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TRANSPORT PROPERTIES OF QUARK AND GLUON PLASMAS 

Abstract 

H. Heiselberg 
Nuclear Science Division, MS 70A-3307 
Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94 720 

The kinetic properties of relativistic quark-gluon and electron-photon 
plasmas are described in the weak coupling limit. The troublesome 
Rutherford divergence at small scattering angles is screened by Debye 
screening for the longitudinal or electric part of the interactions. The 
transverse or magnetic part of the interactions is effectively screened 
by Landau damping of the virtual photons and gluons transferred in 
the QED and QCD interactions respectively. Including screening a 
number of transport coefficients for QCD and QED plasmas can be 
calculated to leading order in the interaction strength, including rates 
of momentum and thermal relaxation, electrical conductivity, viscosi­
ties, flavor and spin diffusion of both high temperature and degenerate 
plasmas. Damping of quarks and gluons as well as color diffusion in 
quark-gluon plasmas is, however, shown not to be sufficiently screened 
and the rates depends on an infrared cut-off of order the "magnetic 

" 2T mass , mmag "' g . 

1 Introduction 

QCD plasmas consisting of quarks, antiquarks and gluoris appear in a number of 
situations. In the early universe the matter consisted mainly of a quark-gluon plasma 
for the first microsecond before hadronization set in. Present day experiments at 
the CERN SPS, the Brookhaven AGS and future RHIC collider are searching for 
the quark-gluon plasma in relativistic heavy ion collisions. Cold degenerate plasmas, 
T ~ p,, of quarks may exist in cores of neutron stars or in strangelets. 

Relativistic QED and QCD plasmas have a lot of common features in the weak 
coupling limit such as the Rutherford divergence in the elastic differential cross sec­
tion, the screening properties, and therefore also transport properties. In a plasma 
the typical momentum transfers are of order T or J.L, whichever is the larger. For 
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sufficiently high temperature or density, the running coupling constant as( Q) is small 
and we can treat the quark-gluon plasma as weakly interacting. In fact lattice gauge 
calculations indicate that the quark-gluon plasma behaves much like a free gas al~ 

ready at temperatures not far above the critical temperature, Tc ~ 160 MeV, at 
which the phase transition between hadronic matter and quark-gluon plasma takes 
place. Anyway, since we are better at interpolating than extrapolating, knowledge 
of the behavior of weakly interacting quark-gluon plasmas at high temperatures or 
densities should be very useful. 

We emphasize that it is the effect of Landau damping which effectively leads to 
screening of transverse interactions and give the characteristic relaxation rates in 
transport processes and some transport coefficients for weakly interacting electron­
photon and quark-gluon plasmas for both thermal plasmas [1, 2] as well as degenerate 
ones [3]. In addition, we discuss the quark and gluon quasiparticle damping rates and 

·the rates of color diffusion in which the transverse interactions are not sufficiently 
screened so that an infrared cut-off on the order of the "magnetic mass", mmag ~ g 2T, 
is needed. 

2 Screening in QCD and QED 

The static chromodynamic interaction between two quarks in vacuum gives the matrix 
element for near-forward elastic scattering 

M(q) =as ( 1 _Vi X qv2 X q) ' 
q2 c c 

(1) 

where as = g2 /47r is the QCD fine structure constant, v 1 and v 2 are the velocities 
of the two interacting particles and q is the momentum transfer in the collision. 
The first part is the electric or longitudinal ( +timelike) part of the interactions. 
The second part is the magnetic or transverse part of the interactions. In the Born 
approximation the corresponding potential is obtained by Fourier transform of (1) 
by which one obtains the standard Coulomb and Lorenzt interactions respectively. A 
weakly interacting QCD plasma is very similar to a QED plasma if one substitutes the 
fine structure constant as by a= e2 ~ 1/137, the gluons by photons and the quarks 
by leptons with the associated statistical factors. The interaction via the gluon field 
is determined by gauge symmetry in much the same way as in QED and therefore 
scattering by a gluon exchange is very similar to that by photon exchange and the 
Feynman diagrams carry over. There is one crucial difference, namely that the gluon 
can couple directly to itself. This leads to confinement and the running coupling 
constant, as(Q). For a given coupling constant, however, the kinetic properties are 
very similar as we shall see. 

In non-relativistic plasmas such as the electron plasma in terrestrial metals, the 
electron velocities are of order the Fermi velocity, which is much smaller than the 
speed of light, and therefore the transverse interactions are usually ignored. In rela­
tivistic plasmas they are, however, of similar magnitude and for degenerate plasmas 
the transverse interactions may in fact dominate the transport properties, as will 
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be described below, because they are effectively less screened than the longitudinal 
interactions. 

By squaring the matrix element we obtain the Rutherford differential cross section 
at small momentum transfer q in the center-of-mass system 

da 2 a~ 2 ) 
dO = 4E q:t(1 + v . (2) 

The momentum transfer is related to the scattering angle () by q = 2E sin(() /2) where 
E is the particle energy in the center-of-mass system. We observe that (2) diverges 
'as o-4 at small angles and the total cross section is infinite signifying a long-range 
interaction. In calculating transport properties one typically weights the differential 
cross section by a factor q2 = 2E2 (1 - cos 0) but that still leads to a logarithmically 
diverging integral and therefore to vanishing transport coefficients . 

. In a medium this singularity is screened as given by the Dyson equation in which 
a gluon self energy Ih,T is added to the propagator t-1 = w 2 - q2 . For the matrix 
element this gives 

t -1 2 2 I1 
~ W - q - L,T, (3) 

(we refer to Weldon [4] for details on separating longitudinal and transverse parts of 
the interaction) where the longitudinal and transverse parts of the selfenergy in QED 
and QCD are for w, q « T given by 

2 ( x x+1) qD 1- -In-- , 
2 x-1 

(4) 

2 [ 1 2 1 2 ) X + 1] qD -x + -x(1- x ln --
2 4 X -1 

(5) 

where x = wjqvp and vp = c for the relativistic plasmas considered here. The Debye 
screening wavenumbers in QCD is 

(6) 

where N = 3 is the number of colors, Nq is the number of quark flavors, T the plasma 
temperature and J.Lq the quark chemical potential. We refer to [12} for a detailed 
comparison to QED plasmas. 

In the static limit, ITL(w = 0, q) = qb, and the longitudinal interactions are De bye 
screened. Consequently, the typical elastic scattering and transport cross sections due 
to longitudinal interactions alone become 

(7) 

(8) 

in a high temperature quark-gluon plasma, where particles energies are E ""'T. 
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For the transverse interactions the selfenergy obeys the transversality condition 
qJ.LIIJ.Lv = 0, which insures that the magnetic interactions are unscreened in the static 
limit, IIr( w = 0, q) = 0. Consequently, the cross sections corresponding to (7) and (8) 
diverge leading to zero transport coefficients. It has therefore been suggested that the 
transverse interactions are cut off below the "magnetic mass", mmag ""' g2T, where 
infrared divergences appear in the plasma [5]. However, as was shown in [1] and as 
will be shown below, dynamical screening due to Landau damping effectively screen 
the transverse interactions off in a number of situations at a length scale of order the 
Debye screening length""' 1/gT as in Debye screening. Nevertheless, there are three 
important length scales in the quark-gluon plasma. For a hot plasma they are, in 
increasing size, the interparticle spacing "' 1 /T, the De bye screening length "' 1/ gT, 
and the scale 1/mmag"' 1jg2T where QCD effects come into play. 

3 Transport Coefficients for Hot Plasmas 

In this section we calculate a number of transport coefficients for weakly-interacting, 
high temperature plasmas. We work in the kinematic limit of massless particles, 
m ~ T, and zero chemical potential, IJ.L ~ Tj. 

The characteristic timescales, T, describing the rate at which a plasma tends to­
wards equilibrium if it is initially produced out of equilibrium, as in a scattering 
process, orif driven by an external field, are determined by solving the kinetic equa­
tion. For a system with well defined quasiparticles, the Boltzmann transport equation 
IS 

8 
(
0

t + vp · 'Vr + F · 'Vp)np = -21rv2 L IMI2-341
2
h'p1+p2 ,p3 +p4 h'(c:I + c:2- c:3- c:4) 

234 
x [ np1 np2 ( 1 ± np3 ) ( 1 ± np, ) - np3 np4 ( 1 ± np1 )( 1 ± npJ] , ( 9) 

where p is the quasiparticle momentum, np the quasiparticle distribution function 
and F the force on a quasiparticle. The r.h.s. is the collision integral for scattering 
particles from initial states 1 and 2 to final states 3 and 4, respectively. The (1 ± np) 
factors correspond physically to the Pauli blocking of final states, in the case of 
fermions, and to (induced or) stimulated emission, in the case of bosons. 

The matrix element for the scattering process 1 + 2 -+ 3 + 4 is IM12-34I2 = 
IM12_,34 j2 /16c:1 c:2c:3c:4 where M is the Lorentz invariant matrix element normalized 
in the usual manner in relativistic theories. When electrons, quarks and gluons scatter 
elastically through photon or gluon exchange in a vacuum, the matrix element squared 
averaged over initial and summed over final states is dominated by a t 2 = (w 2

- q2
)

2 

singularity, for example for quark-gluon scattering 

(10) 

The gluon-gluon and quark-quark matrix elements only differ by a factor 9/4 and 4/9 
respectively near'small momentum scattering. 

5 



3.1 Viscosities 

In Ref. [1, 12] the first viscosity of a quark-gluon plasma was derived to leading 
logarithmic order in the QCD coupling strength by solving the Boltzmann kinetic 
equation. For gluons 

29 15e(5)2 T3 T 3 

'f/g = 1r5 {1 + llNq/48) g4 ln(T/qv) = 
0

·
34 a~ ln(1/as) · 

(11) 

Second, the quarks carry momentum, and therefore produce an increase in the total 
viscosity, 17 = 179 + 'f/q· The quark viscosity, 'f/q, is obtained analogously to the gluon 
one 

(12) 

which for Nq = 2 results in 'f/q = 4.4'f/9 , a quark viscosity that is larger than the gluon 
one because the gluons generally interact stronger than the quarks. 

Writing each 'f/i (i = q,g) in terms of the viscous relaxation time, T11 ,i, as 

(13) 

where w is the enthalpy, we obtain the viscous relaxation rate for gluons 

1 liN - = 4.11(1 + __ q )Ta~ ln(1/as), 
T 11 ,g 48 

(14) 

and for quarks and antiquarks 

1 7N 
- = 1.27(1 + 

33
q )Ta~ ln(1/as). 

T'IJ,q 
(15) 

The second viscosity ( is zero for a. gas of massless relativistic particles. Thermal 
conduction is not a hydrodynamic mode in relativistic plasmas with zero chemical 
potential. 

3.2 Momentum Relaxation Times 

In [2] the time for transfer of momentum between two interpenetrating, spatially 
uniform plasmas in relative motion has been calculated. Elastic collisions between 
the two interpenetrating plasmas lead to a relative flow velocity decreasing as function 
of time and the characteristic stopping time is the "momentum relaxation time". We 
emphasize that we are only considering collisional phenomena. in this calculation. It 
might be the case that collective phenomena, such as the two-stream instability could 
lead to relaxation faster than that due to collisions. 

The resulting momentum relaxation rate T~~m,qg for gluons colliding with quarks 
and antiquarks (v2 = 12Nq), exact to leading logarithmic order in a 8 = g2 /47r, is 

207r 21 2 
1/Tmom,qg = -

7
-(1 + 

32
Nq)a 8 ln(1/as)T. (16) 
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Momentum relaxation rates for two plasmas with different quark flavors, spins, or 
colors, or for different gluon colors or spins have the same form, rv a; ln( 1/ a8 )T. 

In QED plasma similar stopping times are obtained for lepton stopping on an­
tileptons [2, 12) as in (16) when a 8 is replaced by a. Photon stopping rates are, 
however, different, Tmom,-yl ~ a~T, because the photon does not couple to itself as 
does the gluon and so it does not interact with a lepton by exchanging a photon but 
only through Compton scattering. 

3.3 Electrical Conductivity 

Another transport coefficient of interest is the electrical conductivity, O'e/, of the 
early universe. The principal conduction process is flow of charged leptons, and 
the dominant scattering process is electromagnetic interaction with other charged 
particles; strongly interacting particles have much shorter mean-free paths. The in­
frared singularity of the transverse interaction in QED is treated as in QCD, only 
now qb = N1e2T 2 /3, where N1 is the number of charged lepton species present at 
temperature T. To calculate O'eJ we consider the current of charged leptons (1) and 
antileptons (2) in a static electric field, E. Taking the components to be thermally 
distributed with opposite fluid velocities, u1 = -u2, the total electrical current is 
jll = -enllu1 , where the density of electric charge carriers is nll = 3((3)N£T3 j1r 2

• 

Solving the kinetic equation (9) we find the electrical conductivity 

The related electric current relaxation time is 

_!_ = 47rNdn2 21 ( fa)T 
T£l 27((3) a n 

1 
' 

(17) 

(18) 

which is very similar to the corresponding momentum relaxation time (16) in QED. 
Although quarks (of charge Qqe) contribute negligibly to the electrical current, 

their presence leads to additional stopping of the leptons and thus smaller conduc­
tivity. Adding contributions from fq and fij collisions we obtain the total electrical 
conductivity O'e/ = a-~.l/(1 + 3 '£~~ 1 Q~). . 

4 Transport Coefficients in Degenerate Matter 

In degenerate QED and QCD plasmas there are practically no photons or gluons 
present respectively since T ~ J.l· The Debye screening length is according to Eq. 
(6) proportional to Av ~ 1/ep for an electron plasma and Av ~ lfgp for a quark 
plasma. 

In a degenerate plasma there are three momentum scales, namely J.l, T, and qv, 
whereas. in the hot plasmas we could neglect the chemical potential. In the cold 
plasma T ~ J.l and likewise for the weakly interacting plasma qv ~ J.l, but it is 
important to consider the limits of qv ~ T and T ~ qv separately. 
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Momentum transfer processes in degenerate quark matter, T ~ J-l (chemical po­
tential), as for example in neutron stars, are also characterized by' the rate of mo­
mentum relaxation for strong interactions, T~~m· For Nq quark flavors with the same 
chemical potentials we find, neglecting the strange quark mass, that [3] 

_1 __ 8NqTa2 { (3/2)ln(T/qn), 
Tmom - 37r 8 a(Tfqn)213 + (7r3 /12)(T/qn), 

where a= (27r)213r(8/3)((5/3)/6 ~ 1.81. 

T~ qn} 
T~qD ' 

(19) 

The two limiting cases can be qualitatively understood by noticing that, due 
to Pauli blocking and energy conservation, the energy of the particles before and 
after collisions must be near. the Fermi surface, and therefore w ~T. For T ~ qn 
the limitation w~T does not affect the screening because lwl :::; q "' qn ~ T and 
consequently the result (19) is analogous to that for high temperatures, Eq. (14), 
but with qb = 2NqasJ-l2 j1r. The result for T ~ qn is qualitatively different due to 
Landau damping of modes with q~(wqb) 1 13 , where now w "' T. The two terms in 
(19) correspond to the contributions from transverse and longitudinal interactions 
respectively and we note that transverse interactions dominate for T ~ qn because 
Landau damping is less effective than Debye screening in screening interactions at 
small q and w. 

The viscous relaxation time for quarks is defined analogously to (13) by 

(20) 

where PF = /-lq is the Fermi momentum, vp = c = 1 is the Fermi velocity and 
n = Nqnq is the density of quarks. By solving the kinetic equation we find [3] 

1 _ 8 2 
{ ~Tln(Tfqn), T ~ qn } 

- - -Nqas X ys/3 7r3 T2 
T11 7r a--+--- T ~ qn 

. 2/3 4 qn' qD 

(21) 

We define a characteristic relaxation time for thermal conduction, Tx, by 

(22) 

where Cv = (Nqj2)Tp~ is the specific heat per volume. Thus we find [3] 

T ~ qn } . 

T~qD 

(23) 

The relaxation time for thermal conduction has a different temperature dependence 
than both T 8 and T 11 because the thermal conduction was weighted by energy trans­
fers (w2 ) instead of momentum transfers (q2) as for momentum stopping, electrical 
conduction and viscous processes. 
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Applications to burning of nuclear matter into strange quark matter in the interior 
of a neutron star are described in Ref. [3]. In the above calculation the quark 
matter was assumed to be present in bulk. The transport properties may, however, 
be significantly different in a complex mixed phase of quark and nuclear matter in 
cores of neutron stars [7). 

5 Damping of Quarks and Gluons 

Historically, calculating damping rates of quasiparticles in a thermal quark-gluon 
plasma is a controversial subject, since early results indicated that the damping rate 
was negative, and gauge dependent (for a review, see Ref.. [9]). Here we show how 
the lifetime may be calculated within the framework of the kinetic equation [8]. The 
quasiparticle decay rate for a gluon of momentum p 1 scattering on other gluons is (6] 

(24) 

where p 2 is the momentum of the other gluon. When p1 ~ qv "" gT the integrals 
in (24) over the transverse part of the interaction diverge as shown in [8] because 
the factor (1 cos 0) or q2 appearing in the earlier transport calculations is missing; 
i.e., Landau damping alone is insufficient to obtain a non-zero quasiparticle lifetime. 
Including an infrared cut-off, .A ~ mmag ~ g2T, which takes into account the failure 
of perturbative ideas at momentum scales of order the magnetic mass, the leading 
contribution comes from small momentum transfers q rv qv "" gT and we obtain 

1/r(g) = 3a ln(1/a ) T PI s s • (25) 
\..,-._ 

The quasiparticle decay rate for quarks can be calculated analogously and is just 4/9 of 
that for the gluon, the factor coming from the matrix elements at small momentum 
transfer for quark scattering on quarks and gluons compared with those for gluon 
scattering. 

Let us now compare this result with that obtained using field-theoretic techniques. 
Braaten & Pisarski [9] have developed a technique for resumming soft thermal loops 
which provides screening so that the damping, /, at p1 = 0 is positive and gauge in­
dependent. Recently, Burgess, and Marini & Rebhan (10] have obtained the leading 
logarithmic order for quarks and gluons with momenta p1 ~ gT. They evaluate the 
gluon self energy, given by the gluon bubble, to leading order by including screening in 
the propagator of the soft gluon in the bubble and introducing the same cutoff. Their 
result for the imaginary part of the self energy, which is one half the quasiparticle 
decay rate, agrees with ours, Eq. (25), because exchange contributions (vertex cor­
rections), which are automatically included in the kinetic equation, do not contribute 
to leading order. 

The relaxation rates in transport processes [1] are of order rv a~T, i.e., suppressed 
by a factor a 8 with respect to the damping rates. This is because in transport 
processes one has an extra factor q2 in integrals like (9) which suppresses the rate by 
a factor qb/T2 ~ as. 
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6 Flavor, Spin and Color Diffusion 

Let us first consider the case where the particle flavors have been separated spatially, 
i.e., the flavor chemical potential depends on position, J.li(r). In a steady state scenario 
the flavor will then be flowing with flow velocity, Uj. If we make the standard ansatz 
for the distribution function (see, e.g., [6, 8]) 

( 

fp- J.l;(r)- u; · p ) -I ( fp- J.li(r) ) -I onp 
np,i = exp( T ) + 1 ~ exp( T ) + 1 - Otp u; · p ,(26) 

the expansion is valid near global equilibrium where J.li and therefore also u; is small. 
The two terms are those of local isotropic equilibrium and the deviation from that. In 
general the deviation from local equilibrium has to be found selfconsistently by solving 
the Boltzmann equation. However, in the case of the viscosity the analogous ansatz 
was found to be very good [1). The flavor current is then simply j; = Lp np,i = u;n; 

where n; = Lp np,i is the density of a particular flavor i. Linearizing the Boltzmann 
equation we now find 

X 

27r L n1n2(1- n3)(1- n4)8p1 +p2 ,p3 +p4 8(c:I + £2-£3- c:4) 
234 

1Mt2--+3·d2(ut- u2) · q (27) 

The resulting flavor diffusion coefficient defined by: j; = - D flavor V Jl;, is now straight­
forward to evaluate when the screening is properly included as described above: The 
calculation is analogous to that of the momentum stopping or viscous times. We find 

(28) 

Subsequently, let us consider the case where the particle spins have been polarized 
spatially, i.e., the spin chemical potential depends on position, Jlo-(r). With the 
analogous ansatz to (26) for the distribution functions with J.lo- instead of Jli wefind 
the spin current jo- = Uo-no-. Linearizing the Boltzmann equation we find 

27l" L n1n2(1- n3)(1 ± n4)8p!+p2 ,p3 +p4 D(C:t + £2-£3- £4) 
234 

x [1MiJ_341 2(ui - u2) · q + 1Mi:L3412(Ut - u2) ·(PI + P2)] {29) 

where Ml l and Mll refer to the spin flip and the non-spin flip parts of the amplitude. 
The transition current can be decomposed into the non-spin flip and the spin flip 

parts by the Gordon decomposition rule 

(30) 

We notice that the latter is suppressed by a factor q = PJ- p; which leads to a spin 
flip amplitude suppressed by a factor q2 • We then find that the spin flip interactions 
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do not contribute to collisions to leading logarithmic order and the collision integral 
is similar to those evaluated above. Consequently, the corresponding quark spin 
diffuseness parameter is 

D(q)- D I u - favor • (31) 

Gluon diffusion is slower, D~9 ) ~ (4/9)2 Du,q, partly because they interact stronger. 
Finally, let us, like for the spin diffusion, assume that color has been polarized 

spatially given by a color chemical potential, J.lc(r). The basic difference to spin 
diffusion is that quarks and gluons can ·easily flip color directions in forward scattering 
by color exchanges, i.e., one does not pay the extra q2 penalty factor as in the case 
of spin flip. Consequently, the color flip interactions will dominate the collisions 
since they effectively reverse the color currents. As a consequence the collision term 
becomes similar to that for the quasiparticle scatterings (14) and we find for the color 
diffuseness parameter 

(32) 

The color flip mechanism amplifies the collisions so the color cannot diffuse as easily 
as spin or flavor. 

The color conductivity is found analogous to the electrical conductivity, where 
O"eJ ~ qbre1 (see Eqs. (17) and (18)), 

(33) 

The characteristic relaxation times for conduction are very different in QCD, where 
Tcolor "' Dcolor "' (asln(1/as)T)-I, as compared to QED, where Tel = Tmom ~ 
(a2 ln(1/a)T)-1 . Consequently, QGP are much poorer color conductors than Q-ED 
plasmas for the same coupling constant. 

These surprising results for QCD are qualitatively in agreement with those found 
by Selikhov & Gyulassy [11] who have considered the diffusion of color in color space. 
They use the fluctuation-dissipation theorem to estimate the deviations from equi­
librium and find the same two terms as in (32), which they denote the momentum 
and color diffusion terms, and they also find that the latter dominates. Inserting the 
same infrared cut-off they find a color diffusion coefficient in color space equal to (25) 

(34) 

Note that this quantity is proportional to the inverse of Dcolor of Eq. (32). 
The color flip mechanism is not restricted to QCD but has analogues in other non­

abelian gauge theories. In the very early universe when T > TssB ~ 250 Ge V, the 
w± bosons are massless and faces the same electroweak screening problems as QCD 
and QED. Since now the exchanged w± bosons carry charge (unlike the photon, but 
like the colored gluon), they can easily change the charge of, for example, an electron 
to a neutrino in forward scatterings. Thus the collision term will lack the usual factor 
q2 as for the quasiparticle damping rate and the color diffusion. Since SU(2) x U(1) 
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gauge fields should have the same infrared problems as SU(3) at the scale of the 
magnetic mass, "" e2T, we insert this infrared cutoff. Thus we find a diffusion time 
for charged electroweak particles in the very early universe of order 

(35) 

which is a factor a smaller than the momentum stopping time. The electrical con­
ductivity will be smaller by the same factor as well. 

7 Summary 

Whereas the troublesome Rutherford divergence at small scattering angles is screened 
by Debye screening for the longitudinal or electric part of the interactions, the trans­
verse or magnetic part of the interactions is effectively screened by Landau damping 
of the virtual photons and gluons transferred in the interactions. Including the screen­
ing, we calculated a number of transport coefficients for QED and QCD plasmas to 
leading order in the interaction strength. These included rates of momentum and 
thermal relaxation, electrical conductivity, and viscosities of quark-gluon plasmas for 
thermal as well as degenerate plasmas. 

Our calculations above show that the transport properties of high temperature and 
degenerate QCD and QED plasmas of relativistic particles have several interesting 
features. In a degenerate plasmas there are three scales: the chemical potentials, 
the temperature, and the Debye screening wavenumber, whereas in thermal plasmas, 
where J.L ~ T, the chemical potentials can be neglected. In the degenerate case; where 
J.L is much larger than both T and qv, the physics changes between the two limiting 
cases ofT~ qv and T ~ qv. When T ~ qv the characteristic relaxation rates are 
1/r ~a~ ln(Tfqv)T as in the high temperature plasma, and the contributions from 
longitudinal and transverse interactions are of comparable magnitudes. However, 
the Debye wavenumber is different, qv "" gT at high temperatures and qv ""' 91-l 
in degenerate plasmas. When T ~ qv the transverse interactions dominate the 
scattering processes because they are screened by Landau damping only for energy 
transfers less than"" (qbT) 113 • The resulting relaxation rates for momentum transfer, 
electrical conduction, and viscous processes scale as 1/r "'(a8T)513JJ.t~l3 , while the 
relaxation rate for thermal conduction is 1/rK. "' a 8 T. The qualitative reason for rK. 

behaving in a different way from the other relaxation times is related to the singular 
character of the interaction for small energy transfer and small momentum transfer. 
An important general conclusion of these studies of QCD and QED plasmas is that 
the the transport coefficients deviate from the standard results of Fermi liquid theory 
and relaxations times are different for different transport processes. 

Color diffusion and the quark and gluon quasiparticle decay rates are not suffi­
ciently screened and do depend on an infrared cut-off of order the magnetic mass, 
mmag "' g 2T; typically r- 1 "" a 8 ln(qv/mmag)T ""' a 8 ln(lja8 )T. As a consequence, 
quasiparticle decay is fast, color diffusion is slow and the QGP is a poor color con­
ductor. 

12 
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