo (2.28) 

The evolution of a density matrix under a time-dependent Hamiltonian will be governed 

by the Liouville-von Neumann equation, which may easily be derived from the 

Schrooinger equation 2.25. 

(2.29) 

This may be solved analytically, where Tis the Dyson time-ordering operator.20•21 

Pr(t) = U(t)p0Ut (t) 

U(t)= Texp{-iJ~H(s)ds} 
(2.30) 

Through out the remainder of this work, the subscript r will be dropped from the reduced 

density matrix and the reader should assume that all density matrices are in the reduced 

foirn. 

The final element needed to look at NMR problems is the transformation to a 

frame which is rotating at the frequency -mr01, as in the classical case. This may be ac-

complished by the following transformations. First, the rotating frame wavefunction may 

be related to the laboratory frame wavefunction below and may be inserted into the 

Schrodinger equation. 

(2.3la) 
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Expanding the various derivatives and simplifying yields the effective Hamiltonian, Hz, 

below. 

"li iroro,Iot d'lflrot ( t) -n(J) l iro,0 ,Iot 1u (t) = -n(J) l iro,0 ,Iot 1u (t) 
l e dt rot oe ., rot l 0 e ., rot 

•tzd'lflrot{t) li( )l {) 
l dt = - (J)l - (J)rot 0 'lflrot t 

Hz = -li( (J)l - (J)rot )Io 

Prot {t) = eiro,o,Iot p( t )e -iro,o,Iot 

(2.31b) 

Since the Zeeman Hamiltonian commutes with Io, we have merely an offset Hamiltonian 

in the rotating frame, just as in the classical case. The concept of transforming 

Hamiltonians into an interaction frame will prove essential to simplify calculations later. 

In this rotating frame, the Zeeman energy splitting has been effectively removed, how

ever it will show up as an energy offset on all rotating frame measurements or calcula

tions, since these must always be performed in the stationary laboratory frame. In prac-

tice, spectra are usually collected over a narrow bandwidth centered at the rotating frame 

energy and therefore the actual Zeeman splitting energy doesn't appear in most spectra. 

Radio frequency irradiation 

The application of radio frequency pulses to a spin system was discussed earlier· in 

the classical description. The quantum mechanical description is very similar in all re

spects. We express the oscillating magnetic field created at the rorot frequency with in-

tensity Bt in the Hamiltonian, HRF· Here, the RF is applied to the system through a coil 

which defines the XJab axis perpendicular to the static magnetic field Bo. 

(2.32) 

This Hamiltonian may then be transformed into the rotating frame, as in equation 2.31 

and the new RF Hamiltonian is shown below. 
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- liPl! [ ] HRF = --2- lx cos f/J- lysin f/J -

li-:1 
[ cos(2corott + f/J) lx- sin(2corott + f/J) ly] 

= _li-:1 
[ lx cos f/J- lysin f/J] 

(2.33) 

This shows how the single oscillating RF field is converted into two RF fields, one at 

zero frequency and the other at 2COrot· In addition, this shows that by using a standard 

single coil in the laboratory frame, fu1ly one half of the useful RF power is lost in the ro

tating frame. This second field averages to zero in the interaction frame and cannot affect 

the density matrix, just as a high frequency oscillating magnetic field cannot pick up a 

piece of iron in the laboratory frame. The rotating frame RF Hamiltonian is now the 

dominant Hamiltonian in the interaction frame, as long as the offset, (co rot - co1), is small 

compared to ~1 • Now suppose we allow the equilibrium density matrix to evolve for a 

time -runder the RF Hamiltonian (assuming no offset and f/J = 0 ). In this case, the density 

matrix after a pulse will be des~ribed by the following equation. 

p( 't') = e-;-iWj'flx p(O)iW(rlx 

= e -i(J)I 'fix I eiwl 'fix 
z 

= Iz cos co1 't'- lysin co1 't' 

(2.34) 

This shows the same features as the classical description. In fact, including a phase or 

offset term leads to identical results as the classical results. As a final note on the RF 

Hamiltonian, by controlling the phase f/J of the RF, the researcher can effectively apply 

fields along both the Xrot and Yrot axes, which proves essential in the case of multiple 
' 

pulse experiments. 

Chemical Shift Anisotropy 

The chemical shift interaction is a good starting point to look at the major features 

of the internal NMR Hamiltonians. Chemical shifts arise from the interaction of the 

magnetic dipole moment of the nucleus and local magnetic fields generated by both the 
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motion of electrons in the large magnetic field (diamagnetic effects) and paramagnetic ef

fects due to excited state electrons22. I will not discuss the theoretical schemes used to 

calculate these shifts and will suffice it to say that they exist and are often anisotropic 

(dependent on orientation of the molecule). The form of the chemical shift Hamiltonian 

is given below in equation 2.35a. 

2 

HcsA = hy8iso,csBo lo + hmcsa L ( -l)m Af.:mrf.~ 

mesa = .Jfr 8cs 

Tf.~ = B0I0 

Tf.i1 = Bol±l 

Tf.~ = 0 

Where Af.~ is defined below. 

2 

m=-2 

Acs = ~ D(~) (acs ,{Jcs, ycs)Pcs, 
2,m £..J m ,m 2,m 

m'=-2 

5CS = ( 8zz- 8iso,cs) 

pf.~ = {f 
cs 0 P2,±1 = 

cs 1 (oxx-oyy) 
P2,±2 = 2 Tics = 2(o -o· ) 

U ISO,CS 

(2.35a) 

(2.35b) 

The principal values of the chemical shift tensor (sometimes reported instead of 

8iso,cs•8CS and TJcs) are arranged such that l8zz- 8iso,csl ~ 18yy- 8iso,csl ~ l8xx -.8;so,csl· 

The values of these principal values are very small and are usually reported in units of 

parts per million (ppm). For Be, for instance, the range of possible chemical shifts is 

from about -20 to 250 ppm which is about 27kHz at a Larmor frequency of 100 MHz. 

The Euler angles, ( acs, {Jcs, res), refer to the orientation of the principal axis system of 

the chemical shift tensor relative to the laboratory frame (see definition of Euler angles in 
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figure 2.1). This Hamiltonian, while appearing quite complex on the outside, actually can 

be greatly reduced when transformed to the rotating frame. 

2 
- ""' m cs -cs HcSA = liyoiso,csBo lo + limcsa £.J ( -1) A2,-mT2,m 

m=-2 

-cs 
T2,o =Bolo 

tf.~l = Bo (I+l cos (J)rott- il_l sin (J)rott) 

tf.~1 = Bo (1_1 cos mrott- i/+1 sin mrott) 

(2.36) 

In the rotating frame Hamiltonian, all of the oscillating terms, i'f.~ 1 , may be ignored 

(alternatively an identical result comes from first-order perturbation theory), leaving the 

simple chemical shift Hamiltonian. 

(2.37) 

Another way of thinking about the truncating effect of transforming to the rotating frame 

is to say that any terms in any Hamiltonian which do not commute with the Zeeman 

Hamiltonian will oscillate rapidly in the rotating frame and average to zero. In terms of 

energy level splittings, the chemical shift may be expressed below. 

CSA - -
L1Em-+m-1 = (l,m!HcsAII,m)- (I,m -1!HcsAII,m -1) 

= 1im1 ( Oiso,cs + .Jfocs Af.~) 
(2.38) 

Quadrupolar Interaction 

The first discussion of the quadrupolar interaction was by Casimir in an essay on 

the nuclear-electric hyperfine interaction in 1936.23 Additionally, one of the more com

plete early treatments of the quadrupolar interaction is the work by Cohen and Reif. 24 

More modem information on this subject may be found in additional sources.6•12•15 The 

basic Hamiltonian has the same form as the chemical shift anisotropy Hamiltonian. 
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2 

HQ = limQ L(-l)m A~-mT~m 
m=-2 

e2qQ 
(J) - __ ....::..;;;;;..__ 

Q - 21(21 -1)1i 

T¥,0 = ~ (315- 1
2

) 

T~±1 = _.b (101±1 + 1±110 ) 

TQ -12 
2,±2 - ±1 

Where Af m is defined below. 
' 

2 

AQ - ~ D(2) ( Q f3Q Q) Q 
2,m - £. m',m a · · Y P2,m' 

m'=-2 

eq = Vzz 

PQ - 13 
2,0- ''{2 

P£±1 = 0 

Q _ 1 _ (v.a-vyy) 
P2,±2- 217Q- 2Vu 

(2.39) 

(2.40) 

Again, as in the previous section, the values of the electric field gradient (EFG) in the 

principal axis frame are defined such that IV zz I ~ IV yy I ~ IV xx I and the Euler angles refer to 

the orientation of the EFG axis system relative to the laboratory frame. Additionally, 

since the quadrupolar tensor is traceless, there is no net isotropic shift due to this interac

tion (at least to first order in perturbation theory). As before, we can truncate this 

( 
-Q -Q ) Hamiltonian by eliminating the non-commuting T2,±1, T2,±2 terms. The remaining 

Hamiltonian is expressed in equation 2.41. 

(2.41) 

This first-order perturbation result illustrates an example where higher order corrections 

are needed. To show the necessity, we look at the eigenvalues for the 2/+1 energy levels 

of the Zeeman basis states. 
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(l,miHQII,m} = E~Q) = h~ A£o(I,mi(3IJ- I(I + 1))1I,m} 

E(lQ) = hroQ AQ {3m2 - 1(1 + 1)} 
m ..[6 2,0 

or 

(2.42) 

The last two energies are for the two distinct cases where the spin is either an integer 

(I = 1, 2, 3, ... ) or half-odd integer (I = t,!, t, ... ). Also, it is notable that in the spin 112 

case, only the final E~1f) energy levels exist and are analytically zero, as is expected since 
2 

a spin 112 has no quadrupolar moment of the nucleus. At this point it is valuable to cal-

culate the energy splittings between a variety of single quantum ( L1m = ±1 )transitions. 

L1E(1Q) = E(lQ)- E(lQ) = 3hroQ AQ (2 -1) 
m-+m-1 m m-l ..[6 2,0 m (2.43) 

. 
The first feature which is immediately visible is that for m = t, the splitting is analyti-

cally zero. In fact for any other value of m, this splitting will depend on both the size of 

the quadrupolar coupling and the orientation of a given crystallite. Only half-odd integer 

spins have a central transition ( t H - t) which is unaffected by the quadrupolar interac

tion to first order. In addition, if we calculate the energy splitting for a multiple quantum 

( m H -m) transition (for both integer and half-odd integer spins), we find that these also 

have no first-order quadrupolar energy splitting correction. For both the central transition 

and multiple quantum transition, it is crucial to calculate the second-order contribution to 

the energy splitting since this becomes the dominant energy splitting correction. 

Additionally, when the quadrupolar coupling is large, the second-order quadrupolar cor

rection will make significant changes to the satellite transition energy splittings. For the 

remainder of this thesis, I will describe experiments and theory pertaining primarily to the 

central transition of half-odd integer spins. For more information on the study of multi-
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pie-quantum overtone spectroscopy or integer spin spectroscopy, I direct the reader to the 

original NMR references and references therein.6,7,12,25-28 

To calculate the second order correction to the energy splittings in a quadrupolar 

system, we need to return to equation 2.18 where now the sum is over the additional 2I 

Zeeman states (all except for them state) for a quadrupolar spin I. 

e<,;Q) = L (I,miHQII,n)(I,niHQII,m) 
n~m 1im1(m- n) 

(2.44) 

Rather than calculate this for a general m, I will instead look only at the central transition 

second-order quadrupolar energy splitting expression. 

2 2 
(2.45) 

(I,nl L(-l)k Af_kTitli,-t) 
L~~k=_-~2~--~----~ 
n~-! (--t- n) 

These sums may be simplified by realizing that the Tit spin operators produce non-zero 

results for only very specific bra-ket pairs. For example, (I,jiTfoii,m) :# 0 only whenj 

and m are the same. In fact, below are shown the only non-zero matrix elements involv

ing the I±!) ket, which will be used to simplify equation 2.45. 

{I,±-!-ITfoli,±t) = }6 (i- I (I+ I)} 

( -II Q I 1) I,+-z T2±1 I,± 2 = 0 

(I,±!ITf±di,±!) =~(I- !)(I+!) 

(I,+t1Tf±21I,±t) = (I;t) ~(I-t)( I+ t) 

(I,±tiTf±21I,±!) = t~( I-t)( I-t)( I+ t)( I+ t) 
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Also, because the sums over n are limited to n :I= +! and n :I= -! respectively, the first of 

these relationships will not be used at all. The second shows that in fact all n :;: ±! may 

be ignored. Additionally, if the spin is I = 3/2, then the final relationship will also disap

pear (as evident in the fourth formula of 2.4p and in the fact that there is no 5/2 state for a 

spin 3/2 nucleus). Now performing the sums in equation 2.45 we arrive at the following 

formula for the second-order central transition energy splitting correction. Equation 2.47 

was simplified using the complex conjugate relationship ( A¥m) t = ( -1 )m A¥-m which is 

correct in this case, while not generally true for all tensors. 

(2Q) hw~ ( ( ) 3 )( Q Q Q Q ) 
.d£1-+-l = ~ I I+ 1 -4 2A2IA2-I + A22A2-2 

2 2 
(2.47) 

This result is now in a form which may be used to calculate actual NMR line positions, 

which we will do in the next section. 

Dipole-Dipole Interaction 

The homonuclear and heteronuclear dipolar coupling Hamiltonians are some of 

the most well studied in NMR. The basic form for a Hamiltonian describing the coupling 

between two spins i andj is given in equation 2.48. 

2 
H =-~ nm ~(-1)m AD;j TD;j 

D £..i Dij £..J 2,-m 2,m 
i*i m=-2 

riri mv .. = -3-,, r· . 
1,) 

D·· 1 ( ) T2 0'' = 17 3J. 0I · 0 - J. ·I. , v6 '· J, l J 

Tf.~l = ~ ( Ii,Oij,±l + Ii,±lij,O) 

D·· 
T2.~ = Ii,±IIj,±I 

D·· 
Where A2.~ is defined below. 
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(2.49) 

As usual, the Euler angles refer to the orientation of the principal axis of the dipolar 

coupling (corresponding to the vector connecting the two nuclei) relative to the laboratory 

frame. It is immediately apparent upon substitution of the principal axis components into 

the formula for the spatial tensor A~~, that only f3J, which corresponds to the angle 

between the internuclear vector and the static magnetic field, affects the overall 

Hamiltonian. Secondly, truncation of this Hamiltonian by the Zeeman Hamiltonian is 

more difficult because there are two cases, the homonuclear (i and j have similar Larmor 

frequencies) and the heteronuclear (i andj have different Larmor frequencies). In any 

case, only the m = 0 term will remain, giving the following Hamiltonian. 

Hv =-I,nmvii !(3li,olj,O- li · li )d~~J(f3J) (2.50) 
i*i 

I will return to this formula in chapter 3 when discussing the homonuclear dipolar cou

pling contribution to dynamic-angle spinning linewidth. In addition, I will use this 

Hamiltonian when discussing the theory of cross-polarization in chapter 5. In all other 

cases, the dipolar coupling may be thought of as an irreversible relaxation mechanism 

which leads to a Gaussian decay. 

Truncation of RF Hamiltonian by the Quadrupolar Hamiltonian 

The quadrupolar Hamiltonian is often times the second largest interaction present 

in a system (in most cases only the Zeeman is larger) even in the presence of RF irradia

tion. As such, when both radio frequency irradiation and quadrupolar Hamiltonians are 

present, it is important to evaluate the relative sizes of these two parts,29-34 just as the 

Zeeman offset term affects the RF effectiveness. To compare the RF and quadrupolar 
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Hamiltonians, we need only examine the first-order contributions, since the second-order 

quadrupolar interaction will rarely be larger than 100 kHz in the systems we study. The 

total RF and quadrupolar Hamiltonian which is present in the rotating frame is given be

low. 

iJ =Hz+ HQ + HRF 

= 1i( (J)l - IDrot )Io + tz;,Q ~~0 ( 3IS -I (I+ 1)) 

+ 11-r:1 
[ Ix cos¢- Iy sin f/>] 

(2.51) 

In order to simplify this Hamiltonian, we may rewrite it in terms of fictitious spin 112 op

erators. These are spin operators which involve only two states and look like the tradi

tional spin 112 operators. Given below are the basic definitions which have been outlined 

previously. 25•26•35 

Ifk = ·Hii)(il-lk)(kl) 

I{k = !{li)(kl + lk)(jl) 

I~k = t( -li)(kl + lk)(jl) 

Ijk = Ikj 
X X 

Ijk = -Ikj 
y y 

(2.52) 

Within the jk manifold, these operators obey the usual spin 112 commutation rules 

(2.53) 

where a,f3, r = x, y, z and cyclic permutations. For commutators between different sub

manifolds, the following commutation rules apply. 

[Ijk Iik] = [Ijk Iik] = i. Iii x•x y•y 2y 

[I jk lk ] = 0 [I jk lk ] = i. I ji z•z x•y 2x 

[Ijk Iik] = -i Ijk [Ijk Iik] = i. Ijk 
x•z 2y y•z 2x 

(2.54) 

[ I~k, Iff]= 0 

The last is the most important, since this states that all fictitious spin-1/2 operators com

mute between unconnected manifolds. Using these relationships, the normal Iz, Ix and Iy 
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may be redefined in the Hamiltonian given by equation 2.48 (where the spin I is a half

odd integer spin) using the following relationships. 

I, = 2I( I~·2 + I;1•21+1) + 2(2I -1)( I;·3 + I;1- 1·21 )+··· 

+n(2I _ (n _ 1) )( I;·n+1 + I;l+1-n,21+2-n )+ ... (2.55a) 

+I+.l I2'2 ( )
2 ( 21+1 2/+3) 

2 z . 

(2.55b) 

ly = ..J2I(I~·2 + I;l,21+1) + ~2 (2 I -1)( I;·3 + I;l-1,21)+··· 

+~n(2 I _ (n _ 1))( I;·n+l + I;l+l-n,21+2-n )+··· (2.55c) 

+(I+ t)( I;rt.ur) 

Additionally, the ( 3 IS - I (I + 1)) term may also be reduced. 

( 3IS- I(I + 1)) = !( 2I2 -I)( I~·2 - I;/,21+1) +! ( 4I2 - 8I + 3 )( I;·3 - I;I-1,21) 

+ · · ·+! ( 2n/2 - ~ ( 6i +I )I+ 3 ~ i2 )( 1;.n+l - I;l+t-n.2l+Z-n )<2.56) 

( 

21+1 21+3) + ···+ (0) I;'l'_2_ 

The last term is of particular importance, as this is the central transition contribution of 

the first-order quadrupolar Hamiltonian. As expected, this is zero and this makes the 

central transition manifold different from all of the other fictitious spin 1/2 manifolds for 

this Hamiltonian. The Hamiltonian from equation 2.51 may be divided into a sum of jk 

sub-manifold Hamiltonians ilik below with all other Hamiltonian elements (j- k-:;:. ±1) 

zero 
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(2.57) 

where we define n = 2I + 1- j. These Hamiltonians may be truncated to first-order us

ing our knowledge about the size of the interactions, ( w1 - Wrot) < ~1 << ;~ A£0. 

fii.j+l + fin.n+l = nj( wl - wrot )(2I- J + 1)( I{i+l + I;·n+l) + 

~~ ~o( 2jl2 + ~(3i'- (6i + 1}1) )If·i+J- 1;.n+J) 
(2.58) 

- 21+1 21+3 ( )2 21+1 2/+3 
H 2 • 2 = n(wl - w ) I+ l I 2 • 2 + rot 2 z 

- 1 I + l I 2 • 2 cos AI - I 2 • 2 sin AI 
hyB ( )[ 21+1 21+3 21+1 21+3 J 

2 2 X 'f' y 'f' 

This shows that the application of an RF pulse to a quadrupolar system produces distinc

tively different results that when applied to a spin 1/2 system. First, the Hamiltonians 

under RF irradiation for the outer transition sub-manifolds (the upper equation in 2.55) 

are all identical and are equivalent to free precession without RF irradiation. Second, the 

Hamiltonian for the central transition (the lower equation in 2.55) corresponds to the 

same Hamiltonian as a spin 1/2 under RF irradiation, with the change by a factor of I + t 
in the effective rotating frame magnetic field. Thus, a 90" pulse for a quadrupolar nu

cleus will be shorter than for a comparable spin 112 system by a factor of I + ! since the 

RF precession frequency is scaled by this factor. The effect of quadrupolar truncation of 

the RF Hamiltonian will be more thoroughly discussed later when we look at cross-polar

ization of quadrupolar nuclei under Hartmann-Hahn matching conditions (see Chapter 5). 
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·-· 

Coherence Pathways 

Having briefly described both the Hamiltonians present in most solid systems and 

the effect of truncation, it may now be useful to describe evolution and detection of NMR 

signals. For most of the experiments in this thesis, I will look at simple two level systems 

(either spin 112 or the central transition of a half-odd integer quadrupolar nucleus). In the 
I 

absence of dipolar coupling, there are only three different coherent states that the density 

matrix can evolve into or from; they are Iz, Iy and Ix (for quadrupolar nuclei, the central 

transition superscripts have been dropped). Alternatively, the density matrix may be ex

pressed in terms of spherical tensor operators I o, I+ 1 , and L I· Our detector will always be 

a single coil capable of collecting data in quadrature (both the real and imaginary compo

nents in the induced FID). Therefore the observable in our experiments will be I+ I (or Lt 

but never both). However, the phase of the receiver ( tPr) may be controlled (by adding 

the real and imaginary data from each scan differently in the computer acquisition system 

to form the FID) to arbitrary accuracy in the computer. That is to say our observable may 

be written in equation 2.59 as 

(2.59) 

This has the property of extracting only the L 1 components from the density matrix; all 

other components will have a zero trace. The response of the system to pulses and free 

evolution can be characterized by the Hamiltonians below (where the pulse is applied 

with phase i/J). 

fi ful = lim fullz 

fiRF = nOJRF[ lx COS i/J- Iy sin i/J] 

, LlErw 
OJfid = -,-

OJ RF = ~1 
( [ + t) 

(2.60) 

The response of each of the possible states of the density matrix to each Hamiltonian is 

given below. 
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U RF = exp[ -i iiRFt/n] = exp[ -imRFt( lx cos l/J -ly sin.l/J)] 

U ful = exp[ -imfultlz] 

U RFlzUkF =lz cos mRFt +sin mRFt[ lx sin l/J -ly cos l/J] 

u RFI xukF = I X ( cos2 l/J + sin 2 l/J cos {J) RFt) + I y sin2
2

¢J ( 1 - cos {J) RFt) -

Iz sin l/J sin mRFt 

U RFlyUkF = ly ( sin2 l/J + cos2 l/J cos mRFt) + lx sin2
2

¢J (1- cos mRFt) + 

lz cos l/J sin m RFt 

U fullzU'Jw = lz 

U fidlxU'Jw = lx cos mfidt +lysin mfidt 

U fidlyU}uJ = ly cos m fidt -lx sin m fidt 

(2.61a) 

(2.61b) 

(2.61c) 

These equation are more useful when expressed in the spherical operator basis set. 

U 1 Ut l isin wRFt [I -i¢> I i¢>] RF 0 RF = 0 COS {J)RFt + ...fi +1e + -1e 

U RF/±1 VkF = t /±1 ( 1 +COS {J) RFt) - t /+1 ( 1 - COS {J) RFt )e±2i¢J + (2.62a) 

i l ±i¢> • ...fi 0e Sin {J) RFt 

(2.62b) 

These equations may now be used to show the importance of coherence pathways in 

NMR. As an initial example, we will look at an experiment consisting of a 90° pulse with 

phase l/Jt followed by a delay t1 followed by a 90° pulse with phase l/J2 followed by a de

l~y tt and then acquisition with phase l/Jr· The observed signal may then be calculated us

ing the above equations (2.62). Our initial density matrix will be lo. This evolves during 

the first pulse into the following coherences (or states). 

lo __ 9o~,_,_l ---7 _j_ (I e -i¢>1 + I ei¢>1 ) ...fi +1 -1 (2.63) 

This state will continue to evolve under the FID Hamiltonian for a period t1 giving the 

following result. 
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(2.64) 

The 90° pulse is then applied, which gives the result below. 

i I ( -i( 1/>1 +a> ru~t1 ) i( 1/>1 +w ru~t1 -21/>2 )) 
2-.fi +1 e - e 

(2.65) 

This density matrix will then evolve for a second t1 + tz period, at which point we can 

calculate the observable signal in tz (as detection occurs from t2 = 0 on). Since evolution 

under the FID Hamiltonian does not result in any transfer of coherence between different 

density matrix states (for example L 1 to /+1), the only coherence we need consider is the 

!_1 contribution (all others produce a trace of zero with our observable). 

. [ei(lfll+a>.fidtl)_ J FID 

2:n Lt ( ) e -i lfli +a>rutti-21/>2 

(2.66) 

This signal shows two components. The upper component is the signal coming from di

rect evolution after the initial 90° pulse (notice that the t1 dependence is identical to one 

where there is no second pulse). The lower component is the echo signal (notice it has no 

t1 dependence) coming from the second pulse. If we try to acquire a spectrum which 

contains only the echo signal, using only a single set of pulse and receiver phases will not 

cancel the unwanted component. Suppose now, we add together the signal from four dif

ferent experiments where the phases of the pulses and receiver { ¢1, ¢2 , <Pr) consist of the 
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following four sets {(0,0,0),(90,0,270),(180,0,180),(270,0,90)} (given in units of 

degrees). Adding together the four signals will produce the following result. 

(2.67) 

These phases choose only the coherence pathway that we desire, that is the echo signal. 

The phase cycle was arrived at by setting the net phase of the evolved signal equal to 

zero, which for this sequence was f/>1 - 2f/>2 + lf>r = 0. This equation tells us the mathe-

(] tt 

+1(4t>.~~----------r-----------------------

0 Uo) -t-------+-------------
\ 
\ 

-l(L1)~~'----------~----------------------
Figure 2.2 90-90 Echo Coherence Pathway. The bold line is the desired signal. The 
dashed line is the main artifact we wish to remove. 

matical relationship between the phases. However, it does not tell us how many different 

phases each pulse must be cycled through to remove artifacts. This is actually an old and 

difficult question which I will not answer completely. The partial answer to this question 

can be seen in the formula for the signal. The upper signal came from a density matrix 

element that is proportional to 1_1 in both t1 periods while the lower signal came from a 

density matrix that was proportional to /+1 in the first t1 period and 1_1 in the second. 

Graphically, this is shown in figure 2.2 where the bold line denotes the coherence path

way of the echo signal and the dashed line represents the coherence pathway of the.cun-
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wanted one pulse signal. This formalism was first put forth by both Bain36 and 

Bodenhausen et al. 37 and is discussed quite thoroughly in Ernst's book on multi

dimensional NMR.7 In figure 2.2, the density matrix elements are labeled as coherences, 

in this case + 1, 0 and -1; these are often assigned the variable name p and a transfer of 

coherence between levels is written as Llp. The coherence pathway for an experiment 

may be written as a vector Lip = ( Llp1, L1p2 , Llp3 , ..• , Llpn) of n Llp; elements where n is the 

number of pulses. The 90"-90" echo experiment may be written (+1, -2). It has been 

shown in the above references that when a pulse is independently cycled through m 

phases { 0, 2~tr, 2~tr, · · ·, Z(m,:l)tr), this cycle leads to selection the selection of a specific 

Llp; and additionally Llp; ± (m -1), Lip;± 2(m -1), etc. In our experiment, the 

quadrature of our receiver will automatically select only the -1 pathway in t2. Therefore 

by guaranteeing that the first evolution period is a + 1 coherence, we can assure that we 

observe only the signal we want. It is obvious that using only 2 phases for the first pulse 

will leave both LlPt of +3, +1, -3 and -I. The +3 and -3 coherence transfers are harm

less since the density matrix can only have coherence between + 1 and -1 for our system. 

The -1 coherence transfer is a serious problem and indicates that the unwanted (-1,0) 

pathway will survive. However, a phase cycle of 3 will result in Llp1 of +4, + 1, and -2. 

None of the unwanted ( +4 and -2) coherence transfers will produce any observable 

signal. In the phase cycle for the experiment given earlier, we could have used 

{ {0, 0, 0), {120,0,240), {240, 0, 120) }, (2.68) 

however this would necessitate 120• phase shifts which can be difficult on some spec

trometers (especially in the receiver phase cycle). This same sort of analysis can be ap-

plied to more complex pulse sequences and at the appropriate locations, I will point out 

the reasoning behind the phase cycles for the experiments used in this thesis. For further 

information on phase cycling, the previously mentioned references will provide a good 

starting point as well as additional references contained therein. 
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Eigenvalues from static samples 

The eigenvalues from both the chemical shift and quadrupolar Hamiltonians have 

already been discussed. However, all of our expressions are in terms of zero and second 

rank spatial tensors Atn. These spatial tensors are highly dependent on the orientation of 

the principal axis system (PAS) of a crystallite with respect to the magnetic field (see 

equations 2.35 and 2.40. Under static (time-independent) conditions, both the quadrupo

lar and chemical shift energy levels can be calculated explicitly as functions of PAS ori

entation. Looking first at the chemical shift interaction, we expand Af5 below. 

2 
A es = "" D(2) (aes pes res )Pes 

20 L..i m,O ' ' 2m 
m=-2 

(2.69) 

This yields energy eigenvalues given below. 

LlEeSA = fuJJ ( 8· + 8es[3cos
2 

pes -1 + Tics cos 2aes sin2 pes]) 
m-+m-1 l ISO,CS 2 2 (2.70) 

For a quadrupolar nucleus, the first-order quadrupolar eigenvalues are derived in a 

similar fashion, since they are proportional to A~. The final result for the first-order 

quadrupolar contribution to the energy splitting is given below in equation 2.62. 

(1Q) _ 3e
2
qQ ( )[3cos2 /3Q-1 T'IQ Q . 2pQ] 

LlEm-+m-1 - 41(21_1) 2m -1 2 + 2 cos2a SID 

_ fl3eQ ( )[3cos2 /3Q-1 T'/Q Q . 2 QJ 
- 41(21_1) 2m -1 2 + 2 cos2a SID {3 

- e2qQ 
CQ=-n 

(2.71) 

Figure 2.3 shows the energy level diagram for a spin 3/2 nucleus for a single orientation 

of the quadrupolar PAS in the absence of chemical shift anisotropy. As was pointed out 
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earlier, for the central transition (where m = 112 in the above expression) there is no first-

order quadrupolar contribution to the energy splitting. 

Zeeman 
First-Order Second-Order 

Quadrupolar Quadrupolar 

Figure 2.3 Zeeman and Quadrupolar Energy Splitting for 1=312 nucleus. 

In the case of the central transition, we must also include the second-order quadru

polar correction to the energy splitting as well. This is more difficult to calculate, as the 

spatial dependen.ce is the sum of two terms. We can first look at the product AftA¥_1 by 

explicitly calculating Aft and A¥_1• 

2 
AQ = ""D(2) (aQ f3Q rQ)PQ 

21 £..J m,1 ' ' 2,m 
m=-2 

(2.72) 
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AQAQ - 3 
22 2-2 - 16 

2 2 
7~ cos2 2aQ ( 1 + cos2 [JQ) + 

17Q cos2aQ ( 1 + cos2 [JQ )sin2 [JQ + 
2 

~Q sin2 2aQ cos2 [JQ + 3sin4 [JQ + 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

The sum, 2ASA¥_1 + A~A¥_2 , may be written in terms of products of cos 2ia and 

cos 2jf3 where the coefficients aij are given in table 2.2. 

2 2 

2Az~A¥_1 + Az~AzQ_2 = i L :Laij cos2iaQ cos2jf3Q 
i=Oj=O. 

(2.78) 

The energy splitting correction from the second-order quadrupolar effect is then given by 

equation 2. 70. 

( ) (e2qQ}2(1(1+1)-l) 2 2 
L1E 2Q = 4 ""a·· cos2iaQ cos2jf3Q 

L-+-l 32!2(21-1)2hro £...J £...J 'l 
2 2 I i=Oj=O 

hC 2(1(1+1)-l) 2 2 

= Q 
4 ""a·· cos2iaQ cos2J·f3Q 

32/2 (21-1)2 
(!) £...J £...J I) 1 i=Oj=O 

(2.79) 

This energy splitting is shown for a single crystallite orientation in figure 2.3. 
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i j aij i J aij 

0 0 - 12 ( 18 + 1]~) 1 2 - 2; 1JQ 

0 1 -t(l-%17~) 2 0 27 7]2 
32 Q 

o' 2 i2 (18+ 11~) 2 1 9 2 
--g1JQ 

1 0 39 1] 2 2 9 2 
8 Q 32 1JQ 

1 1 -11JQ 

Table 2.2 Cosine Expansion Coefficients. The aij coefficients are used in the expansion 
of the anisotropic portion of the second-order quadrupolar interaction in equation 2.70. 

The total energy splitting, including both chemical shift and quadrupolar contributions, 

under free precession in a high magnetic field may then be given by equation 2.80. 

_ CSA (1Q) (2Q) 
L1Em~m-1 -liml + .dEm~m-1 + .dEm~m-1 + .dEm~m-1 (2.80) 

It is important to note that in a powder sample, where all orientations of crystallites are 

present, there exists a continuous distribution of energy splittings corresponding to each 

individual PAS orientation. This is in contrast to a liquid sample where the rapid motion 

averages out all orientational dependence of the energy splitting·. 

Eigenvalues from Rotating Samples 

In the previous section, the expression for the free precession energy splitting was 

derived. This expression has multiple terms which have anisotropic (orientational) de

pendences. One of the primary goals of solid state NMR is to acquire spectra which look 

like liquid-state spectra. The goal of high-resolution isotropic spectra has been ap

proached primarily from two direction. The first is the averaging of anisotropic interac

tion by averaging the spin operator tensors with multiple-pulse schemes. These tech

niques work quite well for dipolar interactions (see Haeberlen's book for a more complete 

review of this subject38). However, for Hamiltonians such as the truncated chemical shift 

and quadrupolar interactions, multiple-pulse experiments can only average the anisotropic 

34 



contribution by averaging the isotropic contribution as well (for example, the CPMG 

pulse sequence39A0). The second and more popular averaging technique involves 

z 

PAS (a,f3,y) ROTOR(wrt,O,O) LAB 
----~~ ~ 

(X,Y,Z) (x',y',z') (x,y,z) 

Figure 2.4 PAS to ROTOR to LAB rotations. The Euler angles used in moving from a 
sample fixed PAS coordinate system to the laboratory system are indicated. This in
volves multiple rotations. 

removing the spatial tensors with time dependent spatial trajectories which approximate 

isotropic motion. The technique of magic-angle spinning is the most important of these 

time dependent trajectories. In the magic-angle spinning (MAS) experiment, the sample 

is rotated rapidly (>4 kHz) about an axis oriented at the angle 

(}m = cos-1 
( t/-J3) =54. 74• with respect to the magnetic field. This has the effect of in

troducing a time dependence for a general spinning angle to the spatial tensors A1~ given 

in equation 2.72. 

l I 

Atn = L L D~ ( mrt' 8' 0) n~J.n (a'\ pJ. ' r;. )p~, (2.81) 
n=-lm'=-1 
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The A, in this expression refers to either the chemical shift, quadrupolar or dipolar inter

actions. The Euler angles which define the first rotation are 0, the spinning axis angle 

and Wrt, the time dependent rotation angle. These rotations, along with the usual PAS 

rotations are shown in figure 2.4. When rotation is sufficiently rapid 

(i.e. ror > ro1oCSA or ror > ro~ / ro1 ), the time dependent (n :t:. 0 in equation 2.81) terms 

may be ignored (since they will average to zero) and only the time independent terms re-

main. 

l 

At, = d~2 ( 0) L D~~.o {a;. ./3;., r;. )Ptn, (2.82) 
m'=-1 

For the chemical shift interaction, the important spatial tensor is Afcf. In this case, equa-

tion 2.82 may be expanded below. 

(2.83) 

. ( [3cos2pCS_1 ]] 2 e + t1ECSA = n(J) O· + 0cs 3cos -1 2 m~m-1 l ISO,CS ( 2 ) 1J CS . 2 CS is cos2a sm f3 

The only difference between this expression and the previous static expression is the sec

ond-order Legendre polynomial ( P2 [cos 0]) scaling factor. The choice of the magic-an

gle is now apparent, since this angle is the one which makes the second-order Legendre 

polynomial zero and eliminates the anisotropic portion of the chemical shift interaction. 

Likewise, it can be shown that magic-angle spinning can also remove the effects of both 

homoimclear and heteronuclear dipolar coupling (both of which have a spatial depen

dence which can be represented as a single second-order tensor). For the quadrupolar 

interaction, this same analysis holds for the first-order effect when the spinning rate is 

larger than the quadrupolar coupling constant. 

L1E(1Q} = 3e
2
qQ (2 -l)(3cos

2
8-1)[3cos

2
/3Q-1 + TlQ os 2 aQs·n2f3Q] 

m~m-1 4/(2/-1) m 2 2 2 c 1 (2.84) 
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In practice, this may only be observed for nuclei in highly symmetric environment (for 

example 23Na in NaCl or 79Br and 81Br in KBr) or with a very small nuclear quadrupolar 

moment (such as the spin 3/2 nuclei 7U and 133Cs). Even for these nuclei, spinning 

sidebands which arise from the time dependent terms are often observed. For quadrupo

lar nuclei with a large quadrupolar coupling only the central transition is observable (and 

excitable as well), which has no first-order quadrupolar contribution to the orientation 

dependence of the energy splitting. The second-order quadrupolar correction does, in 

fact, show strong orientational dependence. Under fast spinning conditions, just as be

fore, the time dependent contribution to the A~A?_1 and ASA?_2 products may be ig

nored. As before we may calculate the individual contributions A~A?_1 and ASA?_2• 

2 2 
~QmA?-m = L LDJ~2(mrt,O,O)Df)(aQ,f3Q,yQ)P?k x 

j=-2k=-2 

2 2 

L LD~~2 (mrt, e,o)D~:2 ( aQ ,f3Q, rQ)P?p 

(2.85) 

n=-2p=-2 

The removal of the time dependent terms is more difficult, since the product must be ex-

panded completely before dropping the time dependent terms. This eliminates all of the 

terms except those where j + n = 0. As has been shown earlier by Mueller15, the spatial 

sum may be written as a sum of cosines of the PAS Euler angles aQ and f3Q in equation 

2.77. 

2 2 
2A~A¥_1 + ASA¥_2 = i L :La[; cos2iaQ cos2jf3Q 

i=Oj=O 

.u. 

( ) liC2 (1(1+1)-l) 2 2 
~E 2Q = Q 

4 
""' ""' a~· cos 2 iaQ cos 2 j f3Q 

l~-l 32/2(2/-1)2 (I) £..J £..J I] 
2 2 I i=Oj=O 

Note that the coefficients aij are now defined as 

I (0) (2) [ L}] {4) [ ] a·· = a.. +a.. p2 cos u + a.. p4 cos e 
ij ij ij ij 

(2.86) 

(2.87) 

where the fourth-order Legendre polynomial ( p4 [cos e]) is given in equation 2.88. 
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(2.88) 

Each component of aij is defined in table 2.3. 

The formulas for the energy eigenvalues under rapid spinning conditions given in 

equations 2.84 (first-order quadrupolar), 2.86 (second-order quadrupolar) and 2.83 

(chemical shift anisotropy) all show both spinning angle and orientational dependence. 

These dependences manifest themselves in the form of inhomogeneous broadening of the 

NMR line for powder samples. In the next section, the actual lineshapes resulting from a 

powder average for the various interactions will be shown. The effect of incomplete av-

eraging due to spinning will be discussed in a later section (see chapter 3). 

i j {0) 
aii 

{2) 
aii 

(4) 
aii 

0 0 - Iff ( 1 + t 7]~) 12(1 1 2) -7 -31JQ 1 ~do ( l8 + 11~) 
0 1 0 36 ( 1 I 2) --::;- -31JQ !6 (18 + 11~) 

0 2 0 0 :?2 ( 18 + 1]~) 

1 0 0 24 1] 81 
7 Q 56 1JQ 

1 1 0 - 274 1JQ 27 
T411Q 

1 2 0 0 27 --g1JQ 

2 0 0 0 27 7]2 
. 32 Q 

2 1 0 0 9 2 
--g1JQ 

2 2 0 0 9 2 
32 1JQ 

Table 2.3 Coefficients in Anisotropic Cosine Expansion for the 2nd-Order Quadrupolar 
Correction Under Fast Spinning Conditions. 

Lineshape simulations 

In the absence of spinning, the static eigenvalue equations may be used to obtain 

the theoretical spectra observed from both spin 112 and quadrupolar nuclei. In all cases 

where a powder sample is simulated the assumptions are the same. First, all orientations 
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of the crystallite PAS are equally probable (there is no sample alignment or preferential 

geometry of the crystallites in the powdered sample). Second, all orientations of the crys

tallite PAS are present in the sample. Third, the contribution from each crystallite to the 

spectrum will be equal. With these three rules, we can construct a powder averaged 

spectrum for a static or rotating sample. Mathematically, the process of calculating the 

intensity at a given frequency (or energy) is equivalent to doing the following integration 

over the sample. 

2n n 

/(co)= J J o(1ico-LlE(a,f3))sinf3d{3da (2.89) 
0 0 

In this expression, the sin/3 scaling factor is included when converting an integral over a 

unit sphere in Cartesian coordinates to spherical coordinates, to maintain a constant 

d{3 da solid angle. Also, the Dirac delta function is defined below. 

{
0 ~a :t: b 

o(a-b)= 
l~a=b 

(2.90) 

This formula may then be used to create a spectrum by performing the integrals for each 

frequency within the sweepwidth of the spectrum. (We will also use equation 2.90 later 

in chapter 3 when calculating spinning sideband positions and intensities.) Spectra simu

lated in this fashion are shown in figure 2.5 for static spin 112 nuclei and quadrupolar nu

clei. 

It may be seen that the central transition goes off scale in the first-order 

quadrupolar spectrum in figure 2.5. This is because, in the absence of chemical shift 

anisotropy or dipolar broadening, the central transition has no first-order broadening. In 

the second order quadrupolar spectrum, none of the satellite (outer) transitions are shown, 

as they are of negligible intensity in the sweepwidth shown. 
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This method of simulating spectra works equally well for spinning samples. In 

figure 2.6, the high speed magic-angle spinning spectra of samples with identical parame-

c) 

b) 

a) 

I 
-2000 

I 
-10 

I 
0 

Frequency (kHz) 

I 
2000 

I 
10 

Figure 2.5 Static CSA (a), 1st Order (b) and 2nd Order (c) Quadrupolar Lineshapes. For 
the chemical shift anisotropy simulation, mt was 100 MHz, Oiso,cs was I 0 ppm, l)CS was 
50 ppm and 7JCS was 0.3. For the 1st Order and 2nd Order Quadrupolar lineshapes theW[ 
was 100 MHz, Oiso,cs was 10 ppm, I was 3/2, WQ was 3.0 MHz, 7JQ was 0.2. 

ters as in figure 2.5 are simulated. The spectrum of the· spin 112 nucleus is completely 

averaged into a single narrow line under MAS. This is expected, as all of the anisotropic 

contribution to the energy splitting is averaged to zero. The second-order quadrupolar 

MAS spectrum, however, is still quite complex and only about a factor of 3 narrower than 

the static spectrum. This is expected as well since the second and fourth-order Legendre 
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polynomials never simultaneously approach zero. In fact, this demonstrates the basic 

b) 

a) 

I 
-10 

I 
-10 

I 
0 

I 
0 

Frequency (kHz) 

I 
10 

I I 
10 

Figure 2.6 MAS CSA (a) and 2nd Order (b) Quadrupolar Lineshapes. The simulation 
parameters are identical to those in figure 2.6. Notice that while the chemical shift 
anisotropy is completely averaged by MAS, the 2nd order quadrupolar interaction is only 
slightly reduced (about a factor of 3) from the static simulation. 

problem in observing the central transition of quadrupolar nuclei. There is no single 

spinning axis which completely removes all of the anisotropic broadening to yield a 

liquid-like spectrum (analogous to MAS for spin 112 nuclei). In figure 2.7, variable-angle 

spinning (VAS) spectra are shown for a variety of spinning angles and quadrupolar 

asymmetry parameters 1JQ showing the range of both shoulder and singularity locations. 
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A problem with the previously mentioned simulation scheme is the speed at 

which spectra can be simulated. If we wish to use a least squares minimization approach 

to simulating chemical shift and quadrupolar broadened spectra, the aforementioned · 

method is too slow. A slightly faster method is to divide the overall sweep width into N 

'11 =0.25 '11 =0.50 l1 =0.75 '11 = 1.00 

9 =0.000~ A A A A 
9=30.56i _A_ _A_ _A_ _l_ 

9=37.380_ _j_ _j_ _A_ _A_ 

9=39.23~ _j_ _jl_ _jL_ _A_ 

9=63.43~ _j_ _l_ _A_ _L_ 

9=70.12~ _A_ _A_ _j_ _j_ 

9=79.19~ _L _A_ _A__}\_ 

9=90.000_ _L _ll _J\_ __A_ 
Figure 2. 7 Quadrupolar VAS Spectra. All spectra are simulated assuming fast spinning 
limit and constant CQ and variable angle 0 and 11Q· 

bins. The angles a and f3 are then looped over their integration limits in small step sizes 

and the frequency at each point is calculated. The scaling factor, sin {3, intensity is then 
• 

added to the appropriate frequency bin for this point. In this method, a large number of 

steps (often over 200 for each angle) must be taken for both a and f3 to obtain spectra 
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with correct intensities across the spectrum. Using interpolation to divide the intensity 

between bins for frequencies which fall between two bin positions fails to give signifi

cantly better results (this type of interpolation can reduce the number of steps by perhaps 

factor of 2). 

A second method developed by Alderman et al.41 is a much more efficient 

scheme for calculating powder spectra. In this approach, the surface of a unit sphere 

(over which integration is performed) is collapsed onto an enclosed octahedron. The ad

vantage of an octahedron is that the face may be divided into a large number of triangles 

(rather than curved rectangles on a sphere). The first advantage is that it is much easier to 

interpolate over three points (arising from the division of the surface into triangles) than 

four (which occurs when the two euler angles a and f3 are stepped in regular steps as in 

the first method). The second advantage is that the surface may be parameterized into 

three rational numbers (by dividing each edge of the octahedron into some integer num

ber of segments and counting with integers along each edge) representing the x, y and z 

coordinates. The formula for these coordinates are linear rather than quadratic in the case 

of a sphere. The third advantage is that the calculation of sines and cosines is simplified, 

as it merely ratios of surface coordinates rather than actual calculation of trigonometric 

functions. Computer programs which utilize these algorithms are discussed and shown in 

the appendix. 
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Chapter 3 

Dynamic-angle spinning DAS 

In the previous chapter, the orientational dependences of the chemical shift inter

action and the second-order quadrupolar interaction were derived. It was shown that 

there exists no single spinning angle which averages the second-order quadrupolar inter-

action completely. Dynamic-angle spinning (DAS) was developed simultaneously by 

both Pines et al.42 and Virlet et a/.43 This technique is useful for obtaining high resolu

tion isotropic spectra of quadrupolar nuclei in powdered samples. Specifically, DAS 

does average both the first-order chemical shift anisotropy and the second-order 

quadrupolar interaction. Previously, this technique has been used to study 1 1B44, 17Q45-

48, 23Na42.49,50, 27 Al51 and 87Rb49,52-54 in a variety of compounds. In most of these 

cases, the technique of DAS provides orders of magnitude improvement in overall resolu

tion in the isotropic dimension over MAS or static experiments. In the next section, I will 

review some of the theory and history of the DAS experiment. 

History ofDAS 

The roots of dynamic-angle spinning lie in the frequency formula for a second or

der quadrupolar interaction. It can be seen (after recombining terms in equation 2.86) 

that there are three terms for a crystallite of an arbitrary orientation spinning rapidly about 

an axis oriented at (} with respect to the magnetic field. 

co<2Q)( aQ ,f3Q, e)= co~Q) + A2 ( aQ ,f3Q)P2 [ cos e] + A4 ( aQ ,f3Q)P4 [ cos 8] 

(3.1) 

The first term represents the second-order quadrupolar isotropic shift. The other two, A2 

and A4, represent the orientationally dependent coefficients of the second and fourth-or

der Legendre polynomials .. Figure 3.1 shows both the second and fourth-order Legendre 
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polynomials. It is immediately apparent that the fourth order roots (30.56. and 70.12.) do 

not correspond to the second order root (54.74.). This demonstrates the futility of spin

ning about a single axis to achieve high resolution quadrupolar spectra. 

The solution is to use two different spinning angles in the averaging of the 

quadrupolar interaction. Dynamic-angle spinning is just one of these solutions. 

1.0 

0.8 

0.6 

0.4 

0.2 
54.74° 

0.0 - - - - - - - - -

-0.2 

-0.4 

20 40 60 
Spinning Angle e 

80 

Figure 3.1 2nd and 4th Order Legendre Polynomials. There is no single angle at which 
both the 2nd and 4th order polynomials are zero. Therefore, multiple angles will be 
needed to average the second-order quadrupolar interaction (equation. 3.1). 

Alternative solutions such as dynamic-angle hopping and double rotation will be dis

cussed in chapter 6 of this thesis. 55•56 In this experiment, the sample is allowed to un

dergo free precession following a 90• pulse at a first angle 81 fo~ a time ttf(k + 1). A z

filter is used to store the magnetization during a hopping period, in which the rotor spin

ning axis is changed from 81 to 82 • At a time k t1/(k + 1) following the second pulse of 

the z-filter, a dynamic-angle spinning echo will appear. This is shown below schemati

cally in figure 3.2. The evolution of the density matrix will be the product of two unitary 
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operators given by the evolution at each angle. The unitary evolution operators are 

shown below in equation 3.2. 

U( 81) = exp[ -im(2Q)( aQ ,{JQ, 81 )t1Iz/(k + 1)] 

[

{ -im(2
Q) { aQ, {JQ, 82 )kt1 Iz j( k + 1)) +] 

U( 82 ) = exp 
{ -im(2Q) { aQ, {JQ, 82 )t2Iz) 

p(tt ,t2) = u( B2)u( 81 )p(o)ut ( 81 )ut ( 82) 

(3.2) 

The assumption made in equation 3.2 is that the z-filter does not change the density ma

trix at all. In any single scan, this of course is impossible, however by proper choice of 
\ 

the phase cycle, the density matrix can be reconstructed over multiple scans so that this 

equation is true. The coherence pathway needed to accomplish this is shown in 

~z 

l -

TC/2 TC/2 

~ hop ~ 
vuvv 

Figure 3.2 DAS Experiment and Pulse Sequence. In this experiment, the value of t1 is 
incremented in a two dimensional fashion. The t1 dimension signal gives the isotropic 
DAS spectrum while the second dimension contains information about the anisotropy of 
both the chemical shift and quadrupolar interactions. 

figure 3.3. Note that the coherence is -1 both before and after the z-filter, indicating that 

the density matrix is unaffected by the z-filter (except for relaxation which merely scales 

the size of the density matrix uniformly). The minimum phase cycle needed to select this 

coherence pathway (assuming good receiver quadrature) is given below. 
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(0, 0, 0, 0), (90, 0, 0, 90), 

( ) 
(180,0,0,180),(270,0,0,270), 

tP1 • tP2 • tP3 • tPr ~ ( ) ( 180,180,0,0' 270,180,0,90), 
(3.3) 

{0,180,0,180),{90,180,0,270) 

This cycle is arrived at by noticing first that we need to guarantee a -1 coherence after 

the first pulse and therefore cycle this pulse through 4 independent phases. The second 

pulse is cycled through 2 independent phases, giving either a L1p of+ 1 or -1. Only the + 1 

7t/2 rr12 

~ hop ~ kt,/(k+l) m t, 
/) 1\ (\ ,.... 

+1 

0 

-1 --' ____ ! ____ , -----
Figure 3.3 DAS Pulse Sequence Coherence Pathway. The initial -1 pat'hway may be 
selected by phase cycling the first pulse through 4 independent phases. The + 1 .tlp at the 
second pulse may be achieved by cycling through 2 independent phases (since the -1 .tlp 

would produce a net -2 coherence, which cannot be present in this system). This indi
cates that a complete phase cycle of 8 is needed to get artifact free spectra (since the 
quadrature of the receiver selects the final -1 Llp ). 

coherence transfer is meaningful and puts the coherence at 0, which is equivalent to 

Zeeman order. This coherence will relax with rate Tt during the rotor axis reorientation 

period, after which an uncycled 90• pulse is used to bring the coherence to the -l level 

again (the + 1 and 0 coherences will be unobservable with our receiver). The equation 

which describes the relationship between the phases is given below. 

(3.4) 

The observed signal may then be calculated, knowing that the initial density matrix is 

p(O) = L 1 following the first 90·pulse. 
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(3.5) 

The key to the entire DAS experiment may be seen clearly in equation 3.5. If the tt-de

pendent part can be made to be purely isotropic through proper choice of Ot and (h, then 

the entire problem is solved. To do this we set the tt-dependent sum of two terms in this 

exponential equal to (k + 1)c:o~~Q)t1 for all values of both orientation and time. 

( k + 1) c:o~Q)t1 = c:o(2Q) { aQ, pQ, 01 )r1 + kc:o(2Q) { aQ, pQ, 02 )t1 

Jj. 

0 = A2 { aQ ,fiQ)P2 (cos 0) + A4 ( aQ ,fiQ)P4 (cos 0) + 

A2 ( aQ ,fiQ )kP2 (cos 0) + A4 ( aQ ,fiQ )kP4 (cos 0) 

(3.6) 

In this final expression, we know that the Legendre polynomials will not both simultane

ously be zero (from figure 3.1). Also, the orientationally dependent coefficients will 

likewise be non-zero for most orientations. The only absolute solution is for the follow-

ing pair of equations to be true. 

P2 ( cos01) = -kP2 (cos 02 ) 

P 4 (cos 01 ) = - kP 4 (cos 02 ) 
(3.7) 

This guarantees that for all orientations, the anisotropic terms will cancel in the t1 evolu

tion, leaving a purely isotropic evolution. 

Equation 3.7 is a system of two equations with three unknowns. This means that there 

will be a continuous distribution of solutions which may be parameterized by k. These 

angles are shown below in figure 3.4. The usual pair of angles used for DAS experiments 

are the k = 1 pair (37.38° and 79.19°) and the k = 5 pair (0.00° and 63.43°). The reasons 
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for the choice of k = 5 or k = 1 will be discussed later, however, any other angle pair 

meeting the criterion of equation 3.7 will work as well. The solutions (as a function of k) 

80 "'---------

20 

2 3 4 5 

Time Constant k 

Figure 3.4 DAS Angle Pairs. The angles 61 and 62 are solutions to equation 3.6 as 
parameterized by k given in equation 3.9. It is interesting to note that the magic-angle 
(shown with a dotted line) is not included in the possible solutions to the DAS equations. 

to the pair of equations 3.7 are given below and were used to generate the curves in figure 

3.4. 

(3.9) 

One of the first samples for which a DAS spectrum was collected was from the 

23Na nucleus in sodium oxalate (Na2C204).42 The spectrum in figure 3.5 represents the 

Fourier transform of the DAS echo tops which corresponds to the signal at t2 = 0. This 

spectrum was taken at a magnetic field strength of 11.7T (132.7 MHz for 23Na) with a 

homebuilt DAS probe which has was designed by Mueller et al. 15•51 The angle pair for 

this experiment is the k = 1 set of 37.38° and 79.19°. This represents a total of 512 scans 
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for each of the 128 It points which have been zero filled to 512 points before Fourier 

transforming. The 23Na tr/2 central transition selective pulses were 5.0 J.LS while the 

I I I I I I 

-10000 -5000 0 5000 10000 

Frequency (Hz) 

Figure 3.5 Example tD DAS Spectrum of Sodium Oxalate. This spectrum was acquired 
at tt. 7T by Fourier transforming the DAS echo tops taken at t2 = 0. 

hopping time was 30.0 ms. The magic-angle was set using the usual method of maximiz

ing the number of 8tBr spinning sidebands present in an internal KBr angle standard (2H 

in deuterated HMB or DMB will also work equally well) as has been discussed previ

ously.15 The overalllinewidth of the isotropic site is about 700Hz. This is significantly 

narrower than the approximately 3-4 kHz wide line seen in variable-angle spectra of 

sodium oxalate. The theory for the limiting linewidth of DAS peaks such as this will be 

described in the last section of this chapter. 

Dynamic-angle spinning data may alternatively be processed by Fourier trans

forming with respect to both dimensions. The resulting two-dimensional DAS spectrum 

has phase twist lineshape (see chapter 4) and to make the data presentable, it is viewed in 

magnitude mode (where this operation is performed by calculating the magnitude of each 

complex point in the spectrum). The 2D DAS spectrum is shown for sodium oxalate in 

figure 3.6. This experiment has 128 points in It (the isotropic DAS dimension) and 128 
' 

points in 12 (the anisotropic VAS dimension). Other parameters are identical to the previ-
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ous spectrum. The spectral width in each dimension is indicated on the plot. The projec

tions onto both axes are shown on top and to the right of the contour plot. Notice that 

10000 

N' 
:I: 5000 ->. 
0 c 
cu 0 :s 

~ 
ll.. 

a -5000 

-10000 

-15000 

•••••••••••••• 
-5000 0 5000 ~ 

001 Frequency (Hz) 

Figure 3.6 Example 20 OAS Spectrum of Sodium Oxalate. This spectrum was acquired 
at 11.7T by performing a 20 Fourier transform of the OAS data set. The data is pre
sented in magnitude mode to avoid the phase twist lineshapes. Asterisks indicate 
spinning sidebands. 

two spinning sidebands on either side of the isotropic peak are indicated with asterisks. 

The theory describing both their intensity and position will be presented in the next sec

tion. Also, it is apparent that the presentation of the data in magnitude mode leads to 

much broader lines than the absorption mode lD spectrum seen in figure 3.5 (compare to 

the isotropic projection onto the m1 dimension in figure 3.6). A method for acquiring 

pure-absorption phase spectra in two dimensions will be discussed in chapter 4. These 

spectra demonstrate the potential of DAS to successfully average second-order 

quadrupolar interactions. 
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·-· 

Spinning Sidebands 

The appearance of spinning sidebands in the DAS spectra shown in figure 3.7 

leads us directly into a discussion of their location and intensity in NMR experiments. 

Shown below in figure 3.7 are the slow spinning MAS simulations of both a spin 112 and 

spin 3/2 nucleus. The simulation parameters are identical to figures 2.5 and 2.6, with the 

I I I I 

-10000 -5000 0 5000 10000 

a) 

I I I I I I I I 

-10000 -5000 0 5000 10000 

Frequency (kHz) 

Figure 3.7 Sidebands in MAS Spectra of CSA and Second-Order Quadrupolar Broadened 
Sites. Simulation parameters were identical to figure 2.5 and 2.6 (Oiso,cs = 10 ppm, DCS = 
50 ppm, TICS= 0.3 and CQ = 3.0 MHz, TIQ = 0.2) with the added parameter of a spinning 
speed of 2.0 kHz. 

spinning speed given as 2.0 kHz. It is immediatly noticeable that sl()w spinning produces 

additional lines not observed in the spectra in figures 2.5 and 2.6. In the case of a spin 

112 nucleus, the additional spinning sidebands do not significantly hinder interpretation of 

the spectrum. The only major difficulty in this case comes in integration and identifica

tion of the isotropic chemical shift. The integration problem is overcome by adding to

gether the integrated intensity from families of spinning sidebands in the case of multiple 

sites. 57 The problem of identifying isotropic sites may be overcome by performing the 
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experiment at two spinning speeds and the peaks which do not shift will be the isotropic 

sites. In the case of a spin 3/2 nucleus, the spinning sidebands make the spectrum even 

more difficult to interpret than in the high speed limit. The sidebands overlap and leave 

almost no gaps in the overall spectrum. Additionally, the total number of singularities, 

whose positions normally help to estimate the quadrupolar parameters, is greatly multi

plied and cannot be used for this purpose as easily. Finally, in the case of multiple sites, 

spinning sidebands will make interpretation of quadrupolar spectra virtually impossible. 

The source of the spinning sidebands lies in the assumption to drop the time de

pendent terms from the expressions for the spatial tensor under sample rotation (equation 

2.82). This assumption, while simplifying the calculation, in many cases proves to be 

quite bad. There are a large number of papers in the literature which deal with spinning 

sidebands. Specifically the works by both Maricq and W augh58 and Herzfeld and 

Berger59 are illuminating for the case of spin 112 nuclei. For quadrupolar problems the 

papers by Jakobsen et al.,60•61 Samoson et a/.,55 •62•63 and others64-76 provide good 

reference material. For the case of DAS in particular, the papers by Grandinetti et al.52 

and Sun et al.49 both give a good description of the spinning sideband problem. 

To describe spinning sidebands in spin 112 systems, it is necessary to return to our 

original equation for the chemical shift anisotropy energy eigenvalues under spinning 

conditions. 

(3.10) 

This expression may be written alternatively below 
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(3.11) 

This expression allows us to write the time domain free induction decay following a 

pulse. 

12 
f/> CS ( t2) = * J LlECSA dt 

0 

= Wo(acs,,acs,o)t2-

~ wm(~cs,pcs.e)( -im(cort2+4'r+rcs)- -im(l/lr+rcs)J 
L...J zmco e e r 

m:;t:O 

S{t2) = e-iq,cs(12) 

= e-iwo(acs,pcs.eh 
(3.12) 

Now we may use Dira~ delta functions c(z) (see chapter 2) to rewrite 3.12 below. 

• ( CS nCS e) 
S( ) _ -zWo a •P , 12 

t2 - e 

1 2n ( w (acs pes e) . J 
X21CJc(1{1-CO,.t2-lf>r-YCS)exp'I, m m~r • e-lm'lf dljl 

0 m~ 

1 2n ( w (acs pes e) . J 
X 2tr J c( VI- lf>r- rcs)exp - L m m~r • e-lmljf dljl 

0 m~ 

(3.13) 

00 

c(z) = 2
1
1f Iexp{-imz) 

m=-oo 

The alternative series expansion definition of delta functions (given in equation 2.90) al

lows us to write S{t2 ) in a different fashion (3.14). 
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(3.14) 

This expression may be simplified by reversing the summation over N2 and pulling the 1fl 

independent terms out of the integrals. 

( ) 
_ -iw0(acs,pcs.e)r2 ""' * -i(Nlco,tz+(NJ-N2)(tf>,+rcs)) 

S t2 - e £-AN1AN2 e 
Nl,Nz 

1 2n ( w (acs pes e) . J 
AN = - J exp iNlfl + L m m ~r • e -lm'lf dlfl 

2tr 0 m=;~:O 
(3.15) 

1 2n ( w (acs acs e) J 
A* J "N L m •1-' ' -im'lf d N = - exp -z lfl- e 1fl 2tr mco, 

0 m=;~:O 

Since all possible crystallite orientations are present in a powder sample, the signal may 

be simplified by averaging over the ( <Pr + res) variables. 

. ( CS aCS ) 00 

(s( )) _ -tW0 a ''"' .e tz ""' A A* -iN1co,t2 
t2 (1/>,+rcs}- e £.. Nl Nle 

N1=-oo 
(3.16) 

The final step is to do the powder average over the remaining two Euler angles, 

( aes ,pes) (see section at the end of chapter 2 for a discussion powder averages). In the 

case of magic-angle spinning, the first exponential term has no orientational dependence, 

and the signal is given below. 

(S{t )) = e -icoloiso.cstz ~ S e -iN1co,t2 
2 MAS £- N1 

N1=-oo 
2n n 

SN = 4In J JIANI2 sinf3esdpesdaes 
0 0 

(3.17) 

This MAS signal shows that there will exist a set of N spinning sidebands a distance N (J)r 

from the isotropic peak with intensities given by SN. In practice, the SN will die away 
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fairly quickly with increasing N. In fact, once N mr is outside of the static powder pattern, 

SN will be nearly zero (but not absolutely zero). This behavior is seen in the slow speed 

MAS spectrum for a spin 112 nucleus in figure 3.6. 

For the case of quadrupolar nuclei, this analysis may again be performed. For the 

first-order quadrupolar interaction, the math is entirely identical, except that signal must 

be added together for all of the possible single quantum transitions. The second order 

quadrupolar interaction presents a more difficult problem. Remember that the expression 

for the second-order quadrupolar energy splitting is given below (identical to equation 

2.97) 

(3.18) 

This expression may be simplified using the following tensor relationship for products of 

tensor elements (3.19). 

A2mA2_m = :2,(l,OI2,2,m,-m)a10 
1=0,2,4 

aw = ~D~~( mrt + tf>r, 8,0)~ D~( a,,B, r)crlk 
n k 

CTlk = ~(l,kl2,2,j,k- i)P2jP2k-j 
j 

(3.19) 

Here the a to tensor has been explicitly written out for rotation from the PAS to the rotor 

frame followed by rotation from the rotor frame to the LAB frame. The coefficients 

(L,Mil,l',m,M- m) used in the expansion are the usual Clebsh-Gordon coefficients. 

For the quadrupolar interaction, this expansion leads to the following formula for the sec

ond-order splitting. 
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L1E(2Q) = li=~~ 2( I {I+ 1}- -i) ~ ~ (I,OI2.~m,-m) a~ 
l=0,2.4m>0 

U.Q = 3e2q2 '( 71~ + 1) 
()() 2-./5 3 

(1~ = 3e~l ~( ~~ -1). (3.20) 

UQ =~ 7lQ +1 2 2 ( 2 ) 
40 ..ffO 18 ' 

As previously, we may rewrite the energy splitting in the following fashion (just as in 

equation 3.10) . 

..dE(2Q) = 1i ± e -in( cort+lf>r+rQ)Wn { aQ ,pQ' 8) 

n=-4 

Wn ( aQ ,pQ' 8) = :~ 2( I {I+ 1)- -i) ~ e -in( COrt+lf>r+rQ) d~2 ( 8) 
1=0,2,4 

LSinl 
~ -ikaQd(l)(nQ) Q ~ (I,OI2.2,m,-m) 

X .L..J e kn JJ Ulk .L..J m 
k m>O 

(3.21) 

It is important to note the similarity between this equation and equation 3.11. In fact, the 

same analysis may be followed to arrive at a very similar result following the average 

over rotor phase. 

12 

¢Q(t2) =*I L1E(2Q)dt 
0 (3.22a) 

S(t2) = e -ilf>Q(r2) 

(S(t )) =e-iWo(aQ,pQ,eh ~A A* e-iNicort2 
2 ( lf>r+rQ) .L..J N1 N1 

N]=-oo 

(3.22b) 
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This again shows that all of the sidebands will appear at a frequency N mr from the cen

terband with positive intensity given by IANI2. In this case, the averaging over the final 

two Euler angles may not be performed analytically, since the second-order quadrupolar 

frequencies are anisotropic under all single axis spinning angles. The result of a complete 

powder average is to generate spectra much like the slow speed spin-1/2 MAS spectrum 

in figure 3.6 except that instead of narrow isotropic lines there will be miniature powder 

patterns as seen in the same figure. With the above equations, simulations of spinning 

sidebands may be accomplished with methods similar to those described at the end of 

chapter 2. There are faster methods, however, for simulating sideband intensities and I 

would direct the reader to various papers on this and related subjects.49,52,58-60,64,74;76-81 

Finally, suppose the spinning angle 8 is set to o·, or parallel to the static magnetic 

field. In this case, all of the Wn with n ::~; 0 will be analytically zero for both the chemical 

shift and quadrupolar interactions. This means that spinning the sample parallel to the 

magnetic field has absolutely no effect on the spectrum~(relative to a static experiment) 

and generates no spinning sidebands. This feature will be useful in the next section when 

the k = 5 DAS experiment is described, as one of the spinning angles is indeed o·. 

The dynamic angle spinning experiment may be analyzed in a very similar man

ner as the previous two cases. The first step is to redefine the time axes in the normal 

DAS experiment. In figure 3.8, the new time definitions are shown along with the origi

nal DAS sequence. Notice that the only difference is that the evolution between the first 

two 1C/2 pulses is defined as t1 rather than tJ/(k+l) and the t2 evolution begins immedi

ately following the last 1C/2 pulse. This definition of time axes differs from the original 

DAS experiment only in the application of a shearing transformation following the two

dimensional Fourier transform. The shearing angle is related to the k value by the follow

ing equation. 

(3.23) 

58 



Shearing transformations are well known in NMR 82-86 and will not be discussed at this 

point. The two dimensional DAS experiment performed with k = 1 (37.38°, 79.19°) on 

7t/2 7t/2 7t/2 

RF ~ ttl (k + I) ~ hop ~k ttl (k + I) n t2 
(\ " ,(') 1\ 1\ 0 

7t/2 7t/2 

~hop ~ 

Figure 3.8 Redefined DAS Pulse Sequence for Spinning Sideband Calculation. The time 
definitions given above are useful for calculating sideband positions and intensities and 
the original style DAS spectrum may be arrived at by shearing the final two-dimensional 
Fourier transformed data set. 

RbCl04 is shown in figure 3.9. The 1C/2 selective pulse widths were 5.0 JlS and the spin

ning speed was 3.2 kHz. The data was taken at a magnetic field strength of 11.7T and 

was sheared with a 45° shearing transformation. Notice, the shearing transformation cre

ates a spectrum with isotropic peaks and spinning sidebands in the m1 (DAS) dimension 

and anisotropic 79.19° slow spinning VAS spectra in the C02 dimension. The positions of 

the spinning sidebands in the projection onto the m'1 DAS axis in figure 3.9 are at the 

isotropic frequency plus or minus one half the spinning speed. The factor of one half, 

while initially appearing rather unusual, may be explained by looking at the actual side

band positions with the same formalism used previously. 52 As a starting point, we will 

assume that energy splitting will be determined by only the quadrupolar interaction (no 

CSA present for now, however the results may be easily generalized) given in equation 

3.20. In this case-the evolved phase may be written as the sum of two integrals, given in 

equation 3.24. 
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Figure 3.9 Sidebands ink= 1 DAS 20 Spectrum of RbCI04 at 11.7T. The pulse widths 
were 5.0 J.lS and spinning speed was 3.2 kHz. The data was sheared with a 45° shearing 
transfonnation following data collection and processing with the sequence in figure 3.6. 

tl 

q,DAS (ti ,t2) =*I L1E(2Q)( aQ ,{JQ' ei ,t, fl>rl )dt 
0 

t2 

+t I L1E(2Q)( aQ ,{JQ' e2,t, fl>r2 )dt 
0 

(3.24) 

The variables in the expressions for the energy splitting indicate that we will consider 

both the absolute rotor phase and PAS orientation of the sample. Upon performing these 

integrals, the DAS signal may be expressed below. 

q,DAs (t1 ,t2 ) = w0 ( aQ ,{JQ, e h + w0 ( aQ ,{JQ, e )t2 

_"" Wm(~Q,pQ,81) (e -im(cor1J+I/>,I+rQ) _ e -im(tf>r!+rQ)) 
£...i 1mco, 

m:#O 

(3.25a) 

-"" wm(~Q,pQ,82)( -im(co,t2+4>r2+rQ)- -im(t1>r2+rQ)) 
£...J 1mco e e 

r 
m:#O 
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S(tl,t;) = e-i~DAS(t,,t2) 

= e -iw0(aQ ,pQ,9!)t1 e -iw0(aQ,pQ,92)t2 

(3.25b) 

This can again be simplified with the use of delta functions as before to give the follow

ing equation for the DAS NMR signal. 

S( ) 
_ -iw0(aQ,pQ,91)t1-iW0(aQ,pQ,92)t2 

t1 ,t2 - e 

X LAN, (e) )A~2 (e) )AN3 ( e2 )A~4 ( e2) 
N1,N2,N3,N4 

xe 

-i[(N,-N2 +N3 -N4)( ~rl +rQ)+(N3 -N4 )( ~r2 -~rl )] (3.26) 
+( N1 +N3 -N4 )wrtl +N3wrt2 

This may be averaged over the initial rotor phase, { l/Jrl + rQ), as before. 

(s( )) 
_ -iw0( aQ ,pQ ,91 )t1-iw0( aQ ,pQ ,92 )t2 

tl ,t2 Ao Q - e 
'~"rl•r 

x I, AN1 ( e1 )A~2 ( e1 )AN
3 

( e2 )A~1 -N2 +N3 ( e2) (3.27) 
N1,N2,N3 

-i[(N2-NI )( ~rr~rl )+N2Wrt1 +N3wr12) xe 

In most cases, the relative phase of the rotor ( lf1r2 -l/Jrl) between the first and second 

evolution periods will be relatively random. In the case of large numbers of scans, these 

variables ( l/Jr2 -l/Jrl) may be averaged over as well. 

(s( )) . _ -iW0(aQ,pQ,91)t1-iW0(aQ,pQ,B2h 
tl 't2 Ao Ao Q - e 

'l'r!•'l'r2•r 

X :LIAN, ( e.)I21AN2 ( e2)12 e -i[Nlwrti+N2wrt2] 

NI,N2 
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This indicates that the intensity of all of the sidebands in the two dimensional spectrum 

will be positive. The peaks will occur at frequencies N 1 OJr from W0 ( 81 ) in the first di

mension correlated with frequencies at N 2 OJr from W0 ( 82 ) in the second. When the 

spectrum is sheared, the peaks will all remain positive, however their positions will shift. 

Transforming the time variables into the sheared time definitions, we will arrive at the 

following expression for the DAS signal. 

(3.29a) 

(3.29b) 

The definition of the DAS angle pairs is equivalent to the following equation. 

(3.30) 

Which reduces equation 3.29 to the form in equation 3.31. 

(s( , , )) -iroFQ>t; -iWo( aQ ,f3Q ,82 )t2 
tl 't2 = e ISO e 

·[N1w,t{ kN2w,t; N , J 
X L:IANI ( et)j21AN2 ( 82)12 e _, k+l+ k+l + 2(1)rt2 (3.31) 

NI,N2 

This equation shows that the isotropic spectrum arrived at by Fourier transforming the 

DAS echo tops at t2 = 0 will have sidebands at multiples of two frequencies, kmrf(k + 1) 

and mrf(k + 1). The two dimensional spectrum will have sidebands at multiples of the 

same two frequencies in OJt and at OJr in OJ2. Looking again at the two dimensional DAS 

spectrum in figure 3.9 we observe exactly these sideband positions. Each of the slices ex-
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tracted on the right corresponds to the isotropic peak and sidebands where N1 = 0, ±1, ±2, 

±3, etc for N2 = -2, 0 and +2 respectively. It is interesting also that the N2 = -1 and+ 1 

Static 

1.4 kHz 

2.4 kHz 

3.2 kHz 

3.8 kHz 

6.5 kHz 

-10 -5 0 5 10 
Frequency (kHz) 

Figure 3.10 ID 87RbC104 DAS Spectra at a Variety of Spinning Speeds;. The k =l DAS 
spectra are shown over a range of spinning speeds. The intensity of the sidebands may be 
described by equation 3.30. 

slices have very low intensity as the detection angle (79.19°) is nearly 90° where odd or-

der sidebands may be shown to have no intensity. Also, it may be seen that the most in

tense peak in each of these slices corresponds to the N 1 = 0 peak. The sidebands in each 

of the slices are separated by mr/(k + 1) which in this case is mrf2. 
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Figure 3.10 shows the one-dimensional DAS spectrum of 87RbC104 taken at 

11.7T at a variety of spinning rates for the usual k = 1 case just as in figure 3.9. The 

sideband intensities are seen to grow more numerous and intense as the spinning speed is 

reduced. The intensity of each sideband is derived from equation 3.31 by adding together 

the intensity (see equation 3.33) from each Nt, N2 pair which contributes an integrated 
2n n 

2 2 
intensity of 4

1n J JIAN
1 
(81)j!AN2 (82 )j sinf3Qdf3QdaQ at a given sideband position 

0 0 
( :'.;.1 + ~i )mr from the centerband (keeping in mind that there may be degeneracies 

when k is an integer). As is the case with double rotation (DOR, see chapter 6), the 

spinning sideband intensities in DAS do not necessarily approximate the static powder 

pattern in the limit of very slow spinning as is the case in slow spinning MAS. 

When one of the spinning angles is o·, as in the case of k = 5 DAS, the formula 

for the DAS signal is simplified further. Since all Wn(O.) with n ::t 0 are zero, the value of 

the intensity integrals will be simplified. In the case where 81 is o·, there will be side- . 

bands in the C:Ot dimension of the unsheared spectrum and all sideband intensities with N 1 

(3.32) 

A k = 5 DAS spectrum is shown below in figure 3.11. The unsheared spectrum correlat

ing the static o· spectrum with the 63.43• VAS spectrum shows that there are no side

bands in the C:Ot dimension and the sidebands are spaced by lOr in the C02 dimension. In 

the sheared spectrum, the sidebands in the DAS dimension are spaced by 5mrf6 and by 

c:or in the anisotropic spectrum. This represents the highest possible effective spinning 

speed in the isotropic dimension in a DAS experiment. 
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In a case where the time ratio k (or alternatively 1/k) is not an integer then the one 

dimensional isotropic projection becomes more complicated. In the case of a non-integer 

k. the sidebands at multiples of the two frequencies kmr/(k + 1) and mrf(k + 1) will not 

overlap for small integer values of N 1 and N2. In the full two dimensional spectrum, the 

sidebands will appear separated, but will not overlap when projected. This sideband be

havior may be seen in the k = 0.8 20 DAS spectrum of RbCl04 in figure 3.12. Notice 

also that there are analytically no odd.sidebands in the second dimension corresponding 

' 
s ~ 
0 

~· 

* ~ Projection 

} A_ 

} ____}._ 

l l_ 
} 

s 

\ }.~ 
w'• (kHz) 

-I 0 ~ 

-1o -s 

Figure 3.11 87RbC104 Sidebands in k = 5 DAS 2D Spectrum. The acquisition pa
rameters are identical to those used in figure 3.7, with the exception of the angle pair (0° 

and 63.43°) used. 

to odd N2. This is a direct result of spinning at 90° since all odd sidebands disappear in a 

1 D 90° VAS spectrum. 
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Figure 3.12 87RbCl04 Sidebands in k=0.8 DAS 2D Spectrum. The acquisition pa
rameters again are identical to those used previously, with the exception of the angle pair 
(39.23. and 9o.oo·) used. 

Returning to the case of one-dimensional DAS projections, the positions of side

bands are given by equation 3.32. This equation may be integrated over the final two 

powder angles, to yield an expression which may be calculated to generate sideband in

tensities in a relatively simple manner. 

(3.33) 
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This expression was used to calculate spinning sideband intensities for RbCl04 DAS 

spectra with k values between 1.0 and 5.0. These simulations are shown next to the ex-

perimental spectra in figure 3.13. 

(0°,63.43°) 

(10.66°,63.96°) 

(15.38° ,64.58°) 

(19.27°,65.35°) 

(22.81°,63.33°) 

(26.22° ,67 .64 °) 

(29.67°,69.51°) 

(33.31°,72.55°) 

(37 .38°. 79. 19°) 
I I I I u' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

-12 0 6 12 -12 0 6 12 
Frequency (kHz) Frequency (kHz) 

Figure 3.13 All k values for fast spinning 8?RbCI04 DAS at 11.7T. These spectra were 
collected with experimental parameters identical to those used in the previous spectra. 
The simulated spectra assumed only a quadrupolar coupling CQ of 3.2 MHz, an 
asymmetry parameter 7JQ of 0.1 0, ror of 6.4 kHz and approximately 300 Hz of Lorentzian 
broadening. 

The quadrupolar parameters used to simulate the spectra were a CQ of 3.2 MHz, an 

asymmetry parameter TJQ of 0.1 0, and a spinning speed Wr of 6.4 kHz. Lorentzian broad

ening was added so that the linewidths of simulated spectra were the same as the experi

mental spectra. It is important to note that there are basically two frequencies of spinning 

sidebands in these spectra, k~I mr and k:1 mr. In the case of k = 1, these two frequencies 

are the same (just as was seen before in figure 3.9) and sidebands appear only at 3.2 kHz. 

In the case of k = 5, the former low frequency sidebands are absent, as predicted by the-
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ory and shown earlier in figure 3.11, and only the high frequency 5.3 kHz sidebands ap

pear. Because the spinning speed is quite fast compared to the second-order interaction, 

only the Nt = ±1 or N2 = ±1 sidebands appear in these spectra; none of the sum and dif

ference frequencies show up. 

In conclusion, the presence of spinning sidebands in DAS spectra can lead to 

greatly complicated spectra, with multiple spinning frequencies present. By choosing the 

proper value for the time ratio, k = 1 or k = 5, the sideband behavior is greatly simplified 

and the effective spinning speed is maximized. Additionally, the sideband intensities 

contain information which may be used to extract the quadrupolar coupling parameters. 

This has not been discussed here and the reader is directed to the thesis of Sun 16 andre

lated papers49•52 for additional information on simulating sideband intensities. 
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·- 4• 

Linewidths in DAS (Homonuclear Dipole-Dipole Interaction) 

In this section, the contribution of the homonuclear dipole-dipole interaction to 

dynamic-angle spinning spectra will be discussed. Remember, the form of the static 

homonuclear dip?lar Hamiltonian from equation 2.48. 

Hv =-I/imvii !(3hoij,o- I;· Ii )d~~J(PS) 
j:ct.i 

Under rapid spinning conditions, this may be expressed below. 

2 

(3.34) 

Hv = -li I mvij !(3I;,oij,O- I;. Ij) I v~J( mrt + lPr• O,O)D~~~ ( af ,fJf' rS) 
j:ct.i m=-2 

= -lid~>(o)Imvij !(3I;,oij,o- I;· Ii )d~~J(Pf) 
j:ct.i 

(3.35) 

This Hamiltonian will allow the coherence, which until this point has been assumed to be 

between -1 and + 1, to evolve into higher order bilinear coherences. The homonuclear 

dipolar contribution to the isotropic linewidth in a DAS spectrum arises since the storage 

pulses used during a hop cannot store bilinear terms. Also, the reduced Wigner matrix 
I 

element d~) ( 0) indicates that the spinning merely scales the entire interaction, under the 

time independent approximation (and under high speed magic-angle spinning, all dipolar 

couplings are scaled to zero). Since the sign of P2 [cos( 0;)] is reversed (see equation 

3.7) following a hop from the DAS angle Ot to (h, and if the density matrix describing 

the system was the same before and after the hop, all dipolar contributions to the isotropic 

spectrum would be refocused at the DAS echo top. Unfortunately, the density matrix is 

not the same before and after the hop and the homonuclear dipolar interaction continues 

to dephase in the isotropic t1 time domain, rather than refocus. An approximation which 

describes the dipolar dephasing of a static on-resonance homonuclear bath of spins is a 

Gaussian decay 

(3.36) 

69 



where M2 is the second moment as defined by Van Vleck87. Under fast spinning VAS 

conditions, the effective dipolar coupling is scaled by P2 [cos( 0;)] and therefore the ef

fective second moment is M2Pi[cos(e)]. The signal function for an on-resonance spin 

would then be 

(3.37) 

Figure 3.14 shows the dipolar linewidth of both 23Na and 87Rb nuclei in sodium oxalate 

and rubidium perchlorate respectively under rapid VAS conditions. The linewidth was 

measured from the homogeneously broadened isotropic spectrum collected by Fourier 

transforming the echo tops at 12 = 11 of a 90° - 11 - 180°- 12 experiment (where the dwell 

time in 11 was equal to the rotor period). The curves in both case~ correspond to the 

function !CvP2 [cos(e)JI· where Cv is the static homogeneous linewidth. Notice that the 

• 
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Figure 3.14 Homonuclear Dipolar Linewidth versus Spinning Angle. The left set 
corresponds to Na2C204 23Na linewidth as a function of angle where the static linewidth 
is 1400Hz. The right set corresponds to RbCl04 87Rb linewidth as a function of angle 
where the static linewidth is 195 Hz. 

linewidth goes nearly to zero at the magic angle (54.74°) in both cases. This indicates· 

that, at a spinning speed of approximately 6 kHz, the homonuclear dipolar coupling is 

well described by equation 3.35 and 3.37. 

In a DAS experiment, the signal of an on-resonance spin can be expressed as the 

product of two Gaussian decays at two different angles. 
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*) ~ exp(-M2Pi{ cos Iii}( :!1 )' jz) exp(-M2P'i (cos ll-. l( :;1 )'jz) 
= exp(-M~ff tt /2) 

(3.38) 

For the DAS angle pairs, 81 and 82 , the value of P2[cos{8)] can be expressed in terms 

of k where P2 [cos( 81)] = ~ and P2 [cos( 82 )] = -.Vlf5k. This yields an effective 

second moment for the isotropic line in the DAS experiment of Mf! = 2kM2/5(k + 1)2 

giving a linewidth of approximately .V2kM2 j-f5(k + 1). The narrowest line in a conven

tional DAS experiment should therefore arise when the k = 5 angle pair, Oo- 63.43°, is 

used and should be about 75% of the linewidth for a k = 1 experiment. 

For the isotropic linewidth measurements, samples of sodium oxalate, Na2C204 

and rubidium perchlorate, RbCl04, were obtained from commercial sources while the 

deuterated boric acid, D3B03, was made by exchanging the protons in H3B03 in D20, 

both commercially obtained. The experiments were performed at 11.7T (87Rb frequency 

163.623 MHz, 23Na frequency 132.201 MHz, liB frequency 160.446 MHz) with the 

same probe as before. The pulse sequence used for DAS was the original sequence. The 

selective 90° times were between 4 and 8 J.LS and the recycle delays were between 1 and 

4 s. The spinning speeds were between 5.0 and 7.0 kHz which effectively removed all 

spinning sidebands from these spectra. The spectral widths were set to 10 kHz and be

tween 256 and 1024 scans were acquired for each of 60 t1 points at each k value. 

The dipolar linewidths for Na2C204, RbCl04 aqd D3B03 are shown in figure 

3.15 for a range of k values from 0.8 to 5. It is always true that the linewidth at k = 5 is 

about 20% less than at k = 1, in agreement with the theory presented earlier. The solid 

curves through these data points are the best fit using the function 

- ~ 
Llmisotropic- Llmr2 + -J5(k + l) 3.39 

where M2is the second moment due to homonuclear dipolar interactions in a static sam

ple and Llmr
2 

is the intrinsic linewidth due to field inhomogeneity and T2 relaxation. 
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The values for M2 extracted in this manner are very similar the those extracted from 

static CPMG experiments. This further confirms that the k = 5 angle pair is the best angle 

pair to perform the DAS experiment. 

1200 
+ 
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:I: .._ 
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~ 
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k (DAS time constant) 

Figure 3.15 Dynamic-Angle Spinning Linewidths as a function of k. The solid circles are 
for D3B03, the crosses are for Na2C204 and the solid boxes are for RbCl04. The lines 
through each set of points are the best fit with the linewidth function given by equation 
3.39. 
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Chapter4 

Pure Phase NMR 

In traditional liquid state NMR pure-phase spectra have always been important in 

giving the highest signal-to-noise ratios and signal resolution. The basic problem is most 

easily illustrated with a simple two-dimensional data set of the form S( t1 , t2 ) (notice the i 

similarity between this equation and equation 3. 7). 

(4.1) 

Where .Q1 and .Q2 are the frequencies in each dimension for a single peak in the 2D 

Fourier transformed spectrum with linewidth lj2T2 • When a 2D data set of this form is 

Fourier transformed in the t2 dimension, the result is a data set of the form S( t1, w2). 

Where A(w,.Q) and D(w,.Q) in this case are the absorptive and dispersive Lorentzian 

lineshape functions respectively with a peak in the m dimension at frequency .Q. 

A( .Q) _ T2 
w, - 1+(ro-n)2Ti 

D(w .Q) _ (ro-n)Ti 
' - l+(ro-n)2Ti 

(4.3) 

It is immediately apparent, that the second Fourier transform will produce a very complex 

result, S ( w1, w2 ) • 

S( w1, m2 ) = (A( w1, .Q1) + iD( m1, .Q1) )(A( w2 , .Q2 ) + iD( w2 , .Q2 )) 

=(A( w1 ,.Q1 )A( w2 ,.Q2)- D( w1 ,.Q1 )D( w2,.D2 )) (4.4) 

+ i( A( W1, .D1 )D( m2, .Q2) + D( W1, .Q1 )A( W2, .Q2)) 

This has two terms, one real and one imaginary. If this were completely pure-absorptive 

mode, the real term would contain A(w1,.DI)A(m2 ,.Q2 ) only. The term which leads to 

the phase-twist lineshape is the A( W1, .D1 )A( W2 , .D2)- D( W1, .D1 )D( W2 , .D2 ) one. Figure 

4.1 shows both the pure-absorption mode and phase-twist 2D lineshapes. The next sec-
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tion describes three of the methods used to obtain a pure-absorptive mode lineshape in 

(a) (b) 

Figure 4.1 Pure-Absorption mode and Mixed-Phase 20 NMR Spectra. Spectrum (a) is an 
example of a pure-absorption mode line with equal homogeneous broadening in both 
dimensions. Spectrum (b) is an example of a mixed-phase line with the same parameters. 
Note in (b) the presence of both positive(+) and(-) contours, giving a peak of much 
larger effective linewidth. 

2D NMR experiments. Each will be described briefly and in all cases additional infor

mation may be found in the papers referenced therein and in the classic text on multi-di

mensional NMR by Ernst et al. 7 

Pure-Absorption Mode Acquisition Methods 

The three most important methods for achieving pure-absorption phase multi-di

mensional NMR data, States, TPPI and whole echo acquisition, are described in moderate 

detail in the next section. Each section contains references to other more complete de-

scriptions of these experiments and the interested reader is directed there for additional 

information. 

States Method 

The method developed by States et al. 88 creates pure-absorption mode spectra by 

acquiring a hypercomplex data set. In this type of data acquisition, there are two parts, a 
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cosine labeled Sc (It , 12 ) and a sine labeled Ss (It , 12 ) portion. Thus, twice as many data 

points are needed to get the same resolution as a comparable phase-modulated experi-' 

ment. The hypercomplex data is collected such that the cosine portion is quadrature in 12 

and amplitude modulated by cos( .Qtlt) in It while the sine portion is amplitude modu

lated by sin(.Otlt) in It· Mathematically, the two signals are expressed in equation 4.5. 

Sc (It, 12) =cos( .Qtlt) e-T:ZI(ti +t2)e -in2t2 

Ss( It' 12) =sin( .Qtlt )e -T:Zl{ti +t2)e -i.02t2 
(4.5~ 

To process this type of data, the 12 Fourier transform is performed separately on each data 

set. This yields two new signal functions Sc (It, m2) and Ss (It, m2) given below. 

Sc (It, m2) =cos( .Qtlt )e -T:Z111 (A( m2 , .02) + iD( m2 , .02)) 
(4.6) 

These are then combined to form a data set S PP (It, m2) whose real components are the 

real portion of Sc (It, m2) and whose imaginary components are the negated real portion 

of Ss (It, m2 ) • 

SPP (It, W2) =A( W2, .Q2 )e -T2
111 

(cos( .0111)- isin( .0111 ))' 

=A( m2' .Q2 )e -T:Ziti e -iDiti 

(4.7) 

This data set is now ready to be Fourier transformed with respect to IJ. Notice that there 

is no dispersive D(ro2,.02) term in the Spp(11,m2 ) expres~ion. In fact the final 

SPP (rot, m2) will have no dispersive contribution to the real channel (which is what nor

mally is displayed). 

This will yield a truly pure-absorption mode lineshape, such as in figure 4.1. To imple

ment a phase cycle to collect this type of hypercomplex data set, the data must be col

lected with both the + 1 and -1 coherence pathways in 11. When summed together they 

yield a cosine pathway and when subtracted they yield a sine pathway. A simple method 
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for deriving a phase cycle for a hypercomplex data set is to take a phase cycle which 

chooses only the -1 or + 1 pathway in tt and split this cycle into two phase cycles. One 

will be made up of those cycles which generate cosine in tt and the other will have those 

which generate sine in tt. This is a little more difficult when tt is split between two dif

ferent evolution periods (such as the original DAS experiment), but can still be accom

plished with proper phase cycling and pulses (see Mueller et a/.50) 

Time Proportional Phase lncrementation 

The technique of time proportional phase incrementation (TPPI)89•90 is mathemat

ically equivalent to the method derived by States. Again, twice as many data points must 

be collected as in a phase-modulated experiment with the same resolution. The basic dif

ference between States method and TPPI arises in the data acquisition and processing. 

To acquire TPPI data, a STPPI ( t1, t2) data set is collected where the dwell time dtt is one 

half and the number of t1 points is twice what would be normally used in a phase modu

lated experiment, giving both the same spectral width and digital resolution in tt. In 

addition, all the pulses immediately before the t1 evolution period begins are incremented 

by 90° after each tt point. 

S ( ) - Tz1 
( l1 +12) ( n tr l1 ) i!2212 

TPPI ft,t2 =e COS .J."Itl + 2.111· e (4.9) 

' 
This data is Fourier transformed with respect to t2 exactly as a usual phase modulated 

data set to yield STPPI ( t1. m2). 

STPPI(t1,m2 ) =e-T2111 cos( ( Q 1 + 2 ~11 )r1 )(A( m2,D2) + iD( m2,D2)) 

=e-T2111 (A(m2,Q2)cos((ni + 2 ~11 )tt)+] 
iD( m2,D2)cos( ( QI + 2 ~11 )ti) 

(4.10) 

The imaginary portion of this data set is then thrown out and the remaining real portion is 

Fourier transformed with a real Fourier transform in tt (rather than the usual complex 
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Fourier transform). This type of Fourier transform has no quadrature and peaks show up 

at both the positive and negative frequencies. This is where the phase incrementation 

"trick" can be seen. Each term has a COt frequency of .Q1 + 2!
11 

rather than just .Q1. 

Therefore the signal will be given by equation 4.11. 

. [A( m2,.Q2)( A( m1 ,.Qt + 2 ~1J +A( m1 ,-.Qt- 2 ~1J) -J 
Srpp1( m1, m2 ) = (4.11) 

iA(ro2,.Q2)(n(rot,.Qt + 2 ~1J+n(rot,-.Qt- 2!rJ) 

The resulting spectrum is symmetric about zero frequency and the negative side may now 

be thrown out. The remaining positive frequency data set is pure-absorption mode and 

may be made equivalent to the States result by setting the center of the spectrum to zero 

frequency (a shift of 2 ~11 ). The phase cycle for this type of spectrum is identical to the 

phase cycle for the cosine portion of the hypercomplex data set from the previous section 

with the addition of the time proportional phase incrementation of the pulses before the 

start of tJ. 

Whole Echo Acquisition 

Whole echo acquisition91 has been less popular than the other methods of obtain

ing pure phase spectra. This is primarily because in the case of liquid spectra, it is diffi

cult to obtain whole echoes in t2 since the lines are so narrow. In fact; when only a frac-

tion of the echo is collected phase twist components will enter into the final 2D spectrum. 

In the case of solids, where the inhomogeneous broadening is usually much larger than 

the homogeneous broadening, whole echo acquisition can actually be better than the other 

methods. To understand why two-dimensional whole echo acquisition works, first it is 

useful to look at a one-dimensional case. Suppose you generate a Gaussian-shaped time

domain echo with a 90"-180" (Td2- te-n- acq) sequence which has a signa1S'e(t2 ) given 

by equation 4.12. 
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(4.12) 

When this signal is Fourier transformed, a spectrum of the form given by equation 4.13 

will be generated, assuming that the signal is shifted far enough out in time and is zero at 

both the first and last 12 points. 

(m2-D2)
2ri . 

Se( mz) =e 4 e'wre = Ae( mz,Dz) (4.13) 

This appears at first glance to be much worse than if we had only collected from the echo 

top on, due to the phase factor. However, by effectively shifting the time origin by apply

ing a first-order phase correction of 1e (which multiplies each point in the spectrum by 

e -i(J)Ie ), the spectrum is greatly simplified. 

(m2-D2) 2 ri 
4 = Ase ( mz • .Q2 ) (4.14) 

This shifted-echo (hence the se subscript) spectrum has no dispersive imaginary compo

nents. This can be quite useful in a two-dimensional experiment where the signal is of 

the form. 

(4.15) 

This is a constant time echo experiment and the first Fourier transform is done as usual in 

the 12 dimension. The resulting signal function has the form given in equation 4.16. 

(4.16) 

A first order phase correction of 1e is then applied to the C02 dimension which yields sig

nal with the function given in equation 4.17 (note the se subscript on the absorptive one

dimensional Ase ( m2 , .Q2 ) function). 

T-J .,... 

S ( ) _A ( .Q ) - 2 r1 -z .... 1r1 se 11 ' mz - se mz ' 2 e e (4.17) 

A Fourier transform is then applied to the 11 dimension giving a pure-absorption mode 2D 

spectrum as the result (see equation 4.18). 
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(4.18) 

This result is particularly important because data of this sort doesn't require the factor of 2 

additional tt points like the States or TPPI methods, thus it will have a ..fi improvement 

in signal-to-noise over States or TPPI data. However, this is only true in situations where 

the entire echo may be collected for every t1 point, which in general will only be the case 

for solids with a strong inhomogeneous broadening. The phase cycle necessary to collect 

a whole echo is not any different than collecting a standard phase-modulated data set. In 

fact, in some cases TPPI or States methods may be applied in concert with whole echo 

acquisition to gain an additional ..fi improvement in signal-to-noise ratio. 53 

Pure Phase DAS 

The original DAS experiment as described by both Mueller et al.42 and Llor and 

Virlet43 was a phase modulated experiment (with the phase cycles given in the papers) 

and gave phase-twist lineshapes in two dimensional spectra which necessitated magni

tude mode display (see figure 3.6). To obtain higher resolution, pure-phase two dimen

sional DAS experiments were first developed by Mueller et al.42•41 In this work, they 

viewed the DAS experiment in a non-sheared fashion and used either a z-filter or a 90• 

pulse after the total t1 evolution period to give pure-absorption mode spectra. As will be 

discussed below, we have been able to obtain higher signal to noise ratio pure""absorption 

mode DAS spectra by redefining our time axes. 53 Also, further sensitivity improvements 

have been made by shifting the DAS echo in time using n pulses. 

Pulse Sequences 

The original DAS pulse sequence has been discussed earlier but will be reviewed 

to show the differences between it and the new pulse sequences. In figure 4.2 we see a 

simulated DAS spectrum acquired with the original DAS sequence. The mixed-phase ar

tifacts are seen in the upper right and lower left side of the spectrum as broad negative re-
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gions. This overall phase twist will make the slices through the isotropic peaks difficult 

to interpret. 
-2 

J 
J; 

(b) : \ 
'2 -I 

:l,\ 
\ \ 

*>~.::.-:> 

(a) 

rf 

~ 0 ~ 
rotor e. / 

<:::::\· ~ \ ~, 
\! 

2 
v 

1 
p 0 \ I \ -I 

2x, x, 0 -x, -2x, 

(J)I 

Figure 4.2 Original DAS Experiment. The pulse sequence and coherence pathway (a) is 
shown to the left of the simulated spectrum (b). The phase cycle used to implement this 
pathway was given earlier. Dashed contour lines indicate negative contours. 

Figure 4.3 shows the modified DAS experiment where the time axes have been 

redefined, very similar to the time definitions in a 2D exchange experiment (and identical 

to those definitions discussed in the description of spinning sidebands in chapter 3). In 

this experiment, the evolution at the first angle is defined as 11 and the evolution after the 

hop is defined as 12. This definition will place a shifting DAS isotropic echo in the 12 di

mension. In fact, this echo will appear at a time k 11. When this data is processed without 

modification, we observe a diagonal peak which is the correlation between anisotropic 

patterns in both dimensions. A conventional 2D DAS spectrum may be obtained by 

shearing this spectrum by an angle 85 (as was mentioned earlier in the spinning side

bands section of chapter 3). 

(4.19) 

Another method for shearing the data is to apply a 11 dependent first-order phase correc

tion of t/>(11, m2) to the data set between the first and second Fourier transforms. 

tfJ(t1, m2 ) = k co2 t1 
(4.20) 
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This method of acquisition produces a phase-twist spectrum, but because an entire echo is 

collected for the later II points, the negative contours are much smaller, giving effectively 

higher resolution in both dimensions. 

-2-----------. 

'l . (Xn2)~op (xn2): (PSD)IiJ< 

(a) 
rf f· (b) 

-I 

~ 
rotor e. / ~0 

I 
I 

' p 0 -, I ' -I 

Figure 4.3 Modified DAS Experiment. The (a) pulse sequence and coherence pathway are 
shown to the left of (b) the unsheared simulated spectrum. The dashed line coherence 
pathway indicates the anti-echo DAS experiment. The phase cycle used to implement 
this pathway is identical to the original DAS experiment. Dashed contour lines indicate 
negative contours. 

A second modification to the DAS experiment may be made by using either the 

·method of States el al. 88 or TPPI89•90 to acquire pure-absorption mode spectra using the 

same II and 12 definitions. To accomplish this, we need to merely change the way the 

data is collected. Rather than collecting a single data set as a function of II and lz, we 

collect a hypercomplex data set as a function of It and lz. As mentioned previously, a 

hypercomplex data set separates the sine and cosine evolution in 11. Each of these data 

sets is Fourier transformed with respect to lz. This produces a data set with absorptive 

lineshapes in the real channel and dispersive lineshapes in the imaginary channel. The 

real portion of the cosine data set is combined with ...r-:1 times the real portion of the sine 

data set. Thus there are only absorptive lineshapes in C02 which are modulated bye -w,r, 
I 

in the It dimension. Applying the same II dependent first-order phase correction from 

equation 4.2, we then can perform the 11 Fourier transform. This yields pure-absorption 

mode 20 DAS spectra. There are no mixed-phase artifacts to make interpretation diffi

cult. The phase cycle and coherence pathway for this experiment are given in figure 4.4. 
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Figure 4.4 Hypercomplex DAS Experiment. The pulse sequence (a), coherence pathway, 
and phase cycle are given above. Cycle (b) is the cosine data set and cycle (c) is the sine 
data set. 

An alternative method of sensitivity improvement in dynamic-angle spinning ex

periments comes from shifting the isotropic DAS echo in 12. This is accomplished by 

applying a 1r pulse after a n tr delay following the final rr/2 read pulse. This shifted echo 

DAS (SEDAS) pulse sequence is detailed in figure 4.5. This sequence has the advantage 

of shifting the DAS echoes in time by n tr. For all tt values, an entire DAS echo may be 

collected which leads to a higher signal-to-noise ratio than the hypercomplex DAS which 

takes twice as long to effectively collect whole echoes in tt. This is especially important 

in cases where the broadening is primarily inhomogeneous and anisotropic in the C02 di-

mension. 
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Figure 4.5 Shifted-Echo DAS Experiment. The pulse sequence (a), coherence pathway, 
and phase cycle (b) are given above. 

In cases where the broadening is inhomogeneous in both the C02 and W1 dimen-

sions of a DAS experiment, further advantage may be had by collecting hypercomplex 

data in concert with a shifted echo experiment. This hypercomplex SEDAS experiment 

is shown schematically in figure 4.6. The phase cycle for both the cosine and sine por

tions of the data set are indicated as well. In both the SEDAS and HyperSEDAS experi

ments, both the first and third pulses are phase cycled through four steps each. This ef

fectively chooses only a -1 (or both + 1 and -1 in the hypercomplex division of the phase 

cycle in figure 4.6) coherence after the first pulse and guarantees a + 1 coherence follow

ing the third pulse. This sequence effectively collects both the echo and anti-echo DAS 
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signals. In the case of a crystalline sample, the anti-echo signal will shift to the left in 12 

as 11 increases while the echo signal will shift to the right in 12 as 11 increases. 

(a) rf 

rotor __ e_t __ / 

p ~~(----~)--~~--~\--------
-1 

(b) f(j1 f(j2 f(j3 f(j4 f(jR 

0 0 0 0 0 
180 0 0 0 180 
0 0 90 0 270 
180 0 90 0 90 
0 0 180 0 180 
180 0 180 0 0 
0 0 270 0 90 
180 0 270 0 270 

(c) f(j1 f(j2 f(j3 f(j4 f(jR 

90 0 0 0 0 
270 0 0 0 180 
90 0 90 0 270 
270 0 90 0 90 
90 0 180 0 180 
270 0 180 0 0 
90 0 270 0 90 
270 0 270 0 270 

Figure 4.6 Hypercomplex Shifted-Echo DAS Experiment. The pulse sequence (a), 
coherence pathway, and phase cycle for the cosine data set (b) and sine data set (c) are 
given above. Two echos are shown in the above figure since the signal will have an echo 
contribution from both the echo (solid line) and anti-echo (dashed line) pathways which 
may not necessarily occur at the same point. 

In this case, the anti-echo will often shift out of the window before decaying to zero in

tensity in 11. In most cases (assuming enough points are taken in 12) the echo signal will 

always remain in the observation window. If then 1r decay is chosen long enough so that 
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both the echo and anti-echo data remain in the acquisition window for all 11 points, the 

total intensity will be nearly zero (in analogy to collecting long delay times in a constant 

time experiment). 

In the case of a sample with a broad inhomogeneous distribution of sites in both 

dimensions, the echo will decay away much faster in 11. In addition, if the distribution in 

11 is continuous, the anti-echo will not shift to the left in 12 as rapidly in 11. Likewise, the 

echo will not shift to the right in 12 as quickly in 11. For the case of an amorphous solid, 

the hypercomplex SEDAS is the best pulse sequence, since it combines the signal-to

noise enhancements of an echo in 12 with hypercomplex data in t]. Chapter 8 gives spe

cific examples of glasses with distributions of isotropic shift, for which acquisition with 

HyperSEDAS gave significant improvements in sensitivity. 

Experimental Examples 

The following figures (figs. 4.7, 4.8, and 4.9) show examples of various types of 

DAS spectra. All of these spectra were taken with k =5 (the angle pairs were 63.43° and 

0.00°) and the magnetic field strength was 11.7T. The sample used was a standard 

reagent grade RbCl04 sample. The pulse sequences for each experiment are indicated in 

each figure caption. The 90° and 180° selective pulses were 3.35 JlS and 6.70 JlS respec

tively, the axis reorientation time was 50 ms, the spinning rate was 5.8 kHz, the echo time 

in SEDAS and HyperSEDAS experiments was 1.029 ms and the number of acquisitions 

for each 11 point was 128 scans for both the sine and cosine data sets. The hypercomplex 

sine and cosine data sets were combined to produce the normal phase modulated data in 

11. The dwell time in the 12 dimension and in the tt dimension following proper shearing 

was 50 JlS for both. The acquisition length in the second dimension was 256 complex 

points while it was 128 points in the first dimension. 

Figure 4. 7 shows the normal phase modulated DAS data set acquired with the 

pulse sequence in figure 4.2 showing the usual phase-twist lineshape. The phase-twist 
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lineshape greatly increases the effective linewidth in the anisotropic dimension. In this 

spectrum (and in figs. 4.8 and 4.9), contours were placed at -12, 14, 41, 68 and 95 

percent of the maximum. The negative contours appear to the lower left and upper right 

of the center of the main peak, just as they occur in figs 4.1 b and 4.2. 
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Figure 4.7 Original DAS Spectrum. This spectrum was taken with the parameters given 
in the text above and with the pulse sequence in figure 4.2. 

Figure 4.8 shows the echo DAS spectrum collected with the pulse sequence in 

figure 4.3. Note that a 41.67 J.lS t1 dependent first-order phase correction was required to 

shear the two-dimensional spectrum. This spectrum is not quite completely pure-absorp

tive phase. However, the dispersive contributions are of small enough size that they do 

not change the overall appearance of this spectrum in reference to the completely pure

absorptive phase spectrum in figure 4.9. 

Figure 4.9 shows the pure-absorptive spectrum acquired with the hypercomplex 

DAS pulse sequence (figure 4.4). The spectra acquired with SEDAS and HyperSEDAS 

look virtually identical and are not shown. The lineshape shows no phase-twist disper-

sive components in the two-dimensional spectrum above. 
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Figure 4.8 Echo DAS Spectrum. This spectrum was taken with the pulse sequence given 
in figure 4.3. 
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Figure 4.9 Hypercomplex DAS Spectrum. This spectrum was taken with the pulse se
quence given in figure 4.3. 
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Signal-to-Noise Ratio Enhancements 

In the case of one-dimensional DAS spectra, the signal-to-noise enhancement will 

be independent of the enhancement in the anisotropic dimension. In practice, the shifted 

echo experiments will provide better signal-to-noise, since the complete DAS echo signal 

can be collected for short II points. For short II points in the non-shifted DAS experi

ments, the echo top intensity may be complicated by ringing of the probe. This ringing 

can significantly reduce the signal-to-noise ratio in the one-dimensional projections. 

Also, by doing only a partial projection of the signal in the two dimensional spectrum 

(rather than a complete projection) by adding only regions with strong signal, significant 

improvements in signal-to-noise ratio in the one dimensional DAS spectra may be 

achieved. This may distort the overall intensities in the final DAS spectrum and in some 

cases it is not possible to eliminate any region of the two dimensional spectrum for pro

jection. 

In table 4.1, the two dimensional signal-to-noise ratios are tabulated for each of 

the various DAS pulse sequences. These numbers are arrived at by measuring the RMS 

noise in a region of the 2D spectrum which is devoid of signal and comparing this to the 

highest point (largest signal) in the complete 2D spectrum. The experimental examples 

shown in the previous section were used to generate these ratios. As has been predicted 

by theory, the hypercomplex SEDAS experiment has the highest signal-to-noise ratio. 

This should in theory be a factor of -fi::::: 1.4 better than the SEDAS experiment. In this 

case, the factor was indeed achieved, but in practice this may not be always be true, since 

the DAS anti-echo may shift out of the acquisition window too rapidly. The SEDAS sig

nal-to-noise ratio should also be a factor of -fi = 1. 4 better than both the echo DAS and 

hypercomplex DAS experiments. 
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Sequence Pure Phase SIN Ratio 

z-Filter DAS yes 15.8 

DAS (fig. 4.2) no 20.6 

Hypercomplex DAS (fig. 4.4) yes 31.3 

Echo DAS (fig. 4.3) no 31.6 

Anti-echo DAS (fig 4.3, dashed pathway) no 10.9 

Shifted-echo DAS (fig. 4.5) yes 43.4 

Hypercomplex Shifted Echo (fig. 4.6) yes 67.0 

Table 4.1 Signal-to-Noise Ratio Enhancements For a Variety of Pulse Sequences. These 
measurements were all performed with equal acquisition time for each experiment. 

Again, this enhancement seems to hold quite well. The hypercomplex DAS should be 

better by a factor of .fi === 1. 4 than the original DAS experiment, which also is true. 

Finally the z-filter pure phase method signal-to-noise\ ratio should be comparable to the 

original DAS experiment, since the z-filter sacrifices a factor of .fi = 1. 4 which is re

stored by the hypercomplex data collection. In practice, the z-filter will have worse sig

nal-to-noise ratios than the original phase modulated data, since relaxation during the z

filter will further reduce the signal-to-noise in this type of experiment. Therefore, theory 

predicts that the signal to noise of the hypercomplex SED AS will be at least a factor of 

.J8 = 2.8 better than the older z-filter method of acquiring pure-phase data. A final 

comment about pure-absorption phase DAS is to warn the reader that in some cases 

SEDAS or hypercomplex DAS may actually work better than the full hypercomplex 

SEDAS. This will occur when the apparent T2 of a sample is too fast to allow long n tr 

echo times. In most cases throughout this thesis, the SEDAS pulse sequence will be 

used. 
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Chapter 5 

Cross Polarization 

The use of cross polarization in solid-state nuclear magnetic resonance has lead to 

the rapid advance of experiments on spin 1/2 nuclei such as Be and 15N. Both of these 

nuclei are very important in biological samples, especially peptides and proteins. The pi

oneering work with CPMAS by researchers such as Waugh and Griffin at MIT and 

Schaeffer at Washington University has opened the door for a variety of high resolution 

studies of these types of samples. A brief history of some of the theory behind cross po

larization will be discussed below. Following that introduction, I will describe some of 

the difficulties in applying the technique of CP and CPMAS to quadrupolar nuclei and 

one solution to this problem. 

History 

The technique of cross polarization was first discovered over 30 years ago by 

Hartmann and Hahn.92 This represents one of Hahn's many contributions to the field of 

magnetic resonance. In these experiments, magnetic polarization is transferred from one 

type of nuclear spin to another. This is accomplished by applying strong rf fields along 

the rotating frame x axis to both types of spins following a 90° excitation pulse along the 

y axis. In this case, the transverse magnetizations of both spins are "spin-locked" along 

the rotating frame x axis. In this rotating frame, the precession rate of each spin about the 

spinlocking magnetization will be determined by the respective strengths of the rf fields 

and gyromagnetic ratios. When the Hartmann-Hahn condition is achieved, the precession 

frequency of both types of spins will be equal, that is to say the rf amplitude is set to a 

level such that the 90° pulse lengths are identical for both spin systems. Mathematically, 

this is expressed as r1Bt1 = rsB1s for spin 112 nuclei. This condition is quite sharp and 

appears much like other resonance phenomena. The reason that this allows polarization 
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to be exchanged is that the flip-flop terms in the homonuclear dipolar Hamiltonian (those 

which mutually flip two different spins) are now zero energy processes. This greatly en

hances the dipolar coupling and allows energy to be transferred between the two spin 

baths. The spin temperature of the two baths will rapidly come to equilibrium with the 

higher gyromagnetic ratio spins giving energy to the lower gyromagnetic ratio spins. 

This may be applied to systems such as 1H-13C to gain approximately a factor of 3-4 in 

13C polarization or to lH_l5N to gain a factor of9-10 in 15N polarization. Additionally, 

since the I H bath is high abundance, the Tt relaxation time will often be much faster than 

15N or 13C and the experimental repetition rate may be increased significantly93. 

Combining cross polarization with magic-angle spinning has the added advantage of 

giving high resolution spectra for nuclei like carbon-13 and nitrogen-15.94 In this re

spect, 13C CPMAS has become a standard and routine experiment in most laboratories. 

In the next section, the use of cross polarization to study quadrupolar nuclei under VAS 

conditions will be discussed. Previously, CP has been applied to a number of different 

quadrupolar systems, with polarization usually being transferred from the abundant 1 H 

spins to the specific quadrupolar nucleus.28•60•65•73•95-106 I would direct the reader to 

these references for additional information on this subject. 

Spinning Effects on CP of Quadrupolar Nuclei 

Significant increases in NMR sensitivity can be achieved by transferring high nu

clear spin polarization between inequivalent nuclei using cross polarization (CP) tech

niques. In addition, selective CP transfer can be applied as a useful tool for spectral 

editing. While CP is a very effective technique for static samples, the combination of CP 

with high-resolution solid-state NMR techniques that require sample rotation suffers from 

a number of difficulties. One of these difficulties is that the dipolar spin interactions that 

mediate the CP transfer become time dependent under magic-angle spinning (MAS) 

making the Hartmann-Hahn matching conditions more complicated and also reducing the 
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efficiency of the polarization transfer. Another difficulty arises when cross polarizing the 

central transition of half-integer quadrupolar nuclei. In this situation the time-dependence 

of .the large first-order quadrupolar interaction interferes with the Hartmann-Hahn match

ing. Remember that even though the central transition is unaffected to first-order by the 

quadrupolar interaction, the energy levels themselves are affected. 

Dynamic Angle Spinning (DAS) NMR was designed to provide high resolution 

isotropic spectra for the central transition of half-integer quadrupolar nuclei' that are 

broadened due to second-order effects. DAS achieves this line narrowing capability by 

making the angle of the spinner axis a time-dependent variable. This additional degree·of 

freedom aids not only in providing high-resolution spectra, but, as we show here provides 

a solution to the problem of combining cross-polarization with high-resolution solid-state 

NMR techniques. This solution exploits the time independence of the spin eigenvalues 

when spinning at 0° (parallel) to the external magnetic field direction. By performing the 

CP step while spinning at 0°, the full static CP intensity can be obtained and used in an 

MAS, variable-angle spinning (VAS), or DAS experiment. 

Theory 

The theory of spin locking and cross polarization of the central transition of half

odd integer nuclei has been described in detail by Vega 96•105. In this section, we present 

a condensed treatment of this problem. 

In the CP experiment involving polarization transfer from a spin I = 112 to the 

central transition of a quadrupolar spin of S = 3/2, the observable of in.terest,(S+(t)), is 

obtained from the relation 

(5.1) 

Here a(t) is the density operator whose evolution is given by 
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cr(t) = U(t)cr(o)ut(t) (5.2) 

where 

U(t): Texp[ -i [ H(s)ds]. (5.3) 

Tis the time ordering operator, and H(t) is the Hamiltonian. The secular Hamiltonian in 

the rotating frame is given by 

H(t) = HRF + Hv(t) + HQ(t), (5.4) 

where 

(5.5) 

(5.6) 

and 

(5.7) 

where m11 and m15 are the rf-field strengths for I and S spins, respectively, andAfo(t) 

and A?o ( t) are irreducible spherical tensors for the dipolar and quadrupolar interactions 

defined in chapter 2, respectively. It is convenient to rewrite this Hamiltonian in the fic

titious spin-112 formalism 26•35 (see chapter 2) as 

H(t) = -1imulx- ..J31imts( S!2 + s;4
)- 21im15S;3 

+.../61imQ~~(t)( S12
- sr) + 31imvAfo(t) 2IzS14 

(5.8) 

+1imvAfo(t) 2Izs;3
. 

We assume lmlll• lm1sl >> lmvl· an~ transform into a time dependent frame27 that diago

nalizes H RF + HQ { t) using 

W(t) = exp( -i; Iy )exp(i; s;4 
)exp( -i; s;3

) 
(5.9) 

xexp(i2g1 {t)s;3 )exp( i2g2 (t)Si4 ) 
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where 

(5.10) 

and 

(5.11) 

The propagator in this time dependent frame is given by 

ii(t) = Texp{ -f [! ii(s)- ihW1 (s )W(s) ]ds} (5.12) 

where 

ii(t) = wt (t) H(t) W(t) 

= -1iroulz + 1iro1S ( S14 - s;3
) -1icolj (t) S13 -1iC024 (t) s;4 (5.13) 

-nb}~(t) 2lxS!4 + nbJ'g(t) 2Ixs;3 -1ib}g(t) 2/xS!2 -1ibff(t) 2/xS~ 

with 

(5.14) 

(5.15) 

b}~ ( t) = rovAfo ( t ){ 2 cos(~~ ( t)- ~2 ( t)) +cos(~~ ( t) + ~2 ( t))} (5.16) 

(5.17) 

(5.18) 

(5.19) 

and 

inwt (t)W(t) =2nd~~ (t) s13 + 2n d~2 (t) s24. 
dt y dt y (5.20) 
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where 0 S { ~1 (t), ~2 (t)} Sf. U(t) is related to the rotating frame propagator by 

U(t) = W(t)U(t)Wt(o). Equation 5.1 can be rewritten 

(5.21) 

where S+ = wt(t)S+ W(t) and a(O) = wt(o)a(O) W(O). The transformed observable S+ 

is 

s+ = s;3 cos2 ~1 (t) cos2~2 ( t) + S~3 sin 2 ~1 (t) 

-S~4 sin2 ~1 (t)sin2 ~2 (t)- s;4 sin 2~2 (t) 

-S~2 sin2 ~1 (t)cos2 ~2 (t)- sr cos2 ~I (t)sin2 ~2 (t) 

+S!3 {cos ~1 (t)sin ~1 (t)- cos 2~I (t)} 

+S;4 {cos ~2 (t)sin ~2 (t) + cos2~2 (t)} 

+iS;2 {sin ~1 (t)cos ~2 (t) +cos( ~I (t)- ~2 (t))} 

+iS;4 {cos( ~r( t)- ~2 ( t)) -cos ~1 ( t) sin ~2 ( t)} 

+is; 4 {sin ~ 1 ( t) sin ~ 2 ( t) - sin (~I ( t) - ~ 2 ( t))} 

+ iSi3 {cos ~I ( t) cos ~ 2 ( t) - sin ( g 1 ( t) - g 2 ( t))} . 

(5.22) 

After an initialrc/2 pulse on the I spin, the initial density operator is cr(O) = Ix, and the 

transformed initial density operator is 

a(O) = wt (0) cr(O) W(O) = Iz. (5.23) 

In the static case, a Hartmann-Hahn matching condition of co11 = (S + 1/2 )co1s is em

ployed and only those spins where !coQ~~(a,,B, y,t)l >> lcotsl (where the spatial depen

dence of ~~(t) is given explicitly in terms of the Euler angles of the principle axis 

frame) undergo polarization transfer to the central transition. 

In the case of rotating samples under the above matching conditions, only those 

spins that satisfy !coQ~~ ( a,,B, r. t )I>> lm1sl or pass through this condition during a rotor 

period, will undergo CP transfer, as shown by Vega. For these spins the values of g1 (t) 

and ~2 ( t) have values close to either 0 or n/2. When g 1 ( t) = £2 ( t) = 0, co13 ( t) and 
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co24 (t) are approximated by -coQAfb(t)+co1s and coQA£(t)+COts respectively, and 

when ~1 (t) == ~2 (t) == ~,are approximated bycoQ~~(t)- COts and -coQ~~(t)- COts re

spectively. In this situation, the Hamiltonian in equation 5.11 can be rewritten so that the 

diagonal elements are in terms of single and triple quantum transitions: 

ii( ~ =:: 0) = -hcou Iz - 2hCOts s;3 + ..f6tzmQAib ( t )( sM - sJJ)-

or 

ii( ~ = ~) = -hcou Iz + 2hCOJs S~4 - ..f6tzcoQAib ( t )( sM - sJJ)-
2hcovAfo(t) lxS~4 + 61icovAfo(t)(t) Ixs;3 
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(5.24) 

(5.25) 

21C 

Figure 5.1 ;1 and ;2 as a Function of Rotor Phase. The values of both ;t and ;2 stay 
very near their minimum (0) and maximum (TC/2) values for all rotor phases, indicating 
that the approximations made for equation 5.24 and 5.25 are quite reasonable. 

Figure 5.1 shows the graph of ~~ and ~2 as a function of rotor phase for a crystallite with 
/ 

a quadrupolar coupling constant of 11.0 MHz, asymmetry parameter of 0.0 whose PAS is 

oriented perpendicular to the rotor which is spinning about an axis oriented 54.74• from 
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the magic angle. Notice that the values of stay very close to the minimum and maximum 

values at almost all rotor phases. These curves are typical for most crystallite orienta- · 

tions. The Hamiltonians in equation 5.24 and 5.25 may be transformed into the RF rotat

ing frame, assuming that lmlll• lm1sl >> lmvl. as has been previously discussed.92•94 

or 

Ix ~ Ix cos m11t + Iy sin m11t 

S23 823 2 s23 • 2 x ~ x cos m15t + Y sm m15t 

ii(; = o) = 1imQA~ (t >( s/,6 - s56) 
-61imvAfo(t)( Ix cos m11t + Iy sin m11t )s~

4 

+21im vAfo ( t )(I x cos m11t + I y sin m11t) 

x( s;3 cos 2mlst + s;3 sin 2mlst) 

Ix ~ Ix cos mllt + Iy sin mllt 

14 814 14 . 2 Sx ~ x cos2m15t- Sy sm m15t 

ii(; =-I)= -1imQA~ (t)( sM- s5J) 
+61imvAfo (t)(Ix cos m11t +lysin m11t )s;3 

-21imvAfo(t)( Ix cos m11t +lysin m11t) 

x( S~4 cos2mlst- S~4 sin 2mlst) 

(5.26a) 

(5.26b) 

(5.27a) 

(5.27b) 

Under the Hartmann-Hahn condition for the central transition, m11 = 2m15 , these equa

tions simplify into terms which oscillate at frequencies of 0, m11 or 2m11. The time de-

pendent cosine and sine modulated terms that remain will vanish in the time average be

tween zero crossings when m11 > mr simplifying the Hamiltonians in the doubly rotating 

frame further. 

(5.28) 

or 
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..• ·-

if(~= ~) = -.J61imQ~~(t)( sM- s5J) -1imvAfo (t)( IxS!4 - Iys;4) (5.29) 

Additionally, the transformed observable, S+, ofEq. [23] becomes 

s+ = s;3 cos2 -~1 (t)cos2 ~2 (t)- S~4 sin2 ~1 (t)sin2 ~2 (t) 

+S;4 cos2~2 (t)- s!3 cos2~1 (t) 
+iS;3 cos ~1 (t)cos ~2 (t) + iS;4 sin ~1 (t )sin ~2 (t) 
+iS;2 cos( ~1 (t)- ~2 (t)) + iSr cos( ~1 (t)- ~2 (t)) 

(5.30) 

In general, the time-ordering operator T makes the derivation of U(t) in Eq. [20] 

complicated since H(t) and ihWt (t)W(t) do not commute with themselves or each other 

at all times. There are however certain approximations that can simplify this task. How 

the system evolves depends on whether the passage through or near the zero crossing is 

adiabatic or sudden. In figure 5.2 the values of C013(t), t:024(t), 2d~1/dt and 2d~2/dt are 

shown plotted versus .J6coQA~(t) for three different spinning rates (5 kHz, 1 kHz and 

100Hz). It can be seen that the off diagonal inWt (t)W(t) terms are only important when 

the spinning is rapid and the size of the quadrupolar coupling is small. The simulation 

parameters are identical to those used in figure 5.1. 

The adiabatic approximation is permitted when lh(t)l >> lwt(t)W(t)l at all times 

(as in figure 5.2, 100Hz spinning rate), and the propagatorbecomes 

ii.(t) = exp[ -f! ii(s)ds]. (5.31) 

Under this propagator, with the Hartmann-Hahn match given above, the time dependent 

rotating frame initial density matrix (equation 5.24) becomes 

(5.32) 

(assuming we start with a crystallite with ~ 1 ( t) == ~2 ( t) = 0) and polarization is trans

ferred from the /-spin to the central transition of the S-spin. When the sample rotation 

takes the first-order quadrupolar coupling through or near zero, CP transfer from the /-
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spin to the central transition of the S-spin continues, since the system is under adiabatic 

conditions. 
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Figure 5.2 Matrix elements in cross-polarization of quadrupolar nuclei. The spinning 
rates are 5 kHz, 1 kHz and 100 Hz which produce adiabaticity parameters of 0.11, 0.55 
and 5.5 respectively. Notice that the off-diagonal terms dominate only in the small 
quadrupolar coupling region and in cases of rapid spinning 

Before the zero-crossing, ~I ( t) = ~2 ( t) = 0 and the effective observable is therefore 

s;3 = s;3 + iS:3 (as can be seen from equation 5.23) resulting in a large observable signal. 

After the zero-crossing, ~I (t) = ~2 (t) = ~ and the effective observable is 

s;3 = -S~4 + iS;4
• Therefore, the cross-polarized central-transition observable intensity 

(s:3(t)) goes to zero. However, since ~I(t) = ~2 (t) = ~, the effective adiabatic 
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Hamiltonian is changed to Eq. [30] and the polarization will transfer from the /-spin to 

the triple quantum S-spin coherence in the transformed frame. Any central coherence 

polarization will remain spin locked and unchanged. 

(5.33) 

This evolved coherence is exactly of the same form as our observable operator, and leads 

to observable intensity identical to immediately prior to the first zero crossing. After the 

next zero-crossing, the effective observable is transformed back into s;3 = S~ +iS~, and 

the central-transition begins to cross polarize again while the triple quantum coherence 

remains spin locked. After multiple zero-crossing cycles in the thermodynamic limit, the 

central and triple quantum transitions will be equally polarized from the /-spin as shown 

by Vega 105• The state of the observable does not matter for observable intensity at this 

point. The overall CP intensity will be identical to that observed for a static spin in the 

thermodynamic limit, however the overall rate will be half as fast, since both the central 

and triple quantum transitions are being polarized simultaneously. In the presence of a 

short rotating frame relaxation time, this will lead to a reduced overall CP intensity from 

adiabatic spins. 

The sudden approximation is permitted when (as in figure 5.2, 5 kHz spinning 

speed) at the zero-crossing, lh(t)l << lwt (t)W(t)l. The propagator is then 

0, (t) = exp[ [ W' (s )W(s )d< l (5.34) 

This propagator transforms the s;3 and S~4 in the following manner: 

(5.35) 

(5.36) 

The transformed initial density operator before the first zero-crossing is still given by 

equation 5.32. However, during the first zero-crossing, the s;3 term is transformed toS~4 • 
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In the sudden reversal of the first-order quadrupolar coupling, the cross-polarized central

transition is transferred to the triple quantum transition after the reversal. The observable 

intensity after the zero-crossing is therefore identical to that immediately before the zero

crossing. After the first zero-crossing, the CP transfer from the /-spins to the triple quan

tum coherence will continue according to equation 5.33. Therefore the observable opera

tor will always match the cross polarizing transition. After multiple zero crossings, one 

of the two transitions will be completely polarized while the other will be unpolarized. 

The polarized intensity will always remain observable and the CP efficiency and rate 

should be identical to the static case. 

For crystallites which pass through the zero crossing in neither an adiabati~ or 

sudden regime fall into the intermediate regime (see figure 5.2, 1 kHz spinning speed). 

This type of evolution is the most difficult of the three cases to calculate. To determine 

the evolution of the density matrix in the intermediate regime, we need to include both 

the diagonal H(t) and the off diagonal wt (t)W(t) contributions to the unitary evolution 

propagator. These two terms do not commute with each other .and the time ordering op

erator may not be easily removed. The solution to this problem is to rediagonalize the net 

Hamiltonian at each time step. There does not appear to be an easy method for doing this 

diagonalization. Vega has shown with numerical simulations that spins undergoing an 

intermediate regime zero crossing evolve into non-spin locked states96•105. Therefore, the 

contribution these spins make will only be prior to their first zero-crossing, after which 

their contribution to the overall observed cross polarization intensity will decay rapidly. 

We have performed variable spinning angle cross-polarization experiments which 

may be approximately described with the above results. For a powdered sample, we may 

classify each spin according to its PAS orientation with respect to the rotor in one of five 

categories. These categories are: 
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1. Spins with large mQA~ ( t) which undergo no zero crossings (essentially 

static spins, alternatively spins which have~~ and ~2 approximately equal to either 0 or 

tr/2 for all time), 

2. Spins which have a small mQA~(t) for the majority of a rotor period 

(alternatively those spins which only have small oscillations in~~ and ~2 about tr/4), 

3. Spins which have a large mQA~(t) for most of the rotor period and un-

dergo adiabatic regime zero crossings (alternatively those spins for which~~ and ~2 oscil

late between 0 and tr/2), 

4. Spins which have a large mQA~ ( t) for most of the rotor period (just as in 

3) and undergo sudden regime zero crossings, 

5. Spins which have a large mQA~ ( t) for most of the rotor period (just as in 

3 and 4) and undergo intermediate regime zero crossings. 

For spins which fall into the first and fourth categories, the cross polarization contribu

tions are simple, as they will contribute full intensity with normal polarization build up 

rates. For the spins in the fifth category, the cross polarization contribution is also simple 

to calculate, since in the limit of long contact times, they will contribute no cross polar

ization intensity. For spins in the second category, the Hartmann-Hahn match condition 

will not be met for a significant portion of the total contact time and the contribution will 

again to zero to the overall cross polarization intensity. For spins in the third category, 

the cross polarization contribution will be identical to the static or sudden spins, however 

the build up rate will be half as fast. 

The only difficulty remaining is to determine mathematically the definition for 

each of these five categories. The first category is the most easy to define, as this consti

tutes spins for which I..J6mQA~(t)l > 5m15 at all times (corresponding to ~~ and ~2 

within tr/12 of the minima and maxima of 0 or 1d2). The extent to which the quadrupolar 

coupling must be larger than the radio frequency strength is difficult to define exactly, but 
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generally a factor of five or more is probably sufficient to fully truncate the radio fre

quency portion of the Hamiltonian. The second category is likewise simple in definition, 

as this represents the spins for which I.J6coQA£(t)l ~ 5co1s for more than one third of a 

rotor period. The factor of one third is an arbitrary number which seems to work well in 

practice. This in general will represent only the spins whose PAS z-axis lies near the 

magic-angle under sample rotation. The third, fourth and fifth categories relate to spins 

which spend a majority of their time (more than two-thirds of a rotor period) with 

I.J6coQ~'b ( t )I > 5 co1s. To differentiate between these three cases, the ratio of the sizes of 

lii(t)l and lwt(t)W(t)l at the zero crossing must be considered. This leads to the defi

nition of an adiabaticity parameter a below. 

lii(r)l = ~3cofs + ( .J6coQA£(t)- co1s )
2 

lwt (r)w(r)l = 2 del (t) = -JfScolscoQ dA£ (t) 
dt 3cofs+(.J6coQA£(t)-co1s)

2 
dt 

(5.37) 

This is then evaluated at the zero crossing where .J6coQA£ ( t0 ) = co1s. At this point the 

value of et goes through Td4 and the adiabaticity parameter is then 

3cofs (5.38) 

Alternatively one could define an adiabaticity factor based on W24 and 2de2/dt, however 

this gives an identical result at the 2de2/dt resonance where .J6coQAfo(t0 ) = -co1s. 

Explicitly evaluating this derivative yields 
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2 2 
~~(t) = L Le-i(mwrt+na+mr)d!;J(9)d~~(fJ)P2n 

m=-2n=-2 

dA~(t) = ~ ~ _. -i(mwrt+na+mr)d(2)((J)d(2)({3) m, £..J £..J zme mO nm P2n 
dt m=-2n=-2 

= m,B~(t) 
3mfs 

a= Q 
mQm,B20 ( t0 ) 

(5.39) 

This definition of adiabaticity parameter is proportional to the one used by Vega in his 

description of cross polarization105, however, now there is an additional orientation de

pendence as well which comes from the time derivative of A~ ( t). When the value of a 

is much larger than one, then the diagonal terms dominate in the evolution and the spin 

will be categorized in group three (adiabatic). When the value of a is much less than 

one, then the off-diagonal terms dominate at the zero crossing and the spin will be cate

gorized in group four (sudden). When a is of the order of one, then the spins are classi-

fied as group five (intermediate). To calculate the approximate cross polarization effi

ciency at a given spinning angle, we merely calculate the number of spins in each cate-

gory and add the cross polarization intensity proportionally for each category. The adia

batic contribution is the most difficult to estimate as the build up rate is half as fast and 

therefore may not be fully cross polarized before rotating frame relaxation begins to im

pede the buildup. In any case the adiabatic contribution should lie somewhere between 

the 50% and 100% intensity contribution levels. 

The theory for the dynamic-angle spinning experiment has been described previ

ously in chapter 3. Remember that in the DAS experiment, there exists a continuous dis

tribution of angle pairs which lead to high resolution isotropic spectra. Specifically, the k 

= 1 and k = 5 angle pairs will be evaluated under CP conditions. I have done experiments 

which compare CP efficiency at a variety of spinning angles. 
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Experiments on Sodium Pyruvate and Sodium Hydroxide 

The cross polarization experiments were performed on a home built spectrometer 

based on a Techmag acquisition system at 7.04 T (lH NMR frequency of 301.200 MHz 

and 23Na frequency of 79.671 MHz). 
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Figure 5.3 Cross-Polarization Pulse Sequences. Phase cycles are indicated for the one 
dimensional experiments (a-c) which are one pulse with decoupling, cross polarized with 
decoupling and zero-polarized with decoupling and sample spinning axis reorientation. 
The (d-e) pulse sequences are the normal and CP two dimensional DAS experiments re
spectively. The phase of the 90• pulses on X are identical to those in the SED AS experi
ment. The spin lock pulse is always set to the phase of the first pulse plus 90·. 

105 



The DAS probe was home built with a stationary 0.75" diameter coil for both rf-trans

mission and detection as described by Mueller et al.51 The double-tuned resonant circuit 

was similar to one described by Doty et al. 107 The spinning rate was between 4.0 and 6.6 

kHz. The samples of sodium hydroxide, NaOH·xH20, and sodium pyruvate, 

CH30COONa, used for these experiments were obtained from standard commercial 

sources. The pulse programs and phase cycles are given in figure 5.3 below. The DAS 

pulse sequence has been described previously in chapter 4. For the CP efficiency exper

iments, phase alternation of the lH rf was used (figure 5.3b) to assure that only the in

tensity due to CP would be measured. For CPDAS and ZPV AS experiments (figure 5.3a 

and 5.3c), a 90° pulse was applied on 23Na simultaneously with the initial lH 90° to 

achieve the largest final sodium polarization. For the 23Na spectra without CP, recycle 

delays of 30s and 16 s were used for NaOH and CH30COONa, respectively, while, for 

the CP experiments, recycle delays of 10 minutes and 36 s were used, respectively. For 

the DAS experiments, we acquired 32 scans plus 1 dummy scan for each of the 90 t1 

points while for the CP build up curves and ZPV AS spectra we acquired either 4, 8, or 64 

scans plus 2 dummy scans for each different contact time and angle pair respectively. For 

the CPDAS and ZPV AS experiments on CH30COONa the CP contact time was 20 ms. 

The contact time for NaOH 2 ms. The input power of 200W on the I H channel and 

100W on the 23Na channel gave 7 JlS central transition selective 90° pulses. The CP 

Hartmann-Hahn match condition was achieved by setting 

YHBt,H =(I+ 1/2)YNaBt,2 = 2YNaBl,Na which will selectively polarize the central 

{1/2 H -1/2) transition since the central transition nutation frequency is 

Wnutation = {S + lf2)YNaBl,Na in the presence of a large quadrupolar interaction 6•27•28•35• 

Methods of simulating powder patterns have been described previously in chapter 2 and 

in additional papers41 •76•81 • 
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Cross Polarization Results and Discussion 

The effect of level crossings on CP efficiency can be seen clearly below in figure 

5.4, which shows the cross polarization efficiencies of NaOH and sodium pyruvate ver

sus VAS spinning angle. All intensities are scaled relative to the corresponding single 

pulse 23Na VAS and MAS spectra, using the sequence in figure 5.3a. 
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Figure 5.4 CP Efficiency versus Spinning Angle. The upper graph shows the cross 
polarization efficiency (boxes) for sodium pyruvate. The circles in this graph indicate the 
effective polarization under ZPV AS (rather than CPV AS). The line indicates the theoret
ical curve from the model described in the previous section. The lower graph shows the 
CP efficiency (diamonds) for sodium hydroxide. The line again represents the approxi
mate theoretical efficiency. 
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As expected, only under static (0° VAS) conditions do we achieve the expected CP effi

ciency maximum of approximately rd2 r2 = 1. 9 for sodium hydroxide (NaOH) and 

3ytf4r2 = 2.84 for sodium pyruvate (CH30COO-Na+). The factor of 112 and 3/4 are 

due to the high abundance (basically 100%) of both the lH and 23Na isotopes causing 

cross polarization to be controlled by the equilibrium between their respective spin tem

peratures and heat capacities (related to the number of protons and sodium atoms per 

molecule). As the VAS angle increases, CP efficiency decreases dramatically. As seen 

in figure 5.4, spinning the sample at an angle greater than approximately 30• results in a 

CP efficiency that is less than that achieved by a single pulse. This indicates that the 

level crossings are significant, even when only a reduced fraction of the spins are under

going the maximum four crossings per rotor cycle. For DAS purposes, the only angle 

pairs which will have an angle less than 30° will be those with high k values. This imme

diately points to the k = 5 experiment, since this has added advantages of fastest effective 

spinning rate and narrowest homonuclear dipolar linewidths (see chapter 3). 

The dashed theoretical fits in figure 5.4 were obtained by numerically calculating 

the curves according to the theory outlined in the previous section. For NaOH and 

CH30COONa, the values of e2qQ/h were 1.8 and 2.36 MHz and TJQ were 0.0 and 0.77 

respectively. The parameters for sodium pyruvate were obtained from simulations of the 

MAS spectrum while those of sodium hydroxide were taken from Vega. 105 

Qualitatively, the theoretical CP efficiency curves are approximately what one would ex

pect, with the greatest CP enhancement for VAS angles near 0°. 

Figure 5.4 also shows CP efficiency for sodium pyruvate at the angle at which de

tection occurred under ZPVAS. Since CP always occurs at 0°, the observed efficiency is 

constant for all angles. However, the efficiency under ZPVAS is less than that observed 

under o· CPVAS because of Tt relaxation processes that occur during the hop from o· to 

the detection angle. 
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In figure 5.5 we show the 1 H decoupled MAS spectra of sodium pyruvate ac

quired with and without CP and with ZPMAS along with the simulation of the MAS 

powder pattern. The signal-to-noise is the worst for CPMAS-about 75% of that seen in 

the MAS spectrum without CP. 
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Figure 5.5 Comparison of CPMAS, MAS and ZPMAS Experiments. (a) and (e) show 
ZPMAS spectra, (b) and (f) show 1-pulse MAS spectra, (c) and (g) show CPMAS spectra 
and (d) shows the high speed MAS simulation. 

On the other hand, the ZPMAS spectrum has a signal-to-noise ratio about twice that seen 

in the MAS spectrum taken without CP. This is expected since very little of the static 

cross polarized magnetization should decay by T 1 processes during the hop from Oo to 

54.74° while the cross polarization efficiency under MAS is so poor. 

In figure 5.6, the decoupled DAS and CPDAS spectra of sodium pyruvate for the 

0°-63.43° (k = 5) and 37.38°-79.19° .Ck = 1) angle pairs are compared. As can be seen in 

figure 5.4, for k = 5, we observe over 2.5 times the signal-to-noise in the spectrum taken 
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with CP compared to the spectrum taken without CP. In addition, the CPDAS experi

ment at k = 5 has a SIN ratio over 4.5 times that of the CPDAS experiment at k = 1. This 

demonstrates the importance of o· cross polarization for DAS. The CPDAS experiment 

done at 37.38" (k = 1) has a worse SIN than the same experiment done 
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Figure 5.6 Comparison of CPDAS (fig 5.3e) versus DAS (fig 5.3d). The spectra on the 
right are k=5 DAS spectra while the spectra on the left are k=l. The upper spectra in 
both cases are from CPDAS. 

without cross polarization. In fact, the CP efficiency under CPDAS at k=1 is very similar 

to that observed under VAS at 37.38" (figure 5.2), which is to be expected. Other k val-

ues will also have reduced CP efficiencies, in addition to having spinning sideband pat

terns which are more complicated than in the k = 1 or 5 cases (see chapter 3). In table 

5.1, the absolute signal-to-noise ratios for each the experiments in figure 5.6 are pre

sented. 

We have shown that the efficiency of CP is influenced very little by the choice of 

spinning angle until the angle approaches o·. Therefore, in any VAS or DAS experiment 
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it will be difficult to achieve maximum CP efficiency unless one does the magnetization 

transfer at o· as a part of, or before starting the experiment. 

Experiment Angle Pair Signal to Noise Ratio 

CPDAS (fig 5.3e) k=5 (0.00", 63.43") 123.6 

CPDAS (fig 5.3e) k=1 (37.38", 79.19") 27.3 

Normal DAS (fig 5.3d) k=5 49.1 

Normal DAS (fig 5.3d) k=1 32.3 

Table 5.1 Signal to Noise Ratios in CPDAS and Normal DAS 

In addition, for the case of DAS the choice of o· and 63.43" possesses the additional ben

efit of giving the largest effective spinning speed, 5mrf6, and narrowest residual 

homonuclear dipolar linewidth (see chapter 3). These results should prove quite valuable 

for systems with low abundance such as 87Rb (27.8% abundant) or where isotopic label

ing is cruciall70 (0.037% abundant) which could have polarization enhancements of 3.1 

· and 7.4 respectively leading to large savings in experiment time. In addition, for spin 112 

systems (such as 1H_l3C or lH_lSN), where the time modulation of the dipolar interaction 

leads to modulations of the Hartmann-Hahn match condition, the use of ZPMAS may 

yield better CP efficiencies and reduced CPMAS distortions. 
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Chapter 6 

Alternatives to DAS 

Throughout the preceding chapters both the theory and recent experimental ad

vances of dynamic-angle spinning NMR have been discussed. This experiment was de

veloped to produce high-resolution liquid-like spectra from solid samples containing 

quadrupolar nuclei such as l7Q, 23Na and 27 AI. Other techniques for averaging both the 

quadrupolar and chemical shift interactions have also been developed, including double 

rotation55,I08, magic-angle hopping109•110, magic-angle turning111 and dynamic-angle 

hopping. 56 

Double Rotation (DOR) 

Double rotation is the simultaneous solution to the quadrupolar spinning problem 

in which at least two angles are required to give narrow isotropic spectra. 55 

Figure 6.1 DOR Rotor & Rotations. A representation of a DOR rotor is shown with the 
rotation angles given. These correspond to those shown in equation 6.1. The phase of 
the outer rotor is defined to be zero at zero time when the inner rotor makes the smallest 
angle with respect to the vertical axis (the magnetic field). 

In this experiment, a small rotor is spun about an axis which slowly moves in a conical 

fashion about the magic-angle with respect to the magnetic field. Figure 6.1 shows the 
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rotations needed to go from the PAS frame to the inner rotor frame then to the outer rotor 

frame and finally to the laboratory frame. The expression for the frequency under this 

time dependent trajectory is given below in equation 6.1. 

2 
L1E(2Q) = li~Q (I(J + 1) _ i) L L {l,OI2,~m,-m} afb 

l=0,2,4m>O 

1 l 

afb = :L n~2 ( mr1t + 4'rt, ol, o) :L n)~ ( mr2t + 4'r2. o2, o) (6.1) 
n=-1 j=-1 

1 

x L niP ( aQ, f3Q, rQ) erR 
k=-1 

In this expression, Ot is the angle the outer rotation axis makes with respect to the mag

netic field and fh is the angle the inner rotation axis makes with respect to the outer rota

tion axis. The outer rotation rate and absolute rotor phase are given by mrt and f/Jt while 

the inner rotation rate and absolute rotor phase are given by mr2 and f/J2. The outer rotor 

phase is defined as zero when the inner rotation axis makes the smallest angle with re

spect to the magnetic field. The Euler angles refer to the rotation from the PAS to the in

ner rotor reference frames. Under the assumption of high speed spinning about both axes, 

this expression is greatly simplified. 

AE(2Q) = li~~ (1(1 + 1)- i) L L {l,OI2,~m,-m} afb 
l=0,2,4m>O 

(6.2) 
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Much like the case of high speed magic angle spinning, the appearance of terms propor

tional to Legendre polynomials leads to the choice of DOR spinning angles. In the above 

expression, if 82 is chosen equal to the root of the fourth-order Legendre polynomial 

P 4 [cos 82 ] and 81 is chosen equal to the root of t~e second-order Legendre polynomial 

11.7T 

-50 -45 -40 -35 -30 -25 -20 

-50 -45 -40 -35 -30 -25 -20 

Frequency (ppm from 1 M 87RbN03) 

Figure 6.2 DOR of 8?RbN03 at 9.4T. The two spectra above were taken with short 30" 
pulses and a rapid repetition rate. This allowed acquisition of a large number of scans 
with random rotor phases, to achieve complete averaging of this variable leading to all 
positive sideband amplitudes (see below): The Larmor frequency at 11.7T was 163.628 
MHz and 130.886 MHz at 9.4T. The spinning rates were 500Hz (lower spectrum of 
each pair) and 700Hz (uper spectrum) in these experiments. 

P2 [ cos 81], only the l = 0 terms will be non-zero. Alternatively, the angles may be re

versed with the same effect. There is only one angle which is the root of P2 [cos 81] 

which is the magic angle, 54.74°, while two angles are the roots of P4 [cos82 ], 30.56° 
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and 70.12°. Due to the requirements of constructing a DOR probehead, the usual choice 

is 54.74° for the outer rotor and 30.56° for the inner rotor. With these angles chosen, the 

DOR experiment is a simple single pulse and acquire experiment. Figure 6.2 shows the 

DOR spectra for 87RbN03, a salt with three crystallographically distinct sites. The spin

ning sidebands (marked with asterisks) arises from the time dependent terms which were 

ignored in equation 6.2. The isotropic peaks (marked with vertical arrows) are those 

which do not change position when the spinning rate is changed. These correspond to 

peaks at -29, -32 and -34 ppm at 11. 7T (163.628 MHz Larmor frequency) and -32, -36 

and -37 at 9.4T (130.886 MHz Larmor frequency). The time dependent terms which lead 

to spinning sidebands may be analyzed in a manner virtually identical to that presented in 

chapter 3. First, we expand the energy splitting in equation 6.1 as the sum of oscillating 

time dependent terms. 
2 

L1E(2Q) = 1i2wQ (!(/ + 1) _ .J.) """ """ (I,OI2,2,m,-m} Q 
~ 4 ~ ~ m aw 

l=0,2,4m>O 

l l l 

ag = ~ ~ :L d)2 ( fh )d~2 ( 81 )dij) (f3Q) ag 
n=-1 j=-l k=-l 

-;[ n( w,l t+tPrt )+ i( w,2t+IP,2 +rQ )+kaQ] 
xe 

(6.3) 

This expression may then be regrouped according to the dependence on rotation rates. 

(2Q) _ """ ~ (I) -i[n(wr~t+¢,t)+j(w,2t+,P,2 +rQ)] 
L1E - ~ ~Wnje 

1=0,2,4 n,j=-l 

2 l 
w(l) = 1i

2
wQ (I(I+1)-.l)d(1>(e )d(1>(o) """d(~)(f3Q)aQ 

nJ w1 4 Jn 2 nO I ~ kJ lk 
k=-l 

(6.4) 

-ikaQ """ (l,OI2,2,m,.:...m} 
Xe ~ m 

m>O 

This may then be simplified by grouping the I = 0, 2, and 4 terms together for each nj 

pair. This simplifies equation 6.4 even further. 
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- ~ (l) 
wnj- £.J wnj 

1=0,2,4 

(6.5) 

This may then be integrated to give the evolved phase and signal after a 90° pulse. 

4 -i[n( ro,1t+I/>,J}+ i( ro,2t+l{>,2 +rQ)] 
DOR "" Wnje . . tfJ (t) = W00t + £..J 

n,j=-4 -z(nmri + J{t)r2) 

n,j=-4 
j=n~O 

j=n~O 
(6.6a) 

(6.6b) 

The use of Dirac delta functions again may be used to simplify this equation. 

S(t) = e-iW00t 

2n 2n 

X 4~2 J J 
0 0 

[ 

4 W -i[n'lf+N']] ·e 
X exp L nJ dlfl dlfl' 

'!·j=-4 ( nmri + jmr2) 
J=n~O 

2n2n 
(6.7) 

X 4~2 J J 
0 0 
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Then substituting back the infinite sum expansion for the Dirac delta functions gives 

equation 6.8. 

S(t) = e-iWoot 

(6.8) 

The lJI and 1J1 independent terms may be removed from the integrals and the signal may 

be expressed below. 

""'A A* -i[N1Wr1+N2Wr2]t 
£..i N1,N2 N3,N4 e 

NI,N2,N3,N4 

-i[(NI-N3)~rl +(N2-N4)( ~r2+rQ)] 
xe (6.9) 

This expression may then be integrated over the inner rotor phase (N2 = N 4) due to the 

fact that usually we observe signal from powder samples (all -;Q will be present). 

(S(t)) =e-iWoot ""'A A* e-i[NJWrJ+N2Wr2]re-i[(NI-N3)~rd (6.10) 
~r2 +rQ £..i N1 ,N2 N3 ,N2 

NI,N2,N3 

The signal may then be averaged over all the powder angles and outer rotor orientations . 

. (2Q) '[N N ) 
(S(t)) = e -lWiso t ""' s e -1 I Wrl + 2Wr2 I 

powder £..J N1 ,N2 
NI,N2 

2n n 
2 SNI,N2 = 4In J JIANI,N21 sinf3Qdf3QdaQ 

0 0 
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(b) DOR(200Hz) 

(c) DOR(320Hz) 

(d) DOR(440Hz) 

(e) DOR(640Hz) 

(f) DOR(850Hz) 

10 0 -10 
Frequency (kHz) 

Figure 6.3 DOR of 23Na2C204 at 9.4T. The spectra above were taken with the usual 
short pulses and a rapid repetition rate. Shown are the sideband intensities and positions 
for a variety of spinning rates (outer rotor spinning rate indicated beside each spectrum). 
It is important to note that the intensities do not necessarily approximate the powder 
pattern in the slow spinning limit. 

This shows that spinning sidebands will show up at sums and differences of integers 

times the rotor frequencies. In general, the strongest sidebands will be those with small 

Nt and N2 values. For a more detailed analysis of DOR spinning sideband intensities, see 

papers by Sun et al. 16•49 In figure 6.3 are shown the experimental DOR spectra of 

sodium oxalate at a variety of spinning rates. The most important feature here is that 

even in the slow spinning limit, the sideband intensities do not approximate the shape of 

the static pattern, as occurs in spin 112 systems under MAS. The spectra in figure 6.3 

were taken by B.Q. Sun andY. Wu and details concerning their acquisition may be found 

in their papers.16.49•112 
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In addition, certain symmetry considerations can lead to the cancellation of all of 

the odd-order outer frequency sidebands leading to greater sensitivity and resolu

tion.49·100·108·112-114 To show this effect, we return to equation 6.6 and assume that the 

inner rotor is spinning much faster than the outer rotor and average over this motion. 

W ( 
-in( ror!t+tP,t) -intPrt ) nO e -e 

</>DOR ( t) = W oot + L ---'----. -------!... 
n;tO -mmrl 

. [ Wno(e-in(ro,tt+tP,t)_e-intPri)] 
S( t) = e _,Woot exp L _ ___, _______ __,_ 

n;tO nmrl 

(6.12) 

This, of course, now looks similar to the expression for the VAS signal in equation 3.11 

or 3.21. There is one major difference, in that now the following substitution may be 

made for W_no =-W no· In fact, were this true for the VAS case, it would be possible to 

eliminate all odd order sidebands from any one dimensional experiment. This is not the 

case, however, and the rotor-synchronized acquisition described below will only give its 

effective speed enhancement under DOR conditions. 

-iW 1 ["" Wno (cos n( mrlt + <f>rt)- cos n<f>rt)] S(t) = e 00 exp £..J 
n>O nmrl 

(6.13) 

Signal may now be collected through outer-rotor synchronization such that the outer rotor 

phase is only Oo or 180°. When this is done, the signal may be written below. 

( ( ))0.+180. -iWoot [ "" Wno (cos nmrlt- 1)] 
S t = e exp £..J 

n=2,4 nmrl 

-iWoot ["" W2nO(cosnmr3t-1)] = e exp £..J 
n=l,2 nmr3 

(6.14) 

Notice that a redefinition of the spinning rate has been made which changes the indices of 

the sum. This may be expanded with delta functions as before. 

119 



Using the series expansion for a delta function we arrive at equation 6.16. 

(S(t))O"+lSO" = e-iW00t exp[ L -W2nO] 
n=l,2 nmr3 

X 211C L 2r exp[iN( VI- (J)r3t) + L w2n0 cos n VI ]dVI 
N 0 n=I,2 n(J)r3 

(6.15) 

(6.16) 

Now we pull out constant terms from the integrals, just as in equation 3.14. 

(S(t))0"+180" = e-iW00t exp[ L -Wno]LANe-2iNwr~t 
n=2,4 n(J)rl N 

A I 
2
Jn [·N ""' Wnocos(nVIf2)]d N = 2n exp z VI+ ~ VI 
0 n=2,4 n(J)ri 

(6.17) 

This signal may then be averaged over the remaining powder angles, giving the result in 

equation 6.18. 

(S(t))0"+180" =_I_ e -iw~~Q)t""' e -2iNwr1t 
powder 4n ~ 

N 

2n 1C [ -W ] x J J exp L nO AN sinf3Qdf3QdaQ 
0 0 n=2,4 nmri 

(6.18) 

This expression shows immediately that the sidebands will be spaced at twice the outer 

rotor spinning speed from the isotropic peak. This is quite useful, since it is difficult to 

spin a DOR outer rotor much faster than 1 kHz and there will always be a large number 

of spinning sidebands present to complicate spectra. Figure 6.4 gives an example of the 

advantages of synchronized DOR when applied to the 23Na spectrum of Na2C204. 
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Figure 6.4 DOR of 23Na2C204 at 9.4T. The spectra above were taken with short 30• 
pulses and a rapid repetition rate. Absolute rotor phase was monitored using optical 
methods and pulses were applied only at the o· and 180. positions. The outer rotor spin
ning rate was 604 Hz for the spectra on the left and 800 Hz for those on the right. For the 
simulations, the parameters were CQ = 2.43 MHz, TJQ = 0.72 and rot= 105.8 MHz. 

Magic-Angle Hopping (MAH) 

A different kind of experiment which generates isotropic spectra for spin 112 sys
\ 

terns has been described by Bax et al.109 In this experiment, a static sample is allowed to 

evolve at three different orientations which define the vertices of an octahedron. This is 

accomplished by using z-filters to store the evolved magnetization while the sample is 

rotated by 90 degrees about two orthogonal axes. The pulse sequence for this experiment 

is shown in figure 6.5. 

121 



1tl2 'Tt/2 1t/2 1t/2 'Tt/2 

tt/3 hop tt/3 hop t2 

Figure 6.5 Magic-Angle Hopping Experiment. Pulses. and hops are indicated 
schematically. The phase cycle is given in table 6.1. Each tt/3 period is spent with the 
magnetic field pointing through each of three vertices of an octahedron attached to the 
PAS of a given crystallite. 

Alternatively, MAH may be accomplished by rotating the sample about the magic angle 

in three discrete 120° jumps using the same pulse sequence. In any case, no spinning ap

paratus is required, however, the ability to perform rapid jumps may actually be of greater 

experimental complexity. Of these two implementations, the second is preferable, as it 

only requires rotation about a single axis. 

t/JI th., ¢4, t/>s ~ t/>r ¢1 th,, ¢4, t/>s ~ t/>r 

0 0 0 0 180 0 180 0 

0 0 90 90 180 0 270 90 

0 0 180 180 180 0 0 180 

0 0 270 270 180 0 90 270 

90 0 270 0 270 0 90 0 

90 0 0 90 270 0 180 90 

90 0 90 180 270 0 270 180 

90 0 180 270 270 0 0 270 

Table 6. I Magic-Angle Hopping Experimental Phase Cycle. PhaSe cycle for MAH where 
the phase t/Jn refers to the nth pulse in the pulse sequence. This same phase cycle may 
also be used for the MAT experiment (see figure 6.6). 

The phase cycle needed to implement this experiment is given in table 6.1. Both the first 

and third pulses are cycled through four phases each to select .dp = -1. The ..1p = + 1 will 
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be selected automatically without phase cycling the second or fourth pulses, since any 

non-zero coherences will decay during the hops. Finally, the last ,1p = -1 will be selected 

by the quadrature phase of the receiver and merits no additional phase cycling, unless re

ceiver quadrature is imperfect. 

To show mathematically how the MAH evolution can generate an isotropic spec

trum in the It dimension of a two dimensional experiment we have to look at the fre

quency expression for the chemical shift interaction. 

meSA = 8iso,csml + ..J'f8es m1Af.~ 
2 

Aes = ~ D(2) (aes ,pes, yes)Pes 
2,0 £..i m,O 2,m 

(6.19) 

m=-2 

The three Euler angles relate the laboratory frame to the principal axis frame of reference. 

In an experiment where the sample is rotated arot about an axis oriented tyot with respect 

to the magnetic field, this expression is modified as below. 

2 
_ ~ fi. ~es ~ D(2) ( rot prot o)Aes meSA - Uiso,csml + Y3u ml £.. m,O a ' ' 2,m 

m=-2 

2 
Aes = ~ n(2) (aes pes yes)Pes 

2,m £..i m',m ' ' 2,m 

(6.20) 

m'=-2 

To examine the experiment where the sample is hopped in three 120 degree jumps about 

a given angle tyot with respect to the magnetic field, we only have to sum up the evolu

tion at each of the three rotor orientations. The three different orientations, expressed in 

the Euler angles are given below. 

( arot ,prot ,0) 
(a rot' prot' 0) => (a rot + 231! 'prot' 0) 

( arot + 431! ,prot' 0) 

The net evolved phase over a period It may then be written below 
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2 

L 

D~b ( arot ,{3rot, O) + 

D(2) (a rot + 2n a rot o) + A cs 
m,O 3 •JJ ' 2,m 

(6.22) 

The first term is the isotropic portion of the interaction which we wish to retain. The sec

ond is the anisotropic portion which will be shown to average to zero under the magic

angle hopping experiment. The first simplification comes by setting [Jrot to the magic

angle (54.74°). This is the zero of the second-order Legendre polynomial and forces all 

of the m = 0 terms to be zero. Secondly, by separating the Wigner rotation matrices into 

products of exponentials and reduced Wigner matrices via equation 6.23, the sum in 6.22 

may be further simplified. 

(6.23) 

In this expression, the m = 0 terms have been dropped as they are zero. 

n,MAH(t)=8· rot+ fi8csm !L[~e-ima"'1 d(2)(arot)c Acs] 
'I' 1 'SO,CS l 1 "J J l 3 L..J m,O fJ m 2,m 

m*O (6.24) 

em= l+e_3_ +e_3_ 
( 

-2imn . -4imn ) 

The sum of exponentials (Cm) inside the sum over m is seen to be zero by using the fol

lowing expressions. 

n n 
L cos 2~n = L sin 2~tr = 0 for n > 1 (6.25) 
i=1 i=1 

This effectively removes all of the anisotropic contribution to the evolution and the net 

evolution and signal are given below. 

t/JMAH { t1) = 8iso,cs(J)lt1 
(6.26) 
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An alternative approach to understanding this type of averaging scheme is to invoke 

group theoretical arguments as shown by Sun et a/. 16•113 This produces an identical result 

and will not be discussed here. 

An excellent alternative to MAH is an experiment called magic-angle turning 

(MAT) first described by Gan. 111 In this experiment, the sample is rotated continuously 

about the magic-angle, just as in MAS. However, now the sample is rotated at a very 

slow spinning speed (less than 100Hz). In this fashion, the evolution at each of the ver

tices of an octahedron may be approximated by interrupting the spinning with z-filters. 

This pulse sequence is seen in figure 6.6 below. 

1C/2 1C/2 1C/2 1C/2 Tt/2 

hop hop 

Figure 6.6 Magic-Angle Turning Experiment. Pulses and hops are indicated 
schematically. The phase cycle is the same as the MAH experiment (see table 6.1). Each 
hop is performed by allowing the rotor to shift by 120• degrees. As in the previous exper
iment, each t1/3 period is spent with the magnetization at a different vertex of the octa
hedron, giving a shifting isotropic echo. 

The theory for this experiment is identical in the limit of very slow spinning ( t1 « 'Cr}. In 

the intermediate case, where t1 represents is a significant portion of 'Cr (the period of the 

sample rotation), the theory must be written slightly differently. Now instead of the sum 

of three evolution periods, the frequency expression will be the sum of three integrals of 

the time-dependent frequencies. The expression for the NMR frequency of a sample ro

tating about an axis oriented at {3rot with respect to the magnetic field as a function of 

both crystallite orientation ( acs '{3cs' res) and time is given below. 
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C:OesA ( t) = O;so,csrol + .Jfoes c:oLRfg ( t) 

Rfg(t) = ±e-im(cart+q)r)d~J(prot)Af~ (6.27) 

m=-2 

In this expression the Af~ term is identical to the Af~ in equations 2.35 and 6.20. Now 

the net evolution following the MAT pulse sequence will be the sum of three integrals 

given below. 

tPMAT [ t1] = O;so,csC:Oltl + 
11 1r+II 

r3 Res (t) dt + s-3- Res (t) dt Jo 20 !!.. 20 
fi3 oes (t}l 3 

"V3 2Tr+'I 

f- cs 
+ 2r/ R2o (t)dt 

3 

(6.28) 

Again, the first term is the isotropic chemical shift and the second corresponds to the 

anisotropic parts. The integrals themselves are over sums which can be separated into a 

larger sum of integrals. The time-independent part is proportional to the second-order 

Legendre polynomial of cos prot. This is analytically zero, since we have chosen prot to 

be the magic-angle, 54.74°, which means the sum in equation 6.29 will contain nom= 0 

terms. Each of the integrals may performed analytically and regrouped below. 

</>MAT [ tt] = Oiso,cs(J)Jtl -

exp( -im:,'• )exp(O)- exp(O) 

These may be further simplified since c:o r r r = 21C. 

fPMAT [ tt] = Oiso,csC:Oltl 

+ [i0esC:O ~ e~im~r d(2)(arot)ACS[exp(-imcartl )c _ C ] "V3 l £..J tmWr mo fJ 2m 3 m m 
m=-2 

(6.29) 

(6.30) 

The Cm in this expression is identical to that in 6.24. Using the fact that Cm is zero, 

yields the same frequency expression as in equation 6.26. 
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(6.31) 

Therefore an anisotropic echo in 12 will appear at a time 11/3 following the last pulse in 

the MAT sequence which has evolved in 11 with an isotropic frequency. In both the 

MAH and MAT experiments, however, signal is lost due to the z-filters. In fact, if the z

filters could be eliminated, a factor of 2 signal-to-noise could be recovered. 

A possible alternative to the MAH and MAT sequences is the MAT56 with rc 

pulses (MAT-180) sequence which is shown in figure 6.7. 

7tl2 1t 1t 1t 1t 1t 1t 

~t]/6 ~ ~t]/6 ~ ~tl/6 ~ ~ 
~ trf3 + trf3 -+- trf3 -~1 

Figure 6.7 Magic-Angle Turning Experiment with 1r: Pulses. Pulses are indicated 
schematically. The phase cycle is given in the text below. In this experiment, no storage 
pulses are used while rotor shifts by 120·. Each of the t1/6 periods is spent at a different 
vertex of the octahedron, giving a shifting isotropic echo. 

In this experiment, the density matrix is never stored with z-filters. However, now the 

sequence has been made into a constant time experiment (as 11 is varied, the MAT 

isotropic echo will always appear at a P<?int 1r after the last rcpulse) which introduces cer

tain other problems which I will discuss later. The phase cycle needed to implement this 

experiment is quite simple, assuming the 1C pulses are accurate. Only the first pulse is 

cycled through four phases and the receiver phase is set equal to this phase (just as in a 

standard one pulse experiment with cyclops phase cycling.) To show mathematically 

why this experiment works, we use the same approach as earlier. The phase is expressed 

below in equation 6.32. 
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'I tr 

A.MAT-180 [t ] = n· m (t)dt _ JT m (t)dt 
'I' r Jo eSA :!. eSA 

6 

'I tr 2tr , 

+ J;;+3 mesA (t)dt- J:J...~!L. mesA (t)dt (6.32) 
3 6 3 

'I 2tr 

+ J~+T mesA ( t) dt - J~ ~ mesA ( t) dt + ttr mesA ( t) dt 
3 6 + 3 1r 

The integral from 't'r to 2't'r in this sum may be divided into six integrals with the same 

limits as the corresponding terms in 6 .. 32 and since mesA (t) =mesA (t + tr ), the negative 

terms will cancel terms from the expansion of the last integral. The expression for the 

CSA frequency may be substituted in 6.32 and the time-independent terms removed from 

the integrals as in 6.27 and 6.28. 

'I 2Tr+ti 2 r6 Res(t)dt + 2J_6 _ Res(t)dt Jo 20 !.!.. 20 
3 

(6.33) 
4Tr+ti 

J- es 
+2 2Tr

6 R2o (t)dt 
3 

This integration may be performed as earlier, yielding the same phase as in the MAH and 

(6.34) 

This shows that all three experiments give the identical result. The difference between 

the MAT-180 and the MAT experiment lies in the sensitivity and resolution. In the MAT 

experiment, the resolution is improved by taking more t1 points with a corresponding 

longer total2 tr time. The sensitivity, however, is a full factor 2 worse than the MAT-180 

sequence (meaning a factor of 4 more scans are needed). In the case of MAT -180, to en

hance the resolution, the rotor must be slowed down (since the longest available tt point 

is for tt = 2 tr). Since this is a constant-time experiment, there will be more transverse 

(T2) relaxation for the same tt point at slower speeds than at faster speeds since each tt 

point has identical 2tr transverse relaxation scaling the overall intensity. At some point, 
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in attempting to gain further resolution in a MAT -180 experiment, the relaxation intensity 

loss will become larger than the factor of 2 loss due to z-filters in the MAT or MAH ex

periments. At this point, it is more profitable to use the MAH or MAT experiment in fa

vor of the MAT -180 sequence. Finally, since the MAT -180 sequence is constant time, 

there should be no net homonuclear dipolar contribution to a spin-112 isotropic spectrum 

(as is the case for the MAT sequence). In addition, both the MAT and MAT-180 may be 

performed over more than one or two rotor cycles. 

MAS 

MAT-180 

MAT 

-10 -5 0 5 10 
Frequency (kHz) 

Figure 6.8 MAS, MAT and MAT-180 Spectra of 207PbN03. All of these spectra repre
sent 64 points in t1 zero filled to 512. The dwell times were 50 J.LS and the 90• pulse 
widths were 12 J.LS. 

In the case of MAT, any number of rotor cycles may be used which is not a multiple of 

three, while for MAT -180, any even number of rotor cycles which is not a multiple of 

three may be used. (If the number of rotor cycles is a multiple of three, each of the three 

evolution periods will have identical starting phase and no averaging will result.) Figure 

6.8 shows the MAS, MAT and MAT-180 spectra of 207PbN03. Notice, in this case, the 
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signal-to-noise ratio of the MAT-180 spectrum is slightly better than in the MAT spec

trum, since the 2 tr time was chosen to be relatively short. This has the adverse effect of 

adding truncation artifacts to the spectrum in the form of "sine" wiggles. 

Dynamic-Angle Hopping (DAH) 

In the previous section on magic-angle hopping methods were discussed which 

produce sideband-free isotropic spectra. In the case of spin-112 nuclei, a number of 

techniques are already available which produce sideband free evolution.115- 122 The ap

plication of these methods to central transitions of quadrupolar nuclei is somewhat lim

ited, especially in the case where sidebands overlap centerband features. The ideas of 

MAH, however, may be applied equally well to the quadrupolar problem (DAH).56•113 In 

the quadrupolar case the integrals of equation 6.29 will involve a sum from m = -4 to +4. 

The additional m = ±3 and ±4 terms will cause the simple MAH and MAT experiments to 

fail, since the value of Cm 'i= 0 form = ±3 and ±4. To average these as well, five different 

evolution windows are needed (in the case of hopping about the magic-angle). In this 

case, the expression for Cm is given below (which is zero for all m < 5). 

(6.35) 

This is still not sufficient to produce isotropic spectra, since five hops about the magic

angle will only give a sideband free MAS spectrum (not altogether useless). To isotropi

cally average a quadrupolar central transition, it has been shown that multiple spinning 

axes are required. 16.42.43•55•113 The solution to the problem is to use two DAS angles and 

use five evolution periods at each angle to cancel the time dependent terms. This is a to

tal of 10 evolution periods, needing a minimum of 9 z-filters to ~tore magnetization dur

ing hops. This is almost certainly an unacceptable number and therefore a better solution 

is to choose the DAS angle pair which simplifies the problem. The k = 5 angle pair of 

63.43° and 0.00° is the best angle pair for this sort of experiment, since at 0.00° there are 
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no time-dependent terms. Thus, to do the DAH experiment, we merely spin slowly about 

the angle 63.43° with respect to the magnetic field. Under these conditions we use 90° 

pulses to store the evolution between the five 72° jumps. Following these five evolution 

periods, the magnetization is stored as the spinning axis is realigned to 0.00° and evolu

tion is allowed to proceed again. This experiment still needs a total of 5 z-filters for 

magnetization storage, but this represents a factor of 4 improvement in signal-to-noise 

over the 9 z-filter experiment proposed earlier (unfortunately it is still a factor of 4 worse 

than in a conventional DAS experiment). 

The phase cycle needed to implement this DAH experiment is quite long, since a 

large number_of pulses are involved in the sequence. The schematic pulse sequence and 

the equation which describes the relationship between the eleven 90° pulses and the re

ceiver phases are given below. The time tn· indicates the time needed to allow the rotor 

to rotate 72° and the time thop indicates the time needed to reorient the spinning axis from 

63.43° to o.oo0

• 

900 tl 900 900 tl 90" 90" tl -6- -tn·- -6- -tn·- -6-

90°-tn·- 90°- i - 90°-tn·- 90"- i - 90"-thop- 90°- i - t2 (6.36) 

In this experiment, the coherence alternates between -1 (during the tt/6 .evolution peri

ods) and 0 (during the tn· z-filter storage periods). To achieve this, the first pulse should 

be cycled through four phases to choose the -1 coherence transfer and the second will be 

uncycled, assuming that the 72" hopping period will be sufficiently long that all trans-

verse magnetization will decay away. This, in theory, should be continued for each of the 

next 8 pulse pairs. The last pulse may be left uncycled, since the receiver quadrature will 

select the -1 pathway. This is a total of 45, or 1024, steps in the phase cycle. In many 

situations, this is too many steps to do a phase cycle over for a spectrometer (i.e. the 

Broker™ AM-400) or more scans than is possible in a two-dimensional experiment due to 
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long relaxation times (remember that the isotropic DAH signal must be collected point by 

point in t1 just as in DAS). One solution is to use only cycles of pulse phases of three 

rather than four. This will still choose only a Ap = -1, however this may be difficult to 

implement on some spectrometers. Also, it still requires a total35, or 243, steps which is 

over a factor of four fewer scans. In the case where fewer scans are desired, it is neces-

sary to choose fewer pulses to cycle. It is probably best to cycle pulses closer to the be

ginning of the sequence, thereby guaranteeing the coherence pathway for most of the 

early steps. This can lead to experimental artifacts. Ideally, we should cycle the other 

pulses (except the last) through two steps to guarantee no transverse components during 

z-filters. This will expand the phase cycle again by a factor of 25 (a total factor of 32). 

A final note about the sequence is that the five angles at 63.43° and one at 0.00° 

are equivalent to the static magnetic field being rotated to point through the vertices of an 

icosohedron (which has the symmetry needed to average first and second order interac

tions) in the PAS coordinate system. 

A second implementation of the DAH experiment is to use 180° pulses (DAH-

180), just as in the MAT-180 sequence. Instead of storing the magnetization with z-fil

ters, we can instead apply rotor synchronized 180° pulses in the following sequence, 

where the time variables have the same meaning as before. 

90°-t - .!!_ -1·80°-(72" -180o_.!!_ -180°-(72" -180o_.!!_ -180°-172" -180° r 12 12 12 

- :~ -180°-t12• -180°- :~ -180°-t12·- 90°-thop- 90°- ~- t2 

(6.37) 

-<PI + 2</J2- 2</J3 + 2</J4 - 2t/Js + 2cp6 -

2</J7 + 2t/Jg- 2cp9 + 2cfJIO- cfJII - </J12 = -cfJR 

The phase cycle needed to implement DAH-180 is much simpler than for DAH, assum-

ing the 180° pulses are accurate and lead to only a ±2 coherence transfer. In this case, 

only the first pulse needs to be cycled through four phases and the eleventh through two 

Gust as in the original DAS experiment). In fact, the sequence is identical to the original 
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DAS experiment with the addition of nine 180. pulses. These may be ignored in this case 

for phase cycling purposes. Any of the pure-phase modifications discussed in chapter 4 

may be used here to enhance the overall signal-to-noise in the two-dimensional spectrum 

(if the we are interested in an isotropic/anisotropic correlation spectrum). Again, both the 

DAH and DAH-180 cycles may be implemented over more than two rotor cycles, just as 

in the case of MAT and MAT -180. Since the frequency expansion has sines and cosines 

up to 4 Wr, the number of evolution periods must always be larger than this (we choose 

5), and the number of rotor periods the experiment is performed over must not be a mul

tiple of the number of evolution periods (in this case 5). The mathematics needed to 

prove these features for the DAH and DAH-180 are identical to the case of MAT and 

MAT-180. These types of experiments have recently been discussed by Gannet a/.56 and 

Alderman et a/. 123 and I would direct the interested reader to these papers for additional 

information. 

100 0 -100 -200 -300 -400 -500 -600 
Frequency (ppm from 1 M 87RbN03) 

Figure 6.9 DAS and DAH lD spectra of 87Rb2Cr04. The upper DAH spectrum shows 
no spinning sidebands and the isotropic peaks are easily identified, while in the lower 
DAS spectrum the broad site with an isotropic shift at -201 ppm breaks into a large 
number of sidebands. A second spinning speed would be needed to identify this as the 
isotropic site using this method. 
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Figure 6.9 shows the DAS and DAH spectra for rubidium chromate (87RbzCr04) 

taken at 9.4 T which has two sites. Both sites appear in the DAS spectrum, however the 

broad site with an isotropic shift at -201 ppm is greatly reduced in intensity due to the 

large number of spinning sidebands. Even the more intense peak at -27 ppm has at least 

six spinning sidebands in this spectrum. The appearance of the isotropic peak at -201 

ppm in the DAH spectrum shows the power of the DAH experiment. This peak is much 

more intense than the same peak in the DAS spectrum. This peak, unfortunately, is 

broadened more than the peak at -27 ppm, thereby making the intensity seem much less 

than the expected 1:1 ratio. This is probably due to angle errors during the 72° hops 

while spinning at 63.43° which result from fluctuations in the spinning rate. Finally, be

cause of the large number of z-filters, the DAH experiment required over 20 times the 

number of scans and therefore 20 times the overall experiment time as the comparable 

DAS experiment. This factor negates much of the benefit of DAH, since the same infor

mation may be attained with just two DAS experiments in a tenth the time. 

In figure 6.10 we see the DAS and DAH-180 spectra for rubidium sulfate 

(87RbzS04) at 9.4 T which also has two sites. Both sites appear in both spectra. 

However, in the DAH-180 spectrum, there are no spinning sidebands to complicate the 

interpretation. Also, the intensities of the two peaks should reflect the population· at the 

two sites (which is 1:1 in this case). For the DAS spectrum, intensity measurement ne

cessitates integration of a large number of spinning sidebands (some of which overlap). 

If we compare only the heights of the isotropic centerbands, we arrive at a ratio of 2.8 (-

25 ppm site) to 8.5 (29 ppm site). This 1:3 ratio is much less than expected from the 

crystal structure. Taking the heights of each sideband as the integral and adding up the 

intensity for each of the sidebands in the DAS spectrum, yields intensities of 9.2 (-25 

ppm site) and 10.1 (29 ppm site). These are, as expected, quite close to the 1:1 ratio, 

however, in samples with multiple sites, integration of sideband intensity may be impos-
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sible. For the DAH-180 spectrum, we may easily integrate each of the two peaks (2.62 

and 2.34 intensities respectively) and get the correct 1:1 ratio. 

(b) 

100 50 0 -50 -100 

Frequency (ppm from 1M 87RbN03) 

Figure 6.10 DAS and DAH-180 ID spectra of 8?Rb2S04;. Spectrum (a) shows the 9.4T 
DAS spectrum of 8?Rb2S04 taken at a spinning rate of 5 kHz and with the SED AS pulse 
sequence. Spinning sidebands are indicated with asterisks. Spectrum (b) shows the 9.4T 
DAH-180 spectrum of the same compound taken with the 9 1t pulse sequence applied 
over 8 rotor cycles at 2.4 kHz. 

As was mentioned earlier for the MAT-180 sequence, constant-time experiments 

may sometimes present sensitivity problems when additional resolution is needed. The 

DAH-180 sequence is partially a constant-time experiment since 5/6 of the It evolution 

occurs under constant time conditions. Therefore, as can be seen in figure 6.10, we often 

get truncation artifacts in DAH-180 spectra. These sequences, however, show great 

promise for studying systems where an inhomogeneous distribution of isotropic shifts ex

ists, for example in an amorphous solid such as a glasse (see chapter 8). In these cases, 

· the distribution of isotopic shifts leads to a rapid dephasing in It (in fact, much more 

rapid than the intrinsic T2 linewidth would suggest). This means that many fewer point 
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are required in tt before the signal disappears. Therefore a constant time experiment such 

as DAH-180 is uniquely well suited for the study of these systems, just as pulse se

quences such as HyperSEDAS are best suited for giving high-sensitivity pure-phase two

dimensional spectra. Combining these two ideas should greatly improve the overall 

quality of isotropic/anisotropic correlation spectra in amorphous solids. 
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Chapter7 

Application of DAS to Inorganic Salts 

Dynamic-angle spinning has proven quite valuable in the evaluation of the electric 

field gradients present at the nuclei in a variety of inorganic salts. Specifically, the alkali 

metals are particularly conducive for study with NMR. All of these nuclei are spin-3/2 

and possess a manageable quadrupolar moment. In the case of 7U and I33Cs, the 

quadrupolar interactions are generally small enough that MAS is sufficient to achieve 

high resolution spectra. The nuclei of 87Rb, 85Rb and 23Na, however, require the more 

complete averaging of a technique like DAS or DOR. 

Sodium 

This nucleus was one of the first evaluated with DAS. The large gyromagnetic 

ratio and high natural abundance make this a natural candidate for study with DAS. 

However, these two factors conspire to make the homonuclear dipolar interaction quite 

strong and therefore highest resolution is only achieved in samples where the sodium is 

magnetically diluted, for example in crown ether complexes or with bulky anions in ionic 

salts. Unfortunately, the total chemical shift range for this nucleus is quite small, as is the 

range of electric field gradients, since this is a fairly small cation. Therefore, the overall 

linewidth from the homonuclear dipolar coupling (see chapter 3) renders DAS insensitive 

to small variations in the local EFG and chemical shift interaction. Examples of sodium 

spectra are shown in both chapter 3 and chapter 5. 

Rubidium Salts 

The application of dynamic-angles spinning NMR has also been extended to other 

inorganic salts.54 Specifically, 87Rb has proven to be an extremely sensitive nucleus for 

DAS experiments. 87Rb and alkali metals in general are important in a number of areas, 
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they serve as promoters in catalysts, for example, the heterogeneous catalysis of ammonia 

synthesisl24 and oxidative coupling of methane to yield ethane and ethene.125 Rubidium 

is an important component of some glasses, 126 and recently, it has been shown that Buck

minsterfullerene, C60, doped with Rb metal becomes superconducting at 28 K. 127 

In order to assess the applicability of DAS to rubidium and its potential to yield 

structural information about materials such as those listed above, 87Rb MAS, VAS and 

DAS spectra of five inorganic salts were obtained. The salts chosen were RbCl, RbCl04, 

Rb2S04, Rb2Cr04 and RbN03 because they had been previously studied with static 

NMR experiments128·129 and the crystal structures were well known. 130-135 

In the study by Cheng et al., 128 the T1 relaxation times for each of these salts was 

measured and all were between 100 and 300 ms. We performed the VAS, MAS, and 

DAS experiments using a probe designed by Mueller et al.51 We used the usual DAS 

pulse sequences (see chapters 3 and 4) for both the 1D spectra42 and for the pure-phase 

MAS detected spectra. 5° Our central transition selective 90· pulses were between 4.0 and 

6.0 J.LS. Our hopping times were usually between 30 and 50 ms and our data sets were 

128 tt points by 512 complex t2 points. All MAS and variable-angle spinning (VAS) 

spectra were acquired with a standard Hahn-echo pulse sequence (;r/2 - n tr- TC- trd - ac

quire) where tr is the rotor period, n is an integer and n tr was between 500 and 1500 J.LS. 

The trd delay was used to allow collection of the whole echo. 

For 87Rb, as with all quadrupolar nuclei, the measured isotropic shift in DAS has 

a field dependence because it is the sum of two contributions. 

~ - ~ ~(2Q) 
Uobs - uiso,cs + uiso (7.1) 

These two terms are the isotropic chemical shift and the isotropic second-order 

quadrupolar shift, respectively. The isotropic chemical shift is field independent when 

expressed in units of ppm while the second-order quadrupolar shift has a strong field de-

pendence given below. 
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(7.2) 

All constants have their usual meanings. Using equations 7.1 and 7.2, we may calculate 

isotropic chemical shifts by measuring isotropic shifts at two field strengths. To do this, 

we solve the system of linear equations from equation 7.3 evaluated at two Bo fields. 

Equation 7.3 (the reduced version of equation 7.1) may be expressed as follows for 87Rb 

in units of ppm. 

8obs = 8iso,cs- ( 1.28 X 10-IO ::2 )cQ2
( 1 + ~~ )( ;J) 

= 8isocs- (t28X 10-10 T22 )pQ2(~) 
• Hz Bo 

(7.3) 

PQ=cQH 

It is important to note that it is impossible to extract the CQ from 1JQ using only multiple 

field experimental 1D DAS results. However, multiple field results do help to minimize 

experimental error in the final results. 

Figure 7.1 shows the 87Rb VAS spectra and the angles of acquisition. Only the 

RbCl is clearly resolved. This is because of the absence of quadrupolar coupling due to 

the cubic crystal structure of RbCl. Figures 7.2 and 7.3 show the DAS spectra at 11.7T 

and 9.4T respectively. There is an order of magnitude narrowing of the DAS spectra 

compared to the VAS spectra. In the cases where multiple lines are present due to spin

ning sidebands, the isotropic peaks were identified by spinning at multiple spinning rates. 

The VAS spectra in figure 7.1 show the resolving power of simple one-dimen

sional NMR techniques applied to Rb salts. In all cases except RbN03 and Rb2Cr04, the 

individual sites are clearly separated. However, only the RbCl spectrum yields a single 

narrow line which may be used to measure the isotropic shift. The other spectra would 

all require simulations to extract the actual isotropic shifts, and in the case of RbN03, the 

simulation would be quite difficult due to the extreme overlap of the three sites. 
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Figure 7.1 87Rb Salts 11.7T VAS Spectra. (a) RbCI at 54.74·, (b) RbCI04 at 54.74·, (c) 
Rb2S04 at 79.19·, (d) Rb2Cr04 at 54.74·, (e) RbN03 at 54.74·. 

The DAS spectra at 11.7T reveal the actual isotropic shifts for each site in each 

compound (except the broadest site in Rb2Cr04) without the need for simulations. This 

has the advantage of greatly improving the accuracy of the measurement of the isotropic 

shifts. In the case of Rb2S04, the DAS spectrum illustrates one of the classic problems 

with VAS spectra. 

140 



(a) A 
175 150 125 100 75 

(b) A - "' ..... 

25 0 -25 -50 -75 

• 
(c) 

80 40 0 -40 -80 

• 

100 0 -100 

(e) )\JJl 
-10 -20 -30 -40 -50 

Frequency (ppm from 1M 87RbN03) 

Figure 7.2 87Rb Salts 11.7T DAS Spectra. (a) RbCI, (b) RbCI04, (c) Rb2S04, (d) 
Rb2Cr04, (e) RbN03. 

The actual isotropic shifts in this salt (as seen in the DAS spectrum, figure 7.2c) do not 

correspond to the highest point in the VAS spectrum (figure 7.1c), rather, the isotropic 

shifts in the VAS spectrum fall at the overall centers of gravity of each peale. Low inten

sity contributions in the wings of the VAS peaks make calculation of the center of gravity 

of these peaks difficult. 
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Figure 7.3 87Rb Salts 9.4T DAS Spectra. (a) RbCI04, (b) Rb2S04, (c) Rb2Cr04, (d) 
RbN03. 

Figure 7.3 shows the DAS spectra of the same salts at a lower field strength. 

Notice that the spectra all have the same high resolution of the 11.7T spectra in figure 

7 .2. However, now some of the peaks· fall at different isotropic positions because of dif

ferences in the second order quadrupolar isotropic shifts (see equation 7.2 and 7.3). The 

cubic RbCl does not shift at all, since this salt has zero electric field gradients at the Rb 

nucleus (as evidenced earlier by the narrow MAS spectrum in figure 7.la). All other 
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peaks shift slightly down field to more negative ppm values. Also, the number of spin

ning sidebands for a given site differs between the two fields, due to the fact that the 

overall size of the second-order broadening (which appears in the expr~ssions for side

band intensities in chapter 3) is increased at lower field. Also, since the chemical shift 

scales with the field, the CSA contribution to the sidebands will actually be reduced at the 

lower field (this is the reason much of the 13C and 31 P MAS NMR work is done at lower 

field strengths). 

Compound O~j,~T (ppm) O~~;T (ppm) o~;s) (ppm) PQ (MHz) 

RbCl 127±1 127±1 127±2 0 

RbCl04 -28±1 -23±1 -14±2 3.1±0.3 

Rb2S04 -25±1 -10±1 16±2 5.3±0.2 

29±1 34±1 42±2 3.0±0.3 

Rb2Cr04 -27±1 -21±1 -11±2 3.3±0.3 

-201±2 a a a 

RbN03 -32±1 -29±1 -24±2 2.4±0.4 

-36±1 -32±1 -25±2 2.8±0.4 

-37±1 -34±1 -29±2 2.4±0.4 

Table 7.1 87Rb Isotropic Shifts and Coupling Products. The isotropic chemical shifts and 
quadrupolar products were calculated using equation 7 .3. aThis site was too broad for 
detection at 11.7T with both the DAS and MAS experiments. 

In the case of Rb2Cr04, the second broad site at -201 ppm appears in the 9.4 T spectrum 

which was absent in the higher field spectrum. Also, the overall number of sidebands 

around the -27 ppm peak is greatly reduced at 9.4 T, since the major contribution to the 

anisotropic broadening of this site is the chemical shift interaction. This actually may be 

seen in the MAS spectrum (figure 7.1d) where the individual sidebands have clearly re

solved quadrupolar MAS patterns. Normally, when large numbers of sidebands result 

from quadrupolar coupling alone, the MAS pattern will be greatly distorted and overlap-
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ping with the sidebands. In the case of Rb2Cr04, this is not observed, showing that the 

CSA is quite large for this site. All of the measured isotropic shifts are compiled in table 

7.1 below. 

The two field DAS measurements were used to generate both the quadrupolar 

coupling products and isotropic chemical shifts for these salts using equation 7 .3. These 

values are tabulated in table 7 .1. The values of the quadrupolar products and isotropic 

shifts in table 7.1 may now be compared to the values arrived at by Cheng et al. 128 from 

static simulations compiled in table 7.2. For the case of the RbCl, our results agree ex

actly with those of Cheng et al. 128 

Compound O~~S) (ppm) 7JQ PQ (MHz) 

RbCl 128.0 0 0 

3.8 0.16 3.2 

3.0 0.13 3.2 

46.6 0.89 2.9 

-47.4 0.48 5.4 

52.8 0.75 12.5 

* * * 
Table 7.2 Previously Measured 87Rb Isotropic Chemical Shifts and Quadrupolar 
Parameters. These parameters were determined by simulating static central transition 
multi-site patterns with both quadrupolar and chemical shift anisotropy parameters by 
Cheng et al. For RbN03, the three sites could not be resolved. 

For other compounds, the agreement is much worse, indicating the difficulty of relying 

only on static simulations (which have a large number of parameters to adjust) in measur

ing quadrupolar and chemical shift parameters. The rough size of the coupling constants 

measured by Cheng et al. 128 for the RbCI04 and Rb2Cr04 are in the correct range. How-

ever, in all cases except for RbCI, the isotropic chemical shifts are quite inaccurate. Also, 

in the case of RbN03, which has the strongest overlap, the static simulations fail com-

pletely. 
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Improvements from Multiple-Field DAS 

To improve the overall accuracy and precision for the measurement of the 

isotropic chemical shifts and quadrupolar coupling products, the DAS measurement 

should be made at more than two fields. In this case, the system of equations which re

late the measured isotropic shifts to the isotropic chemical shift and second-order 

quadrupolar coupling products are over-determined. 

-10 -30 -50 -70 -90 

Frequency (ppm from 1M 87RbN03) 

Figure 7.4 RbN03 Spectra at Four Field Strengths. (a) 11.7T, (b) 9.4T, (c) 7.0T and (d) 
4.2T. 

This opens the possibility of a linear least-squares fit of the isotropic shifts when plotted 

versus the reciprocal of the field strength squared. Figure 7.4 shows the RbN03 spectra 

measured at 11.7 T (a), 9.4 T (b), 7.0 T (c) and 4.2 T (d). Notice in figure 7.4 that the 
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overall resolution in ppm seems to get worse as the field strength gets larger. In fact the 

linewidth will remain approximately constant in units of Hertz (about 150Hz in this case) 

and will appear larger in units of ppm (normally used in all reported measurements) as 

the field is reduced. This means that the error bars on the lower field isotropic shift mea

surements will·become larger and larger. This fact must be accounted for in the linear 

least squares analysis of the best fits (see figure 7 .5). To do this, the contribution of each 

point to the lease-squares chi-squared value must be weighted by the error in the mea

surement of that point. Figure 7.5 shows the plot of the measured isotropic shifts versus 

the reciprocal of the field strength squared. The best fits through each of the sets of 

isotropic shifts are shown. 
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Figure 7.5 RbN03 Linear Regression of Isotropic Shifts versus 1/ B5 

.. ...... 

0.05 0.06 

This linear regression gives significant improvements in the overall errors. Figure 7.4 

shows the DAS spectra at the four field strengths and Figure 7.5 shows the actual linear 

regression best fit. Table 7.3 gives the compiled final results and errors. As observed, 

the errors are about half as large as with only two fields (table 7.1). The isotropic shifts 

are all given in units of ppm and the quadrupolar coupling product is in units of MHz. In 

addition, when these results are compared to those from single site simulations (see next 

146 



section), the values for the quadrupolar and chemical shift parameters are much closer to 

the correct values. 

04.2T 
obs 01.0T 

obs 09.4T 
obs 011.1r 

obs 0~CS) 
lSO PQ 

-48.4±3.0 -34.4±2.0 -32.0±1.0 -29.0±1.0 -26.8±0.8 1.72±0.06 

-67.5±3.0 -39.8±2.0 -36.0±1.0 -32.0±1.0 -26.8±0.8 2.36±0.04 

-55.3±3.0 -40.2±2.0 -37.0±1.0 -34.0±1.0 -31.6±0.8 1.81±0.05 

Table 7.3 8?RbN03 Multiple Field DAS Results. Isotropic chemical shifts and 
quadrupolar products were calculated from a linear regression analysis of the isotropic 
shifts versus I/ BJ as in figure 7.6. 

Improvements from MAS-Detected DAS 

MAS detected DAS50 was performed at both 9.4T and 11.7T (figures 7.6 and 7.7 

respectively.) These spectra show a high resolution DAS dimension as well as a pure

phase MAS detected anisotropic dimension. Slices through each DAS peak yield accu-

rate MAS lineshapes for each site. Figure 7.8 shows the simulation of each of the three 

sites and table 7.4 gives the most precise (because there is only one external standard) and 

accurate (essentially more data points are effectively involved in the calculation than in 

multiple field methods) 87RbN03 quadrupolar coupling and chemical shift parameters 

measured. In addition, by using both fields, even greater accuracy may be achieved by 

simulating both field spectra at the same time. This approach has been used previously 

for multiple site 17Q spectra48 (see chapter 8). The pulse sequence used to collect these 

spectra is the double-hop DAS sequence described by Mueller et al. 50 This sequence 

achieves pure-absorption mode spectra by taking a hypercomplex data set in tt. The 

overall signal-to-noise ratio is greatly reduced as compared to the hypercomplex SEDAS 

experiment (by a factor of 8) due to the second z-filter storage period (used to store mag

netization while we reorient the spinner between the second DAS angle to the magic-an

gle 54.74.) and the lack of an echo in the second dimension. However, in the case of 
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87RbN03, the relaxation times and absolute signal intensity make collection of a MAS 

detected DAS spectrum quite feasible. 
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Figure 7.6 RbN03 9.4T 20 MAS detected DAS Contour Plot. Single site MAS slices 
through each isotropic peak in the DAS dimension have been extracted and are displayed 
to the right of the contour plot. 
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Figure 7.7 RbN03 11.7T 20 MAS detected DAS Contour Plot. Single site MAS slices 
through each isotropic peak in the DAS dimension have been pulled out and are displayed 
to the right of the contour plot. 

In the 9.4T MAS detected DAS spectrum, figure 7.6, the site with a nearly zero asymme

try parameter at -32 ppm is clearly separated from the other two sites. The slice through 
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this peak may be fit easily with a single high speed MAS pattern. The other two sites 

overlap too much and the sum of the slices through these peaks must be simulated with 

two patterns. In the case of 11.7T MAS detected DAS, figure 7.7, all three sites are 

cleanly separated and may be simulated individually. Figure 7.8 shows each of the three 

slices through the isotropic DAS peaks at 11.7T, along with the best fit simulations. The 

parameters and error bars for these simulations are given in table 7.4 below. 

-10 

-20 

-30 

-40 

-50 Frequency (ppm from 1M 87RbN03) 

Figure 7.8 RbN03 Single Site MAS Slices and Simulations at 11.7T. Best fit parameters 
are given in table 7.3. 

The isotropic shifts from these simulations agree quite well with the results from the four 

field linear regression fit of the isotropic shifts. The same type of simulation was per

formed on the 87RbC104 MAS spectrum, yielding the results in table 7.4. The advantage 

with the MAS detected DAS method is that in this case, only a single field strength is 

needed with only a single experiment. The errors from this method are even less for the 

quadrupolar coupling constants than in the multiple field experiments of the previous 

section. The errors in the measurement of the isotropic chemical shifts, however, are 

larger since these are primarily systematic errors due to the external 1M 87RbN03 fre-
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quency reference. The combination of both the multiple field measurements and the 

MAS detected DAS experiments leads to the highest overall accuracy and precision in the 

determination of these parameters. 

Compound O~~S) (ppm) CQ (MHz) 11 

RbCl04 -16.2±1.0 3.20±0.05 0.10±0.05 

RbN03 -26.2±1.0 1.83±0.05 0.12±0.05 

-26.8±1.0 2.39±0.07 1.00±0.05 

-30.9±1.0 1.91±0.05 0.48±0.05 

Table 7.4 87Rb Isotropic Shifts from MAS Simulations. The RbCI04 values come from 
the simulation of the MAS spectrum (figure 7.2b) while the RbN03 values come from the 
simultaneous simulation of the 9.4T and 11.7T slices from figures 7.7 and 7.8. 

Finally, the quadrupolar coupling constants for 87RbN03 may be compared to 

those measured by Segel136. In those low field measurements, he measured coupling 

constants of 1.76, 1.80 and 2.20 MHz and asymmetry parameters of0.17, 0.48 and 0.91 

for the three sites respectively. These are in very good agreement with the values mea

sured with DAS experiments. 

Theory of Coupling Constants from Crystal Structure 

The RbN03 coupling constants also provide a good example to demonstrate how 

to use the measured quadrupolar information to assign resonances to actual sites in the 

crystal structure. To do this, we assign a point charge to each of the atoms in the RbN03 

crystal structure. If for instance, we choose + 1 for the rubidium atoms and -1/3 for each 

of the oxygen atoms, we may then calculate EFG tensor at each rubidium site. To do 

this, we use the unit cell centered at the origin and the 26 unit cells which directly sur

round the origin. The electric field gradients are calculated using the formula given be

low. 
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-eq -eq 
V(xo.Yo·Zo) =-= ~ 2 2 2 

r ( x - xo) + (y - Yo) + ( z - Zo) 

iPV(xo.Yo·Zo) = V a= eq(r28(a-f3)- 3af3) 
aaaf3 af' r 5 

(7.4) 

Where a,/3 are coordinates x,y,z and 8 ( a-/3) is a Dirac delta function. With each electric 

field gradient (EFG) tensor element known, we may then diagonalize the tensor to get the 

principal axis values for Vxx, Vyy and Vzz. To convert these values into CQ and Tl values, 

we need to use the relationships that relate V a~ to quadrupolar coupling constants. In ad

dition we need to know the Stemheimer anti-shielding factor. In the case of RbN03 we 

have calculated EFG values (see table 7.5) for a variety of point charge distributions. 

Changing the values of the charges changes the absolute size of the EFG tensor values, 

but does not appreciably change the asymmetry parameters. Therefore, we may assign 

each DAS peak to a site in the RbN03 crystal structure (unit cell not shown). 

Rb Charge N Charge 0 Charge Site Co (a.u.) Tl 

+0.70 -0.10 -0.20 1 3.5 0.31 

2 3.4 0.59 

3 3.5 0.97 

+1.00 -0.10 -0.30 1 3.4 0.30 

2 3.4 0.61 

3 3.5 0.94 

+0.60 +0.10 -0.23 1 3.4 0.29 

2 3.4 0.72 

3 3.5 0.81 

+0.40 -0.10 -0.10 1 3.4 0.32 

2 3.4 0.55 

3 3.5 0.97 

Table 7.5 8?RbN03 EFG Values From Crystal Structure. These calculations were carried 
out over a large number of unit cells and the EFG values were calculated and averaged 
for the thirty inner most Rb sites (out of almost 250 total). 

Application of CPDAS to organic compounds 
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The use of solid state NMR to study biologically active and interesting com

pounds has been one of the longtime goals of many researchers. Techniques such as rota

tional resonance (R2), spin echo double resonance (SEDOR), rotational echo double res

o~ance (REDOR) and transferred echo double resonance (TEDOR) have been used suc

cessfully to measure distances at specific sites in a number of biological samples by re

search groups at MIT and Washington University. 137·138 These techniques look primarily 

at the IH, 19p, 13C and 15N nuclei in labeled compounds. The important oxygen nucleus 

has been studied much less. The primary reasons for this lack of 17 0 information stems 

from its low gyromagnetic ratio ( 117 of I H), strong quadrupolar interactions and low nat

ural abundance (0.037% ). Isotopic substitution may be used to over come the last prob

lem and large magnetic fields may be used to fight the first (and to some degree the sec

ond). The strong second-order quadrupolar broadening in 17Q compounds is the largest 

obstacle remaining. 

Recent developments in DAS have allowed us to begin to look more closely at 

17 0. Specifically in the case of biological samples, decoupling of the I H nuclei is essen

tial for high resolution. In addition, the long 17Q relaxation times and low sensitivity 

may be overcome with cross polarization techniques (as described in chapter 5). We 

have begun preliminary studies of L-alanine, one of the simplest amino acids which· is 

present in virtually all proteins and peptides. The 20% enriched sample was made by H. 

Zimmerman by acid catalyzed exchange of oxygen in I7Q labeled water. The relaxation 

times in this compound are quite favorable for DAS, with a 700 ms 1 H relaxation time 

(this determines the experimental repetition rate) and 2.5 s for the 17Q (which determines 

the minimum rotor reorientation time). 

For the cross polarization experiments on l7Q labeled L-alanine at 7.04 T the 3/4" 

static coil DAS probe designed by Mueller et al.51 was refitted with a double tuned •H-

17Q rf circuit capable of absorbing 500 W decoupling pulses on the lH channel (301.2 
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MHz). The circuit used is a standard one described previously by Doty et az.l39,l40 The 

IH and 11Q central transition selective pulses were both approximately 7 ps. The dwell 

times were 12.5 J.lS in the t2 dimension and 18 J.lS in the tt dimension (after shearing). 

The angle pair was the usual o· -63.43" (k = 5) to obtain maximum CP efficiency. 
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Figure 7.9 lH Decoupled Two-Dimensional I7o CPDAS Spectrum of Alanine at 7.0T. 
The experimental parameters are given in the text. The two isotropic peaks are labeled 
with arrows. All other peaks in the DAS dimension are spinning sidebands. 

The spinning rate was 6 kHz and the hopping time was 35 ms. In these experiments, 256 

points were taken in the anisotropic dimension and 117 in the isotropic DAS dimension. 

The data in figure 7.9 was zero-filled to 256 x 256 for final processing. L-Alanine has 
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two crystallographically distinct oxygen sites in the unit cell141 • The two isotropic peaks 

for the distinct oxygen sites in L-alanine were observed at 51±4 and 80±4 ppm from the 

l7Q labeled water standard. All other peaks in the spectrum in figure 7.9 are spinning 

sidebands. 

The spectra of alanine taken at 11. 7T used a standard single tuned probe. 51 At 

this high (500 MHz) proton frequency, no decoupling could be achieved and the oxygen 

lines are significantly broader (almost a factor of 10) than in the decoupled spectrum at 

7.04T. 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

100 200 300 400 

Frequency (ppm from H2
170) 

Figure 7.10 Undecoupled 17o MAS and DAS Spectra of Alanine at 11.7T. The ex
perimental parameters for these experiments are given in the text. The isotropic peak in 
the DAS spectrum occurs at 200 ppm; all other peaks are spinning sidebands. 
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The 1C/2 selective pulses were again 7.0 Jls; most other parameters were similar to those 

used at 7.04 T. Figure 7.10 shows both the MAS and two DAS spectra for the same ala

nine sample as in figure 7.9. The MAS spectrum shows a broad powder pattern with a 

number of singularities. The two peaks in the DAS spectrum are not clearly resolved and 

are both assigned an isotropic shift of 200±7 ppm. Using the two field results (just as in 

the case of the 87Rb salts of the previous section) we may calculate the isotropic chemical 

shifts and quadrupolar coupling products for the two sites in alanine. These results are 

compiled in table 7.6 below. 

Site 

1 

2 

51±4ppm 

80±4 

011.1T 
obs 

200±7 ppm 

200±7 

PQ (MHz) 

8.1±0.3 MHz 

7.2±0.3 

285±8 ppm 

268±8 

Table 7.6 17o L-Alanine DAS Results. Multiple field measurements from figures 7.9 
and 7.10 are tabulated along with the calculated quadrupolar products and isotropic chem
ical shifts. The error bars are indicated and arise from the overall width of the peaks in 
the DAS spectra. 

These values for the quadrupolar coupling products are in good agreement with the size 

of the quadrupolar coupling constant measured for the carboxyl oxygen atoms in similar 

compounds with NQR. Additional experiments are currently underway which will apply 

the techniques of CPDAS and DAS to other organic compounds with the long term goal 

of examining larger biologically active molecules. 
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Chapter 8 

Application of DAS to silicate materials 

The use of dynamic-angle spinning to study silicate samples has so far proven to 

be probably the most important application of this experiment. The 17Q nucleus, along 

with the 29Si nucleus, is in one of the pivotal locations in silicate materials. There are 

two common types of oxygen environments in silicate samples, first those which are 

covalently bonded between two other atoms (bridging oxygen atoms), usually silicon, 

(but also others, for example aluminum, phosphorus or boron) and second those which 

have a single covalent bond to a silicon atom and therefor a net negative charge balanced 

by neighboring cations such as sodium, potassium or calcium. A third type has been 

found in some high pressure systems, where oxygen forms three covalent bonds to 

neighboring silicon atoms. This third type is very uncommon and will not be discussed 

here. The use of NMR to look at 17 0 has becoming increasing! y popular in the last ten 

years, due to the construction of high field magnets (greater than 9 T) and high speed 

spinning probes (greater than 10 kHz). The measurement of 17 0 quadrupolar coupling 

parameters has been an important goal, since these parameters are strongly correlated to 

the local microscopic structures142. Some of the most important early contributions were 

made by Oldfield et a/.72•73•78•97•104•143-151 Included in this list of references are pioneer

ing MAS experiments on a series of modified silicate materials, including wollastonite, 

diopside and forsterite. In recent years, DAS has been applied to the study of similar ma

terials and the reader is referred to work done by Pines et a/.45-48 Some of this work will 

be discussed in this thesis, as well as the previously mentioned thesis by Mueller. 15 

Crystalline Silicates 

In this section, I will describe studies of a variety of I7Q labeled pyroxene mineral 

samples which have previously been examined by. Timken et a/. 150 with MAS and by 
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Mueller et al.45 using DOR and DAS. Specifically, the isotropic shifts and quadrupolar 

coupling products (defined below) of diopside, clinoenstatite, forsterite, wollastonite and 

larnite were measured.48 In the past, in order to measure these parameters using NMR, 

the static, magic angle spinning (MAS) and variable angle spinning (VAS) spectra for 

compounds containing half-odd integer nuclear spins had been deconvoluted into 

individual lines using powder pattern simulation programs (see chapter 2). This type of 

analysis is often quite accurate. However, when more than two or more overlapping sites 

are present, it is difficult to extract meaningful parameters without significant errors. As 

has been shown throughout this thesis, the application of dynamic angle spinning (DAS) 

NMR to systems with quadrupolar nuclei allows significant narrowing of the MAS 

linewidths, usually by more than an order of magnitude and therefore a corresponding 

increase in accuracy. 

For nuclei with large quadrupolar coupling constants and small dipolar couplings 

due to either low gyromagnetic ratios or low natural abundance (less than 50%), DAS 

may often give substantial narrowing of the lines without generating the large number of 

spinning sidebands often found in double rotation experiments (DOR). This is especially 

important when there are a large number of magnetically_ inequivalent sites, such as in 

wollastonite which has nine distinct oxygen sites. As has been mentioned earlier in this 

thesis, by comparing the DAS spectra collected at two different magnetic field strengths 

the isotropic peaks are seen to shift (in ppm), just as in the studies of 87Rb salts (see 

chapter 7). This is expected as the isotropic peak in a DAS experiment expressed in units 

of parts per million (ppm) is actually the sum of the isotropic chemical shift and the 

isotropic 2nd-order quadrupolar shift (see equation 7.1 and discussion). 

- ~ ~(2Q) 
8obs - Uiso,cs + uiso (8.1) 

The observed isotropic chemical shift (in ppm) is constant at all field strengths and there

fore doesn't exhibit any shift between 9.4 T and 11.7 T. However, the isotropic 2nd or-
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der quadrupolar shift (in ppm) is inversely proportional to the square of field strength and 

therefore becomes much smaller as field strength is increased. 

(2Q) 
c5~2Q) = (J)iso X 106 

ISO (J)[ 

= -3 x 10
6 c~{I{I + 1)- -i) (1 + 71~) 

40m[I2 (2/-1)2 3 

-3xl06 {1{1+1)--i) 2 - p 
- 40m[I2 (2/-1)2 Q 

(8.2) 

Substituting in the values for 11Q (/ = 5/2, mt,9.4T= 54.245 MHz, m1,11.1T= 67.898 MHz) 

yields the following pair of linear equations for siso,cs and p Q where these are given in 

units of ppm and MHz respectively. 

o:b~T = Oiso,cs- 2.03691P~ 
(8.3) 

In fact using the isotropic shifts from two fields allows one to solve two simultaneous 

equations relating the coupling product p Q and the isotropic chemical shift siso,cs. 

All of the 17Q labeled crystalline mineral samples were prepared by Prof. J. 

Stebbins and coworkers following a procedure already reported 14•45. The diopside was 

isotopically enriched with 17Q uniformly to the 20% level, while all other samples were 

40% enriched. The phase identities and stoichiometry of these materials were all 

analyzed using 29Si and 17Q NMR and had shifts which agreed with previously reported 

values. In addition, these findings were confirmed by powder x-ray diffraction. The 

forsterite sample was slightly off-stoichiometry and contained 25% clinoenstatite but this 

did not affect the final NMR measurements significantly. The unit cell structures of these 

compounds has been reported before as well152-156 and are shown below in figure 8.1. 
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(a) Diopside (b) Forsterite 
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(J 0 
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(c) Clinoenstatite (d) La mite 
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Figure 8.1 Crystal Structures of Some Pyroxene Silicate Minerals. The unit cells for 
diopside, clinoenstatite, wollastonite, larnite and forsterite are shown. The numbers 
indicate the distinct sites for each type of atom in the crystal structure. This figure is 
taken with permission from the thesis by Mueller15. 

All of the NMR spectra at 9.4 T were recorded on a Broker AM-400 spectrometer 

in a 89 mm widebore magnet, while the spectra at 11.7 T were recorded on a 

Chemagnetics CMX-500 spectrometer in a 89 mm widebore magnet. The DAS probes 

used for these experiments were homebuilt using a design detailed by Mueller, et af.l5,5l 

The pulse sequences and phase cycles used to collect the data were the original DAS type 

described previously in chapter 3. The rf-pulse widths were calibrated to selectively ex

cite only the central (-112 to 112) transition of 17Q and were usually in the range of 4 to 6 

JlS for the 1C/2 pulses (equivalent to a tr/6 solution pulse). All data was taken with k = 1 

159 



where the first angle was set at 01 = 37.38° and the second angle set at 82= 79.19°. The 

usual hopping time between these two angles ranged from 25 ms to 35 ms, which was 

significantly shorter than the T1 for these compounds. A 1 s to 5 s recycle delay was used 

for most of the experiments arid the spinning rate was usually between 6 and 7kHz. We 

sampled between 128 and 512 t1 points for these compounds giving a digital resolution of 

approximately 0.5 ppm. All 17 0 peaks were referenced externally to a sample of 37% 

H217Q in a small ampoule placed inside a DAS rotor. 

All of the simulations of quadrupolar powder patterns were done on a Stardent 

Titan computer. To extract the quadrupolar parameters, a program, MINUITQ, was 

written which calculates 2nd order quadrupolar powder patterns spinning about any ; 

single axis (see appendix to this thesis). This program simulates only the central 

transition for half-odd integer nuclei and assumes that no intensity is lost in spinning 

sidebands. The experimental spectra were fit using a standard AMOEBA simplex routine 

from Numerical Recipes in FORTRAN157 or MINUIT, a minimization package from 

CERN. These algorithms allow rapid convergence by minimizing the root mean square 

deviation between the simulated and the experimental spectra. Each fit takes 

approximately 2,000 to 10,000 iterations to achieve a best fit with each iteration taking 

about 0.4 seconds per powder pattern. By using the quadrupolar parameters and isotropic 

chemical shift values determined directly from the one-dimensional DAS. spectra, we are 

able to fix the isotropic shift and the value of P Q which limits the simplex to only 4 

variable parameters per site, which are the asymmetry parameter, 1JQ, the total intensity, 

the lorentzian broadening, and the Gaussian broadening for each site, under rapid magic

angle spinning. Finally, we are able to fit multiple experimental spectra simultaneously. 

Thus by simulating MAS spectra at both 9.4T and 11.7T, we may place a large number of 

constraints on our simulations. This allows more exact determination of the asymmetry 

parameter, 1JQ, and therefore the quadrupolar coupling constant, CQ. 
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Figure 8.2 shows the DAS, DOR and MAS spectra of these six minerals previ

ously reported. 15•45 It is observed that in all cases, the DAS spectra show the same num

ber of isotropic sites as are present in the crystal structure. In the wollastonite spectrum, 

two of the bridging sites overlap at 28 ppm, giving a peak twice as intense as the third 

bridging site at 22 ppm. 

Magic-Angle Spinning Dynamic-Angle Spinning Double Rotation 

Diopside 

Cli noenstati te 

Wollastonite 

140 120 100 80 

Frequency (ppm from H2170) 

Figure 8.2 Crystalline 9.4T DAS, DOR and MAS Spectra. The MAS spectra are very 
similar to those observed by Timken et at. 150 and all spectra are shown with permission 
from the thesis by Mueller. 15 The MAS and DOR spectra were taken with standard one
pulse experiments while for the DAS spectra the original DAS pulse sequence was used. 

The large number of spinning sidebands in the DOR and the second-order quadrupolar 

broadening in the MAS make interpretation of these more difficult. The comparison of 
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the DAS to the DOR spectra immediately identifies the isotropic shifts and these are 

compiled in table 8.1. 

Figure 8.3 shows the DAS spectra of the various pyroxene silicates taken at 11. 7T 

(67.797 MHz). No DOR spectra were performed for these compound at this field. MAS 

experiments were conducted for all compounds though only the MAS of diopside at 

11.7T is shown in figure 8.5. The signal-to-noise ratio of the clinoenstatite spectrum was 

significantly worse than in the previous experiments at 9.4 T. 

Forsterite 

Diopside 
' 

Clinoenstatite 

Wollastonite 

II I I I II I I I II I I I II I I I II I I I II I I I II I I I II I I I I 

160 120 80 40 0 

Frequency (ppm from H2 
170) 

Figure 8.3 Crystalline 11.7T DAS Spectra. All spectra are shown on the same scale 
referenced relative to H2I7o. The isotropic peaks in the clinoenstatite and Jarnite spectra 
were determined by performing these experiments twice, however the signal to noise dic
tates that the errors in the measured isotropic shifts will be approximately twice (or ±2 
ppm) those in the other spectra. 
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This is probably due to the fact that some of the sample was lost over the course of these 

and other experiments and therefore the overall signal was significantly reduced. Both 

the clinoenstatite and lamite DAS experiments were performed twice and peaks appeared 

at the positions given in table 8.1 in both sets of experiments. In the case of wollastonite, 

the number of resolved peaks is reduced from six non-bridging and two bridging sites at 

9.4 T to five non-bridging and two bridging sites at 11.7T. The most intense bridging 

peak again is the sum of two sites, just as in the 9.4T experiment. Also, the most intense 

non-bridging peak (at 92 ppm) is the sum of two sites with different quadrupolar coupling 

constants which are apparently crossing meaning that· the isotropic chemical shift of the 

one with the larger quadrupolar coupling constant is greater than the isotropic chemical 

shift of the other, leading to the possibility that at a given field they will have identical 

total isotropic shifts. If this experiment could be performed at a field as high as 14 T, this 

peak would probably again split into two peaks. 

The isotropic shifts at both 9.4 T and 11.7 T, as well as the calculated isotropic 

chemical shifts and quadrupolar coupling product, P Q are listed in table 8.1 for each of 

the compounds studied. There is some ambiguity as to the assignment of the peaks in the 

wollastonite spectra between the two fields, however it is reasonable that the quadrupolar 

coupling constants should be relatively similar in both the bridging and the non-bridging 

region: Thus the order of the peaks should not change significantly. It may be shown 

that changing the order (and therefore the assignment in table 8.1) of any of the 11.7 T 

peaks will dramatically affect at least 2 of the isotropic shifts and coupling products. 

Thus we feel that the assignments below are quite reasonable. 
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Compound o;b~T (ppm) o!1~1T (ppm) Oiso,cs (ppm) PQ(MHz) 
117.3 123.3 133.9 2.9±0.2 

Larnite 113.3 118.5 127.8 2.7±0.2 
(Ca2Si04) 108.8 113.4 121.6 2.5±0.2 

106.3 112.0 122.1 2.8±0.2 

Diopside 69.2 75.1 85.6 2.8±0.2 
(MgCaSi206) 48.5 54.0 63.8 2.7±0.2 

28.6 43.3 69.5 (b) 4.5±0.1 

39.3 45.5 56.6 2.9±0.3 
Clinoenstatite 34.5 44.1 61.2 3.6±0.3 
(MgSi03) 32.3 42.0 59.3 3.6±0.3 

26.3 39.0 61.7 4.2±0.3 
18.0 36.8 70.3 (b) 5.1±0.2 
15.0 34.7 69.8 (b) 5.2±0.2 

Forsterite 49.0 57.1 71.5 3.3±0.3 
(Mg2Si04) 49.0 54.8 64.3 2.7±0.3 

30.8 37.5 49.4 3.0±0.2 

103.4 107.4 114.5 2.3±0.2 
Wollastonite 100.1 105.1 114.0 2.6±0.2 
(CaSi03) 96.5 100.2 106.8 2.3±0.2 

89.0 91.9 97.1 2.0±0.2 
85.8 91.9 102.8 2.9±0.2 
74.3 79.3 88.2 2.6±0.2 
28.2 44.9 74.6 (b) 4.8±0.1 
28.2 44.9 74.6 (b) 4.8±0.1 
21.6 37.8 66.6 (b) 4.7±0.1 

Table 8.1 Isotropic Chemical Shifts and Quadrupolar Coupling Products from Two Field 
Studies. The isotropic shifts measured from the spectra in figure 8.2 and 8.3 were used to 
compute the isotropic chemical shifts and quadrupolar products for all of the oxygen sites 
in each of the six minerals. The isotropic shifts marked with a (b) indicated bridging 
oxygen sites. The errors for the observed isotropic shifts were ±1 ppm (except for Jarnite 
and clinoenstatite at 11.7T which had ±2 ppm errors) providing an isotropic chemical 
shift error of±2 ppm (±3 ppm for larnite and clinoenstatite). 

If the spectra could be collected at yet a third field (i.e. <7 Tor >14T) then these assign-

ments may become more clear. To calculate the isotropic chemical shifts and quadrupo-

lar coupling products, the coupled equations 8.3 were solved. The errors in the calculated 

parameters were computed using standard error propagation techniques. 
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In addition to these quadrupolar parameters, the magic angle spinning spectra of 

diopside at 9.4T and 11.7T were simulated using automated simplex routines. By effec

tively fixing the coupling product and the isotropic chemical shift values we were able to 

generate highly accurate values for the asymmetry parameters. This in turn allows us to 

recover the real quadrupolar coupling constant CQ which is proportional to the field gra

dient in the z-direction of the principal axes system of the nucleus. The experimental 

spectra and best fit simulations are shown in figure 8.4. The values we extracted agreed 

quite well with previous work. 150 

(a) (b) 

Experimental 

(a') (b') 

Simulation 

I I I I I I I I I I I I I I I I I I 

100 50 0 100 50 0 

Frequency (ppm from Hi70) 

Figure 8.4 Crystalline Diopside 9.4T and 11.7T MAS Spectra. The MAS spectra at 9.4T 
(a) are shown as well as at 11.7T (b). All spectra are shown with a ppm scale referenced 
relative to H217 0. The simulations (a' and b') were performed with the isotropic 
chemical shift and quadrupolar product parameters fixed to those in table 8.1. The simu
lation results are given in table 8.2. 

In table 8.2 below, the values extracted from the simulations of the diopside MAS spectra 

in figure 8.4 are compiled. Also shown are the parameters reported by Timken et al.150 

previously from single field diopside MAS simulations. There are no error bars for the 

Timken results, however, since these fits were done by hand without least-squares mini-

mization. Our results include actual error bars since the MINUIT subroutine calculates 

and uses gradients on the chi-squared surface. 
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Site 

1 

2 

3 

This Study Timken et a/.150 

~iso,cs {ppm) c0 (MHz) TJQ ~iso,cs {ppm) c0 (MHz) 

86±1 2.83±0.05 0.13±0.10 84 2.7 

64±1 2.74±0.05 0.00±0.10 63 2.7 

69±1 4.39±0.05 0.36±0.05 69 4.4 

Table 8.2 Diopside Quadrupolar Parameters. These quadrupolar parameters were ex
tracted by simultaneously fitting the MAS spectra in figure 8.4. The error bars are indi
cated in the table. 

TJQ 

0.0 

0.1 

0.3 

In the three chain silicates studied (diopside, clinoenstatite, and wollastonite), the 

occupancy of terminal oxygen sites in the structure is twice that of bridging oxygen 

species. In forsterite and larnite, all oxygen sites are non-bridging. Diopside, clinoen

statite, and wollastonite have three, six, and nine crystallographically distinct oxygen 

sites, respectively, and one, two, and three different bridging sites respectively. Referring 

to table 8.1, we note that the quadrupolar products PQ for the oxygen sites in the chain 

silicates are predominantly less than 4 MHz. Values higher than 4.3 MHz follow a 1:2:3 

ratio, respectively, for diopside, clinoenstatite, and wollastonite, suggesting that lines as

sociated with these values should be assigned to bridging sites. This observation is com-

patible with the results of Oldfield and coworkers in their studies of these and similar sili

cates150. The DAS technique now allows complete resolution of all sites, even in wollas

tonite. For this silicate with nine crystallographic oxygen sites, the NMR data now reveal 

six distinct terminal sites as well as two inequivalent bridging sites occurring in a 2:1 ra

tio. 

A number of trends are conspicuous when the isotropic chemical shifts for the 

various types of oxygen sites are examined. All of the bridging sites have isotropic 

chemical shifts to within 4 ppm of 71 ppm, referenced to the single oxygen-17 resonance 

from H217Q. This is an extremely small deviation considering the wide range of chemi

cal shifts which have been reported for oxygen-17.158 Here, however, all of the oxygen 
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sites are quite similar and differ only in the identities of neighboring cations. As noted by 

Oldfield and coworkers, 150 the chemical shifts of the bridging oxygen atoms is generally 

less sensitive to the nature of the nearby cations due to the distance separating the oxygen 

nuclei and the cations. 

Chemical shifts of Si-0 terminal sites are more strongly dependent on the 

cations present. The deshielding of the oxygen nucleus as the effective ionic radius of the 

cation increases has been established empirically150 and when the cations are magnesium 

ions (as in forsterite and clinoenstatite), the isotropic chemical shifts calculated range 

between 49 and 72 ppm. When calcium ions are present exclusively (wollastonite and 

lamite), the isotropic chemical shifts for the ten sites lie between 88 and 134 ppm. In the 

mixed cation compound (diopside), both terminal oxygen sites had intermediate chemical 

shift values (64 and 88 ppm). Thus it appears that each oxygen in diopside experiences 

an averaged chemical shift value from the surrounding cations. 

Similar trends are also observed when the quadrupolar coupling products are ex

amined. For the bridging sites, P Q values range between 4.5 and 5.2 MHz. This again is 

a very small range considering that oxygen-17 coupling constants as large as 12 MHz are 

observed for sites with similar coordination or stoichiometry159. For the terminal sites in 

the magnesium-containing minerals PQ values from 2.8 to 4.2 MHz are found. For simi

lar sites near calcium cations the experimentally determined values are generally lower 

and fall between 2.0 and 2.9 MHz. Since the electronegativities of both cations are quite 

similar, the electric field gradients near these ions are only slightly dependent on the type 

of ion itself. The quadrupolar coupling products for terminal sites in diopside, which 

both fall close to the overlap point of the ranges for the two types of cations, tend to sup

port the argument that an average environment is experienced at these sites. A more 

noticeable difference is between the bridging and terminal oxygen quadrupolar environ

ments since the field gradients at bridging sites are almost double those at terminal sites. 
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Finally, from the MAS simulations at the two fields, the values for the asymmetry 

parameter, 1JQ, at each of the three sites in diopside were determined (table 8.2). This 

provides additional information above and beyond the coupling product, P Q· It also al

lows us to determine with greater precision the value of the actual quadrupolar coupling 

constants CQ. giving a quantitative description of the strength the field gradient at each 

site. Further, all sites in diopside have asymmetry parameters near zero, indicating that 

the x and y gradients are of approximately the same strength. The asymmetry parameter 

of the bridging oxygen also may be correlated with the bridging Si-0-Si bond angle de

termined from the crystal structure (see the next section). When many such bond an

gle/asymmetry parameter correlations have been determined, this information may be 

used to determine an unknown bond angle from quadrupolar parameters.46 

In conclusion, we have shown that by performing field-dependent DAS experi

ments on oxygen-17 in minerals, parameters are obtained which can be directly corre

lated with structural information. Trends are recognized in the isotropic chemical shifts 

and the quadrupolar coupling strengths for a series of silicate minerals. It has been 

demonstrated that these parameters depend on the type of oxygen crystallographic site 

and the neighboring cation present in the crystals, corroborating extensive earlier studies 

but further providing information on all oxygen sites present in certain complex silicate 

minerals. 

Amorphous Silicates 

The difference between a glass and a crystal lies in disorder present in the inter

mediate-range glass structure that eliminates long-range translational symmetry (see fig

ure 8.5). Characterization of disorder is an important experimental objective because it is 

a critical test of the accuracy of models of glass structure. In pure silica glasses (Si02), 

the basic building block is the Si04 tetrahedron which form a three-dimensional network 

with the overall disorder coming in the range of Si-0-Si bond angles made by joining 

\. 
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tetrahedra at the corners. 160 This distribution of bond angles in Si02 has been exten

sively studied with both X-ray and NMR techniques.67•161-167 

a) b) 

Figure 8.5 Comparison of A203 Crystal and Glass Lattice Structures. The two structures 
represent possible planar configurations for a sample with A203 stoichiometry._ The dark 
circles represent A atoms while the open circles represent oxygen atoms. Notice that the 
A03 building block used in both structures preserves basically identical A-0 bond 
lengths and 0-A-0 bond angles. The primary difference lies in the distribution of A-0-
A bond angles leading to the wide range of rings in the glass as opposed to the strict 180. 
bond angle with six sided rings in the crystal. 

Figure 8.5 shows a possible planar structure for both a crystal and a glass with the A203 

stoichiometry (for example B203). This figure could be thought of as a two-dimensional 

analog of the three-dimensional lattices formed from A02 glasses (such as Si02). It is 

immediately apparent that in the crystal, the A atoms are always surrounded by three 

oxygen atoms with strict 120° bond angles; each 0 atom forms a distinct 180° b9nd as 

well. The glass structure maintains the basic A03 building block with 120° bonds, 

however now the connecting A-0-A bonds are no-longer 180°. With only a very slight 

increase in the overall energy of the crystal structure, the glass structure may be formed. 

This indicates some of the basic local order trends seen in three dimensional glasses. 
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Figure 8.6 Insertion of Modifying Cations into Silicate Glasses. The insertion of a K20 
"molecule" into the Si02 glass lattice causes the creation of two non-bridging oxygen 
atoms from a bridging oxygen. The distribution of these modifying cations throughout 
the glass may proceed in either a random or partially random fashion as the modifying 
cation concentration is increased. 

In network-modified silicate glasses, the continuous disordered network of Si04 

tetrahedra is presumed to be disrupted by modifying cations which create non-bridging 

oxygen atoms (oxygen atoms bonded to only one silicon atom). 168 Figure 8.6 shows how 

the addition of a modifying cation (in this case in the form of KzO) creates non-bridging 

oxygen sites in a silicate. glass. Two principal sources of disorder are thought to be this 

disruption of the network and the distribution of bond angles (Si-0-Si) between network 

forming cations (as mentioned previously). It is well established experimentally that the 

silicon and oxygen are ordered locally in network modified-silicate glasses, and that the 

Si04 tetrahedra remain the basic structural unit. From extended X-ray absorption fine 

structure (EXAFS) studies of modified cations, we know that they too are regularly 

coordinated by oxygen, 169•170 having coordination polyhedra and bond lengths similar to 

those in crystalline silicates. Isotopically substituted neutron scattering has also shown 

that ordering associated with modifier cations extends beyond the first coordination 

sphere, by detecting strong correlations between Ca-Ca as well as Ca-0 distances in 

CaSi03 glass171 •172• This is consistent with 29Si NMR studies of silicate glasses, which 

show that the distribution of non-bridging oxygen atoms is not random, being close to 

binary165•173; the deviation from a binary distribution depends ori the electronegativity of 
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the network modifier and on the glass transition temperature. Taken together, these 

experimental data indicate considerable order associated with network modification. 

Quantification of the remaining disorder associated with variations in bridging angles 

between network-forming cations is therefore importaiit. 166,l67 

Volumetrically, silicate glasses are dominated by oxygen anions, yet despite this, 

the structure of silicate glasses has been studied almost entirely from the perspective of 

the cations and their coordination. For example, X-ray scattering experiments are most 

sensitive to scattering from cations (network-forming and network-modifying) that are 

heavier than oxygen anions, EXAFS experiments concentrate on network modifiers such 

as Na+ or Ca2+, and 29Si NMR experiments specifically observe signal from the network

forming cation. In this section, we investigate the local environments of the oxygen an

ions. As oxygen is the connecting atom between locally ordered tetrahedral environ

ments, the intermediate-range disorder in the glass will be reflected in the range of envi

ronments exhibited by these oxygen atoms. As shown in the previous section, 17Q NMR 

is a sensitive and direct way to characterize these interconnections. Previously, 1 7Q 

NMR has been used to study glasses with conventional static and MAS techniques. 159,174 

These methods of course are seriously hampered by both the anisotropic broadening 

arising from a range of crystallite· orientations and the distribution of local environments 

in a glass which lead to a continuum of sites. These two contributions to the lineshape 

may not be separated in an experiment such as MAS, since this fails to remove all of the 

anisotropic broadening arising from the second-order quadrupolar interaction (see chapter 

2). In contrast, the two-dimensional DAS experiment is well suited for this type of sys

tem, as this may be used to correlate high-resolution isotropic peaks in one dimension 

(which will be a broad distribution in a glass due to the continuum of sites) with the in

dividual powder patterns for each site in the second dimension (see chapter 3). 
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Experimental 

All of the spectra of silicate glasses in this section were taken with one of two 

types of home built probes designed by Mueller et az.5t and Eastman et a/.44 The usual 

field strength was either 9.4T or 11.7T to give the highest initial polarization and there

fore highest signal-to-noise ratios, since individual slices from the 2D DAS spectra were 

to be simulated. Additionally, the HyperSEDAS or SEDAS (see chapter 4) pulse se

quences were used since both the transverse and longitudinal (T2 and Tt) relaxation times 

for these samples were in general quite long (1-20 seconds). The pulse widths were 

usually between 3 and 7 JlS and the rotor reorientation times were often less than 40 ms. 

For the shifted-echo experiments, the DAS echo was usually shifted from 4 to 8 rotor pe

riods out in time (approximately 1 ms). The spinning rate was from 5 to 7kHz and the 

k = 1 angle pair was used for most experiments. In all glass spectra the time domain data 

in the t1 dimension rapidly decayed away due to the broad distribution of sites in the 

isotropic dimension and therefore usually only 40-70 total points were collected in this 

dimension. In the second dimension, usually 256 or 512 points were taken to provide the 

necessary digital resolution to see distinct features in the anisotropic powder patterns. 

The I 7 0 labeled glasses were again prepared by Stebbins and coworkers. The 

usual enrichment was between 35 and 50 percent and was achieved by the addition of 

17Q labeled water to SiC4 to produce isotopically labeled Si02 which was then used to 

make the glasses by combination with alkaline and alkaline earth metal oxides (often 17Q 

labeled as well). In general the glasses were quenched from the liquid state at about 

1100° to 1600° C in a vacuum oven to assure that no oxygen was lost or exchanged in the 

glass formation. In some cases, the samples were sealed in a Pt tube to allow quenching 

from even higher temperature than were possible in the vacut,Im oven (specifically this 

applies to the amorphous Si02). In all cases, stoichiometry and phase were tested with 

both 11Q and 29Si MAS NMR at Stanford before attempting DAS experiments. For more 

details of the synthesis see the thesis by Chmelka.47 
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Amorphous Silica (Si02) 

The study of amorphous Si02 with 17Q DAS represents the natural starting point 

for a discussion of silicate glasses (as a side note, chronologically this was not the first 

glass studied with DAS, however with the clarity of hindsight, this represents a more 

logical place to begin the discussion of silicate glasses). A range of different silica sam

ples were prepared by Stebbins and coworkers for study with DAS as well as some from 

Dupree and coworkers. In all cases the spectra were very similar for all kinds of silica 

glasses. Figure 8.7 shows the 2D DAS spectrum of amorphous Si02 taken at 9.4T with 

k = 1 (37.38° and 79.19° angle pair). 
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Figure 8.7 20 DAS Spectrum of Amorphous Si02. The isotropic dimension shows a 
single broad peak with spinning sidebands on both sides. The anisotropic slices are seen 
to increase in asymmetry parameter and decrease in quadrupolar coupling as the isotropic 
shift gets larger. 

Notice that the center band is quite broad (approximately 20 ppm full width at half 

maximum, FWHM) and the sidebands which appear to either side are fairly strong due to 

the large quadrupolar coupling in this sample ( quadrupolar coupling constant of about 5 

to 6 MHz). Also, the overall shape of the anisotropic slices changes as the isotopic shift 
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is increased. On the low frequency side of the isotopic peak, the asymmetry parameter 

for anisotropic slices is nearly zero. As the isotropic shift increases in frequency, the 

asymmetry parameter gets larger and the quadrupolar coupling constant gets smaller. 

This is observed in both this data and the data from 11.7T. Table 8.3 compiles the inten

sity, isotropic shift, quadrupolar coupling constant and asymmetry parameter for each of 

the 18 slices with significant intensity (slices which may be simulated) through the cen-. 
terband isotropic peak. The slice number corresponds to the absolute number of the slice 

through mt (for this data set, the t1 dimension was zero filled to 256 points). 

Slice Pop. 8iso,cs Slice Pop. Oiso,cs 

109 5.85 0.00 0.24 32.5 118 5.78 0.13 0.85 55.0 

110 6.00 0.00 0.44 40.2 119 5.70 0.15 0.79 55.5 

111 6.14 0.00 0.55 47.4 120 5.61 . 0.17 0.71 55.3 

112 6.18 0.02 0.65 51.4 121 5.53 0.18 0.61 55.7 

113 6.18 0.03 0.75 54.3 122 5.47 0.19 0.50 57.0 

114 6.11 0.05 0.83 54.6 123 5.43 0.20 0.40 59.0 

115 6.02 0.07 0.87 54.0 124 5.38 0.22 0.31 60.5 

116 5.93 0.09 0.89 54.0 125 5.12 0.26 0.22 55.6 

117 5.85 0.11 0.89 54.3 126 4.58 0.34 0.15 43.4 

Table 8.3 Si02 Anisotropic Slice Fits. The simulations were performed using the 
computer programs in the appendix with the assumption that the chemical shift 
anisotropy was negligible. 

It may be noted here that slices 109, 110, 125 and 126 have values for either the 

quadrupolar coupling or isotropic cherrucal shift which do not follow the trends observed 

throughout th~ rest of the table. This is due to the fact that the signal-to-noise ratio of 

these slices made simulation difficult and these values are to be given much less signifi-

cance than in the region of the peak (slices 116 and 117). Five of these slices (as well as 
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the best fit simulations) are shown in figure 8.8, along with indications of which slice in 

the isotropic peak they were extracted from out of 256. 

Experimental Slices Simulated Slices 
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Figure 8.8 Si02 Anisotropic Slices and Simulations. Five of the slices which were 
simulated in table 8.3 are shown along with the best fit. The slice number in the isotropic 
peak which they were extracted from is indicated. 

This distribution of quadrupolar and chemical shift parameters may then be used to ex

tract meaningful information about the amorphous silica. To do this the electric field 

gradients may be calculated based on either a point charge or a bonding electron model, 

much like in the previous chapter. These simple models may be applied to a simple 

molecule, such as H3Si-O-SiH3, to give us an indication of the size of the various EFG 

components as the Si-0-Si bond angle (a) is changed. It is immediately obvious that the 

molecule (shown in figure 8.9) will have identical x andy electric field gradients (where 

the z axis is defined by the line joining the two Si atoms) when the Si-0-Si bond angle is 

180° and therefore the asymmetry parameter will be zero. 
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Figure 8.9 Electric Field Gradient Model Compound;. The molecule H3Si-O-SiH3 may 
be used as a rough model to show the relative sizes of the EFG tensor as the Si-0-Si bond 
angle is changed. 

As this bond angle is reduced, the x-axis becomes defined by the plane made by the two 

silicon atoms and the oxygen atom (they-axis is of course perpendicular to the x- and z

axes ). At an angle of less than 180°, the x and y field gradients will no longer by identical 

and by definition (see equation 2.37) T1Q will be greater than zero. With simple point 

charge or electron bonding models it is impossible to assess accurately how rapidly the 

asymmetry parameter will grow towards the maximum possible value of one. Tossell 

and Lazzeretti have done a more thorough analysis of this molecule using modem ab 

initio molecular orbital calculation algorithms142. Figure 8.10 shows the characteristic 

quadrupolar coupling constants and asymmetry parameters calculated for this molecule 

when the Si-0-Si bond angle was 180°, 160° and 140°. 
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Figure 8.10 Ab Initio Quadrupolar Parameters for H3Si-O-SiH3. The quadrupolar 
coupling constant and asymmetry parameter were calculated using Gaussian algorithms 
for the angles tso·, 160. and 140·. Circles indicate values calculated by Tossell and 
Lazzeretti while square are experimental points from Stebbins et al. 
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The lines going through the points in these figures correspond to an empirical fit with the 

functions given below. 

C (LSi- 0- Si) = C (180o) 2cos(~Si-O~Si) 
Q Q cos(LSl-0-Sl)-1 (8.4) 

T/Q(LSi- 0- Si) = 1- cos( LSi- 0- Si) 

These equations describe Tossell and Lazzeretti's data reasonably well. The two squares 

in figure 8.10 indicate asymmetry parameters measured from simulations of MAS spectra 

of wadeite (134.7° bridging bond angle) and cristobalite175 (146.4° bond angle). Notice 

that these fall very near the empirical asymmetry parameter curve. 

The equation used to describe the asymmetry parameter in terms of the bridging 

bond angle may be inverted and used to convert our data in table 8.3 from intensity (or 

population) as a function of slice number into intensity as a function of bond angle. This 

involves two separate conversions. First, the data must be converted from intensity as a 

function of slice number (or isotropic shift) into intensity as a function of asymmetry pa-

rameter. This is equivalent to redefining the axis in the one dimensional isotropic spec-

trum from slice number (or ppm) into asymmetry parameter. This is not, however, a 

simple linear transformation and as such the intensity at each point must be rescaled by 

the gradient at that point. 
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I( 1J) =I( 8)~~~~ (8.5) 

The 8 in this equation indicates the isotropic shift of a given slice while 1J corresponds to 

the asymmetry parameter for that slice. These derivatives may be computed numerically 

by graphing the asymmetry parameter as a function of isotropic shift and empirically fit

ting the resulting curve. Additionally, the value of the asymmetry parameter may be ex

trapolated with an empirical curve to determine the bond angles in regions where the in

tensity is too low to simulate individual slices. The same procedure must be used to con

vert from intensity as a function of asymmetry parameter to intensity as a function of 

bridging bond angle, a. This however is not as difficult since we know a functional form 

for the gradient already. 

I(a)=I(7J)da =I(7J)sina 
d1] 

(8.6) 

This procedure leads to the bond angle distribution shown in figure 8.11 (reported first by 

Grandinetti et al. 116) 
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Figure 8.11 Amorphous Si02 Bond Angle Distribution. The squares are the bond angle 
distribution arrived at from the DAS spectral analysis. The line indicates the bond angle 
distribution found by Mozzi and Warren with X-ray scattering experiments. 
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The peak in this bond angle distribution occurs at approximately 150°. The absolute 

accuracy of this bond angle distribution is about ±3° at the peak and ±10° in the wings 

(where the simulations were of significantly reduced precision and extrapolation of the 

asymmetry parameters was used). 

A second approach to determine the bond angle is to use the equation relating the 

quadrupolar coupling constant to bond angle (equation 8.4). To do this, we again must 

use the equivalent Jacobian equations to rescale the axes from intensity as a function of 

slice number (isotropic shift) to intensity as a function of bond angles. 

I(a)=I(c )ldCQI=I(o)(2cQ(180")sina) do 
Q da (cosa-1)2 dCQ 

(8.7) 

This is slightly more difficult since we do not have an absolute value for the quadrupolar 

coupling constant at 180°. The simplest solution is to use the asymmetry parameter of the 

highest signal-to-noise ratio slice to determine the bond angle for that slice and use the 

empirical equation 8.4 to extrapolate to CQ(180°). This requires that both empirical rela

tions in equation 8.4 hold reasonably well, which may not be as accurate as in the case 

where only the asymmetry parameter i sused. However, when the quadrupolar coupling 

constants in table 8.3 are plotted against the isotropic shifts it is apparent that they form a 

nearly linear relationship which allows much greater confidence when extrapolating to 

the coupling constants in the outer slices. Also, the percent error bars on the quadrupolar 

coupling constants from the simulation are much smaller then those for the asymmetry 

parameters. Additionally, the linear relationship allows easy computation of the 

derivatives in equation 8.7. The bond angle distribution derived from this method is 

virtually identical to the one in figure 8.11. Also shown in figure 8.11 is the Si-0-Si 

bond angle distribution of Mozzi and Warren. 161 Both the DAS and X-ray scattering 

bond angle distributions show a number of similarities. First, they both have a sharp cut 

off on the low angle side. This corresponds to the point where steric hindrances make the 
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small bridging bond angles energetically unfavorable. Second, both have a long tail on 

the high angle side. This again is reasonable, since there will be no steric hindrances as 

the bond angle approaches 180°, however this is a strong deviation from the tetrahedral 

bond angle (as in H20) one might expect from simple molecular orbital arguments. 

Finally, both have a maximum near 150°, which is quite reasonable since most of the 

crystalline Si02 polymorphs have bridging bond angles between 140° and 155°. The 

bond angle distribution of Mozzi and Warren is much broader, however, which may be 

attributed to the inherent difficulties (and inaccuracies) in fitting the three pair correlation 

functions needed to analyze the X-ray scattering results with arbitrary functions. 

Additionally, the lack of good high angle scattering data may effectively truncate the 

results and lead to artificial broadening of the bond-angle distribution. 

Tetrasilicates (K2SL&09 and KMg.sSi409) 

The second class of silicate glasses we have evaluated are tetrasilicates. These all 

have a total of +2 cationic charge balancing an Si409-2 cluster. The actual structures of 

both the crystalline and glassy compounds are much more complex. In the crystalline 

compounds, the silicates form long double stranded chains separated by cations. In the 

glass, these chains remain (as evidenced by the 29Si NMR) however they are no longer 

ordered. In our study of these materials46 we hoped to both determine the Si-0-Si bond 

angle distributions to compare to the distribution from Si02. Additionally, we attempted 

to evaluate the local ordering of the cations in the glass, similar to the ordering described 

by Gaskell in calcium modified silicate glasses171 •172. 

The experimental DAS spectra are shown in figure 8.12 for both K2Si409 and 

KMg_sS40g glasses. Both spectra were taken at 9.4T where the separation of the bridg

ing and non-bridging oxygen peaks was the greatest. Spectra at 11.7T were very similar 

and are not shown here. 
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Figure 8.12 20 DAS Spectra ofTetrasilicate Glasses. The DAS spectrum on the left is 
for K2S409 and the spectrum on the right is for KMg.sSi409 . These spectra were taken 
at 9.4T with the usual pulse sequences and acquisition parameters. 

The isotropic bridging oxygen peak occurs at 0 ppm in both spectra while the non-bridg

ing oxygen peak occurs at 65 ppm in the K2Si409 glass and 25 ppm in the KMg.sS409 

glass. The two peaks on either side of the bridging oxygen correspond to spinning side

bands. The magnesium substituted glass has significantly worse signal-to-noise than the 

potassium tetrasilicate and cannot be used to extract a bond angle distribution. In the 
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case of potassium tetrasilicate, we are able to simulate a number of the slices through the 

isotropic bridging oxygen site. The quadrupolar and chemical shift parameters from 

simulations of both the 9.4T and 11.7T DAS data sets are given in table 8.4. In both 

cases, only the peaks which were simulated are given. Intensities for extrapolated points 

were gotten from the one-dimensional DAS projection. In both cases the slice numbers 

are referenced to the 128 total points in the C:OJ dimension following zero filling of the 

data in tJ. These parameters may then be converted into a bond angle distribution just as 

in the previous section. Both the 11.7T and 9.4T data give very similar distributions, as 

evidenced by the similarity of the quadrupolar and chemical shift parameters for the most 

intense slices (61 and 62 at 9.4T and 69 and 60 at 11.7T). This resulting 9.4T bond angle 

distribution is shown in figure 8.13. 

Slice Pop. oiso,cs Slice Pop. oiso,cs 

56 5.73 0.09 0.21 57.3 54 6.12 0.10 0.51 57.7 

57 5.66 0.11 0.23 58.0 55 6.06 0.11 0.66 59.2 

58 5.65 0.12 0.26 60.5 56 5.90 0.12 0.83 58.4 

59 5.65 0.13 0.29 63.0 57 5.79 0.14 1.06 56.9 

60 5.55 0.16 0.31 62.9 58 5.72 0.16 1.13 60.3 

61 5.43 0.19 0.33 62.1 59 5.66 0.17 1.16 61.9 

62 5.33 0.20 0.33 61.7 60 5.56 0.19 1.15 62.7 

63 5.25 0.22 0.32 62.4 61 5.48 0.21 1.10 64.0 

64 5.28 0.23 0.30 66.2 62 5.40 0.22 0.97 65.5 

65 5.14 0.26 0.27 64.7 63 5.34 0.23 0.82 67.1 

66 5.10 0.28 0.25 67.3 64 5.28 0.24 0.66 68.8 

Table 8.4 K2Si409 Anisotropic Slice Fits from 9.4T and 11.7T DAS Spectrum. The 
simulations were performed using the computer programs in the appendix with the as-
sumption that the chemical shift anisotropy was negligible, as in table 8.3. The parame-
ters on the left correspond to 9.4T data and on the right to 11.7T. 
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Notice that the maximum in this distribution falls at about 140°, about 10° less than in the 

Si02 bond angle distribution. Also shown in figure 8.13 with a dashed line is the bond 

angle distribution calculated from a molecular dynamics simulation of 

18K20·2l6Si02.177 It may be noted that this is significan~ly different in both the shape 

and maximum. 

Returning to the DAS spectra in figure 8.12, we note that the only major differ-

ence between the two spectra is in the position of the non-bridging oxygen peale Both 

bridging site peaks are of approximately the same shape and width, as well the non

bridging peaks are of similar width. 
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Figure 8.13 K2Si409 Bond Angle Distribution. The bond angle distribution for 
K2Si409 (squares) as well as a molecular dynamics simulation (dashed line) result are 
shown. 

It is important to see that there is no sign of a non-bridging peak at 65 ppm in the 

potassium magnesium tetrasilicate glass. This indicates that in the mixed cation glass 

there are no regions which are potassium "rich" and no region conversely which are 

magnesium "rich". In fact, the cation distribution must be anything but random in this 

glass, otherwise the peak at 25 ppm would be a broad lump from 65 to 25 ppm. In the 

case of these glasses, for a K:Mg ratio of 2: 1 in the potassium magnesium tetrasilicate, 
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the only way to produce an ordered 2:1 arrangement of K+ and Mg+2 in the vicinity of the 

non-bridging oxygen atoms is to have an original coordination of four K+ cations in the 

potassium tetrasilicate which then substitutes one Mg+2 for two K+ cations in the 

potassium magnesium tetrasilicate. This will take the non-bridging oxygen atom from a 

coordination of 5 atoms (4 potassium atoms and 1 silicon) to 4 atoms (2 potassium atoms, 

1 silicon and 1 magnesium). Since the magnesium is a much smaller cation of 

comparable size to a silicon cation, the magnesium substitution will produce a local non

bridging oxygen environment which is much more similar to a bridging oxygen environ

ment than in the potassium tetrasilicate, hence the reduced isotropic chemical shift values. 

Additionally, since there will be a total of a +4 charge in the vicinity of every non

bridging oxygen atom, the non-bridging oxygen atoms themselves must be locally 

ordered and occur in distinct pairs. Additionally, both non-bridging oxygen atoms must 

not be coordinated to the same silicon atom, since this would necessitate the formation of 

Q2 (where Qn stands for a silicon bonded ton bridging oxygen atoms) species, which are 

not found in silicon NMR experiments. In fact all silicon atoms are in either Q3 or Q4 

almost exclusively (50:50 ratio). 178 This cationic ordering is in strong agreement with 

Gaskell et al. 171 •172 when they stated that the calcium cations were found to be in very 

ordered and regular arrangements in a tetrasilicate glass they studied. In fact, this study 

goes a step further to actually demonstrate absolute coordination in a modified 

tetrasilicate glass. 

Disilicates (K2Si20s) 

The final class of glasses studied is the disilicates which consist of a mixture of 

cations totaling +2 charge and a Si20s-2 anion cluster. The crystalline form of these 

materials forms long chains which are separated by cations. The glasses also form the 

same chains, but again lacking the long range order of the crystal. Figure 8.14 shows the 

DAS spectrum of a potassium disilicate glass taken at 11.7T. This spectrum looks very 
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much like the potassium tetrasilicate spectrum in figure 8.12. The main isotropic peak 

for the bridging oxygen sites occurs at 35 ppm while the non-bridging oxygen peak 

occurs at 75 ppm. The overall width and position of these peaks are approximately the 

same as in the potassium tetrasilicate spectrum at 11. 7T. The non-bridging peak indicates 

that, just as in the potassium tetrasilicate, the non-bridging oxygen atoms will be five-fold 

coordinated to one silicon and four potassium atoms. As in the previous two sections, the 

quadrupolar and chemical shift parameters were extracted with simulations of the 

bridging site slices. These are tabulated in the same form as before in table 8.5. As in the 

amorphous silica, the DAS spectrum was zero filled in the t1 dimension to 256 points and 

the slices are referenced to these 256 points in the resulting m1 dimension. 
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Figure 8.14 DAS Spectrum of K2Si205 glass at 11.7T. The DAS spectrum above was 
taken with the usual HyperSEDAS pulse sequence and parameters. 

The first three slices (110, 111 and 112) seem to have unusually large isotropic chemical 

shifts relative to the expected trend from the other slices and thus they are attributed less 

significance (this is primarily due to the low signal-to-noise of these outer slices). These 
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coupling constants are converted into a bond angle distribution in the usual fashion, 

which is shown below in figure 8.15. 

Slice Pop. Oiso,cs Slice Pop. 0 iso,cs 

110 6.57 0.00 0.07 73.1 119 5.58 0.16 0.73 70.8 

111 6.52 0.00 0.11 73.7 120 5.48 0.18 0.77 71.2 

112 6.37 0.00 0.16 72.2 121 5.38 0.20 0.79 71.6 

113 6.08 0.01 0.23 67.7 122 5.30 0.21 0.78 72.5 

114 6.01 0.04 0.31 68.5 123 5.24 0.23 0.72 73.8 

115 5.94 0.05 0.40 69.2 124 5.16 0.25 0.62 74.5 

116 5.81 0.09 0.49 70.9 125 4.97 0.27 0.49 73.3 

117 5.72 0.12 0.58 68.1 126 4.84 0.28 0.35 73.2 

118 5.65 0.13 0.66 69.9 127 4.78 0.29 0.24 74.3 

Table 8.5 K2Si20s Anisotropic Slice Fits. The simulations were performed using the 
computer programs in the appendix with the assumption that the chemical shift 
anisotropy was negligible, as in table 8.3 and 8.4. 

Figure 8.15 K2Si20s Bond Angle Distribution. The circles indicate the bond angle 
distribution extracted from the quadrupolar coupling constants in table 8.5. 
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This bond angle distribution, just like the potassium tetrasilicate, has a maximum at ap

proximate 140° with error bars of ±3° in the peak region and ±10° in the wings. The 

usual sharp cut off at 130° is observed, just as in the potassium tetrasilicate and in the 

silica. Any small variations between the tetrasilicate and disilicate bond angle distribu

tions may be attributed to the random errors associated with the simulations. In disili

cates such as K2Si20s, it has been found as well previously that all silicon atoms are in 

Q3 coordination.178 

Conclusions 

The three bond angle distributions shown in the preceding sections are a good 

starting point to be able to understand the structures present in silicate glasses. The sig

nificance of these distributions is not well understood at this point, however some conclu

sions may be drawn. First, the bond angle maximum of the amorphous silica (150°) is 

significantly higher than the maximum for the potassium modified silicates (140°). This 

could possibly be attributed to the local ordering of the potassium cations around the non

bridging oxygen atoms. To achieve the cationic ordering observed earlier, it is necessary 

that the cations begin to form clusters early in the quenching of the glass and not be 

trapped in unfavorable environments as the glass viscosity increases. This is not difficult 

to envision, since the non-bridging oxygen sites are quite mobile due to the formation and 

breaking of bridging silicon-oxygen bonds as the cations migrate through the glass. As 

the glass forms, the cations must find energetic minima in the locally ordered clusters 

which controls the medium-range structure during the overall quenching of the glass. In 

the amorphous silica, there are no cations to lend mobility to oxygen atoms and therefore 

the glass transition temperature is much higher. Additionally as the silica fluid begins to 

quench into a glass, the lack of cations will cause a nipid loss of mobility and increase in 

the viscosity of the liquid. This might indicate that the silica bond angle distribution 

would be broader than the potassium silicate glasses were it not for the fact that the Si-0-

187 



Si potentials in the pure silica glass are significantly different than in the potassium sili

cate. Experimentally we observe that the silica and potassium silicate bond angle distri

butions are of similar width, indicating that the effect of the local ordering and lower 

quench temperature of the potassium silicates is comparable to the stronger potentials in 

the silica to control the overall bond distribution. It is difficult to attach any stronger 

conclusions at this time. Additional studies of the effect of quench rate and temperature 

on bond angle distributions, as well as compositional studies will be needed to give a 

complete picture of the processes occurring in glasses. 
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Appendices 

Computer programs 
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A variety of computer programs were developed which were used to simulate the 

one dimensional VAS spectra or slices from two-dimensional DAS spectra. The first 

program, CQP, outputs a file which contains frequency and intensity pairs over the full 

sweep width desired. The second program, MINUITCQ, uses the MINUIT (CERN) li-

brary of minimization routines to iteratively arrive at a least-squares best fit to an input 

data set. The first program is useful for rapidly getting the initial parameters in a fit in the 

correct ranges and for exploring the effects of small deviations in parameters. The sec

ond program uses both simplex and gradient minimization techniques and provides an er

ror matrix which may be used to evaluate the overall errors in each of the fit parameters. 

CQP - VAS Spectral Simulation Program 

PROGRAM CQP 
c 
C CALCULATES FREQUENCIES FOR EACH CRYSTALLITE ORIENTATION 
C ASSUMING THE PRESENCE OF BOTH SECOND-ORDER QUADRUPOLAR 
C INTERACTIONS AS WELL AS CHEMICAL SHIFT ANISOTROPY. THE PAS 
C OF THESE TWO INTERACTIONS DO NOT NEED TO NECESSARILY COINCIDE 
C AND IN FACT THE CSA PAS IS DESCRIBED FIRST RELATIVE TO THE 
C QUADRUPOLAR PAS AND THEN BOTH ARE ROTATED TO THE ROTOR FRAME 
C AND THEN FINALLY TO THE LABORATORY FRAME. IT IS ASSUMED AS 
C WELL THAT THE SPINNING SPEED IS FAST ENOUGHT TO ELIMINATE ALL 
C TIME DEPENDANT TERMS IN THE FREQUENCY EXPRESSION. THE POWDER 
C PATTERS ARE CALCULATED USING A METHOD 
c 
C This was written by Jay Baltisberger 
C Chemistry Department 
C Berea College 
C Berea, KY 40404 
c 
C while at the University of California, Berkeley in the 
C laboratory of Prof. A. Pines 
c 
C THIS PROGRAM IS DESIGNED TO RUN ON STANDARD UNIX TYPE MACHINES 
C THE FOLLOWING PROGRAMS AND SUBROUTINES NEED TO BE COMPILED AND 
C LINKED. 
c 
c 
C COMPILE LIST 
C cqp.f 
C dr.f 
C dr2.f 
C jran. f 
c fftl. f 
C powdim8.f 
c lines.f 
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C tent.f 
c 
C LINK LIST 
C cqp.o 
C dr.o 
C dr2.o 
C jran.o 
C fftl.o 
C powdim8.o 
C lines.o 
C tent.o 
C (+ all standard math libraries needed for your 
C given computer) 
c 
c 
c 
C PROGRAM WRITTEN TO CALCULATE MULTIPLE POWDER PATTERNS GIVEN 
C THE QUADRUPOLAR AND CHEMICAL SHIFT PARAMETERS OF EACH. 
C THE USER MUST HAVE HIS OWN PROGRAM TO DISPLAY THE 
C SPECTRUM ON WHATEVER DEVICE IS AVAILABLE. 
C PROGRAM GIVES OPTION OF MAGNITUDE MODE, 
C RESOLUTION (LARGER NUMBERS ARE HIGHER) AND NORMALIZATION 
c 

IMPLICIT NONE 
c 
C DECLARATION OF VARIABLES 

INTEGER SIZE 
PARAMETER (SIZE=1024) 
REAL SPEC(0:SIZE-l),DATA(l:2*SIZE),DATA2(1:2*SIZE) 
REAL FWIDTH,NOISE,AMP,MAXIMUM,FSTART 
REAL GOBBLE,DBETA(7);AL2GAM2,NAL2GAM2,SNAL2GAM2,SAL2GAM2 
REAL AL2GAM,AL2NGAM,SAL2GAM,SAL2NGAM 
REAL GAM2,BETA2,ALPH2,DECAY,SPIN,BETAS,DELCS,ETACS 
REAL CA(0:8),GAMS,ETA2,ETA,WISO,PI 
REAL WL,WQ,OFF,C,ALPH,BETA,GAM,P2,P4,THETA 
REAL ALPHS,FINC,SW,BROADL,BROADG,EPLG,A(0:2,0:2) ,C2,C4 
INTEGER NTRAN 
INTEGER MM,NUM,PATS,I,ISEED,POINTS,P,ISIGN 
CHARACTER*l ANSWER 
COMMON OFF,A,WISO,ALPH, 

1 CA,BETA,GAM,ALPHS,BETAS,GAMS,P2 
c 
C FIRST EXECUTABLE STATEMENT. 
c 

PI=l. 0 
PI=4.0*ATAN(PI) 
WRITE(*,*) 'HOW MANY POINTS?' 
READ(*,*) POINTS 

C CLEAR SPECTRUM VARIABLES 

c 

DO 5 P=O,POINTS-1 
SPEC(P)=O.O 
DATA2(2*P+l)=0.0 
DATA2(2*P+2)=0.0 

5 CONTINUE 

C GET PARAMETERS 
c 

WRITE(*,*) 'HOW MANY PATTERNS (OR SITES)?' 
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c 

READ(*,*) PATS 
WRITE(*,*) 'WHAT IS I (SPIN)?' 
READ(*,*) SPIN 
WRITE(*,*) 'WHAT IS WL (MHZ)?' 
READ(*,*) GOBBLE 
WL=GOBBLE*1000. 
WRITE(*,*) 'WHAT IS THETA (DEGREES)?' 
READ(*,*) THETA 
THETA=THETA*PI/180.0 
WRITE(*,*) 'WHAT IS THE SPECTRAL WINDOW (KHZ)?' 
READ(*,*) SW 
WRITE(*,*) 'WHAT IS THE CHEM. SHIFT AT 0.0 FREQ (IN PPM)?' 
READ(*,*) OFF 
OFF=OFF*WL/1000.0/1000.0 
WRITE(*,*) 'WHAT PERCENT NOISE DO YOU WANT?' 
READ(*,*) NOISE 
NOISE=NOISE/100.0 
WRITE(*,*) 'WHAT IS THE SEED?' 
READ(*,*) ISEED 
WRITE(*,*) 'WHAT RESOLUTION (8,16,32,64,128,256)?' 
READ ( * I * ) NTRAN 
IF(NTRAN.GT.256) NTRAN=256 
WRITE(*,*) 'WOULD YOU LIKE A MAGNITUDE SPECTRUM?' 
READ(*,998) ANSWER 
MM=O 
IF(ANSWER.EQ. 'Y' .OR.ANSWER.EQ. 'y') MM=1 
WRITE(*,*) 'WOULD YOU LIKE THE SPECTRUM NORMALIZED?' 
READ(*,998) ANSWER 

998 FORMAT(A1) 

C CALCULATE P2 AND P4 
C OF SPINNING ANGLE 
c 

c 

C2=COS(THETA)*COS(THETA) 
C4=C2*C2 
P2=((3.0*C2)-1.0)/2.0 
P4=((35.0*C4)-(30.0*C2)+3.0)/8.0 

C CALCULATE FREQUENCY RANGE 
c 

c 
c 

FWIDTH=SW 
FSTART=-SW/2. 0 
FINC=FWIDTH/REAL(POINTS-1) 

DO 1252 NUM=1,PATS 
C LOOP THROUGH THE TOTAL NUMBER OF PATTERNS 
c 
C LOAD QUAD AND CSA VALUES FOR EACH SITE 
c 

WRITE(*,*) 'WHAT IS ETA?' 
READ(*,*) ETA 
WRITE(*,*) 'WHAT IS WQ (MHZ)?' 
READ(*,*) GOBBLE 
WQ=GOBBLE*1000.0 
WRITE(*,*) 'WHAT IS THE ISOTROPIC CHEMICAL SHIFT (PPM)?' 
READ(* I*) WISO 
WISO=(WISO*WL/1000.0/1000.0)-0FF 
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c 

WRITE(*,*) 'WHAT IS THE DELTA (SIGMA33 - ISO) (ppm)?' 
READ(*,*) DELCS 
DELCS=(DELCS*WL/1000.0/1000.0) 
WRITE.(*,*) 'WHAT IS THE ETA (SIGMA11 - SIGMA22)/DELTA?' 
READ(*,*) ETACS 
WRITE(*,*) 'WHAT IS THE ANGLE ALPHA BETWEEN CSA & PAS (DEG)?' 
READ(*,*) ALPH 
ALPH=ALPH*PI/180.0 
ALPHS=SIN(ALPH) 
ALPH=COS(ALPH) 
ALPH2=ALPH*ALPH-ALPHS*ALPHS 
WRITE(*,*) 'WHAT IS THE ANGLE BETA BETWEEN CSA & PAS?' 
READ(*,*) BETA 
BETA=BETA*PI/180.0 
BETAS=SIN(BETA) 
BETA=COS(BETA) 
BETA2=BETA*BETA-BETAS*BETAS 
WRITE(*,*) 'WHAT IS THE ANGLE GAMMA BETWEEN CSA & PAS?' 
READ(*,*) GAM 
GAM=GAM*PI/180.0 
GAMS=SIN(GAM) 
GAM=COS(GAM) 
GAM2=GAM*GAM-GAMS*GAMS 
AL2GAM=ALPH2*GAM-GAMS*2.*ALPH*ALPHS 
AL2NGAM=ALPH2*GAM+GAMS*2.*ALPH*ALPHS 
SAL2GAM=ALPH2*GAMS+GAM*2.*ALPH*ALPHS 
SAL2NGAM=ALPH2*GAMS-GAM*2.*ALPH*ALPHS 
AL2GAM2=ALPH2*GAM2-4.*ALPH*ALPHS*GAM*GAMS 
NAL2GAM2=ALPH2*GAM2+4.*ALPH*ALPHS*GAM*GAMS 
SAL2GAM2=ALPH2*2.*GAM*GAMS+2.*ALPH*ALPHS*GAM2 
SNAL2GAM2=ALPH2*2.*GAM*GAMS-2.*ALPH*ALPHS*GAM2 
WRITE(*,*) 'WHAT IS THE INTEGRATED PEAK INTENSITY?' 
READ(*,*) AMP 
WRITE(*,*) 'WHAT IS THE LORENZIAN BROADENING (KHZ)?' 
READ(*,*) BROADL 
WRITE(*,*) 'WHAT IS THE GAUSSIAN BROADENING (KHZ)?' 
READ(*,*) BROADG 
GOBBLE=WQ*WQ*(SPIN*(SPIN+1.)-.75) 
C=GOBBLE/32./WL/SPIN**2/(2.*SPIN-1.)**2 

C CREATE MATRIX OF A(2)IJ A(4)IJ 
c 

ETA2=ETA*ETA 
GOBBLE= -WQ*(1.0+(ETA2/3.0))*WQ*3.0*(SPIN*(SPIN+1.0)-0.75) 
WISO= WISO + (GOBBLE/40.0/WL/SPIN**2/(2.0*SPIN-1~0)**2) 

C MATRIX FOR QUADRUPOLAR ELEMENTS 
A(0,0)=C*(((18.0+ETA2)*81.0*P4/1120.0) 

1 -(P2*(1.0-(ETA2/3.0))*12.0/7.0)) 
A(0,1)=C*((P4*(18.0+ETA2)*9.0/56.0) 

1 -(P2*(1.0-(ETA2/3.0))*36.0/7.0)) 
A(0,2)=C*P4*(18.0+ETA2)*9.0/32.0 
A(1,0)=C*((P4*ETA*81.0/56.0)+(P2*ETA*24.0/7.0)) 
A(1,1)=C*((P4*ETA*27.0/14.0)-(P2*ETA*24.0/7.0)) 
A(1,2)=-C*P4*ETA*27.0/8.0 
A(2,0)=C*P4*ETA2*27.0/32.0 
A(2,1)=-C*P4*ETA2*9.0/8.0 
A(2,2)=C*P4*ETA2*9.0/32.0 

C MATRIX FOR CSA ELEMENTS 
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c 

DELCS=DELCS*P2 
CALL DR(DBETA,BETA,BETAS) 
CA(1) = DELCS*(DBETA(1)+SQRT(2./3.)*ETACS*ALPH2*DBETA(3)) 
CA(2) = DELCS*((-2.*GAM*DBETA(2))+(SQRT(2./3.)*DBETA(4)* 

1 ETACS*AL2GAM)+(SQRT(2./3.)*ETACS*AL2NGAM*DBETA(6))) 
CA(3) = DELCS*((SQRT(2./3.)*ETACS*DBETA(6)*SAL2NGAM) + 

1 (2.*DBETA(2)*GAMS)-(SQRT(2./3.)*ETACS*DBETA(4)* 
1 SAL2GAM)) 

CA(4) = DELCS*((2.*GAM2*DBETA(3))+(SQRT(2./3.)* 
1 ETACS*AL2GAM2*DBETA(5))+(SQRT(2./3.)*ETACS*NAL2GAM2* 
1 DBETA(7))) 

CA(5) = -DELCS*((2.*DBETA(3)*2.*GAM*GAMS)+(SQRT(2./3.)* 
1 ETACS*DBETA(7)*SNAL2GAM2)+(SQRT(2./3.)*ETACS* 
1 DBETA(5)*SAL2GAM2)) 

BROADL=ABS(PI*BROADL/FWIDTH) 
BROADG=BROADG/FWIDTH 

C INVOKE POWDER SIMULATION 
c 

CALL POWDIM8(SPEC,POINTS,FSTART,FWIDTH,2*NTRAN) 
MAXIMUM=SPEC(1) 
DO 30 P=O,POINTS-1 

DATA(2*P+1)=SPEC(P) 
IF(SPEC(P) .GT.MAXIMUM) MAXIMUM=SPEC(P) 
DATA(2*P+2)=0.0 

30 CONTINUE 
ISEED=MOD(ISEED,54321) 
DO 35 P=O,POINTS-1 
CALL JRAN(GOBBLE,ISEED) 

DATA(2*P+1)=DATA(2*P+1)+MAXIMUM*NOISE*2.0* 
1 (0.5-GOBBLE) 

35 CONTINUE 
ISIGN=-1 
CALL FFT1(DATA,POINTS,ISIGN) 
BROADL=EXP(-BROADL) 
BROADG=(-PI*BROADG*BROADG) 
EPLG=1.0 
DO 43 P=O, ((POINTS/2)-1) 

DATA(2*P+1)=DATA(2*P+l)*EPLG 
DATA(2*P+2)=DATA(2*P+2)*EPLG 
EPLG=EPLG*BROADL 
DECAY=EXP(REAL(P)*REAL(P)*BROADG) 
DATA(2*P+1)=DATA(2*P+1)*DECAY 
DATA(2*P+2)=DATA(2*P+2)*DECAY 

43 CONTINUE 
DO 42 P=(POINTS/2), (POINTS-1) 

DATA(2*P+1)=DATA(2*P+1)*EPLG 
DATA(2*P+2)=DATA(2*P+2)*EPLG 
EPLG=EPLG/BROADL 
DECAY=REAL(POINTS-P)*REAL(POINTS-P)*BROADG 
DECAY=EXP(DECAY) 
DATA(2*P+1)=DATA(2*P+1)*DECAY 
DATA(2*P+2)=DATA(2*P+2)*DECAY 
IF(MM.EQ.1)THEN 

DATA(2*P+1)=0.0 
DATA(2*P+2)=0.0 

END IF 
42 CONTINUE 
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ISIGN=1 
CALL FFT1(DATA,POINTS,ISIGN) 

C FIND AREA OF SPECTRUM 
MAXIMUM=O.O 
DO 100 P=O,POINTS-1 

MAXIMUM=MAXIMUM+DATA(2*P+1) 
100 CONTINUE 
C NORMALIZE SPECTRUM SO THAT LARGEST POINT IS UNITY 

DO 201 P=O,POINTS-1 
SPEC(P)=O.O 
DATA2(2*P+1)=DATA2(2*P+1)+(AMP*DATA(2*P+1)/MAXIMUM) 
DATA2(2*P+2)=DATA2(2*P+2)+(AMP*DATA(2*P+2)/MAXIMUM) 

201 CONTINUE 
1252 CONTINUE 

IF(MM.EQ.1)THEN 
DO 8915 P=O,POINTS-1 

DATA2(2*P+1)=SQRT((DATA2(2*P+1)*DATA2(2*P+1))+ 
1 (DATA2(2*P+2)*DATA2(2*P+2))) 

8915 CONTINUE 
END IF 
IF (ANSWER.EQ. 'Y') THEN 

MAXIMUM=O.O 
DO 234 I=O,POINTS-1 

MAXIMUM=MAXIMUM+DATA2(2*I+l) 
234 CONTINUE 

DO 235 I=O,POINTS-1 
DATA2(2*I+1)=DATA2(2*I+1)/MAXIMUM 

235 CONTINUE 
END IF 

C DISPLAY THE RESULT 
OPEN(UNIT=10,FILE='POWD.DAT',STATUS='UNKNOWN') 
REWIND (10) 
DO 2657 I=O,POINTS-1 

WRITE(10,*) (REAL(I)*FINC+FSTART),DATA2(2*I+1) 
2657 CONTINUE 

c 

c 

c 

CLOSE(10) 
END 

SUBROUTINE DR(D,CB,SB) 

IMPLICIT NONE 

C DELCLARATION OF ARGUMENTS 
REAL D(7),CB,SB 

c 
c 

c 
c 

D(1) = ((3.*CB*CB)-l.)/2. 
D(2) = -SQRT(3./2.)*SB*CB 
D(3) = SQRT(3.18.)*SB*SB 
D ( 4) = - ( ( 1. +CB) I 2. ) * SB 
D ( 5) = ( ( 1. +CB) I 2. ) * ( ( 1. +CB) /2. ) 
D(6) = ( (1. -CB) 12.) *SB 
D(7) = ((l.-CB)I2.)*((1.-CB)I2.) 
RETURN 
END 

SUBROUTINE DR2(D,CB,SB) 
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c 
IMPLICIT NONE 

c 
C DELCLARATION OF ARGUMENTS 

REAL D(3) ,CB,SB 
c 
c 

c 
c 

c 

D(l) = ((3.*CB*CB)-l.)/2. 
D(2) = -SQRT(3./2.)*SB*CB 
.D(3) = SQRT(3./8.)*SB*SB 
RETURN 
END 

SUBROUTINE LINES(COSX,SINX,COSY,SINY,FREQ,AMP) 

C CALLED FROM POWDER. WILL CALCULATE MAS SPINNING PATTERNS OF QUAD 
C NUCLEI. 
c 

IMPLICIT NONE 
c 
C DELCLARATION OF ARGUMENTS 

c 

REAL P2,COSX,COSY,SINY,SINX,FREQ,AMP 
REAL ALPHS,BETAS,GAMS,C2X,C4X,C2Y,C4Y,COSA(0:2) 
REAL ALPH,BETA 
REAL GAM,OFF,COSB(0:2),A(0:2,0:2),WISO 
REAL CA(0:8),DBX(3) 
INTEGER I,J 
COMMON OFF,A,WISO,ALPH, 

1 CA,BETA,GAM,ALPHS,BETAS,GAMS,P2 

C FIRST EXECUTABLE STATEMENT 
C COMPUTE FREQUENCY AND CONSTANT INTENSITY 

CALL DR2(DBX,COSY,SINY) 
C2X=COSX*COSX 
C4X=C2X*C2X 
C2Y=COSY*COSY 
C4Y=C2Y*C2Y 
COSA ( 0 ) = 1. 0 
COSB ( 0 ) = 1. 0 
COSA(1)=(2.0*C2X)-1.0 
COSB(1)=(2.0*C2Y)-l.O 
COSA(2)=(8.0*C4X)-(8.0*C2X)+l.O 
COSB(2)=(8.0*C4Y)-(8.0*C2Y)+l.O 
FREQ=WISO 
DO 3-I=0,2 

DO 4 J=0,2 
FREQ=FREQ+(A(I,J)*COSA(I)*COSB(J)) 

4 CONTINUE 
3 CONTINUE 

c 
c 

FREQ=FREQ + (CA(l)*DBX(l)) 
FREQ=FREQ + (CA(2)*COSX+CA(3)*SINX)*DBX(2) 
FREQ=FREQ + (CA(4)*COSA(l)+CA(5)*2.*COSX*SINX)*DBX(3) 
AMP=l. 0 
RETURN 
END 
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c 
C RANDOM NUMBER GENERATOR FROM NUMERICAL RECIPES IN FORTRAN 
c 

c 

SUBROUTINE JRAN(JRN,IDUM) 
INTEGER Ml,IAl,ICl,M2,IA2,IC2,M3,IA3,IC3 
INTEGER IXl,IX2,IX3,J,IFF,IDUM 
REAL RMl,RM2,JRN,TEMP,R(98) 

M1=259200 
IA1=7141 
IC1=54773 
RMl=REAL ( 1. 0 /M1) 
M2 = 134456 
IA2 = 8121 
IC2= 28411 
RM2 =REAL(1.0/M1) 
M3 = 243000 
IA3 = 4561 
IC3 = 51349 
IF((IDUM.LT.O) .OR. (IFF.EQ.O)) THEN 

IFF=1 
IX1=MOD((IC1-IDUM) ,M1) 
IX1=MOD((IA1*IX1+IC1),M1) 
IX2=MOD(IX1,M2) 
IX1=MOD((IA1*IX1+IC1),M1) 
IX2=MOD(IX1,M3) 
DO 10 J=1,97 

IX1=MOD((IA1*IX1+IC1),M1) 
IX2=MOD((IA2*IX2+IC2),M2) 
R(J)=(IX1+IX2*RM2)*RM1 

10 CONTINUE 

c 
c 
c 
c 
c 

IDUM=1 
END IF 
IX1=MOD((IA1*IX1+IC1),M1) 
IX2=MOD((IA2*IX2+IC2),M2) 
IX3=MOD((IA3*IX3+IC3),M3) 
J=l+((97*IX3)/M3) 
TEMP=R(J) 
R(J)=(IX1+IX2*RM2)*RM1 
JRN=TEMP 
RETURN 
END 

SUBROUTINE POWDIM8(SPEC,POINTS,FSTART,FWIDTH,NT) 
c 
C THIS PROGRAM USES THE SAME ALGORITHM AS ONE BY ALDERMAN, ET. 
C AL. CALLED POWDER, BUT THIS CALCULATES SINES AND COSINES OF 
C SPHERICAL ANGLES 
c 
C THE OUTPUT HOWEVER DIFFERS FROM OTHER TYPES IN THAT IT USES 
C LINE FUNCTIONS OF THE FORM LINE(L,M,N,K,FREQ,AMP) THE 
C VARIABLES ARE L=COS(PHI), M=SIN(PHI), N=COS(THETA), K=SIN(THETA) 
C THESE ARE NEEDED ANYTIME YOU DO CERTAIN CALCULATIONS WHICH 
C INVOLVE ROTATED FRAMES, IE THE CSA + QUAD PROBLEM 
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c 
c 
c 

c 

IMPLICIT NONE 
INTEGER*4 NT,POINTS,NZ 
PARAMETER (NZ=512) 
REAL SPEC(O:POINTS-1),FSTART,FWIDTH 
REAL FREQ(O:NZ,O:NZ),AMP(O:NZ,O:NZ) 
REAL FREQ2(0:NZ,O:NZ),AMP2(0:NZ,O:NZ) 
INTEGER I,J,LIS 
REAL X,Y,Z,R,R2,L,M,N,K,FINC 

DO 20 I=O,NT 
DO 30 J=O,NT 

X=REAL(NT-I-J) 
Y=REAL (J-I) 
Z=2. *REAL (J) 
L=2. *REAL (I) 
M=2.*REAL(NT-J) 
N=2. *REAL (NT-I) 
IF(L.LT.Z) Z=L 
IF(M.LT.Z) Z=M 
IF(N.LT.Z) Z=N 
R=SQRT((X*X)+(Y*Y)+(Z*Z)) 
R2=SQRT ( (X*X) + (Y*Y)) 
IF((I+J) .NE.NT)THEN 

L=X/R2 
M=Y/R2 

ELSE 
L=O.O 
M=O.O 

END IF 
N=Z/R 
K=R2/R 
CALL LINES(L,M,N,K,FREQ(I,J),AMP(I,J)) 
N=-N 
CALL LINES(L,M,N,K,FREQ2(I,J) ,AMP2(I,J)) 
AMP(I,J)=AMP(I,J)/R/R/R 
AMP2(I,J)=AMP2(I,J)/R/R/R 

30 CONTINUE 
20 CONTINUE 

FINC=FWIDTH/FLOAT(POINTS) 

DO 40 I=O, (NT/2-1) 
DO 50 J=O, (NT/2-1) 

CALL TENT(FREQ(I+1,J),FREQ(I+1,J+1),FREQ(I,J), 
1 AMP(I+1,J)+AMP(I+1,J+1)+AMP(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I,J), 
1 AMP(I,J+1)+AMP(I+1,J+1)+AMP(I,J) ,SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I+1,J),FREQ2(I+1,J+1),FREQ2(I,J), 
1 AMP2(I+1,J)+AMP2(I+l,J+l)+AMP2(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I,J+1) ,FREQ2(I+l,J+1),FREQ2(I,J), 
1 AMP2(I,J+1)+AMP2(I+l,J+1)+AMP2(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

50 CONTINUE 
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40 CONTINUE 

DO 41 I=(NT/2), (NT-1) 
DO 51 J=(NT/2), (NT-1) 

CALL TENT(FREQ(I+1,J),FREQ(I+1,J+1),FREQ(I,J), 
1 AMP(I+1,J)+AMP(I+1,J+1)+AMP(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I,J), 
1 AMP(I,J+1)+AMP(I+1,J+1)+AMP(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I+1,J),FREQ2(I+1,J+1) ,FREQ2(I,J), 
1 AMP2(I+1,J)+AMP2(I+1,J+1)+AMP2(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I,J+1),FREQ2(I+1,J+1) ,FREQ2(I,J), 
1 AMP2(I,J+1)+AMP2(I+1,J+1)+AMP2(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

51 CONTINUE 
41 CONTINUE 

DO 42 I=O, (NT/2-1) 
DO 52 J=(NT/2), (NT-1) 

CALL TENT(FREQ(I+1,J),FREQ(I,J+1) ,FREQ(I,J) I 

1 AMP(I+1,J)+AMP(I,J+1)+AMP(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I+1,J), 
1 AMP(I,J+1)+AMP(I+1,J+1)+AMP(I+1,J) ,SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I+1,J),FREQ2(I,J+1),FREQ2(I,J), 
1 AMP2(I+1,J)+AMP2(I,J+1)+AMP2(I,J) ,SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I,J+1),FREQ2(I+1,J+1) ,FREQ2(I+1,J), 
1 AMP2(I,J+1)+AMP2(I+1,J+1)+AMP2(I+1,J) ,SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

52 CONTINUE 
42 CONTINUE 

DO 43 I= (NT/2) I (NT-1) 
DO 53 J=O, (NT/2-1) 

CALL TENT(FREQ(I+1,J),FREQ(I+1,J+1),FREQ(I,J) I 

1 AMP(I+1,J)+AMP(I+1,J+1)+AMP(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ(I,J+1),FREQ(I+1,J+1),FREQ(I,J), 
1 AMP(I,J+1)+AMP(I+1,J+1)+AMP(I,J) ,SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I+1,J),FREQ2(I,J+1),FREQ2(I,J), 
1 AMP2(I+1,J)+AMP2(I,J+1)+AMP2(I,J),SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

CALL TENT(FREQ2(I,J+1),FREQ2(I+1,J+1) ,FREQ2(I+1,J), 
1 AMP2(I,J+1)+AMP2(I+1,J+1)+AMP2(I+1,J) ,SPEC, 
1 POINTS,FSTART,FWIDTH,FINC) 

53 CONTINUE 
43 CONTINUE 

RETURN 
END 

c 
c 
c 
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c 
C FFT ALGORITHM FROM NUMERICAL RECIPES IN FORTRAN 
c 
c 

SUBROUTINE FFT1(DATA,NN,ISIGN) 
c 
C REPLACES DATA BY ITS DISCRETE FT IF !SIGN IS 1 OR REPLACES 
C DATA BY NN TIMES ITS INVERSE DISCRETE FT IF !SIGN IS -1. 
C DATA MUST BE A COMPLEX ARRAY OF NN ELEMENTS OR A REAL ARRAY 
C OF 2*NN ELEMENTS. NN MUST BE AN INTEGER POWER OF 2 
c 

IMPLICIT NONE 

INTEGER ISIGN,ISTEP,NN,N,I,J,MMAX,M 
DOUBLE PRECISION WR,WI,WPI,WPR,WTEMP,THETA 
REAL PI,TEMPI,TEMPR,DATA(*) 

PI=1. 
PI=4.*ATAN(PI) 
N=2*NN 
J=1 
DO 1000 I=1,N,2 

IF (J .GT. I) THEN 
TEMPR=DATA(J) 
TEMPI=DATA(J+1) 
DATA(J)=DATA(I) 
DATA(J+1)=DATA(I+1) 
DATA(I)=TEMPR 
DATA ( !+1) =TEMPI 

END IF 
M=N/2 

101 IF((M.GE.2) .AND. (J.GT.M))THEN 
J=J-M 
M=M/2 
GOTO 101 

END IF 
J=J+M 

1000 CONTINUE 
MMAX=2 

102 IF(N.GT.MMAX)THEN 
ISTEP=2*MMAX 
THETA=DBLE(2.*PI)/(ISIGN*MMAX) 
WPR=-2.DO*DSIN(0.5DO*THETA)**2 
WPI=DSIN(THETA) 
WR=1.DO 
WI=O.DO 
DO 1001 M=1,MMAX,2 

DO 1002 I=M,N,ISTEP 
J=I+MMAX 
TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+1) 
TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J) 
DATA(J)=DATA(I)-TEMPR 
DATA(J+1)=DATA(I+1)-TEMPI 
DATA(I)=DATA(I)+TEMPR 
DATA(I+1)=DATA(I+1)+TEMPI 

1002 CONTINUE 
WTEMP=WR 
WR=WR*WPR-WI*WPI+WR 
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WI=WI*WPR+WTEMP*WPI+WI 
1001 CONTINUE 

c 
c 
c 
c 

MMAX=ISTEP 
GOTO 102 

END IF 
RETURN 
END 

TENT ALGORITHM FROM ALDERMAN ET. AL. IN POWDER PROGRAM 

SUBROUTINE TENT(FREQ1,FREQ2,FREQ3,AMP,SPEC,POINTS, 
1 FSTART,FWIDTH,FINC) 

c 
C CALLED FROM POWDER. ADDS TO SPECTRUM THE "TENT" 
C WHICH REPRESENTS THE 
C CONTRIBUTION FROM A TRIANGLE ON THE VERTICES OF WHICH THE 
C FREQUENCIES ARE FREQ1,FREQ2,FREQ3. 
c 

IMPLICIT NONE 
c 
C DECLARATION OF ARGUMENT VARIABLES. 

c 

REAL FREQ1,FREQ2,FREQ3,AMP 
INTEGER POINTS 
REAL SPEC(O:POINTS-1),FSTART,FWIDTH,FINC 

C DECLARATION OF INTERNAL VARIABLES. 

c 

REAL AREA3,AREA1,AREA2,FMIN,FMID,FMAX,F1,F2,TOP 
INTEGER P,PMID,PMAX 

C FIRST EXECUTABLE STATEMENT. 
C SORT THE FREQUENCIES 

FMIN=AMIN1(FREQ1,FREQ2,FREQ3) 
FMID=AMIN1(AMAX1(FREQ1,FREQ2) ,AMAX1(FREQ2,FREQ3), 

1 AMAX1(FREQ3,FREQ1)) 
FMAX=AMAX1(FREQ1,FREQ2,FREQ3) 

c COMPUTE HEIGHT OF II TENT II • 

IF(FMAX.NE.FMIN) TOP=AMP*2.0/(FMAX-FMIN) 
C COMPUTE INDICES OF TENT EDGES AND TOP 

P=INT((FMIN-FSTART)/FINC) 
PMID=INT((FMID-FSTART)/FINC) 
PMAX=INT((FMAX-FSTART)/FINC) 

C LOOK FOR CONTRIBUTIONS OUTSIDE OF SPECTRUM. 
IF (PMAX.GE.POINTS) PMAX=POINTS 
IF (PMID.GE.POINTS) PMID=POINTS 
IF (P.GE.POINTS) P=POINTS 
IF (P.LT.O) P=O 
IF (PMID.LT.O) PMID=O 
IF (PMAX.LT.O) PMAX=O 
AREAl=TOP/(2.*(FMID-FMIN)) 
AREA2=TOP/(2.*(FMAX-FMID)) 
AREA3=TOP/2. 

C ERECT "TENT" BY EXAMINING VARIOUS CASES. 
IF (P.NE.PMID) GO TO 10 
SPEC(P)=SPEC(P)+(FMID-FMIN)*AREA3 
GO TO 40 

10 F2=FINC*REAL(P+l)+FSTART 
SPEC(P)=SPEC(P) 
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1 +(F2-FMIN)*(F2-FMIN)*AREA1 
20 P=P+1 

F1=F2 
IF (P.EQ.PMID) GO TO 30 
F2=F2+FINC 
SPEC(P)=SPEC(P) 

1 +FINC*(F2+F1-2*FMIN)*AREA1 
GO TO 20 

30 SPEC(P)=SPEC(P) 
1 +(FMID-F1)*(FMID+F1-2*FMIN)*AREA1 

40 IF (P.NE.PMAX) GO TO 50 
SPEC(P)=SPEC(P)+(FMAX-FMID)*AREA3 
GO TO 80 , 

50 F2=FINC*REAL(PMID+1)+FSTART 
SPEC(P)=SPEC(P) 

1 +(F2-FMID)*(2*FMAX-F2-FMID)*AREA2 
60 P=P+1 

F1=F2 
IF (P.EQ.PMAX) GO TO 70 
F2=F2+FINC 
SPEC(P)=SPEC(P) 

1 +FINC*(2*FMAX-F1-F2)*AREA2 
GO TO 60 

70 SPEC(P)=SPEC(P) 
1 +(FMAX-F1)*(FMAX-F1)*AREA2 

80 CONTINUE 
RETURN 
END 

MINUITCQ - VAS Least Squares Fitting Program 

MINUITCQ uses many of the same subroutines as the previous CQP program. In 

all cases these are the same. except where indicated by specific inclusion in the program 

below. The code for the MINUIT subroutine is not included here but may be acquired 

from CERN. This is a very powerful minimization library which is applicable to a wide 

range of programming needs. Both MINUITCQ and CQP are written in the usual 

FORTRAN-77 with no extensions. This code may be acquired from the author of this 

thesis or Prof. A. Pines at the University of California. Berkeley. 

C THIS PROGRAM WAS WRITTEN BY JAY BALTISBERGER 
C PINES RESEARCH GROUP 
C UCBERKELEY 
C BERKELEY, CA 94720 
c 
C THIS WILL CALCULATE AND FIT A QUADRUPOLAR LINESHAPE SPINNING 
C ABOUT ANY AXIS. (WITH 0 DEGREES BEING EQUIVALENT TO STATIC) 
C THE ASSUMPTION IS THAT THE SPINNING RATE IS GREATER THAN THE 
C OVERALL WIDTH OF THE PATTERN SO NO SIDEBANDS ARE INCLUDED. 
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.; 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c -
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

ALSO IN ADDITION TO THE 2ND ORDER QUADRUPOLAR LINESHAPE, WE 
MAY INCLUDE A CSA WITH AXES NON-COINCIDENT WITH THE QUADRUPOLAR 
AXES. LINE BROADENING IS INCLUDED BOTH WITH GAUSSIAN AND 
LORENTZIAN COMPONENTS. TO RUN THIS PROGRAM ON A UNIX BASED 
MACHINE, YOU MUST COMPILE AND LINK THIS AS BEFORE. 

COMPILE LIST 
minuitcq.f 
dr.f 
dr2.f 
intrac.f 
minuit.f 
jran.f 
fftl. f 
powdim8.f 
lines.f 
tent.f 

LINK LIST 
cqp.o 
dr.o 
dr2.o 
jran.o 
fftl.o 
powdim8.o 
intrac.o 
minuit.o 
lines.o 
tent.o 
(+ all standard math libraries needed for your 

given computer) 

THE BASIS OF THIS PROGRAM COMES FROM A SIMULATION CODE WRITTEN 
BY ALDERMAN, GRANT, ET. AL. AT U.OF UTAH, JUST LIKE CQP.F 
ALSO CSA/QUAD COMBINED FORMULA APPEAR THROUGHOUT THE LITERATURE 
SUCH AS THE PAPER BY BAUGHER, BRAY, ET. AL . 
IN ADDITION THE NONCOINCIDENT AXES HAS BEEN DESCRIBED MANY 
TIMES AS WELL SUCH AS BY P. ELLIS, ET. AL. AT U OF S.CAR. 

FUNCTION DUMMY(X) 
REAL DUMMY,X 
DUMMY=X 
RETURN 
END 

FUNCTION SQAVELEVEL(ITER) 
IMPLICIT NONE 

C DECLARATION OF VARIABLES 
REAL SQAVELEVEL,FWIDTH,FSTART 
INTEGER START,MM,SHOW,COUNT,NT~,QPTE,CSTE,SPIN,ITER,PATS,I 
REAL WISO,WL,P2 
REAL P4 
REAL ZERO,FINC,SPECIN(0:1023) 
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c 

c 
c 
c 

REAL A(0:2,0:2) ,VAL,OFF 
REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8) 
COMMON SPECIN,A,WISO,PATS,SPIN,WL,P2,P4,0FF,FWIDTH,FSTART,FINC 

1 ,MM,SHOW,COUNT,QPTE,CSTE,PARAM,NTRAN,CHIFIX,CA 

VAL=O.O 
ZERO=O.O 
START=O 
IF(ITER.LT.O) THEN 

ITER=ABS(ITER) 
START=1023-ITER 
ITER=1023 

END IF 
DO 21 I=START,ITER 

ZERO=ZERO+SPECIN(I) 
21 CONTINUE 

ZERO=ZERO/REAL(ITER-START+1) 
DO 22 I=START,ITER 

VAL=(ZERO-SPECIN(I))*(ZERO-SPECIN(I))+VAL 
22 CONTINUE 

VAL=VAL/REAL(ITER-START+1) 
SQAVELEVEL=VAL 
RETURN 
END 

SUBROUTINE FXT(NPAR,GRAD,FCT,PR,IFLAG,DUMMY) 
C PROGRAM WRITTEN TO CALCULATE MULTIPLE POWDER PATTERNS GIVEN 
C THE QUADRUPOLAR PARAMETERS OF EACH. 
C IN ORDER TO SEE THE RESULT THE USER MUST PROVIDE A 
C SUBROUTINE SHOW(SPEC,POINTS) WHICH DISPLAYS THE CALCULATED 
C SPECTRUM ON WHATEVER DEVICE IS AVAILABLE. THE ARGUMENT SPEC 
C IS A REAL ARRAY WITH POINTS ELEMENTS. THE LARGEST VALUE IN 
C THE SPECTRUM IS UNITY. 
c 

EXTERNAL DUMMY 
c 
C SIZE OF SPECTRUM 
c 
C DECLARATION OF VARIABLES 

INTEGER SIZE,NPAR,IFLAG 
PARAMETER (SIZE=1024) 
.REAL GRAD ( 6 0) I DUMMY 

c 

REAL SPEC(O:SIZE-1),DATA(1:2*SIZE),DATA2(1:2*SIZE) 
REAL FCT,PR(60),FWIDTH,AMP,MAXIMUM,FSTART 
INTEGER MM,COUNT,NUM,QPTE,CSTE,PATS,I,J,POINTS,P,ISIGN 
INTEGER SHOW,NTRAN 
REAL SPIN,ERROR,ETA,WISO,PI,WL,WQ,C,P2 
REAL DECAY,P4,DBETA(7),AL2GAM2,NAL2GAM2,SNAL2GAM2,SAL2GAM2 
REAL AL2GAM,AL2NGAM,SAL2GAM,SAL2NGAM 
REAL FINC,ETA2,SPECIN(0:1023),BROADL,BROADG 
REAL EPLG,A(0:2,0:2),GOBBLE,OFF 
REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8) 
COMMON SPECIN,A,WISO,PATS,SPIN,WL,P2,P4,0FF,FWIDTH,FSTART,FINC 

1 ,MM,SHOW,COUNT,QPTE,CSTE,PARAM,NTRAN,CHIFIX,CA 

C FIRST EXECUTABLE STATEMENT. 
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POINTS=SIZE 
PI=1. 
PI=4.*ATAN(PI) 

C CLEAR SPECTRUM 
DO 5 P=O,POINTS-1 

SPEC(P)=O 
DATA2(2*P+1)=0.0 
DATA2(2*P+2)=0.0 

5 CONTINUE 
c 
c 
C GET PARAMETERS 

c 

DO 1252 NUM=1,PATS 
ETA=ABS(PR((NUM-1)*11+1)) 
ETA2=ETA*ETA 
WQ=ABS(PR((NUM-1)*11+2)) 
WQ=WQ*1000.0 
IF(QPTE.EQ.1} WQ=WQ/SQRT(1+(ETA2/3.)) 
WISO=(PR((NUM-1)*11+3)-0FF)*WL/1000.0/1000.0 
DELCS=PR((NUM-1)*11+4)*WL/1000.0/1000.0 
ETACS=ABS(PR((NUM-1)*11+5)) 
GOBBLE=-WQ*(1.0+(ETA2/3.0))*WQ*3.0*(SPIN*(SPIN+1.0)-0.75) 
GOBBLE=GOBBLE/40.0/WL/SPIN**2/(2.0*SPIN-1.0)**2 
IF(CSTE.EQ.1)THEN 

WISO=WISO+GOBBLE 
END IF 
ALPH=PI*PR((NUM-1)*11+6)/180.0 
BETA=PI*PR((NUM-1)*11+7)/180.0 
GAM=PI*PR((NUM-1)*11+8)/180.0 
ALPHS=SIN(ALPH) 
BETAS=SIN(BETA) 
GAMS=SIN(GAM) 
ALPH=COS(ALPH) 
BETA=COS(BETA) 
GAM=COS(GAM) 
ALPH2=ALPH*ALPH-ALPHS*ALPHS 
BETA2=BETA*BETA-BETAS*BETAS 
GAM2=GAM*GAM-GAMS*GAMS 

AL2GAM=ALPH2*GAM-GAMS*2.*ALPH*ALPHS 
AL2NGAM=ALPH2*GAM+GAMS*2.*ALPH*ALPHS 
SAL2GAM=ALPH2*GAMS+GAM*2.*ALPH*ALPHS 
SAL2NGAM=ALPH2*GAMS-GAM*2.*ALPH*ALPHS 
AL2GAM2=ALPH2*GAM2-4.*ALPH*ALPHS*GAM*GAMS 
NAL2GAM2=ALPH2*GAM2+4.*ALPH*ALPHS*GAM*GAMS 
SAL2GAM2=ALPH2*2.*GAM*GAMS+2.*ALPH*ALPHS*GAM2 
SNAL2GAM2=ALPH2*2.*GAM*GAMS-2.*ALPH*ALPHS*GAM2 

AMP=ABS(PR((NUM-1)*11+9)) 
BROADL=PR((NUM-1)*11+10) 
BROADG=PR(NUM*11) 
IF((ETACS.GT.1) .OR. 

1 (ETA.GT.1.))THEN 
FCT=8.0E20+ABS(ETA*1E9) 
RETURN 

END IF 
GOBBLE=WQ*WQ*(SPIN*(SPIN+1.)-.75) 
C=GOBBLE/32./WL/SPIN**2/(2.*SPIN-1.)**2 

C CREATE MATRIX OF A(2)IJ A(4)IJ 
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A(0,0)=C*(((18.0+ETA2)*81.0*P4/1120.0) 
1 -(P2*(1.0-(ETA2/3.0))*12.0/7.0)) 

A(0,1)=C*((P4*(18.0+ETA2)*9.0/56.0) 
1 -(P2*(1.0-(ETA2/3.0))*36.0/7.0)) 

A(0,2)=C*P4*(18.0+ETA2)*9.0/32.0 
A(1,0)=C*((P4*ETA*81.0/56.0)+(P2*ETA*24.0/7.0)) 
A(1,1)=C*( (P4*ETA*27.0/14.0)-(P2*ETA*24.0/7.0)) 
A(1,2)=-C*P4*ETA*27.0/8.0 
A(2,0)=C*P4*ETA2*27.0/32.0 
A(2,1)=-C*P4*ETA2*9.0/8.0 
A(2,2)=C*P4*ETA2*9.0/32.0 

C MATRIX FOR CSA ELEMENTS 
DELCS=DELCS*P2 

c 

CALL DR(DBETA,BETA,BETAS) 
CA(1) = DELCS*(DBETA(1)+SQRT(2./3.)*ETACS*ALPH2*DBETA(3)) 
CA(2) = DELCS*((-2.*GAM*DBETA(2))+(SQRT(2./3.)*DBETA(4)* 

1 ETACS*AL2GAM)+(SQRT(2./3.)*ETACS*AL2NGAM*DBETA(6))) 
CA(3) = DELCS*((SQRT(2./3.)*ETACS*DBETA(6)*SAL2NGAM) + 

1 (2.*DBETA(2)*GAMS)-(SQRT(2./3.)*ETACS*DBETA(4)* 
1 SAL2GAM)) 

CA(4) = DELCS*((2.*GAM2*DBETA(3))+(SQRT(2./3.)* 
1 ETACS*AL2GAM2*DBETA(5) )+(SQRT(2./3.)*ETACS*NAL2GAM2* 
1 DBETA(7))) 

CA(S) = -DELCS*((2.*DBETA(3)*2.*GAM*GAMS)+(SQRT(2./3.)* 
1 ETACS*DBETA(7)*SNAL2GAM2)+(SQRT(2./3.)*ETACS* 
1 DBETA(5)*SAL2GAM2)) 

BROADL=ABS(PI*BROADL/FWIDTH) 
BROADG=BROADG/FWIDTH 

C INVOKE POWDER 
CALL POWDIM8(SPEC,POINTS,FSTART,FWIDTH,2*NTRAN) 
DO 30 P=O,POINTS-1 

DATA(2*P+1)=SPEC(P) 
DATA(2*P+2)=0.0 

30 CONTINUE 
C BROADEN THE PATTERN 

ISIGN=1 
CALL FFT1(DATA,POINTS,ISIGN) 
BROADL=EXP(-BROADL) 
BROADG=(-PI*BROADG*BROADG) 
EPLG=1.0 
DO 43 P=O, (POINTS/2-1) 

DATA(2*P+1)=DATA(2*P+1)*EPLG 
DATA(2*P+2)=DATA(2*P+2)*EPLG 
EPLG=EPLG*BROADL 
DECAY=EXP(REAL(P)*REAL(P)*BROADG) 
DATA(2*P+1)=DATA(2*P+1)*DECAY 
DATA(2*P+2)=DATA(2*P+2)*DECAY 

43 CONTINUE 
DO 42 P=(POINTS/2), (POINTS-1) 

DATA(2*P+1)=DATA(2*P+1)*EPLG 
DATA(2*P+2)=DATA(2*P+2)*EPLG 
EPLG=EPLG/BROADL 
DECAY=REAL(POINTS-P)*REAL(POINTS-P)*BROADG 
DECAY=EXP(DECAY) 
DATA(2*P+1)=DATA(2*P+1)*DECAY 
DATA(2*P+2)=DATA(2*P+2)*DECAY 

42 CONTINUE 
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c 

100 

201 
1252 
c 

1089 

2061 

1391 

9081 

22091 

1 

1 

ISIGN=-1 
CALL FFT1(DATA,POINTS,ISIGN) 
FIND VALUE OF LARGEST POINT IN SPECTRUM 
MAXIMUM=O.O 
DO 100 P=O,POINTS-1 

MAXIMUM=MAXIMUM+DATA(2*P+1) 
CONTINUE 
DO 201 P=O,POINTS-1 

SPEC(P)=O.O 
DATA2(2*P+1)=DATA2(2*P+1)+(AMP*DATA(2*P+1)/MAXIMUM) 

CONTINUE 
DO LEAST SQUARES COMPARISON TO REAL DATA 
IF(MM.EQ.1)THEN 

DO 1089 P=O,POINTS-1 
DATA2 (2*P+1) =SQRT ( (DATA2, (2*P+1) *DATA2 (2*P+1)) + 

(DATA2(2*P+2)*DATA2(2*P+2))) 
CONTINUE 

END IF 
ERROR=O. 
DO 2061 P=O,POINTS-1 

ERROR=ERROR+(DATA2(2*P+1)-SPECIN(P))**2 
CONTINUE 
FCT=ERROR/CHIFIX 

FORMAT('THE LEAST SQUARE VALUE IS : ',E14.7, 
THE COUNT IS : ',I7) 

IF(COUNT.GE.O) THEN 
COUNT=COUNT+1 
IF(MOD(COUNT,50) .EQ.O) THEN 
WRITE(*,1391) FCT,COUNT 

ENDIF 
IF(MOD(COUNT,SHOW) .EQ.O.AND.SHOW.GT.O) THEN 

OPEN(UNIT=10,FILE='POWD.SIM',STATUS='UNKNOWN') 
REWIND(10) 

DO 9081 I=O,POINTS-1 
WRITE(10,*) FSTART+I*FINC,DATA2(2*I+1) 

CONTINUE 
CLOSE ( 10) 
OPEN(UNIT=10,FILE='FIT.SIM',STATUS='UNKNOWN') 

REWIND(10) 
WRITE(10,*) COUNT 
DO 22091 J=1,PATS*11 

WRITE(10,*) PR(J) 
CONTINUE 
WRITE(10,*) FCT 
CLOSE ( 10) 

END IF 
END IF 

IF (IFLAG.EQ.3) THEN 
OPEN(UNIT=10,FILE='FIT2.DAT',STATUS='UNKNOWN') 

REWIND(10) 
WRITE(10,*) COUNT 
DO 20091 J=1,PATS*11 

WRITE(10,*) PR(J) 
20091 CONTINUE 

WRITE(10,*) FCT 
CLOSE (10) 
OPEN(UNIT=10,FILE='POWD.SIM',STATUS='UNKNOWN') 

REWIND(10) 
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DO 9085 I=O,POINTS-1 
WRITE(10,*) FSTART+I*FINC,DATA2(2*I+1) 

9085 CONTINUE 

c 

c 

c 

CLOSE (10) 
END IF 

RETURN 
END 

SUBROUTINE DR(D,CB,SB) 

IMPLICIT NONE 

C DELCLARATION OF ARGUMENTS 
REAL D(7),CB,SB 

c 
c 

c 
c 

c 

c 

D(1) = ((3.*CB*CB)-1.)12. 
D(2) = -SQRT(3.12.)*SB*CB 
D(3) = SQRT(3.18.)*SB*SB 
D(4) = -((1.+CB)I2.)*SB 
D ( 5) = ( ( 1. +CB) I 2 . ) * ( ( 1. +CB) I 2 . ) 
D(6) = ((1.-CB)I2.)*SB 
D(7) = ((1.-CB)I2.)*((1.-CB)I2.) 
RETURN 
END 

SUBROUTINE DR2(D,CB,SB) 

IMPLICIT NONE 

C DELCLARATION OF ARGUMENTS 
REAL D(3),CB,SB 

c 
c 

c 
c 

c 

D(1) = ( (3.*CB*CB)-1.)12. 
D(2) = -SQRT(3.12.)*SB*CB 
D(3) = SQRT(3.18.)*SB*SB 
RETURN 
END 

SUBROUTINE LINES(COSX,SINX,COSY,SINY,FREQ,AMP) 

C CALLED FROM POWDER. WILL CALCULATE SPINNING PATTERNS OF QUAD 
C NUCLEI. 
c 

IMPLICIT NONE 
c 
C DELCLARATION OF ARGUMENTS 

REAL SPECIN(0:1023),COSX,COSY,SINX,SINY,FREQ,AMP 
REAL OFF,SPIN,WL,P2,P4,FWIDTH,FSTART,FINC 
REAL C2X,C4X,C2Y,C4Y,COSA(0:2),COSB(0:2),A(0:2,0:2),WISO 
INTEGER CSTE,QPTE,SHOW,NTRAN,COUNT,MM,PATS,I,J 
REAL PARAM(0:32,0:64,5) 
REAL CA(0:8) ,CHIFIX,DBX(3) 
COMMON SPECIN,A,WISO,PATS,SPIN,WL,P2,P4,0FF,FWIDTH,FSTART,FINC 

1 ,MM,SHOW,COUNT,QPTE,CSTE,PARAM,NTRAN,CHIFIX,CA 
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c 
C FIRST EXECUTABLE STATEMENT 
C COMPUTE FREQUENCY AND CONSTANT INTENSITY 

CALL DR2(DBX,COSY,SINY) 
C2X=COSX*COSX 
C4X=C2X*C2X 
C2Y=COSY*COSY 
C4Y=C2Y*C2Y 
COSA ( 0) =1. 
COSB(O) =1. 
COSA(1)=(2.*C2X)-1. 
COSB(1)=(2.*C2Y)-1. 
COSA(2)=(8.*C4X~-(8.*C2X)+1. 

COSB(2)=(8.*C4Y)-(8.*C2Y)+1. 
FREQ=WISO 
DO 3 I=0,2 

DO 4 J=0,2 
FREQ=FREQ+(A(I,J)*COSA(I)*COSB(J)) 

4 CONTINUE 
3 CONTINUE 

c 
c 

1 
9999 
998 

FREQ=FREQ + (CA(1)*DBX(1)) 
FREQ=FREQ + (CA(2)*COSX+CA(3)*SINX)*DBX(2) 
FREQ=FREQ + (CA(4)*COSA(1)+CA(5)*2.*COSX*SINX)*DBX(3) 

AMP=l.O 
RETURN 
END 

PROGRAM MINUITCQ 
EXTERNAL FXT 
EXTERNAL DUMMY 
INTEGER QPTE,CSTE,NTRAN 
INTEGER MM,SHOW,COUNT,I,PATS,POINTS 
CHARACTER*30 FILENM 
CHARACTER*1 ANSWER 
REAL OFF 
REAL SPECIN(0:1023),A(0:2,0:2),WISO 
REAL WL,THETA,PI,SPIN,SW,C2,C4,P2,P4,FWIDTH,FSTART,FINC 
REAL PARAM(0:32,0:64,5),CHIFIX,CA(0:8) 
COMMON SPECIN,A,WISO,PATS,SPIN,WL,P2,P4,0FF,FWIDTH,FSTART,FINC 

,MM,SHOW,COUNT,QPTE,CSTE,PARAM,NTRAN,CHIFIX,CA 
FORMAT (A3 0) 
FORMAT(A1) 
SHOW=-1 
COUNT=O 
POINTS=l024 
WRITE(*,*) 'WHAT IS THE DATA FROM?' 
READ(*,9999) FILENM 
WRITE(*,*) 'IS THIS A MAGNITUDE SPECTRUM?' 
READ(*,998) ANSWER 
MM=O 
IF(ANSWER.EQ.'Y'.OR.ANSWER.EQ.'Y')MM=1 
WRITE(*,*) 'IS THIS FILE XY PAIRS OR Y ONLY (X/Y)?' 
READ(*,998) ANSWER 
OPEN (UNIT=8,FILE=FILENM,STATUS='OLD') 
DO 99 I=0,1023 
IF(ANSWER.EQ.'Y' .OR.ANSWER.EQ.'Y') THEN 

READ(8,*) SPECIN(I) 
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c 

ELSE 
READ(8,*) WISO,SPECIN(I) 

END IF 
99 CONTINUE 

CLOSE(8) 
WRITE(*,*) 'WHAT IS WL (MHZ)?' 
READ(*,*) WL 
WRITE(*,*) 'WHAT IS THE SPECTRAL WINDOW?' 
READ(*,*) SW 
WRITE(*,*) 'DO YOU WANT OUTPUT?' 
READ(*,998) ANSWER 
IF(ANSWER.EQ. 'N' .OR.ANSWER.EQ. 'N') COUNT=-1 
WRITE(*,*) 'HOW OFTEN DO YOU WANT SPECTRA?' 
READ(*,*) SHOW 
WRITE(*,*) 'HOW MANY PATTERNS?' 
READ(*,*) PATS 
IF(PATS.GT.S) PATS=S 
WRITE(*,*) 'WHAT IS I (SPIN)?' 
READ(*,*) SPIN 
WL=WL*lOOO.O 
WRITE(*,*) 'WHAT IS THETA (DEGREES)?' 
READ(*,*) THETA 
WRITE(*,*) 'USE (I)SOTROPIC CS OR (D)OR CS?' 
READ(*,998) ANSWER 
CSTE=O 
IF(ANSWER.EQ. 'I.' .OR.ANSWER.EQ. 'I') CSTE=l 
WRITE(*,*) 'USE (R)EAL WQ OR (P)RODUCT WQ(l+ETA2/3)?' 
READ(*,998) ANSWER 
QPTE=O 
IF(ANSWER.EQ.'P' .OR.ANSWER.EQ.'P') QPTE=l 
PI=1. 
PI=4.*ATAN(PI) 
THETA=THETA*PI/180. 
WRITE(*,*) 'WHAT IS THE OFFSET FROM ZERO FREQ (IN PPM)?' 
READ(*,*) OFF 
WRITE(*,*) 'WHAT IS THE POWDER RESOLUTION (32 TO 256)?' 
READ ( * I * ) NTRAN 
WRITE(*,*) 'HOW MANY POINTS ON LEFT SIDE DEFINE ERROR?' 
READ(*,*) ITER 
CHIFIX=SQAVELEVEL(ITER) 

C CALCULATE C, P2 AND P4 
C2=COS(THETA)*COS(THETA) 
C4=C2*C2 

c 

P2=( (3.*C2)-1)/2. 
P4=((35.*C4)-(30.*C2)+3.)/8. 

C CALCULATE FREQUENCY RANGE 
FWIDTH=SW 

c 
c 

FSTART=-SW/2. 
FINC=FWIDTH/REAL(POINTS-1) 

MP=PATS*6+1 
NP=PATS*6 
NDIM=6*PATS 
OPEN (UNIT=S,FILE='MINCQ.I',STATUS='UNKNOWN') 
OPEN (UNIT=6,FILE='MINCQ.FIT',STATUS='UNKNOWN') 

218 



c 
c 
c 

c 

CALL MINUIT(FXT,DUMMY) 
CLOSE(5) 
CLOSE(6) 
END 

FUNCTION INTRAC 
LOGICAL*4 INTRAC 
INTRAC = .FALSE. 
RETURN 
END 
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