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ABSTRACT 

\•Ve derive and study the variable Eddington factors following wi·thout approximation from the 

maximum entropy distribution. A unified formalism is developed for classical Maxwell-Boltzmann, 

Bose-Einstein, and Fermi-Dirac radiation. In the classical and extreme degenerate limits the 

maximum entropy closure is bounded by previously known variable Eddington factors that depend 

only on the flux: the Levermore-Pomraning closure for extremely degenerate Bose radiation, and 

Minerbo's flux-limiter for the Boltzmann limit of either quantum statistics. For intermediate 

degeneracy, the maximum entropy closure depends on both the occupation density and the flux. 

The Fermi-Dirac maximum entropy variable Eddington factor exhibits scale invariance, which 

leads to a simple, analytic closure for fermion radiation. This Fermi-Dirac variable Eddington 

factor agrees well with Monte Carlo neutrino transport closures during early stages of neutron star 

formation. 
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1 Variable Eddington Factors to Close the Hierarchy of 

Angular Moment Equations 

The maximal iriformation on any ra.diation field is contained in the distribution function 

F(x 11 ,p11 ) which is the solution of the Boltzmann equation 

q11F; 11 = C[F] (1.1) 

as function of space-time and four-momentum. The interaction between the radiation and 

the material medium through which it is propagating, including stimulated emission or 

absorption due to the Bose or Fermi statistics of the radiation, is described by the collision 

integral C[F]. This is the only place through which the radiation quantum statistics enter 

the problem. For the most part, the geometry of the problem enters through the advective 

terms on the left hand side and through the boundary conditions. 

Although there are problems for which it is feasible to solve the Boltzmann equation 

outright, this is invariably computationally very intensive. Moreover, the full distribution 

function F( x 11 , p 11 ) often contains more information than is strictly required. In radiation 

hydrodynamics therefore, instead of the Boltzmann equation its angular moments are often 

considered. By integrating over the direction n of the particle momentum, information on 

the angular dependence of the distribution is degraded, but the computational problem is 

significantly reduced, 

Each angular moment equation of the Boltzmann equation contains angular moments 

of higher order. Any truncated hierarchy of moment equations contains more variables 

than equations and must be supplied with an additional equation, the closure. Usually, 

only the first two angular moments of the Boltzmann equation are considered, since these 

directly correspond to physical conservation laws of energy and momentum. They contain 

as variables the first and second Eddington factors, 

f(w,x 11 ) = Fje 

p(w, x 11 ) = P je 

(1/47r e) J dnn.F(w, n, x 11
)' 

(1/41r e) j dnnnF(w,n,x 11), 

which are the flux and the pressure, normalised by the -zeroth Eddington factor 
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corresponding to the occupation density. If the variable Eddington factor, p = p(f, e) 

were known as function of the flux f a.nd occupation density e, the hierarchy of moment 

equations would be closed with the first two moments. 

A practicable closure of the energy and momentum balance equations together with the 

variable Eddington factor should be easier to solve than the original Boltzmann equation 

and the results should approximate, a.s closely as possible, the angular moments of the 

exact distribution function :F, for each point in space-time xJJ-, and for every particle 

energy w. Beyond this 'weak equivalence' of the first three angular 'moments, a 'strong 

equivalence' of some model distribution to the exact distribution might be considered. 

If the closure is based on a model distribution function 'lj;( e, f), one might ask to what 

approximation 

1/J(e, f)::::: :F(e, f) (1..5) 

Accomplishing more than approximate strong equivalence is a priori unlikely, since this 

would amount to constructing an exact solution of the Boltzmann equation without actu

ally solving ( 1.1 ). For practical applications however, weak equivalence suffices. 

The Eddington factors f and p are normalised moments of a non-negative weight 

function on the unit sphere and as such obey the Schwarz inequality f 2 :S p :S 1, with 

f = lfl and p = Iii· fl fl. In the diffusive (isotropic) limit f = 0, p = 113. In the ballistic 

(free-streaming) limit, the upper equality f = p = 1 applies. With the aid of the energy 

conservation equation, the momentum conservation equation can be written as 

(- \7ln e) I Ktot = f I (p - f 2) = R (1.6) 

where Ktot is the total inverse mean free path, including the artificial opacity ( Cernohorsky 

and van Weert 1992; Dgani and Janka 1992). The effective Knudsen number R, the 

quotient of the mean free path and the energy' scale height, is small (R ~ 1) in the 

diffusive limit, and large (R ~ 1) in the free-streaming limit. In the optically dense region 

the flux F ~ -\7ei(3Ktot), in the optically thin regime F ~e. 

Many closures or Eddington factors have been proposed: for reviews see e.g. (Janka 

1991; Janka 1992; Janka, Dgani and van den Horn 1992; Levermore 1984; Minerbo 1978; 

Pomraning 1981), and references therein. Most closures compromise weak equivalence in 

favour of computational efficiency. Such pragmatism has been criticised by Janka, Dgani 

and van den Horn (1992), who found poor agreement between their exact Monte Carlo 

solutions of the neutrino transport equation and a. number of one-dimensional closures. 
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By one-dimensional closure we mean that p is a function of only one of the lower order 

Eddington factors, e or f. 

Maximum entropy closure accounts for the radiation quantum statistics through its 

dependence on the occupation number density e in addition to f. This makes the maxi

mum entropy closure two-dimensional, including earlier one-dimensional closures as lim

iting cases. For Bose and for Fermi statistics, we find complementary two-dimensional 

Eddington surfaces, p = p( e, !), which join in the classical limit. 

We consider Bose, Fermi and classical radiation in a unified way. Formal symmetries 

emerge among these three types of radiation. In the next section, we present some general 

formalism and derive the common algorithm used to obtain the maximum entropy closures. 

In sections 3 and 4, we discuss the classica.l limit and the Bose-Einstein closures (MEC

BE). In Section 5, we consider the Fermi-Dirac closure (MEC-FD), with emphasis on 

limiting behaviour and global symmetries. These symmetries inspire the introduction of 

relative variables, in terms of which, MEC-FD exhibits universal scaling which leads to a 

simple analytic closure a.lgorithm. 

In the concluding sections, we argue that Monte Carlo transport calculations can be 

accounted for by 11EC-FD and the range of occupation densities and fluxes expected 

during the early stages of neutron star formation. ·we dwell on the prospects of stronger 

equivalence and of future applications of the maximum entropy closure. 

2 Maximum Entropy Closure 

Throughout, we work within the spectral approach, in which all Eddington factors e, f, p 

depend on the particle energy w. We restrict ourselves to systems with only one pre

ferred spatia.! direction, relative to which vectors and tensors are defined. This includes 

spherically symmetric and rectangular geometries and enables us. to consider only two 

independent quantities, the magnitude of the first Eddington factor f = ±If I and the 

forward component of the pressure tensor, p = I:P · f/ fl. 
The maximum entropy method constructs the least biased distribution based on limited 

available information: statistics, occupation density e and flux f. The information content 

of a distribution is the negative of its entropy (Minerbo 1978). The information that the 

maximum entropy formalism introduces to the transport scheme mainly concerns the 

quantum statistics of the radiation. The maximum entropy distribution 'ljJ is found by 
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maximising the entropy functional 

s(!l) IX (1- k'lf) ln(1- kV;) + k'lf ln V' (2.1) 

with k = 1 for Fermi-Dirac , k = -1 for Bose-Einstein and 

s(!l) IX 'If ln V' (2.2) 

for Boltzmann statistics, under the constraints that the zeroth and first angular moment 

of the distribution function 

e (2.3) 

f (2.4) 

equal the prescribed number density or phase 'space occupancy e and the normalised 

flux f. The quantity J.L = cos{) is the cosine of the normalised direction of the particle 

momentum with respect to the preferential spatial axis. The normalised forward pressure 

is analogously defined as 

(2.5) 

The result of maximising the entropy functional subject to these two constraints 

(2.3,2.4) is the maximum entropy distribution function 

1 
'lf(p) = e1J-ap + k (2.6) 

where the particle statistics is indexed by the parameter k = 1, -1, 0. For Fermi-Dirac 

statistics (k = 1), the occupancy 0 ::; e ::; 1. For Bose-Einstein (k = -1) and Maxwell

Boltzmann (k = 0) statistics, 0 ::; e ::; oo. The requirement that the distribution be 

positive definite does not constrain the Lagrange multipliers 'fJ and ~ for Fermi and classical 

radiation, but imposes 0 ::; a < 'fJ ::; oo for Bose statistics. \Ve restrict ourselves to outward 

directed radiation f ~ 0, so that a ~ 0. Because f(TJ, -a) = - f(TJ, a), the treatment of 

backward-peaked radiation is straightforward. 

The two constraints make the Lagrange multipliers 17 and a implicit functions of the 

number density e and flux f. To arrive at a closure p = p(e, f), we need to obtain ry(e, f) 

and a( e, f) by inversion of the constraints (2.3,2.4 ). To facilitate this inversion, previous 

authors approximated the maximum entropy distribution function and obtained various 
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one-dimensional closures: Minerbo (1978) considered the maximum entropy distribution in 

the classical limit ( e < < 1 )and found an analytic, but implicit, closure. In the Bose case, 

Pomraning ( 1981) and in the Fermi case, Cernohorsky, van den Horn and Cooperstein 

(1989) approximated (2.6), to obtain an explicit analytic inv~rsion. Both these latter 

approximations lead to the one-dimensional Levermore-Pomra.ning Eddington factor. 

We will now formulate the closure without approximating the angular distribution 

(2.6) in any wa.y. The differential identity fork± 1 , 

7/J = ~ ag(J.L) 
- a 8J.L 

with g(J.L) = -ln(1- k'ljJ) = ln[1 + kexp(ap -ry)], allows integrating by parts 

11 J.Ln'I/Jdf.L = ~ [{J.Ln g(Jt)}:1 - n 11 f.Ln-1 g(J.L)df.L] 
-1 a -1 

(2.7) 

(2.8) 

The first constraint with n = 0 now follows without integration and can be inverted to 

express 1J as a function of e and a, 

exp 17 = B( e, a) = sinh_ (1 - ke )a 
smh( ea) 

where B is the reciprocal fugacity.· This quantity has two useful symmetries: 

B(e,a) 

1 ( . B- e, a) 

B(e, -a) 

B(k-e,a) 

(2.9) 

(2.10) 

(2.11) 

The first symmetry insures backward-forward symmetry f(e, -a) = - f( e, a). In the Bose

Einstein case, the second reciprocal symmetry relates physical states e > 0 to unphysical 

ones -( 1 +e) < 0, and has no physicaJ consequences. However, in the Fermi-Dirac case, e 

and 1 - e are both positive. In section 5, we will see that these symmetries point the way 

to an analytic form for the variable Eddington factor p = p(f, e). 

In the free-streaming limit (a~ 1), 7J---. a+ for bosons, 7J- (1- 2e)a for fermions. 

~1ith 1J as a. function of e and a, one Lagrange multiplier is eliminated from the remaining 

two Eddington factors f and p. Janka., Dga.ni and van den Horn (1992) stop at this level 

to discuss and plot the Eddington factors f,p as functions of e, a. However, we use Eq. 

(2.8) with n = 1 to eliminate the second Lagrange multiplier a by numerically inverting 

the second constraint (2.4). The remaining integral is numerically more tractable than the 

original one in equation (2.4), and is solved with a Gauss-Legendre quadrature. For given 
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e and /,the inversion of constraint (2.4) is now a one-dimensional root-finding problem, 

which we solve by a combination of a False Position and Newton-Raphson algorithm. 

Having obtained the root a(e, f) of (2.4), equation (2.8) with n = 2 yields p(e, f). With 

this procedure, we have an algorithm that inputs e, J, and returns the two-dimensional 

variable Eddington factor p( e, f). 

3 Maximum Entropy Closure in the Classical Limit 

4.0 

3.0 

~ 2.0 

1.0 

-0.5 0.0 

J..l. 

: Jl 
til! 
I Jt : ~ . 

: ft 
till 
•!n :t g 

: i ~· 
I ~~./I 
! /f .... l 
:j': I 

.·<· I I ... ;!, : I 
..... /I I I 

...... ~; .. ,' ,' ' 
......... ~,,/ ,' / . 

.. ·····',/ I I L 
........... ~,// I 

1 

I I Ji 

0.5 1.0 

Figure 1: Maximum entropy Bose-Einstein (heavy curves) and Maxwell-Boltzmann (light 

curves) distributions for e = 0. 75 and four values of the normalised flux f=0.1 (-), 0.5 

( · · ·) ,0.9 (- - -) and 0.99 (- - - ). The Bose distribution is always more forward-peaked 

than the classical one. 

With either Bose or Fermi statistics, when the occupation e ~ 1, B:::::: sinh ajea becomes 

very large, aJ1d the quantum index 1.~ in the denominator of 'lj' can be neglected. With k = 0, 

the integrals (2.4,2.5) can be performed analytically, and lead to Minerbo's flux-limiter 

(Minerbo 1978) 

f(a) = L(a), p(a) = 1- 2 f(a.)ja. (3.1) 

where L(q) = cothq- 1/q is the Langevin function and q(L) is its inverse. The Edding

ton factors p, f each depend on only one Lagrange multiplier, and the implicit variable 
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Eddington factor p = p(J) = 1- 2f fq(J) is a single limiting curve separating MEC-BE 

and MEC-FD. 

4 Maximum Entropy Closure for Bose-Einstein Radiation 

0.8 

--aS 0.6 
0:: 

0.2 0.4 0.6 0.8 1.0 

Figure 2: Maximum entropy Bose-Einstein closure for nine occupancies bottom-to-top 

e = 0, 0.1, 0.2, 0.5, 1.(*), 2., 5., 10, oo(o). Bose-Einstein closure allows a family of 

trajectories between the Max\vell-Boltzmann (bottom-) and Levermore- Pomraning (top 

o) trajectories. The exact energy-averaged neutrino trajectory obtained by J a.nka (D.) lies 

below the range of MEC-BE 

The distribution function (2.6) 'ljJ = [exp(a[z- J.l])- 1t1 with z = 17/a must be positive 

definite, so that z > 1. For small occupation density, the maximum entropy distribution 

tends to the Boltzmann limit discussed in the preceding Section. In the extreme degenerate 

limit, e --+ oo implies 0 ~ a < 17 < < 1 , so that 

f = L(R) p = f coth R, (4.1) 

where coth R = z. This limiting trajectory, p(J) = f(J + R-1 ), the 'logarithmic limit' 

discussed by Fu (1987) , is none other than the Levermore-Pomraning closure (Levermore 

and Pomra.ning 1981). Along this ~ra.jectory, in the diffusive limit z ~ 1, R ~ (1/z), f ~ 
1, p ~ 1/3; in the ballistic limit z--+ 1, R ~ oo, f ~ p ~ 1. 
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For intermediate values of e and f we find the maximum entropy distributions 'lj;( e, f) 

and the variable Eddington factor p = p(f, e) by the numerical inversion described in 

Section 2. Figure 1 shows, for a fixed e = 0. 75, the Bose-Einstein maximum entropy 

distribution 'lj;(J.L), for a. range of fluxes f. Comparison with the Maxwell-Boltzmann 

distributions shows that the Bose statistics considerably enhances the forward peaking. 

Figure 2 shows the MEC-BE surface, parametrised by the occupancy e, and bounded by 

MEC-MB for e ~ 1 and the Levermore-Pomraning trajectory for e ~ 1. 

5 Maximum Entropy Closure for Fermi-Dirac Radiation 
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Figure 3: Maximum entropy FD distribution 'lj;(J.L) for occupancy e = 0.4. and the a.llowed . 

fluxes=0.1(--), 0.2, 0.4, 0.5, 0.55, 0.59, 0 .. 599, 0.5999(-). The sharpness of the step a.t 

J.L = 1 - 2e increases with the flux. 

Equation (2.9) implies that in the extreme degenerate limit a _,. oo, 7J ~ ( 1- 2e )a, the dis

tribution function approaches an angular step-function with Fermi surface a.t J.L = (1- 2e) 

and a. reciprocal 'angular temperature' a. The integrals (2.4,2 .. 5) can be done analyti

cally, and give the maximal angular packing limits allowed by the exclusion principle, 

!max= 1- e and Pmax = 1- 2e + (4/3)e2 (Janka, Dgani and van den Horn 1992). 
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·' 

For the following we go over to relative coordinates x and X defined as 

_ f(e,a) 
x(e,a)=f (). 

max e 

p(e, a)- 1/3 
x(e,a)= ()-1/3 

Pmax e 
(5.1) 

and referred to as 'flux-saturation' and 'pressure-saturation', respectively. The relative 

coordinates run from zero to one as a goes from zero to infinity, and the radiation field 

from isotropic to forward packed. Due to the symmetries (2.10,2.11) x and X are invariant 

under the transformation e - 1 - e, at fixed a : 

x(e,a) = x(1- e,a) x(e,a) = x(1- e,a) (5.2) 

Figure 4 shows the maximum entropy Eddington surface p(f, e) labeled by e and bounded 

0.8 

--a) 0.6 
Ci: 

0.4 

0.2 0.4 0.6 0.8 1.0 
f 

Figure 4: MEC-FD surface p( e, f). The uppermost curve (-) is the classical limit e - 0. 

The bottom curve ( ( * · · · *) is the maximal packing envelope. Between these lie from top 

to bottom e = 0.1, 0.2, 0.3, 0.4, 0.5(---),0.6, 0.75, 0.9. The energy-averaged Eddington 

factors from Janka's Monte Carlo calculations are marked by 6. 

by· the Boltzmann and maximum-packing curves. The extreme-degenerate and non

degenerate behaviour is easily derived. Near the degenerate limit, a ~ 1 !he distribution 

function ma.y be approximated by a Sommerfeld expansion (Ba.lian 1991) 

'1/J(a,z,p) ~ O((p- z)- (rt 2 /6a2 )8'(J.t- z) + ··· , with az = 17. As functions of a, the 
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Eddington factors approach saturation as 

x( e, a) ~ 1 - A a- 2 x(e,a) ~ 1- 3A a-2 (5.3) 

with A( e) = r. 2 j ( 12 e ( 1- e)). When we eliminate a, the linear variable pressure-saturation 

for x _, 1 is 

1.0 

~ 0.5 

0.0 
0.0 

X(.T) = 3 X- 2 

0.5 
x(e,f) 

' ' 
/ 

' ' 

' ' ' 

' ' 

1.0 

(5.4) 

Figure 5: The universal variable pressure-saturation x( x) as a. function of the flux

saturation X. The dotted ·line is the free-streaming limit x( X - 1) ~ 2x - 3, the dashed 

line is the diffusive limit x( x _._ 0) ~ 0.6x2 • The long-dashed curve is the polynomial fit. 

In the nearly isotropic limit, a ~ 1, the exponential in the denominator of the distri

bution function can be expanded in a Taylor series ( Cernohorsky, van den Horn and Coop

erstein 1989; Cernohorsky and van Weert 1992). This leads to the Levermore-Pomraning 

closure (4.1), with now R = eaB = Jj(p- j 2 ). In terms of the relative variables, the 

Eddington factors approach their diffusive values a.s 

(5.-5) 
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which combine into the quadratic expression 

(5.6) 

What parameter is to be kept fixed for the variable Eddington factor p( e, f) to show 

e -+ 1 - e invariance? When the Lagrange multiplier a is eliminated numerically, the 

variable pressure-saturation 

( ) 
_ p(e,x fmax(e))- 1/3 

x e,x = ( ) , Pmax e - 1/3 
(5.7) 

turns out to be not only e -+ 1 - e-invariant, but entirely independent of e, a universal 

function of x only, see figure 5. 

Because x( x) is e-independent, its analytical expression must also hold for for small e, 

where !max:::::: 1,Pmax:::::: 1. In this regime, the variable Eddington factor p(e,f) = p(x) is 

given by its classical limit (3.1). Substituting this in (5.7) gives 

x(x) = 1- 3xfq(x) (5.8) 

which matches the numerical curve in figure 5. Here, q( x) is the inverse of the Langevin 

function x = coth q - 1/ q . 

The lowest order polynomial approximation to the universal curve which has the correct 

behaviour (5.4,5.6) in both limits, is accurate to 2% and contains no free parameters, is 

(5.9) 

and is plotted for comparison in figure 5. 

Substituting either the exact analytical expression (5.8) or its approximation (5.9) into 

(5.7) 

(ef)=2(1-e)(1-2e) (-!-) ~ 
p, 3 x1-e+3 (5.10) 

which perfectly reproduces the variable Eddington factor surface shown in Fig. 4. The 

relative error of the polynomial approximation is at worst of the order of a few per thou

sand, quite sufficient for most if not all applications. Therefore, the laborious numerical 

inversion needed for the Bose-Einstein Eddington factors can, in the Fermi-Dirac case, be 

circumvented by a ten-line algorithm. 
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6 Comparison with Monte Carlo Eddington Factors 

Superimposed on the maximum entropy Eddington surface in figures 2 and 4 are energy

averaged variable Eddington factors calculated from exact Monte Carlo solutions of the 

neutrino transport equation, for a variety of material backgrounds, during the early 

neutrino-cooling phase of hot neutron star formation (Dgani and Janka 1992; Janka 1991; 

Janka 1992; Janka, Dgani and van den Horn 1992). These Monte Carlo Eddington factors 

are averaged over particle energies w, rather than functions of w as in our spectral ap

proach. They fall in a narrow bound about e = 0.25-0.3 for f < 0. 7 and near the maximal 

packing envelope for f > 0.7, within the MEC-FD region in Fig. 4 and entirely outside 

the MEC-BE region in Fig. 2. 

A number of factors contribute to this seemingly universal behaviour of the Monte 

Carlo Eddington factors. First, they are energy averages, so that the Monte Carlo spectral 

Eddington factors actually lie more scattered in the p- f-plane, but still lie on the MEC-FD 

surface if weak equivalence holds The main contribution to the energy average apparently 

comes from bins with moderate occupation density, e(w) "" 0.2-0.3 and moderate flux, 

typical for this evolutionary epoch and stellar background region. At higher fluxes f > 
0.7, bins with even smaller occupation density e < 0.1 dominate. This explains why 

:tvlinerbo's Boltzmann closure performs rather well over a. range of Monte Carlo Eddington 

trajectories. 

Second, the Monte Carlo calculations were performed in semi-transparent regions of 

stellar models, several seconds after bounce, during the early phases of the hydrostatic 

neutron star formation, when the delayed explosion mechanism presumably operates. The 

shock wave has by then traversed the semi-transparent region, dissociated the heavy nuclei 

present, and left a mixture of nucleons and a's. The chemical compositions and the matter 

density profiles determining the neutrino opacity, must therefore be similar in all models. 

This largely explains the model-to-model universality. 

Under atypical conditions, when narrow shell sources in the semi-transparent region 

occur together with a steep gradient in opacity, so that large occupation densities coincide 

with high fluxes, Janka reports p < 1/3. In such special circumstances, the Monte Carlo 

results could be qualitatively well approximated by MEC-FD for e > 1/2, f __... !max, but 

could not be described by any one-dimensional closure or direct phenomenological fit to 

the Monte Carlo data. such a.s (Dgani and Janka 1992; Janka 1991). 
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Comparison between figure 3 and figures in (Janka 1991; Janka 1992; Janka, Dgani 

and van den Horn 1992) of local Monte Carlo energy-integrated neutrino distributions 

f w3 F( w, J.L )dw as function of J.L, indicates that our MEC-FD distribution at least quali

tatively approximates the exact distribution. Of course, the exact spectral distribution 

must tend to an angular step-function with increasing degeneracy, just as the MEC-FD 

distribution. Because (Janka, Dgani and van den Horn 1992) present energy~averaged 

Eddington factors and do not indicate the e-dependence of their Eddington factors, we 

cannot at this point further investigate weak and strong equivalence to spectral MEC-FD. 

It would however, seem worthwhile to study weak and strong equivalence between Monte 

Carlo and MEC-FD calculations on the same stellar background. 

7 Conclusion 

VVe have implemented the unapproximated maximum entropy closure into the analytic 

expression ( 5.10) for Fermi radiation and a numerical inversion algorithm for Bose ra

diation. For neutrinos, MEC-FD reproduces and helps explain the exact Monte Carlo 

radiation transport during neutron star formation. Because the variable Eddington factor 

depends on occupancy e as well as flux f, it can better approximate the Moi1te Carlo neu

trino radiation transport in various environments than any one-dimensional fit or closure 

does. The Le~ermore-Pomraning variable Eddington factor, being the extreme-degenerate 

Bose limit, is the worst possible choice for a neutrino transport closure (Janka, Dgani and 

van den Horn 1992). 

Bose-Einstein statistics enhances forward peaking, and allows for Bose-Einstein con

densation into a single angular state. In astrophysical environments, such as stellar atmo

spheres, where the radiation field is far from local thermodynamic equilibrium, the photon 

occupation density is generally low, e << 1, so that the classical limit (Minerbo 1978) 

will usually be the best and most efficient statistical closure. The Levermore-Pomraning 

Eddington factor, the extreme degenerate limit of MEC-BE, should generally give less 

realistic results. Because short-range interactions can more easily dominate the quantum 

statistics in Bose systems, it remains to be seen whether MEC-BE will find application 

elsewhere, perhaps in astrophysical masers, in condensed matter, or in nuclear physics. 
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