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Abstract 

1 

Rigorous calculations of cross sections and rate constants for elementary gas 

phase chemical reactions are performed for comparison with experiment, to ensure 

that o~r picture of the chemical reaction is complete. We focus on the H/D+H2 ---* 

H2/DH + H reaction, and use the time independent integral equation technique in 

quantum reactive scattering theory. 
\ 

We examine the sensitivity of H+H2 state resolved integral cross sections 

O"v'j',vj(E) for the transitions (v = O,j = 0) to (v' = 1,j' = 1,3), to the difference 

between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expan­

sion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is 

performed to determine the origin of a large discrepancy between experimental cross 

sections with sharply peaked energy dependence and theoretical ones with smooth 

energy dependence. We find that the LSTH and DMBE PESs give virtually identical 

cross sections, which lends credence to the theoretical energy dependence. 

To facilitate quantum calculations on more complex reactive systems, we 

develop a new method to compute the energy Green's function with absorbing bound­

ary conditions (ABC), for use in calculating the cumulative reaCtion probability. The 

method is an iterative technique to compute the inverse of a non-Hermitian matrix 

which is based on Fourier transforming time dependent dynamics, and which requires 

very little core memory. The Hamiltonian is evaluated in a sine-function based dis-. 

crete variable representation (DVR), which we argue may often be superior to the fast 

Fourier transform method for reactive scattering. We apply the resulting power se­

ries Green's function to the benchmark collinear H+H2 system over the energy range 



0.37 to 1.27 eV. The convergence of the power series is stable at all energies, and is 

accelerated by the use of a stronger absorbing potential. 

The practicality of computing the ABC-DVR Green's function in a polyno-
'-

mial of the Hamiltonian is discussed. We find no feasible expansion which has a fixed 

and small memory requirement, and is guaranteed to converge. We have found, how­

ever, that exploiting the time dependent picture of the ABC-DVR Green's function 

leads to a stable and efficient algorithm. The new method, which uses Newton in­

terpolation polynomials to compute the time dependent wavefunction, gives a vastly 

improved version of the power series Green's function. We show that this approach 

is capable of obtaining converged reaction probabilities with very straightforward 

accuracy control. 

We use the ABC-DVR-Newton method to compute cross sections and rate 

constants for the initial state selected D+H2 (v = 1,j)--+ DH+H reaction. We obtain 

converged cross sections using no more than 4 Mbytes of core memory, and in as 

little CPU time as 10 minutes on a small workstation. With these cross sections, 

we calculate exact thermal rate constants for comparison with experiment. For the 

first time, quantitative agreement with experiment is obtained for the rotationally 

averaged rate constant kv=1 (T = 310 K) = 1.9 x 10-13 cm3 sec-1 molecule-1 . The 

J -shifting approximation using accurate J = 0 reaction probabilities is tested against 

the exact :x;esults. It reliably predicts kv=1 (T) for temperatures up to 700 K, but 

individual (v = 1,j)-selected rate constants are in error by as much as 41%. 

·V 
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Chapter 1 

General Introduction 

We are interested in the theoretical study of gas phase chemical reactions 

from first physical principles. We accomplish this efficiently and with quantitative 

accuracy for the reactions studied. This is a remarkable achievement, both in practice 

and in principle. 

1.1 First Philosophical Principles 

We assume that physics can explain all chemical phenomena. This view­

point, tacitly assumed by most modern scientists, exemplifies a philosophy known as 

reductionism [1]. The success of reductionism reported in this dissertation has signif­

icant implications for the authority of philosophies opposed to reductionism. To put 

these implications in perspective, we discuss here briefly the holisitic philosophical 

stance put forth by Aristotle (384-322 B.C.). 

The distinction between Aristotelian philosophy and that of modern science 

is somewhat subtle, since Aristotle himself helped to define many fields in modern 

science, e.g. mechanics and biology. To illustrate this point, we describe some aspects 

of his physics [2]. When Aristotle arrived at Plato's academy, he found that Plato 

did not welcome scientific inquiry. Rather, Plato emphasized the reality of abstract 

ideals, which one could comprehend only by avoiding sensory perception. Aristotle 

developed a more practical ideology by postulating that reality consists in tangible 
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objects which have both essential characteristics (comparable to Plato's ideals) and 

accidental characteristics. For example, it is essential that Scott has a brain in order 

to philosphize; but, for the same purpose it is only accidental that he has green eyes. 

In modern scientific language, Aristotle's tangible object is our mechanical system; 

his essential characteristics correspond to our Hamiltonian and other constants of the 

motion; his accidental characteristics translate to particular values of our dynamical 

variables. Thus, Aristotle gave philosophical grounding to the notion of dynamics, 

which has inspired our current mechanical ansatz. 

Aristotle, whose father was a physician, was also fascinated by the nature of 

living organisms. In his seminal contribution to biology [3] Aristotle emphasized the 

importance of the structure-function relationship. He postulated that a biological 

structure can be understood fully in terms of the function it provides. For example, 

we easily understand the structure of a bird's wing given the bird's inclination to fly. 

However, if birds were to swim rather than to fly, the wing structure would become 

mysterious since it is ineffective for this purpose. Furthermore, it does not provide 

explanatory value, for Aristotle, to reduce conceptually the wing to bone, muscle, 

feathers, etc., because we find these biological structures in organisms which cannot 

fly. In short, Aristotle felt that function is philosophically more fundamental than 

structure; he thus put forth a holistic biology in which complex structures are under­

stood in terms of the function they provide, rather than in terms of their constituent 

parts. 

This mode of explanation is ubiquitous in modern biological studies. How­

ever, although this explanatory methodology proves useful to many biologists, their 

philosophy differs fundamentally from Aristotle's. In particular, most biologists be­

lieve that structure is philosophically more fundamental than function. For example, 

a modern biologist might analyze the chemistry of wing muscle from a hawk wing and 

a chicken wing to explain why the former can fly whereas the latter cannot. In general, 

most biologists believe in principle that chemistry can explain biological phenomena, 

although this may be difficult in practice, and hence not yet completely achievable. 

Taking this reductio ad infinitum, the modern scientist believes that the most com­

plex phenomena can be explained by the most fundamental principles. Thus, the 
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reductionism of modern science stands in stark contrast to the holism of Aristotle. 

Both philosophical viewpoints have strengths and weaknesses. For example, 

Aristotle's holism provides a stunningly simple explanation for very complex struc­

ture. Unfortunately, in its simplicity it borders on tautology. On the other hand, 

developing a reductionist explanation often presents great difficulty. In addition, it 

poses the th~ological dilemma of reducing humanity to collections of fundamental 

particles. However, reductionism provides a less tautological explanation of observed 

phenomena. Since reductionism presents difficulty in practice, any instance of its 

successful implementation is remarkable. In this vein, we note in addition to the 

present work, a recent use of chemical physics to explain biological function in pho­

tosynthetic electron transfer [4]. It thus appears that the reductionist viewpoint is 

presently in vogue because it provides a mechanical, non-tautological explanation of 

natural phenomena. 

At this point the author must take a stand. My love for physical chemistry's 

particular version of the reductionist endeavor leads me to believe that chemistry 

can be reduced to physics. However, in spite of mounting evidence for biological 

reductionism, it is difficult for the author to conceive of himself as nothing more than 

a bag of particles. As such, the author must advocate biological holism despite the 

burdensome paradox this presents. With thes~ sentiments expressed, we proceed with 

physical chemistry. 

1.2 Molecular Beams and Collision Theory 

Physical chemists have long sought fundamental understanding of how mole­

cules transform during chemical reactions. The development of molecular beam tech­

niques [5, 6] beginning in the 1950's has facilitated the observation of bimolecular 

chemical reactions at the most microscopic, single collision level of detail. The ideal 

molecular beam scattering experiment involves a collision between reactants prepared 

in a well defined relative momentum and internal state, giving scattered products 

whose internal state is detected at a particular scattering angle. Although such a 

measurement has never been performed, experimentalists have made great progress 



4 CHAPTER 1. GENERAL INTRODUCTION 

toward this ideal experiment. 

The observable quantity in molecular beam experiments is called the differ­

ential reaction cross section dunp,nr(v,f2)1df2 defined by [7] 

dO. x [dcrnp,nr(v, O.)ldO.] 

where N(np, 0.) 

and 

N(np,n) 
D(nr, v)' 

- number of products in state Dp detected per 

unit time in solid angle range (n, n +dO.) 

(i.e. spherical flux), 

number of reactants in state Dr with velocity 

v crossing unit area per unit time 

(i.e. planar flux). (1.1) 

As such, the units of dcrnp,nr ( v, n) I dO. are area per solid angle. Another important 

observable is the integral reaction cross section Cinp,nr(v), which in subsequent chap­

ters is simply referred to as the reaction cross section. This quantity is defined by 

[7] 

(1.2) 

where 

J 1+1 {21r 
dn = -1 d cos e lo dip = 47r. (1.3) 

Experimentalists measure integral reaction cross sections most directly in a bulb ap­

paratus which does not detect the scattering angle dependence of product formation. 

A physical interpretation of the integral reaction cross section is the circular area 

centered at the target (i.e. one reactant collision partner) which, when crossed by the. 

projectile (i.e. the other reactant collision partner), leads to a chemical reaction. 

To illustrate these definitions, we consider a collision between two hard 

spheres (HS) with radii r 1 and r2, yielding a total hard sphere radius r = r 1 + r 2. 

The HS differential reaction cross section is r2 I 4, independent of scattering angle. 

The HS integral reaction cross section is 1rr2 , consistent with circular area of radius 

•. 
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r. Both the HS differential and integral reaction cross sections are independent of 

the relative velocity v because the HS interaction has no finite energy scale. The 

HS model grossly oversimplifies the collision event because actual molecular collisions 

involve continuous, anisotropic forces. Nevertheless, the HS model proves useful for 

estimating effective molecular sizes. 

Molecular beam and bulb experiments have two goals. First, reaction cross 

sections can be transformed into reaction rate constants, which provide important 

kinetic information regarding chemical reaction rates. The rate constant with reactant 

state selection may be particularly important for technological applications. Indeed, 

a chemical mixture which reacts exothermically from one reactant state, and is inert 

from all other reactant states might provide a useful energy source to complement 

fossil fuels. For more fundamental reasons, we focus on the initial state selected rate 

constant for the D+H2 ~ DH+H reaction in Chapter 5. 

Molecular beam and bulb experiments also provide detailed ·information re­

garding the basic forces which control chemical reactions. Knowledge of these forces 

affords more profound understanding of the collision event, and may facilitate study­

ing similar reactions in solution or on solid surfaces. Various authors refer to the 

process of surmising force laws from cross section data as inverse scattering or as the 

inversion problem. In the simple case of elastic scattering (i.e. collision partners with 

no internal structure), we can deduce the underlying force law in a straightforward 

manner from cross section data because the force is central. Large velocity cross 

sections provide information about steep repulsive walls at small relative separations, 

whereas low energy scattering gives information regarding attractive wells and long 

range potential tails. 

Inverse scattering for more complicated collisions poses the challenge of con­

structing multidimensional potential functions, an arduous task for which no unique 

method of choice exists. Nevertheless, physical chemists can infer much of the un­

derlying dynamics by studying how cross sections vary with reactant selection and 

product detection. (In this dissertation we focus on integral reaction cross sections, 

and hence do not consider the study of angular distributions.) For example, examining 

the product state distribution, i.e. a-np,nr ( v) vs. np, indicates the extent of energy flow 
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from reactant vibrations and rotations to those of the products. This analysis may 

lead to general principles in reaction dynamics. For example, the· collinear Polanyi 

rules [7] predict that an early (late) barrier reaction is more efficiently promoted with 

translationally (vibrationally) excited reactants, yielding product state distributions 

which are vibrationally (translationally) hot. In addition, the dependence of integral 

reaction cross sections with initial translational energy indicates the presence of re­

action barriers, and gives qualitative information about reaction timescales. With 

regard to the latter, sharp energy dependence signifies the formation of a collision 

complex, with the width of the sharp feature inversely proportional to the lifetime 

of the complex. Reaction dynamicists strive to observe such features (known as res­

onances), because they elucidate the energy level structure of the reactive transition 

state. In Chapter 2 we use both energy dependence and product state distribution 

analysis to examine H+para-H2 --7 ortho-H2+H cross sections at relative velocities 

for which a recent bulb experiment has reported formation of an H3 collision complex 

[8]. 

Theoretical reaction dynamics can contribute on many levels to our under­

standing of chemical phenomena. Occasionally, for example, theory can calculate an 

observable quantity which cannot be measured accurately. Since most dynamics ex­

periments measure relative populations, theory can calibrate them by calculating the 

absolute cross section for a particular transition. On a more important level, theory 

contributes to our understanding of chemical phenomena by direct comparison with 

experiment. Comparisons with approximate calculations are indispensable in deter­

mining which aspects of the underlying physics control the reactivity. Alternatively, 

comparisons with accurate calculations help to ensure that our picture of the chemical 

reaction is complete. In this dissertation, we develop and apply accurate theoretical 

methods for describing electronically adiabatic atom-diatom reactiye scattering. 

Quantum mechanical reactive scattering theory [9-11] (QRS) provides the 

physical principles we use to represent reactive molecular collisions. Implement­

ing QRS for electronically adiabatic collisions involves two steps: solving the elec­

tronic Schrodinger equation for various molecular configurations yielding a Born­

Oppenheimer potential energy surface (PES); solving the resulting nuclear Schrodinger 

It 
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equation yielding the stationary scattering wavefunction. We do not focus on the elec­

tronic problem because we study molecular systems (H+H2 and D+H2) for which a 

very accurate PES is known. Nevertheless, this is a crucial step in the accurate 

description of a molecular collision (12]. 

An asymptotic analysis of the scattering wavefunction demonstrates the re­

lationship between QRS and the differential reactive cross section. To make this 

relationship concrete, we define for an N atom reactive system with chemical arrange­

ments labeled by T, a set of 3N dimensional Jacobi scattering coordinates (x, Rn q-r) 

for each chemical arrangement. We remove the center of mass vector x leaving 3N- 3 

coordinates. The three coordinates R-r are the scattering coordinates, i.e. the vector 

which joins the centers of mass of the two collision partners. The radial scattering 

coordinate is R-r = IR-rl· The 3N - 6 coordinates q-r define the internal motions, 

i.e. the vibrations and rotations of both collision partners. The stationary scattering 

wavefunction \lf~-r is labeled by a collection of quantum numbers N = (k, n) which 

defines the initial momentum and internal state, respectively, in reactant arrange­

ment T. The total system energy E = Et + en, where Et = n2 k2 /2J.L-r = n2 lkl 2 /2J.L-r 

is the initial relative translational energy, and en is the initial internal energy. (We 

occasionally denote the total energy by Etot for clarity.) The collision conserves total 

energy, which then defines a space (the "open channel space") of energetically acces­

sible states in which reactants and products can be observed after the collision. These 

final states are labeled by N'T' E open where N' = (k', n') satisfies E = n2 k'2 /2J.L-r' 

+ en' = n2 lk'l 2 /2J.L-r' + en'· The scattering angles n define the rotation from the 
' initial momentum direction k/ k to the final momentum direction k' / k'. With these 

definitions, the asymptotic form of the wavefunction is: 

li ,T,+ (R ) A. ( ) ik·R , c m '±'N-r -r', q-r' - 'f'n-r' q-r' e ,.. U-r',-r R,., ...... oo 

+ (1.4) 

The first term is a plane wave of incoming reactants in channel NT, and the second 

term is a sum of outgoing spherical waves in all open channels. The asymptotic 

scattering amplitude fN'-r',Nn which has units of length, can also be expressed as 
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fu'-r' ,n-r ( v, n). Evaluating the numerator and denomerator of Eq. ( 1.1) using quantum 

mechanical fluxes, the QRS differential reaction cross section is given by: 

(1.5) 

The task in QRS, then, is to compute the asymptotic scattering amplitudes given the 

system masses and the PES. 

Before describing strategies for solving the QRS problem, we transform the 

scattering amplitude to simplify subsequent discussion. In particular, the scattering 

amplitude we compute in practice is an element of the unitary S -matrix for fixed 
/ 

total angular momentum J. This quantity is related to the usual scattering amplitude 

fu'-r',n-r(v,n) via [13] 

1 00 

fn'-r',n-r(v, n) = -:-k L(2J + 1) Df,,K(<P, 0, <P) [s~'-r',nAE)- 8n',n8-r',-r], (1.6) 
· 22 J=O 

where I<, I<' are projection quantum numbers of total angular momentum along the 

initial and final propagation directions, respectively, and D!n, ,m (a, f3, 1) is the Wigner 

rotation matrix (please see Chapter 5 for details). Since the S -matrix is unitary, we 

may interpret the square moduli of its elements as probabilities. We define 

p~'-r'n-r(E) - !s~'-r',nAE)I
2 

is the state-to-state reaction probability ( r' =J T) 
' 

p~-r(E) - L p~'-r',n-r(E) is the initial state selected reaction probability 
n'-r' 

NJ(E) - Lp~-r(E) is the cumulative reaction probability. (1.7) 
n 

[ N J (E) can exceed unity and thus is not strictly a probability.] These quantities take 

on great importance in the subsequent discussion. We now survey traditional and 

modern computational techniques for solving the QRS problem. 

1.3 Theoretical Practices Old and New 

The QRS problem poses umque challenges which make otherwise useful 

quantum mechanical methods fail. This difficulty arises from the multi-arrangement 

nature of the reactive collision event (please see Fig. 1.1). For example, although 
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the self consistent field (SCF) approximation gives qualitatively correct results for 

electronic energies [14], an SCF reactive scattering wavefunction fails miserably be­

cause translation and vibration exchange roles from one arrangement to the other, 

as shown in Fig. 1.1. In addition, perturbation theory [i.e. the distorted wave Born 

approximation (DWBA)] is accurate only for uninteresting energy regimes [15], and 
I 

requires the calculation of a relatively sophisticated inelastically distorted reference 

system [16]. Thus, the QRS problem is recalcitrant to C;L simple solution. 

Solving the QRS problem is also qualitatively more difficult than the sin­

gle arrangement, i.e. inelastic scattering calculation. In this simpler case, we may 

use a single coordinate system (R, q) and asymptotic basis { ¢n( q)} to represent the 

scattering wavefunction, which facilitates the well known coupled channel ( CC) ex­

pansion [17]. The radial dependence of the scattering wavefunction is determined by 

approximating the second derivative on a grid, using the resulting recursion relation 

to propagate the CC equations from small interparticle separations. Propagation 

to large interparticle separations gives the scattering amplitudes coupling all open 

channels for a given total energy. This is probably the most traditional approach 

of calculating numerically exact multichannel scattering amplitudes. A generaliza­

tion of the inelastic CC calculation to the reactive case was proposed by Miller [18], 

wherein a simultaneous basis set expansion in all chemical arrangement Jacobi coor­

dinates defines the CC space. Unfortunately, the reactive couplings give an effective 

nonlocal exchange interaction which precludes direct propagation of the reactive CC 

equations. Thus, the simultaneous use of several coordinate systems within the CC 

expansion does not lead to a tractable calculation; hence solving the QRS problem 

requires either developing a more general coordinate system, or rethinking the CC 

scheme. 

The first accurate cross section calculation, performed by Schatz and Kup­

permann [19] in 1976 on the H+H2 reaction, involved a suffi.ci~ntly complicated vari­

ant of CC propagation that its successful implementation was restricted to H + H2 at 

low energies (i.e. no vibrational excitation). Nevertheless, this work represented a 

breakthrough in QRS. Indeed, one may view as an outgrowth of this work a general 

coordinate system which allows straightforward reactive CC calculations. This coor-
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Figure 1.1: Contour plot of the Liu-Siegbahn-Truhlar-Horowitz potential energy sur­
face for the H+H2 reaction. The coordinate R is the reactant scattering coordinate, 
and r is the reactant. vibrational coordinate. The portion for large R is the reacta.lit 
entrance valley, the portion with both R and r small is· the reaction barrier region, 
and the portion for large r is the product exit valley. We note that the scattering 
and vibrational coordinates approximately exchange roles upon reaction. This strong 
coupling presents difficulty to otherwise useful quantum mechanical methods. 
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dinate system, called hyperspherical coordinates [20, 21], uses a "vibrational angle" 

to smoothly vary from one chemical arrangement to another. The hyperspherical 

coordinate propagation (HSP) method has seen the most general use by application 

theorists, and hence may be considered the GAUSSIAN of QRS. A technical diffi­

culty with HSP is that, unless the system masses satisfy certain criteria, the basis set 

must span vast regions of unimportant space. Indeed, HSP has been applied most 

frequently to heavy-light-heavy atom-diatom reactions. For this reason, vanous 

groups continued to search for more flexible solutions to the QRS problem. 

A flurry of activity began in 1986 using Miller's 1969 formulation [18] when 

theorists realized how to use scattering variational principles [22-24] reliably to com­

pute the radial function. As a result, accurate cross section calculations were reported 

for the H+H2 reaction and its isotopic analogues, in addition to the important F+H2 

system, all over a wide range of energies [25]. We perform sensitivity analysis of 

H + H2 scattering resonances in Chapter 2 using the S -matrix version of the Kohn 

variational principle [22]. We discuss briefly the philosophy behind this approach. 

Since the use of multiple arrangement coordinates precludes CC propaga­

tion, the radial function must be expanded in a basis set. The variational principle 

simply gives a prescription for choosing the expansion coefficients, in addition to the 

helpful property that the variational S -matrix elements are invariant to first order 

error in the scattering wavefunction. In general, to expand the scattering wavefunc­

tion in a radial basis set requires the use of both L2 basis functions and extended 

basis functions. The L2 basis functions provide the flexibility to represent the wave­

function in the interaction region, whereas the extended functions enforce the asymp­

totic boundary conditions. Solving the Schrodinger equation with enforced scattering 

boundary conditions is tantamount to solving the corresponding integral equation 

with a Green's function [26]. Indeed, we demonstrate in Chapter 2 that the Kohn 

variational S -matrix can be expressed in terms of a variational approximation to the 
' 

scattering Green's function [27]. The success of these variational calculations suggests 

that the Green's function approach to QRS, in addition to its formal utility, is an 

important computational tool. We pursue this idea in Chapters 3-5 by developing 

efficient integral equation techniques for QRS. 
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Until now we have discussed only time independent techniques for solving 

the QRS problem. This has long been the traditional approach. In the last few 

years, though, there has been tremendous progress in solving the time dependent 

Schrodinger equation [28, 29]. Time dependent wavepacket propagation is now a 

well established method for solving the QRS problem, able to handle challenging 

reactions such as the F+H2 system [30]. In fact, we borrow ideas from the time 

dependent approach throughout this dissertation. 

As we have shown, several approaches for exact reactive scattering calcula­

tions are currently available. By construction, all of those discussed involve deter­

mining the state-to-state scattering amplitudes. In extending exact theory to larger 

systems (i.e. four or more atoms), it may not be app~opriate (or possible) to study 

chemical reactions in such detail. Indeed, a theoretical framework based on the direct 

calculation of averaged reaction probabilties should be more applicable to larger sys­

tems. Transition state theory provides a very useful, albeit approximate framework 

for calculating averaged reaction probabilities [31]. To quote a 1976 review article 

[32] on "quantum transition state theory," we wish ... 

. . . to use the. fundamental assumption of transition state theory to sim­
plify quantum mechanical scattering calculations by imposing boundary 
conditions on the scattering equations that take advantage of the "direct" 
nature of dynamics in the saddle point region. 

In Chapters 3-5, we develop and apply a new Green's function formulation of QRS 

which fulfills this 17 year old wish. We augment the physical Hamiltonian with a 

negative imaginary potential to absorb outgoing flux emanating from the saddle point 

region. The absorbing boundary condition (ABC) formulation of QRS allows the 

direct calculation of the cumulative, initial state selected, and state-to-state reaction 

probabilities, with concomitant amounts of computational effort. 

The ABC method reduces the scattering problem to the determination of 

the ABC Green's function (G), a matrix inverse. Although formally this is just as 

computationally demanding as full diagonalization, the initial state selected formalism 

only requires a single column of G. Iterative methods, which require very little core 

memory, can be used to compute a single column of G rapidly. We develop an iterative 

• 
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method especially suited for the calculation of Gin Chapters 3 and 4, which evaluates 

Gas the half-Fourier transform of the propagator. As we will show in Chapter 5, we 

are able to converge initial state selected reaction cross sections for D+H2 using the 

new method in 10 minutes on an IBM RS/6000. 

1.4 Looking Ahead 

We use in Chapter 2 the Kohn variational S-matrix formalism to probe 

the sensitivity of H+H2 cross sections to small changes in the PES, to help resolve 

a discrepancy between experiment and theory over a possible H3 collision complex. 

We find the reactive scattering calculations to be very robust, and thus trust their 

predictions. 

We develop in Chapter 3 a time dependent calculation of the ABC Green's 

function on a grid, called the power series Green's function (PSG). We compute the 

cumulative reaction probability for the collinear H+H2 test problem. The similarity 

of our approach in Chapter 3 to modern path integral methods is also discussed. 

We discuss thoroughly in Chapter 4 the feasibility of time independent ap­

proaches for computing the ABC Green's function. We eventually come full circle, 

in the end developing a technique called the Newton algorithm similar in spirit to 

the PSG, but vastly improved in efficiency. We test the Newton algorithm on the 

calculation of initial state selected reaction probabilities for the three dimensional 

D+ H2 reaction, and find both rapid convergence and strict accuracy control. 

We apply in Chapter 5 the ABC-Newton machinery to calculating the D+H2 

( v = 1, j) initial state selected cross sections and rate constants. We find remarkably 

rapid convergence of the quantum calculations, and for the first time obtain quanti­

tative agreement with experiment for the initial vibrationally excited rate constant 

· kv=l (T = 310 I<). 

Finally, we conclude the dissertation in, Chapter 6 with a summary of the 

research reported, and with suggestions for future work. 
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Chapter 2 

Sensitivity Analysis for H + H2 

2.1 Introduction 

The last few years have seen dramatic advances in the rigorous theoreti­

cal description of elementary chemical reactions, i.e. in exact quantum mechanical 

reactive scattering calculations [1-6]. These theoretical developments are especially 

timely because of parallel advances in experimen~al studies of elementary reactions 

[7-12]. Several groups have reported new studies of the H+H2, D+H2, and H+D2 re­

actions, and this makes possible comparisons of unprecedented detail between theory 

and experiment. Most intriguing are the integral cross section results of Nieh and 

Valentini [10, 11] for the reaction 

H + para-H2(v = O,j = 0)-+ orth~H2 (v' = 1,j' = 1, 3) + H (2.1) 

which show significant discrepancies with the theoretical results [13]. Figure 2.1, for 

example, clearly shows that for the (v = O,j = 0) to (v' = 1,j' = 1) transition, 

Nieh and Valentini report a prominent scattering resonance at 1.2 eV, in significant 

disagreement with the theoretical results. The experimental findings are the first 

of their kind, and therefore are in need of confirmation. The theoretical results, on 

the other hand, have been confirmed independently by two other groups [14, 15] 

and have been performed on what is thought to be a very accurate potential energy 

surface (PES) for this reaction - the Liu-Siegbahn-Truhlar-Horowitz [16, 17] (LSTH) 
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PES. Nevertheless, the discrepancies are so large that they may indicate anomalous 

sensitivity in the quantum calculations to the accuracy of the PES. The goal of the 

present Chapter is thus to begin to analyze our reactive scattering calculations for 

such extreme sensitivity to features in the PES. 

A general goal of such analysis, generically referred to as sensitivity anal­

ysis [18], is to relate features in the PES to the resulting dynamical properties. To 

this end, several general methods may be considered. A simple type of sensitivity 

analysis involves brute force comparisons, in which dynamical calculations are car­

ried out with different potentials [19-22]. One then relates the difference between 

the dynamical results (e.g. state-to-state cross sections) to the difference between the 

potentials (e.g. near the barrier heights) in order to characterize the sensitivity. The 

brute force method has the benefit that the full effect on the dynamics from changing 

the potential can be observed. However, this sensitivity is determined by the par­

ticular PESs chosen for study, and is therefore a function only of those potentials. 

A complementary method is functional sensitivity analysis [23] in which the effect 

on the dynamics of a first order functional variation to a reference PES is studied. 

The sensitivity is approximated by the first order functional derivative of the cross 

section with respect to the PES. Since this sensitivity function depends upon molec­

ular coordinates, it indicates (to first order) which molecular configurations are most 

important for a given dynamical process. 

In the present Chapter, we begin to probe the sensitivity of the quantum 

scattering calculations to the accuracy of the PES using a brute force comparison. 

In particular, we wish to know how a small change in the PES near the barrier will 

affect the integral cross sections for the transitions in Fig. 2.1. To determine this, 

we have calculated representative partial cross sections for the ( v = 0, j- = 0) to 

( v' = 1, j' = 1, 3) transitions over a wide range of energies using the LSTH and 

double many body expansion [24] (DMBE) ab initio PESs. The DMBE PES is an 

interesting surface for comparison because, for the present purposes, it differs from 

the LSTH PES most significantly in the barrier height regions of both collinear and 

noncollinear H3 configurations. The quantitative details of the difference between the 

two PESs are discussed below. The calc~ations were carried out using the 5-matrix 
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Figure 2.1: Experimental and theoretical integral cross sections for the H+H2 transi­
tions ( v = O,j = 0) to ( v' = 1,j' = 1, 3) in reaction (2.1) as a function of total energy. 
The solid curve and open points are for the final state (v' = 1,j' = ~), and the bro­
ken curve and solid points for final state (v' = 1,j' = 3). The experiment measured 
absolute cross sections, for which there is good agreement with theory. However, the 
sharp features in the experimental energy dependence are not matched by theory. 
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Kohn variational method that has been described in detail in previous publications [5, 

25, 26]. We briefly review this approach for quantum reactive scattering below [27]. 

In addition, we demonstrate how to apply functional sensitivity analysis within the 

S -matrix Kohn framework. We report the cross section calculations resulting from 

the two PESs for total angular momenta J = 0 and 10. We find that the theoretical 

cross sections do not change significantly when the LSTH PES is replaced by the 

DMBE [28]. This suggests that the theoretical prediction - that there is no sharp 

resonance in the H+H2 integral cross section - may be correct. 

2.2 S-matrix Kohn Formulation 

We introduce the S -matrix version of the Kohn variational principle (KVP) 

for a reactive system with chemical arrangements labeled by r. For each arrangement 

we have a radial scattering coordinate R,. and internal coordinates q-r. A simple way to 

start is by writing a reactive S -matrix element in the distorted Born representation: 

Sn'-r',n-r(E) - Sn'-r',n-r(E) 
'l -- A -+ + h(1/Jn'-r'IH- EI1/Jn-r) 

'l A - A+ A -+ t;,((H- E)1/J~'-r'IG (E)I(H- E)1/Ji;.-r). (2.2) 

In Eq: (2.2), Q+(E) = lim~ ..... o+ (E +if.- fi)- 1 is the scattering Green's function with 

outgoing wave (i.e. "+") boundary conditions. Also, -0~-r(R,.,q-r) is a trial wave­

function which can be anything from a free wave to the exact reactive scattering 

wavefunction, as long as it has the following boundary conditions: 

(2.3) 

where Sn'-r',n-r(E) is a unitary referenceS-matrix. That is, Sn'-r',n-r(E) is the reference 

asymptotic amplitude associated with the trial wavefunction .,J;;i-r(R,., q-r)· In Eq. 
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(2.3), <f>nr(q-r) is an eigenfuction for the internal motions of the system in arrangement 

r, Vn-r is the asymptotic translational velocity for total energy E in channel nr, 

and th~ sum is over all open channels at total energy E. If {/Ji;_-r(Rn q-r) is exact, 

Eq. (2.2) trivially gives the exact S-matrix, since Sn'-r',n-r(E) is exact and (H­

E)j{fii;_-r) vanishes. In general, as long as G+(E) is exact and {/Ji;_-r(R-r,q-r) satisfies the 

boundary conditions in Eq. (2.3) with Sn'-r',n-r(E) being unitary, the distorted Born 

representation of Sn'-r',n-r(E) is exact regardless of the quality of the reference system. 

The computational challenge in quantum scattering theory can be discussed 

in terms of Eq. (2.2). As mentioned above, the trial wavefunction can be anything 

from a free wave to the exact scattering wavefunction. If one devotes the compu­

tational effort to make {/Ji;.-r(R-r, q-r) exact, then no effort is required to evaluate the 

Green's function in the third term in Eq. (2.2), since that term does not contribute. 

Alternatively, if {/Jt_-r(R-r, q-r) is a free wave, i.e. Sn'-r',n-r(E) = 0 or Sn'-r',n-r(E) = 
8n',n8-r',-r, the Green's function is required over a relatively large region of space. An 

intermediate case, which may be the most practical, is where a partially distorted 

wave and the Green's function over a small region are used to obtain the S-matrix. 

We will pursue the free wave- Green's function approach later in this dissertation. 

The philosophy behind the KVP is to variationally optimize {fii;_-r(R-r, q-r) 

based on making the first two terms in Eq. (2.2) stationary, and neglecting the Green's 

function term". In addition to giving a prescription for obtaining {fii;_-r(Rn q-r), this 

gives an approximateS-matrix which is invariant to first order error in {/Ji;AR-r, q-r)· 

The KVP gives 

(2.4) 

where "ext" means extremize (not minimize because S{[.~-;;.-r(E) is complex) with 

respect to first order variations in {/Ji;_-r(R-r, q-r)· To apply the extremum condition, 

we assume an ansatz for {/Jt_-r(R-r, q-r) with some variational parameters. Although 

in general these may be nonlinear, we will use only linear variational parameters to 

simplify the resulting algebraic equations. The KVP wavefunction is thus 
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(2.5) 

where { Ct'n'T',nT} for t' = 1, ... , N are the linear variational coefficients. The Uo term 

provides incoming wave boundary conditions in channel nr, the u1 term gives outgo­

ing wave boundary conditions in all energetically accessible channels, and the Ut for 

t = 2, ... , N terms (which vanish asymptotically) provide the flexibility to represent 

the wavefunction in the interaction region~ We note that, with the present notation, 

Sn'T',nT(E) = c1n'T',nT· The first channel sum in Eq. (2.5) is over only open chan­

nels (open) because this part of the wavefunction is meant to satisfy the asymptotic 

boundary conditions in Eq. (2.3). In addition, the channel space in this first sum de­

fines the active index space for the KVP S-matrix. The second channel sum in Eq. 

(2.5) is over open and closed channels (opel), because this part of the wavefunction 

is just a basis set expansion. Furthermore, we note that it is not necessary to use the 

asymptotic eigenfunctions to represent the internal motions in the interaction region. 

Indeed, in the remainder of this dissertation we pursue the use of grid methods to 

represent all degrees of freedom in the interaction region. The calculations presented 

in this Chapter did, however, use the asymptotic eigenfunction basis. 

Using this 'trial wavefunction in the Kohn variational expression yields the 

following stationary S -matrix element: 

where 

(uon'T'</>n'T'IH- EluonT</>nT) 

(ut'n'T'</>n'T'IH- EluonT</>nT) t' = 1, ... ,N 

t', t = 1, ... , N. 

(2.6) 

(2.7) 

We note that the incoming wave boundary conditions in the bra state in Eqs. · (2.2) 

and (2.4) can be enforced by not complex conjugating radial functions in bra states 

of Eq. (2.7). This inner product is called the biorthogonal inner product [29], and 

is formally related to the use of complex .scaled coordinates and absorbing boundary 

conditions. 
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As we have shown, the KVP reduces the quantum scattering problem to 

choosing basis functions, computing matrix elements of the Hamiltonian, and per­

forming a linear algebra calculation to obtain M-1 • M 0 . Before proceeding with the 

discussion of sensitivity analysis, we make some qualitative remarks concerning the 

KVP. 

The KVP resembles the Rayleigh-Ritz variational principle [30) (RRVP). In~ 

deed, if the scattering variational formulation were applied to a bound state problem, 

for which s{[,~(n-r(E) = 0 = Sn'-r',n-r(E), the KVP reduces to 

(2.8) 

This is precisely the RRVP. As such, the KVP can be seen as the proper generalization 

of the RRVP for case of scattering boundary conditions. 

The KVP also looks similar to the distorted wave Born approximation [31) 

(DWBA), which is a perturbative approximation. That the KVP is capable of arbi­

trary accuracy can be seen from expressing the KVP S -matrix in a way which re­

sembles Eq. (2.2). By performing integration by parts to rearrange the M6 ·M-1 ·Mo 

term, one can write the KVP S -matrix as: 

s{[,~~-r(E) - C1n'-r',n-r 
z A • 

+ h(uon'-r'</>n'-r'IH- Eluon-r<Pn-r) 

z A. A KVP A + h(uon'-r'</>n'-r'I(H- E) G (E) (H- E)iuonT</>nT), (2.9) 

where the Kohn variational approximation to the Green's function is given by [32] 

N 
A KVP 2:: 2:: [ -1] G (E)=- lut'n''~"'</>n'-r') M (utnT<Pn-rl· t'n'-r' tn-r 

t',t=1 n'-r',nTEopcl ' 
(2.10) 

Since the sU:ms overt', t begin with 1, {;KVP(E) has only outgoing asymptotic waves. 

Equations (2.4), (2.9), and (2.10) demonstrate the close relationship between pertur­

bation theory and variational theory in quantum scattering. That is, one can view 

the KVP S -matrix as perturbation theory with a very good reference system, or 

as variational theory with a purely incoming, free wave reference state. Although it 
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is not standard to use purely incoming wave reference scattering states, we use this 

approach in Chapters 4 and 5 inspired by its success in the KVP. We also note that 

as the basis set { Utnr<Pnr} becomes complete, the second term identically cancels the 

third in Eq. (2.10), while c1n'r',nr approaches the exact S-matrix. 

This completes our discussion of the KVP. In closing this Section, we note 

that although the KVP has made quantum reac~ive scattering calculations straight­

forward in principle, its implementation can be very computationally demanding in 

practice. As discussed in Chapter 4, this is due to the fact that the KVP Green's 

function requires explicit construction of all outgoing asymptotic waves. This level of 

detail may not be attainable in treating the reactivity of complex systems. For this 

reason, alternative methods are pursued in the subsequent Chapters of this disserta­

tion. 

2.3 Functional Sensitivity Analysis 
' 

Functional sensitivity analysis is an attempt to locate which regions of the 

PES are most important for determining particular dynamical events [18, 23], i.e. 

transitions from n'r' to nr at energy E. Some function of molecular coordinates, 

called the "sensitivity coefficient" (SC), is required to indicate which configurations 

are important. In general, this function is not known. An approximation to the 

SC, however, is obtained from computing the first functional derivative of Sn'r',nr(E) 

with resp.ect to V(R, q) (we suppress arrangement channel indices on (R, q) to avoid 

confusion, and suppose a particular coordinate system for the present discussion). 

The KVP SC is obtained by differentiating Eq. (2.4), giving 

8Sn'r',nr(E) _ i - _ -+ 
8V(R, q) - h 1/Jn'r'(R, q) 1/JnAR, q). (2.11) 

As such, once the scattering calculation is performed, the SC is easily constructed for 

a particular collision event. We see that the KVP SC places importance in regions 

.where the scattering wavefunctions have large amplitude. 

An interesting application of functional sensitivity analysis is in determining 

which portion of a one dimensional barrier potential is most important for tunneling 
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[23]. One suspects that the region near top of the barrier will be most important. The 

width of the important region, however, is unclear. To determine this, we focus on the 

deep tunneling regime, for which the energy dependent tunneling probability T(E) is 

well approximated by the Wentzel-Kramers-Brillouin result [33] (WKB), given by 

T(E) 

B(E) 

C!::! e-20(E) 

1
x2(E) dx 

~J2m[V(x)- E], 
x1(E) n 

(2.12) 

where [x1 (E), x 2(E)] are the total energy and potential energy dependent classical 

turning points. The corresponding SC is given by 

8T(E) = _ T(E) 8B(E) 
8V(x) 

2 
x 8V(x)" (2.13) 

The functional derivative of B(E) has three terms, because of the potential dependence 

of the turning points. Differentiation gives 

8B(E) 
8V(x) 

1 y' 8x 2(E) 
h, 2m[V(x2)- E] bV(x) 

1 y' 8x1(E) 
h, 2m[V(x1)- E] bV(x) 

+ .;2m, [V(x)- Etl/2 21i . (2.14) 

The first two terms.in Eq. (2.14) vanish by the definition of turning points. The WKB 

SC thus becomes 

8T(E) 
8V(x) 

2T(E) 
nv_(x)' 

(2.15) 

where v(x) = J2[V(x)- E]/m is the magnitude of the imaginary velocity in the 

tunneling region. Equation (2.15) indicates that the WKB SC is largest (i.e. blows 

up) at the turning points. The exact quantum SC, which is finite for all x [cf. Eq. 

(2.11)], ·is also largest at the classical turning points. Thus, functional sensitivity 

analysis illustrates the fact that tunneling is determined by a large portion of the 

barrier, extending at least to the classical turning points. 

Some practical problems associated with the functional sensitivity analysis 

strategy are worth mentioning. First, it is only first o.rder. This is a severe problem. 
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Inde~d, the case where sensitivity is most interesting is for reson'a.nt processes. That 

is just the situation where the scattering wavefunction has large amplitude in the 

interaction region. However, at a resonance, perturbation theory (i.e. the Born ex­

pansion) breaks down because the Green's function is nearly singular. As such, first 

order results may not have much meaning in this case. Another problem pertains to 

the amount of information contained in the SC. It is a function of everything: total 

energy, initial and final quantum states and arran&ements, and molecular coordinates. 

It may be difficult to digest all this information when functional sensitivity analysis 

is applied to complex (i.e. non collinear) reactions. 

We do not pursue functional sensitivity analysis further. Instead, we proceed 

with the results of the brute force comparison. 

2.4 The Potentials: LSTH vs. DMBE 

We have performed a brute force comparison of the energy dependent cross 

sections for reaction (2.1) calculated from the LSTH and DMBE potentials. These 

are different functional representations of the ab initio PES calculated by Liu and 

Siegbahn in Ref. 16, although the DMBE PES is·fitted to more non·collinear points 

than in Ref. 16. The potentials differ most significantly in two general regions - in 

the noncollinear saddle point regions and in the long range van der Waals complex 

regions. Since the energy region of interest for the comparison in Fig. 2.1 is quite 

high, long range van der Waals attractions should not be important. Thus the relevant 

difference i~ in the bending potential of the H3 transition state. Figure 2.2 shows a 

. contour plot of the LSTH PES for 180° fixed angle geometries, including contours of 

the difference potential (VLsTH -VnMBE) for those geometries near the saddle point. 

Here the LSTH barrier height is 0.15 kcal/mol greater than that of the DMBE PES. 

Figure 2.3 is the same as Fig. 2.2 except that the internuclear angle is fixed at goo. 

In this case the difference at the saddle point is up to 0.51 kcaljmol, a reasonably 

significant quantity. Table 2.1 summarizes the saddle point differences for four fixed 

angle cuts of the surfaces. This shows that the greatest absolute difference is for 

goo geometries, and the greatest difference relative to the LSTH PES is for 120° 
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ft v;sP 
_L_ .6. v;sP 

L-D .6. v;sP ;v;sP(%) L-D L 

goo 30.0 0.51 1.7% 

120° 16.1 0.36 2.2% 

150° 11.5 0.16 1.4% 

180° 9.8 0.15 1.3% 

Table 2.1: Summary of relevant differences between the LSTH and DMBE potentials. 
The units of energy are kcal j mol. The angle B is in valence coordinates, and as such 
is the angle included by the three H atoms. The relative difference between the two 
potentials is ca. uniform, but the absolute difference is more than a factor of 3 greater 
in the 1-shaped configuration (90°) than in the collinear configuration (180°). Thus, 
the LSTH PES has a tighter bend potential in the transition state region than does 
the DMBE PES. 

geometries with the LSTH potential being larger in all cases. The percent difference 

is between 1.3% and 2.2% for all fixed angle surfaces considered. 

2.5 The Dynamics: Results and Discussion 

The transition state bending potential primarily determines the extent of 

rotational transitions. Therefore, we wish to analyze the sensitivity of the rotational 

product state distribution to these small changes in the bending PES. To do this 

we have calculated partial cross sections, i.e. cross sections for fixed total angular 

momentum J given by 

7r 2J + 1 2 
O'v',j'lv,j(E, J) = p . X 2 . + 

1 
L !Sv',j',l'+-v,j,l(E, J)l , 

V,J ) [1,[ 

(2.16) 

for J = 0, 1 and 10. We considered J = 10 because· it is one of the largest terms in 

the sum over J. We considered low J partial cross sections because the least energy 

reaction path is on the collinear surface. The transition state and collision complexes 

are collinear species. Since low values of J roughly correspond to low impact param­

eters, i.e. head on collisions, these partial cross sections will be most important for 

a sensitivity study of scattering resonances presumably caused by collinear species. 
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Figure 2.2: Contour plot of the LSTH potential energy surface at fixed internuclear 
angle 180°, cutoff at 2.0 e V. Also shown are the contours of the difference potential 
(VLSTH- VvMBE) at 180° where dotdash = 0.1, dash= 0.2, and dot= 0.3 kcaljmol. 
The two surfaces differ by 0.15 kcaljmol (LSTH is higher) at the classical barrier 
geometry. 
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Figure 2.3: Contour plot of the LSTH potential energy surface at fixed internuclear 
angle goo, cutoff at 2.0 eV. Also shown are the contours of the difference potential 
(VLsTH- VDMBE) at goo where dotdash = 0.1, dash= 0.3, and dot= 0.5 kcaljmol. 
The two surfaces differ by 0.51 kcaljmol (LSTH is higher) at this fixed angle saddle 
point geometry. 
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We present the results for J = 0 and 10 below ( J = 0 and 1 results are essentially 

identical except for the 2J + 1 degeneracy) .. 

Figure 2.4 shows the energy dependence of the partial cross sections ( J = 0) • 

for the transitions (v = O,j = 0) to (v' = 1,j' = 1, 3) resulting from the two potentials 

over the total energy range 0.8 - 1.5 e V. First, note the sharp resonance in the 

(v = O,j = 0) to (v' = 1,j' = 1) partial cross section at 1.0 eV. In general, partial 

cross sections show resonance structure while the full cross section does not [25]. That 

is, as J increases, features in the partial cross section move to higher energy and also 

broaden out (see below), so that the sum over partial waves (i.e. J values) tends to 

produce a cross section w1th less structure than the individual partial cross sections. 

The second important result seen in Fig. 2.4 is that for each transition, the 

partial cross sections for J = 0 are qualitatively, and for most energies quantitatively 

identical for the LSTH and DMBE potentials. Figure 2.4, then, indicates very weak 

sensitivity to the difference in the. bending PES for these transitions. Figure 2.5 

shows the final vibrational and rotational product state distribution for J = 0 at 1.2 

eV, the energy of the largest experimentally observed resonance. Here we also see 

insensitivity to the difference PES being considered. We conclude that low J results 

are insensitive to these specific small changes in t~e bending potential. 

Figures 2.6 and 2. 7 show the same quantities as Figs. 2.4 and 2.5, except 

for J = 10, over the energy range 0.9- 1.3 eV. Focusing on the (v = O,j . 0) to 

(v' = 1,j' = 1) transition in Fig. 2.6, one sees that the resonance has been broadened 

by about a factor of 3, and shifted up to 1.2 e V. Also, although one now detects a 

somewhat greater degree of sensitivity to the difference PES, the energy dependencies . 
of the two cross sections have the same topology. The DMBE cross section is higher 

than the LSTH cross section because the two potentials differ most in the barrier 

heights, with DMBE having a smaller barrier height. Other than that, Figs. 2.6 and 

2. 7 show no qualitatively significant sensitivity, from which we conclude that high J 

results are fairly insensitive to the difference between the two potentials. 
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Figure 2.4: Partial cross sections for H+H2 transitions (v = O,j = 0) to (v' = 1,j' = 
1, 3), resulting from LSTH and DMBE PESs. The (v' = 1,j' = 1) curve demonstrates 
a resonance at E = 1.0 e V, which is washed out in the partial wave expansion. These 
partial cross sections are insensitive to the difference between the LSTH and DMBE 
PESs, although there are quantitative differences. 
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Figure 2.5: Product state distributions for H+H2 (v = O,j = 0) resulting from LSTH 
and DMBE with J = 0, E = 1.2 eV. This product state distribution is quantitatively 
insensitive to the difference between the LSTH and DMBE PESs. 
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Figure 2.6: Partial cross sections for H+H2 transitions (v = O,j = 0) to (v' = 
1, j' = 1, 3). The resonance is broadened by a factor of ca. 3, and is shifted to E = 
1.2 eV. This J-dependent resonance energy shift is responsible for washing out the 
sharp resonant feature when performing the partial wave expansion. The partial cross 
sections are slightly more sensitive to the difference between the LSTH and DMBE 
PESs for J = 10 than for the J = 0 case. The energy dependence predicted by LSTH 
is qualitatively identical to that from DMBE. 
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Figure 2.7: Product state distributions for H+H2 (v = O,j = 0) resulting from LSTH 
and DMBE with J = 10, E = 1.2 eV. This product state distribution is quantita­
tively insensitive to the difference between the LSTH and DMBE PESs. The product 
distribution peaks at j' = 5 for this case of non-zero total angular momentum. 
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2.6 Concluding Remarks 

We outlined the derivation of the S -matrix version of the Kohn variational 

principle, and demonstrated how to apply functional sensitivity analysis within this 

computational framework. In addition, we discussed the complementarity of brute 

force and functional sensitivity analysis. We applied brute force sensitivity analysis 

to the H+H2 reaction, comparing partial cross sections resulting from the LSTH and 

DMBE PESs. We found that the theoretical cross sections shown in Fig. 2.1 do 

not change significantly when the LSTH potential is replaced by the DMBE. The 

computed cross sections are thus fairly insensitive to changes in the potential energy 

surface. We conclude that the theoretical cross sections are accurate. 

After these results were published [28], an experiment was performed by 

Kliner et al. [34] which measured the energy dependence of relative cross sections for 

reaction (2.1). When these relative cross sections are normalized to the theoretical 

cross sections in Ref. 13, the energy dependence shown in shown in Fig. 2.8 results. 

The abscissa in Fig. 2.8 is translational energy, corresponding to total energies in the 

range 1.15- 1.28 eV. This is the energy range for which Nieh and Valentini [10, 11] 

observe the sharpest resonance structure, as seen in Fig. 2.1. The results of Kliner et 

al. show no resonance structure, and agree quantitatively with theory over the entire 

energy range. Although this is not a proof that the Kliner et al. measurement is 

more reliable than that of Nieh and Valentini, the agreement shown in Fig. 2.8 is 

truly impressive. Indeed, the detection scheme employed by Kliner et al. is (2 + I)­

resonance enhanced multiphoton ionization (REMPI) followed by time of flight mass 

spectrometry. On the other hand, the detector used by Nieh and Valentini is based 

on coherent anti-Stokes Raman scattering spectroscopy (CARS), which requires more 

and stronger lasers than in REMPI. The implication here is that the product state 

distribution observed by Nieh and Valentini may not be nascent, but rather, the result 

of interference with a strong laser field [35]. A third independent measurement of this 

product state distribution may be required to establish the results of Kliner et al. as 

definitive. 

The results shown in Fig. 2.8 are both disappointing and exciting. It is 
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Figure 2.8: Experimental (points) and theoretical (curves) cross sections for the H + H2 

transitions (v = O,j = 0) to (v' = 1,j' = 1,3), where the final state j' = 1 is the solid 
points and the sol.i,d curve, whereas j' = 3 is the open points and the dashed curve. 
The abscissa is translational energy relative to the H2 (v = O,j = 0) energy level. 
These translational energies span a total energy range E = 1.15- 1.28 eV, where 
Nieh and Valentini observed resonance structures. The ordinate is the rate constant 
for a very sharp energy distribution, which is a velocity times a cross section. The 
experiment observes smooth energy dependence, in quantitative agreement with the 
(appropriately averaged) theoretical results. This agreement ushers in the era of ab 
-initio reaction dynamics. 
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intriguing that a collision complex of neutral H3 in its ground electronic state might 

be observable. That the truth seems to be contrary is disappointing (36, 37]. On 

the other hand, the level of detail and agreement in Fig. 2.8 is unprecedented. The 

agreement indicates that the cross sections for this reaction are not extraordinarily 

sensitive to errors in the PES. If there were such extreme sensitivity, considering 

the accuracy of the LSTH PES, quantum reactive scattering calculations would be 

completely unreliable! That reactive scattering calculations are reliable ushers in the 

exciting era of ab initio reaction dynamics. 

The computational effort required· by the scattering calculations shown here 

is not small. When attempting to treat more complex systems, i.e. systems with 

higher translational energies, heavier masses, greater exoergicities, stable intermedi­

ates, or more atoms, the added computational expense in both time and memory 

may make the calculation intractable. To a large extent, that is becasue the present 

methodology requires explicit construction of the outgoing wave Green's function. 

The remainder of this dissertation is devoted to developing alternative techniques in 

quantum reactive scattering theory which can be applied to more complex reactive 

systems. 
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Chapter 3 

Power Series Green's Function 

3.1 Introduction 

The computational effort required by an exact quantum calculation grows 

exponentially with the size of the system. Accordingly, the amount of information 

obtained from a quantum calculation grows exponentially as well. The most extreme 

case is encountered when one studies the dynamics of a pure state in which all the rel­

ative phase information is required. It therefore seems reasonable that the treatment 

of mixed states, which provides less detailed dynamical information, should be less 

computationally demanding and thus more applicable for the study of larger chemical 

systems. For example, the canonical rate constant for a bimolecular chemical reaction 

can be expressed as 

k(T) = [27rnQr(T)r1 I: dE e-{3E N(E) (3.1) 

where (3 = (kBTt 1
, kB is Boltzmann's constant, and Qr(T) is the reactant partition 

function including relative translational motion, per unit volume. In Eq. (3.1) N(E) 

is the microcanonical cumulative reaction probability, which in turn is defined by [1] 

N(E) = LL jsnp,nr(E)j
2

, (3.2) 
np nr 

where {Snp,nr(E)} is the S-matrix for total energy E. The sums in Eq. (3.2) are 

over all energetically allowed states of the reactants and products, denoted by quan-
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tum numbers Dr and np, respectively. Since the S -matrix elements contain the tnost 

detailed dynamical information, they are most computationally demanding. A for­

mally exact approach to obtain k(T) or N(E) which circumvents the need to carry 

out exact S -matrix calculations should in principle be more economical, since the 

information content in the former quantities is manifestly independent of system size. 

Two such formulations were given in terms of the analysis of reactive flux correlation 

functions by Yamamoto [2] and by Miller et al. [3, 4]. In the present Chapter we will 

use the latter formulation to calculate the cumulative reaction probability. 

Considerable theoretical effort has been devoted to evaluating the thermal 

rate constant k(T) by the flux correlation formalism of Miller et al. [3-18]. Less at­

tention, however, has been given to the direct calculation of the cumulative reaction 

probability. N(E) [19-21]. The theory for directly computing N(E) depends upon 

the microcanonical density operator 8(E- H), which is formally obtained from the 

outgoing wave energy Greens's function [22]. Recently, Seideman and Miller [23] 

showed how to use absorbing bo:undary conditions (ABC) to construct a convenient, -

well-behaved representation of the energy Green's function for use in N(E) calcula­

tions. ABC have been used in the past, primarily in wave packet propagations, for 

the study of laser-induced dissociation [24, 25] and reactive scattering [26, 27]. In the 

context of a wavepacket propagation, absorbing boundary conditions facilitate the 

use of smaller spatial grids by eliminating spurious reflection from grid boundaries. 

In the present context, they are used to enforce outgoing wave boundary condition~ 

in the Green's function, without explicitly constructing the outgoing waves (please 

see the next Chapter for a detailed discussion of ABC in reactive scattering). In 

fact, in their study of H+H2 reaction probabilities, Seideman and Miller were able to 

compute N(E) by focusing only on the strong chemical interaction region, making 

no explicit reference to the asymptotic reactant and product states that would be 

necessary in a full S -matrix calculation. As such, their work represents significant 

progress in the search for an efficient calculation of the microcanonical cumulative 

reaction probability. 

The calculation of N(E) by an absorbing boundary condition Green's func­

tion relies on the construction and inversion of a non-Hermitian Hamiltonian matrix. 
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We first discuss efficient inversion algorithms. The most straightforward inversion 

technique is L U decomposition [28], which requires storage of the Hamiltonian ma­

trix. Iterative methods [29], which don't necessarily require such storage, are an 

important alternative to L U decomposition for the solution of large systems. The 

Lanczos algorithm [30-32], in which a Hermitian matrix is reduced to tridiagonal form, 

can be used to diagonalize [31] or invert [32] a matrix with minimal storage. This 

technique has been used extensively to treat chemical systems with real Hamiltonians 

[33-43]. Whether the Lanczos algorithm is readily applicable to complex symmetric 

matrices is an open question [31, 39, 44-47]. The generalized minimum residual [48] 

method (GMRES), however, is an algorithm applicable for the solution of arbitrary 

linear systems. Although it has given impressive results [49, 50], when used with 

preconditioning [51], GMRES can be memory intensive (please see the next Chapter 

for a detailed discussion of iterative methods in linear system solving). With the 

intention of extending N(E) calculations to larger systems, we have developed a new 

iterative method for matrix inversion which is especially suited for Hamiltonians with 

absorbing boundary conditions. The method is stable, requires very little memory (as . 

opposed to GMRES), and can readily be preconditioned (as opposed to the SYMMLQ 

[32] algorithm). It is based on Fourier transforming the time-dependent wavepacket 

dynamics to obtain the energy-dependent reaction probabilities, and gives, in the 

present implementation, a power series energy Green's function [52]. 

Forming the matrix representation of the Hamiltonian operator and manip­

ulating the Hamiltonian matrix to obtain the observable of interest can be computa­

tionally intensive. A discrete variable representation [53-55] (DVR) can ameliorate 

both of these difficulties. That is, the construction of the Hamiltonian matrix is 

particularly simple in a DVR because no multidimensional integrals involving the po­

tential function are required. Also, the resulting matrix is sparse because the potential 

is diagonal, which expedites an iterative solution [37, 38]. In the present research we 

use a sine-function based DVR (vide infra) first developed by Colbert and Miller [56] 

for use in the S-matrix version of the Kohn variational principle [57, 58], and used 

subsequently for S-matrix calculations [37, 38] in addition to N(E) calculations [23]. 

This is a uniform grid DVR which is constructed from an infinite set of points. It is 
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then truncated [59] to the shape of the potential by deleting grid points where the 

wavefunction or Green's function is vanishingly small. The uniform distribution of 

grid points inherent in this DVR has demonstrated significant efficiency in treating 

the gross anharmonicity of potential functions in reactive scattering. 

Thus, the present theory includes wavepacket propagation on a grid as a 

basic component. McCullough and Wyatt [60] performed the first such study over 

twenty years ago on the H+H2 system. Since then Kosloff and co-workers [61] have 

incorporated many improvements to augment the efficiency of exact wavepacket prop­

agations, such as the Fourier representation [62] of the kinetic energy operator. This 

is a uniform grid over a finite interval, as opposed to sine-function DVR which in­

volves a uniform grid over an infinite interval. It would be interesting to determine 

whether the efficiency of wavepacket propagation is equivalent based on these two uni­

form grid representations. That is, one might ask for which physical systems would 

one grid method be superior to the other. We will present a qualitative analysis, 

concluding that sine-function DVR is preferable for the representation of a molecu­

lar reactive scattering system when a large number of grid points, necessary for the 

Fourier method, can be deleted from the sine-function DVR basis. 

We perform wavepacket evolution by propagating over many small time 

steps, where each short-time evolution is effected by matrix multiplication on a grid. 

For many years, matrix multiplication was deemed an inappropriate method for such 

propagation because of the highly oscillatory nature of the short-time coordinate 

propagator. This problem has been addressed by several workers [63-76] who incor­

porate, in one guise or another, a filter to damp the very high frequency components 

in the propagator that cause numerical problems and are usually unimportant to the 

dynamics. For example, Coalson [65] computed real time correlation functions via 

matrix multiplication by adding a small imaginary part to the time. Alternatively, 

Makri [69] deleted momenta greater than some Pmax from the propagator to yield a 

well behaved effective kernel. This approach was shown to be useful for both matrix 

multiplication and Monte Carlo [77] evaluation of the time evolution operator. It is 

interesting to note that this latter approach will turn out to be mathematically identi­

cal to the sine-function DVR of the short-time coordinate propagator. ·Inspired by the 
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success of this effective propagator, we will present a generalization of Makri's effec­

tive kernel which might be more useful in a path integral [78] Monte Carlo evaluation 

of the real time propagator. 

3.2 General Methodology 

We begin the calculation of the cumulative reaction probability with an 

expression derived from the analysis of reactive flux correlation functions [4], given 

by 

N(E) = ~(21r1i) 2 Tr [P 8(E- H) P 8(E- H)] , (3.3) 

where "Tr" denotes a quantum mechanical trace. The reactive flux operator F in 

Eq. (3.3) is most generally defined by 

A 1 [A A ] 
F= in h(J),H, (3.4) 

where h is the step function 

(3.5) 

and f( q) defines, via the equation f( q) = 0, a dividing surface which separates 

reactants from products. Here q denotes all the internal molecular coordinates. The 

mictocanonical density operator 8(E ....,... H) is formally obtained from the outgoing 

wave energy Green's function via the relation [22] 

A 1 A 

8(E- H) = -- lmG+(E), 1 

1r 

where c+(E) is defined by [79] 

a+(E) lim (E + i€- H)-1 

E--+0+ 

lim .;.._ f'>e dt ei(E+iE-H)t/1i. 
E--+0+ zn lo 

(3.6) 

(3.7) 

(3.8) 

In Eqs. (3. 7) and (3.8), adding an infinitesimal imaginary part to the energy E pro­

vides the outgoing wave boundary conditions, and, in Eq. (3.8) can be viewed as 

providing a factor which ensures the convergence of the time integral [23]. 
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Seideman and Miller recently showed [23], in the definition of a+(E), that 

subtracting a coordinate dependent operator ie( q) from the Hamiltonian fi can be 

equivalent to adding a constant ie to the energy E, so long as e( q) is negligible in 

the chemical interaction region. This technique, analogous to the use of absorbing 

potentials in the field of time-dependent wavepacket propagation [24-27], leads to the 

definition of an absorbing boundary condition (ABC) Green's function. The following 

alternative, but formally exact expression results for N(E): 

where 

GABc(E) - (E+i€-ii)-
1 

- i~ fooo dt ei(E+ii-H)t/'li.. 

and 

€p €h 

Er - €(1- h). 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Here € is a coordinate dependent operator, and h is the coordinate dependent step 

function operator which defines the reactive flux in Eq. (3.4). If Eq. (3.9) is evaluated 

in a discrete variable representation [23, 53-56, 80] (DVR) in which case the absorbing 

potentials, Er and €p, are diagonal, N(E) becomes 

N(E) = 4 !:ep(<J.i') jGABC(<Jj,,<Jj;E)j
2 

Er(<Jj), 
j'j 

(3.13) 

where { <Jj} are the grid points and j is a multidimensional grid point index. Equation 

(3.13) is the working formula used in thepresent Chapter. In what follows, we remove 

the "ABC" subscript from the ABC Green's function, with G(E) denoting the ABC 

Green's operator and G(E) the finite dimensional ABC Green's matrix. 

The computational challenge involved in Eq. (3.13) is clearly the evaluation 

of the matrix elements of G( E) which connect the reactant and product regions of 
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configuration space. In previous applications [23], these were computed as the solution 

of the complex symmetric linear system 

(E + ie- H) G(E) = 1 (3.14) 

by LU decompsition [28]. We call this the direct method of solution. For most chem­

ically realistic systems, direct solution would require the storage and manipulation of 

matrices larger than can be held :in the central memory of modern computers. One 

of the most fruitful approaches, however, in the solution of large linear systems is 

the use of a grid representation for the Hamiltonian in conjunction with an iterative 

solution of the resulting sparse linear system [29]. This is because iterative methods 

do not require storage of the Hamiltonian, and are especially rapid when used to solve 

sparse systems. 

We now describe a new iterative procedure to compute G(E) on a grid. The 

method is based on Eq. (3.11), that is, the integral representation of the ABC Green's 

function. 

3.3 Power Series Green's Function 

We construct a power series representation of the ABC Green's function by 

taking a finite upper limit T for the time integral in Eq. (3.11), and by using N evenly 

spaced quadrature points to evaluate the resulting integral. The former approxima­

tion is valid because the use of ABC to define the Green's function guarantees the 

convergence of the integral in finite time. The latter approximation generates the 

power series. Other representations of the ABC Green's function, which incorporate 

more sophisticated quadrature for the time integral, are possible and are discussed in 

the next Chapter. These modifications to Eq. (3.11) give the following power series 

Green's function (PSG) 

A ~t N A 

G(E) ~--:-;- L Wn Mn, 
. I Zn n=O 

(3.15) 

where 

M = ei(E+ii.-H)f1t/1i = eiEf1t/1i K(~t). , (3.16) 
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In Eq. (3.15) ~t = T/N, and {wn} are quadrature weights, e.g. for the extended 

trapezoidal rule Wn = 1- (8no + 8nN)/2. In Eq. (3.16), i<(~t) is the propagator with 

absorbing boundary conditions for the duration ~t. As is common to the study of 

wave packet propagaJtion, we have reduced the problem to finding the most accurate 

and efficient representation of the propagator [61, 81-83]. We use a simple and flexible 

short-time propagator (STP) develope4 by Feit, Fleck and co-workers [84-86] (also 

called [83] the kinetic referenced split-operator propagator) given by 

(3.17) 

where 

I{ ST P ( t) = e -i(V -ii)t/21i e -ii't/1i e -i(V -ii)t/21i . (3.18) 

and ii = T + V. This has been used [87-90] extensively in previous time-dependent 

calculations, and is a second-order propagator because it incorporates second-order 

commutation .error in the symmetrization. It has the flexibility of being able to treat 

a time-dependent Hamiltonian, e.g. in a mixed quantum-classical time-dependent 

self-consistent field [90-92] framework, by taking a time step small e~~:ough that the 

Hamiltonian is approximately constant. Some alternatives to the STP to be consid­

ered for future study will be discussed in the final Section of this Chapter, and in 

the next Chapter. We note that implementing propagators which are valid for longer 

times is tantamount to preconditioning [51] the system, i.e. making the Hamiltonian 

matrix more diagonally dominant. 

3.4 The Basis Set 

We represent the STP in Eq. (3.18) with sine-function based DVR (SDVR) 

for each degree of freedom, where the sine function is given by sinc(x) = sin(x)/x. It 

was first described by Colbert and Miller [56] for use in the S -matrix version of the 

Kohn variational principle, and used subsequently for S -matrix calculations [37, 38] 

in addition to N(E) calculations [23]. 
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3.4.1 SDVR vs. FFT 

Before giving the relevant matrix elements, we compare SDVR to the closely 

related Fourier grid method of Kosloff and co-workers [61, 62] which has been used 

extensively in previous wavepacket calculations. Both involve uniform grids in con­

figuration space able to represent momenta up to 

n7r 
Pmax = D..x, (3.19) 

wher~ D..x is the uniform grid spacing. In addition, both representations reqmre 

roughly [94, 95] lvlog2 N multiplications per propagation step, where N is the size of 

the grid. The two methods differ, however, in the actual manner of propagation. The 

Fourier method requires multidimensional fast Fourier transforms [28] (FFT) to facil­

itate propagation, whereas SDVR relies on sparse matrix multiplication. As such, the 

grid used in SDVR calculations can easily be tailored (59] to the shape of the potential 

energy surface (PES), whereas the Fourier method requires the use of rectangular or 

1-shaped [96] grids in order to perform the FFT. The implication here is that the 

rectangular grids required for the Fourier method may waste points in unimportant or 

unphysical regions of configuration space, where the wavefunction or Green's function 

is vanishingly small. We conclude, therefore, that for the study of multidimensional 

systems where the relevant region of configuration space is approximately rectangu­

lar, the Fourier grid can be more computationally efficient. This situation can obtain, 

for example, in the study of photodissociation to a single fragment arrangement, or 

in gas-surface scattering (96]. But, for the study of multidimensional systems where 

the relevant region of configuration space is not rectangular, e.g. a gas phase reactive 

scattering system, SDVR should be more efficient if enough grid points are deleted 

from the basis. 

3.4.2 SDVR of the Free Particle Propagator 

We now give the sine-function based DVR of the power series Green's func­

tion. For simplicity, we restrict our attention to a one-dimensional system. The mul­

tidimensional generalization is straightforward, and will be given afterwards. Letting 
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lui) denote the ph SDVR basis ket, the matrix PSG becomes 

f:::l.t N 
G(E)"' -:r; L Wn Mn, 

~ n=O 

where 

(M]j'j - eiED.t/n [KsTP(i:::l.t)]j'j 

[KsTP(t)]i'i _ e-i(V.i'-i~i')t/2n (u;,le-ii'tfnlui) e-i(Vi-i~i)t/21i 

(3.20) 

(3.21) 

(3.22) 

and T = ·P /2m. Equation (3.22) obtains from the fact that the PES ~nd the absorbing 

potential are coordinate dependent operators. In Eq. (3.22), Vi and €i correspond to 

the PES and the absorbing potential evaluated at the ith grid point, respectively. The 

SDVR of the free particle propagator is given in the fashion outlined by Colbert and 

Miller [56] in which one first considers a finite particle-in-a-box DVR. With (N- 1) 

functions and grid points and a grid spacing of i:::l.x, the free particle propagator 

becomes 

[ 
·T ] finiteDVR 2 N-l ( -in1r2n2t) 

e-z t/1i i'i = N ?; sin(1rnj'jN) exp 
2

mi:::l.x2N 2 sin(1rnjjN). (3.23) 

To obtain the SDVR of the free particle propagator, one takes the infinite N limit of 

Eq. (3.23) keeping i:::l.x fixed, giving [97] 

(ui' ie-iTt/1i lui) lim [e -iTtfn] finiteDV R 
N ..... oo j'j 

r (-in7r2y2t ) _ Jo dy cos[1ry(j'- j)] exp. 
2

mi:::l.x2 • (3.24). 

With the variable transformation p = n7ry I i:::l.x, the free particle propagator in Eq. 

(3.24) takes on the more familiar form 

(3.25) 

where Pmax is given in Eq. (3.19) and Xi = ii:::l.x fori= j',j. 

The matrix element in Eq. (3.25) is noteworthy in three respects. First, 

it is the product of an integration weight and a finite grid spacing representation 

of the kernel. This product arises because DVR includes integration weights in the 
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transformations. As Pmax goes to oo (and D.x goes to zero), the summation implied 

by matrix multiplication goes over into an integral, and the matrix element becomes 

li ( I -itt;n I ) d ( I -ii't/fi I ) m Uj' e Uj = X Xj' e Xj exact, 
Pma:r-+00 

(3.26) 

recovering the exact kernel of the free particle propagator multiplied by the infinites­

imal integration weight. Second, the SDVR of the free particle propagator is easily 

evaluated giving the exact kernel times a smoothing factor that results from the finite 

grid spacing. Eq. (3.25) becomes 

( I -ii't/fil ) A ( I -ii'tjfil ) f ( t· A ) Uj' e Uj = uX Xj' e Xj exact X smooth Xj', Xj, , m, uX (3.27) 

where 

1 - 2 [erf(A +B)+ erf(A- B)] 

A _ (_!!__) 112 1i1r 
2m1i D.x 

B - (~~) 
112 

(xi'- Xj). (3.28) 

In Eq. (3.28), erf(z) is the error function of a complex variable [98]. The third, and 

perhaps most i,ntriguing aspect of Eqs. (3.25), (3.27), and (3.28) is that they have 

been derived before in a completely different context by Makri [69]. In particular, 

she was seeking a well behaved (i.e. less oscillatory) representation of the short-time 

kernel for use in real time path integral Monte Carlo calculations [63-68, 70-76] The 

advantage gained from the matrix element in Eqs. (3.27) and (3.28) derives from the 

asymptotic behavior of the smoothing function [69, 81], namely 

(3.29) 

where 

(3.30) 

and in the above limit Pmax (and, hence, D.x) is understood to be fixed. Thus, Makri's 

version of the propagator automatically includes the effect of high frequency phase 
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cancellation that numerical quadrature and Monte Carlo algorithms have to work so 

hard to simulate. This cancellation is manifest in the damping of t4e free particle 

propagator matrix element for large jj, i.e. for very high momentum paths. In fact, 

Makri found this propagator to be so well behaved, that wavepacket propagation by 

straightforward matrix multiplication was efficient and accurate. That is precisely 

the type of propagation being done in the present Chapter. It is analogous to the 

numerical matrix multiplication scheme of Berne and co-workers [99] used to compute 

the canonical density matrix by a discretized path integral in imaginary time. It is 

interesting to note that our numerical tests indicate that without the smoothing fac­

tor, the propagation becomes unstable and numerical overflow occurs. It is also worth 

noting that Kouri and co-workers [73-76] have developed a different approximation 

to the free particle coordinate propagator, similar in spirit to Makri's propagator, 

which neglects high momentum components. Thus, the SDVR of the STP gives the 

exact position representation of the STP, which, when placed on a grid with finite 

spacing, automatically filters out high frequency momentum components which are 

unimportant and difficult to integrate. 

3.5 Multidimensional Generalization 

For the multidimensional generalization of Eqs. (3.20)-(3.30), we consider 

the F-dimensional Hamiltonian operator given by 

F 

.H = L:i'a+ V(q) (3.31) 
a=l 

where 

2 

TA - .!!2_ 
a-

2m a 
(3.32) 

and q = ( q1
, ... , qF) is an F -dimensional point in Cartesian space. We form an 

F- dimensional grid defined by 

a · A a 
qja = )at.J.q ' for ia = 0, ±1, ±2, ... (3.33) 
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for each coordinate qo: and corresponding grid point index io:· The infinite grid is 

then truncated by adapting it to the shape of the PES. That is, the points <lj are 

retained only if they satisfy the energy criterion [59] given by V(cu) :::; Ycut, where 

Ycut becomes a basis set convergence parameter. The corresponding ABC-DVR power 

series Green's function is still given by Eq. (3.20), where the matrix M is now defined 

by 

[M]j'j 

[KsTp(t)]j,j 

eiE~t/h [KsTP(~t)]j'j 

e -i(Vj,-i~:j,)t/21i [rr (uj:, le-itot/h lujJ] 
o:=l 

-i(V·-it:· )t/21i e J J 

(3.34) 

(3.35) 

and j = (j1 , ... , jp) is the F-dimensional grid point index alluded to in Eq. (3.13). In 

Eq. (3.35) "J and €j are the F-dimensional PES and absorbing potential, respectively, 

evaluated at <l.i· Each of the factors in the direct product free particle matrix element 

in Eq. (3.35) is Eq. (3.27) evaluated with the appropriate mass and grid spacing, i.e. 

In multidimensional SDVR the Hamiltonian matrix is sparse, which leads to N(2 + 
F N 11F) multiplications for each application of the matrix M, where N is the size of 

the grid [37, 38, 56]. 

3.6 Summary of the Methodology 

To conclude the description of the power series Green's function (PSG), 

we wish to underscore how the recursive calculation proceeds. To compute the jth 

column of the ABC Green's function, denoted by Gj with elements given by (Gj)j' = 
G( <l.i'' <lj), one forms the dot product of the matrix in Eq. (3.20) with the jth column· 

of the identity matrix. As such, the jth column of G(E) is 

~t N 
Gj "' --:r;: L Wn anj, 

Z n=O 
(3.37) 

where the vectors { anj} are defined by 

F 

( aoj)jt = (Ij)jt = bjtj = II bj{,,jo (3.38) 
o:=l 
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and 

(3.39) 

with M defined in Eq. (3.35). Equation (3.39) is the recursion relation which defines 

the iterative method. 

We now present a numerical application of the PSG in the study of the 

cumulative reaction probability for the collinear H+H2 reactive scattering system. 

3.7 Results and Discussion 

3. 7.1 The Coordinates 

We present the results of the calculation of the cumulative reaction prob­

ability for collinear H+H2 over the total energy range of 0.37 to 1.27 eV, using the 

method described above. The availability of accurate PES's and dynamics calcula­

tions makes it a good benchmark system to use to study a new method. We use the 

Liu-Siegbahn-Truhlar-Horowitz [100, 101] (LSTH) PES for the calculations. The co­

ordinates used for the calculations were the mass-weighted rectilinear normal modes 

[56, 102] referenced to the transition state on the LSTH PES. We denote the two 

dimensional coordinates by q = (x,y) where xis the reaction coordinate andy is the 

perpendicular vibrational coordinate, i.e. the anti-symmetric and symmetric stretch, 

respectively. 

A primitive DVR grid is first laid down along the coordinates q. We choose 

the grid spacings in the manner suggested by Colbert and Miller [56]. That is, given 

a mass and energy scale for each degree of freedom, we fix the number of grid points 

per de Broglie wavelength, denoted by nB. This gives the grid spacing for each degree 

of freedom as 

l::iqa = 2n1i 
nBv2maEa 

(3.40) 

For all studies at total energy E, we used Ea = E, ma = 1060 au (the mass-weighted 

system reduced mass), and nB "' 4 points per wave for both degrees of freedom. 
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Next, the primitive grid is truncated to yield a non-rectangular grid. To avoid an 

overabundance of c~nvergence parameters for later discussion we set the energy cutoff 

'Vcut = 3.4 e V for all calculations, which was found to give satisfactory convergence. 

3. 7.2 The Absorbing Potential 

The absorbing potential in the ABC Green's function simulates the effect of 

outgoing wave boundary conditions. It does so by absorbing completely, without back 

reflection, any flux from the interaction region that encounters the edge of the grid 

in all energetically allowed arrangements. As previously discussed by many authors 

[23-27], the optimal form of the absorbing potential is one which absorbs probability 

as rapidly (in space) as possible, without reflection. We use one of the forms suggested 

by Seideman and Miller [23], a sigmoid function given by 

€[z( q)] 

z(q) 

2>. 
1 + exp[(zmax- z)/'TJ] 

- max[Ra(q), Rc(q)] 

Zmax - Rr;ax, if z( q) = .R.y( q) for I= a, c, (3.41) 

and Ra (Rc) is the translational Jacobi coordinate in the reactant (product) arrange­

ment. In the symmetric case of collinear H+H2, we have Zmax = R:;'ax = Rr;ax, where 

we have used Zmax = 5 au for most of the calculations. A typical grid is shown in Fig. 

3.1 including the contours of the absorbing potential €( q). The parameters >. and 

7J are optimized by running appropriate convergence tests. For the convergence of 

the power series Green's function, we single out the parameter ). as being especially 

important. This is clear from the following analysis. We let €( q) = >. be a constant 

absorbing potential. If one takes a finite upper limit T for the time integral [i.e. a 

finite value of N in Eq. (3.20)], the error incurred is given by 

G(E)ItiniteT = G(E) [1- O(e-ATfn)] . (3.42) 

Thus, we expect to see exponential convergence in the parameters ). and T. Although 

this analysis is complicated by the use ofa coordinate dependent absorbing potential, 

it seems plausible that to converge the PSG with as few iterations as possible, it may 
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be beneficial to use larger values of ,\ than in previous studies. Results of this analysis 

will be discussed. 

3. 7.3 Reaction Probabilities 

Before stating the results, we wish to comment briefly on the scaling of the 

computational expense of the PSG with respect to central memory and CPU time. For 

an F-dimensional system with, on average, n grid points per degree of freedom, the 

PSG scales as [37, 38, 56] NRHsNITERFnN where NRHS is the number of reactant 

grid points for which a vector of G(E) is computed and NITER is the number of 

iterations per RHS. From our experience, this roughly scales as FnN2
• The PSG 

requires only three vectors of length N for the essential recursion and summation, _in 

addition to a very small number of vectors to enhance the speed of each iteration. 

Clearly this is where the PSG is favorable over direct methods. 

The cumulative reaction probability for collinear H+H2 , computed by the 

method described above, is shown in Fig. 3.2. The circles represent the reaction 

probabilities computed by Bondi et al. [103, 104] using R-matrix propagation on the 

LSTH PES. The agreement is excellent over the whole energy range. In the energy 

range where there is only one energetically accessible asymptotic vibrational channel 

[E E (0.37, 0.78 eV)], the error is always less than 1%. In the higher energy regime, 

the error is always less then 1.6%. 

The energy dependence of N(E) in Fig. 3.2 demonstrates the "staircase" 

structure given by the quantized vibrational levels of the activated complex. With 

only one such level accessible for lower energies, N(E) rises quickly to unity. When the 

second level becomes energetically accessible, N(E) makes another jump to ca. 1.6. 

The fact that N (E) does not increase monotonically is the signature of transition state 

theory violating dynamics. The sharp (downward) peak at E = 0.87 e V indicates a 

resonance, i.e. a short lived collision complex of H3 . This structure becomes washed 

out, however, in the full dimensional treatment (with zero total angular momentum) 

[23], because of the "averaging" over bending motions. 
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Figure 3.1: The configuration space required to converge the cumulative reaction 
probability. The contours are the LSTH potential surface as a function of the Jacobi 
coordinates (R,r). The other contours show the sigmoid absorbing potenti~ where..\ 
= 1.1 eV and 7J = 0.27 au. The distribution of grid points shown was used for the 
convergence tests at E = 0.52 e V. This small region of configuration space is all that 
is required to obtain an averaged reaction probability such as N(E). 
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Figure 3.2: Cumulative reaction probability for the collinear H+H2 reaction. The 
circles are the R-matrix propagation results (summed over final states) by Bondi 
et al., and the line is the power series Green's function results. Excellent agreement 
is obtained over the entire energy range. The "staircase" structure is evident, with 
N(E) "' 1 when the is one open channel, and "' 1.6 with two open channels. The 
non-monotonic increase indicates recrossing dynamics, and the peak at E = 0.87 e V 
indicates a collision complex for H3 . 
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3. 7.4 Convergence Tests 

The two important convergence parameters introduced by the power series 

expansion of the ABC Green's function are the total propagation timeT, and the time 

step t:lt. The total timeT represents the time required for reaction and absorption by 

c( q). The time step t:lt is the duration for which the STP is a faithful representation 

of the propagator. These are both a function of the dynamics and the choice of 

absorbing potential. We measure t:lt in units of a fundamental small time given by 

min grid length 
Tgrid = max grid velocity (3.43) 

That is, t:lt = frgrid where f is some unitless number. If we choose t:lx by the criterion 

in Eq. (3.40), we also find that 

(3.44) 

where nB is defined in Eq. (3.40). Equation (3.44) shows that this fundamental small 

time should, at least, be small enough to integrate the energy dependent oscillations 

in the time integral. Whether it is small enough for propagation, i.e. whether f is of 

order unity for convergence, is discussed below. 

In the context of calculating N(E) by the ABC-DVR approach, the present 

work represents a new iterative method to invert a complex matrix with less memory 

required than GMRES (48, 51]. The overall computational framework, i.e. Eq. (3.13), 

is not new and is not what is being tested here. As such, we gauge the error of the 

power series expansion in the following way. First we converge N(E) using the direct 

ABC-DVR method. Then, using the same Hamiltonian and grid parameters, we 

compute the PSG result. Relative error is therefore defined as 

_ NPSG(E) _ NDirect(E) 
error= NDirect(E) X 100%, (3.45) 

where the co~vergence of the direct result is based on the calculations of Bondi et al. 

[103, 104]. 

First we study the convergence of N(E) atE= 0.52 eV. We use a grid and 

absorbing potential (>. = 1.1 eV and TJ = 0.27 au) for which the direct ABC-DVR 
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N(E) = 0.242, whereas the R-matrix propagation gives N(E) = 0.244. Figure 3.3 

shows the percent error of N(E) from the direct result as a function of the common 

logarithm of f where Tgrid = 20.2 au = 0.49 f s. We see very well behaved, monotonic 

convergence to the direct result. This is remarkable for the following reason. As the 

time step is made smaller in Fig. 3.3, the exact STP becomes more oscillatory and 

hence, more difficult to integrate. However, the SDVR of the STP is sufficiently well 

behaved that it can be integrated with the same DVR grid while changing the time 

step by three orders of magnitude. Taking the first result that remains in the 1% 

error band as converged, f = 0.3 or !:l.t = 6 au = 0.15 f sis the optimal time step for 

the STP. This time step is about 1/50 of the asymptotic H2 ground state vibrational 

period, which is approximately 8 fs [105]. Such a small time step is necessary to 

obtain accurate results for a large value ofT. 

Figure 3.4 shows the convergence of N(E) to the direct result forE = 0.52 

e V as a function of the total propagation time T. For the calculations in the solid 

curve, we set f = 0.05 or !:l.t = 1 au = 0.024 f s. For those in the dashed curve f = 

1 or !:l.t = 20.2 au = 0.49 f s. Both curves show the same very smooth convergence. 

In fact, since the rate of convergence with respect to the total timeT is independent 

of the time step b..t, optimization of the two temporal parameters can be performed 

independently. Using the same 1% convergence criterion above, we see the optimal 

T = 5000 au = 121 f s. With these parameters the PSG required for N(E) at E = 

0.52 e V converges in roughly 800 iterations. The optimal calculation requires ca. 20 

CPU seconds on an IBM RS/6000 Model550. 

Now we consider varying parameters in the absorbing potential to effect more 

rapid absorption in time. Once again, consider E = 0.52 e V. At this energy, the ABC­

DVR cumulative reaction probability is stable over a range of ..\ up to approximately 

1.6 eV. At ..\ = 1.5 eV, N(E) by direct ABC-DVR gives the value 0.245. In Fig. 

3.5 we show the same as Fig. 3.4, except with this elevated value of .A, the absorbing 

potential strength parameter. In this case convergence of N(E) is obtained with a 

total propagation time T = 4000 au = 97 f s. This calculation, requiring roughly 

650 iterations, represents a modest savings in computation with fairly little effort in 

optimization of the absorbing potential. 
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Figure 3.3: Convergence of N(E) at E = 0.52 eV with respect to the split-operator 
time step i}.t. The abscissa is log10 (f) where the time step is i}.t = jTgrid, with Tgrid . 

= 20.2 au= 0.49 f s. Note the smooth convergence obtained with a single DVR grid, 
which results from the non-oscillatory effective propagator. The optimal i}.t = 6 au 
= 0.15 fs. 
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Figure 3.4: Convergence of N(E) atE= 0.52 e V with respect to the total propagation 
time T. The solid curve uses .6.t = 1 au = 0.024 f s and the dashed curve uses .6.t 
= 20.2 au = 0.49 f s. Both curves give smooth convergence, suggesting independent 
optimization of the parameters .6.t and T. The optimal T = 5000 au = 121 f s. 
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Figure 3.5: The same as Fig. 3.4, except the absorbing potential strength parameter 
is increased from A = 1.1 eV to 1.5 eV. In this case the optimal T = 4000 au = 97 
f s. The power series converges more rapidly with a stronger absorbing potential. 
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Similar convergence properties were obtained at higher energies, in which 

more than one asymptotic vibrational channel is open. In general, f ::::: 0.3 is suffi­

cient with this STP to give results accurate to about 1%. The total time T required 

for convergence can be easily estimated given the size of the grid and the available 

translational energy. In addition, grid sizes and total propagation times can be re­

duced by using stronger absorbing potentials. 

3.8 Concluding Remarks 

We have described a new method to compute the absorbing boundary con­

dition energy Green's function on a sine-function DVR grid using a power series 

expansion. This is an iterative procedure for inverting the non-Hermitian matrix 

(E + ie- H) which requires very little memory. We have demonstrated the accuracy 

and convergence properties of the PSG method by applying it to the calculation of the 

cumulative reaction probability for collinear H+H2 • In addition, we have qualitatively 

discussed the numerical efficiency of SDVR relative to the FFT method. We have 

concluded that both approaches have their proper regime of efficient application, and 

in particular, that SDVR should be superior when many grid points can be deleted 

from the rectangular grids required for the FFT. We believe that the computation of 

N(E) by the PSG method has the basic ingredients necessary for the realistic study 

of larger chemical systems. First, by computing the microcanonical reaction proba­

bility, an averaged quantity, relatively small grids can be used which focus points in 

the interaction region where the chemical dynamics takes place. Second, by using an 

iterative solution forth~ Green's function, we avoid having to store the Hamiltonian 

matrix, and can in principle treat larger systems. 

There are several avenues for future study suggested by the present results. 

In this Section we consider the following: first, possible improvements to the iterative 

calculation of reaction probabilities by an ABC Green's function on a grid; and second, 

a generalization of Makri's effective free particle propagator. 
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3.8.1 Reactive Scattering 

The present calculation uses a uniform grid in space and time to integrate 

the Schrodinger equation. The uniform (spatial) grid DVR provides a simple matrix 

representation of the Hamiltonian operator. The uniform (temporal) grid short time 

propagator gives a power series expansion of the ABC Green's function. This is surely 

not the most sophisticated approach. We now discuss possible improvements to the 

method. 

We conjectured above that, for the study of reac~ive scattering, the SDVR 

uniform grid would be more computationally efficient than the Fourier uniform grid 

because of the ease of basis truncation with SDVR. However, a non-uniform grid 

DVR, e.g. Gauss-Hermite DVR, would also have all the advantages that were at­

tributed to SDVR. In addition, a non-uniform grid DVR might in principle be more 

efficient because it originates from adaptive quadrature. For example, the H+02 sys­

tem, which has a deep well in the interaction region, is represented more efficiently 

in Gauss-Hermite DVR than in SDVR [106]. A uniform grid would also be very in­

efficient in the case of strongly exoergic systems, e.g. the F+H2 reaction. In general, 

treating complicated systems will require that the grid be adapted to the shape of the 

PES. In the case of collinear H+H2 , which has no deep wells and is thermo-neutral, 

the uniform grid defined in SDVR is sufficient. 

Using the trapezoidal rule and the split-operator propagator gives conver­

gence which is second order in tlt. I.e. reducing the time step by a factor of ten 

gives two more converged digits in the Green's function. There are many modern 

methods of solving linear systems which give higher order convergence. Such rapid 

convergence may obviate the need to perform some of the convergence tests shown in 

this Chapter. As discussed briefly above (and in detail in the next Chapter), many of 

these high order methods utilize the Lanczos reduction algorithm. This approach is 

(in)famous for being highly ·sensitive to the effects of numerical roundoff error. Pow­

erful methods for controlling this error have been developed for Hermitian systems, 

but unfortunately are much less reliable for non-Hermitian systems. Since numerical 

roundoff error is manifested only after several Lanczos iterations are performed, it is 
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plausible that an algorithm based on a low order complex symmetric Lanczos method , 

may be more stable. 

A low order Lanczos algorithm for unitary short time propagation has been 

developed by Park and Light [41]. We have successfully adapted this for propaga­

tion with absorbing boundary conditions [107, 108]. However, we have found that 

this is not useful for the Green's function calculation. That is because the sign of 

the imaginary part of the complex eigenvalues tends to converge very slowly. Some 

of the eigenvalues .have positive imaginary parts, which precludes the possibility of 

converging the time integral which gives the Green's function. This instability is 

due to additional roundoff error in the non-Hermitian calculation. To stabilize the 

calculation, we split off the absorbing potential from the Hermitian Hamiltonian via 

(3.46) 

This gives a stable algorithm, and is moderately efficient [108] (although not as effi­

cient as the original split-operator based algorithm). However, this is an unacceptable 

compromise because the convergence is again second order in t. 

In the following Chapter, we discuss an alternative to the Lanczos based 

algorithms, called the Newton polynomial expansion. This is a high order method 

which is stable and has very straightforward accuracy control. The Newton expansion 

is a generalization of the well known Chebyshev expansion, and is the method of choice 

for the remainder ·of this dissertation. 

3.8.2 Path Integration 

We consider the generalization of Makri's effective free particle kernel. We 

will not pursue these ideas in this dissertation, but rather, offer them for contem­

plation. For simplicity we consider a one dimensional system with mass m. The 

success of Makri's propagator is based on the filtering of high frequency momenta 

which are unimportant and difficult to integrate. To this end, we denote a general 

momentum filter by w(p) with the property that it goes to zero as p --+ ±oo. This 
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gives a generalized effective free particle kernel given by 

(x'le-it't/1ilx)ef! = l+oo dp eipx'/1i e-ip2tj2m1i e-ipxf1i w(p). 
-oo 2n-1i 
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(3.47) 

By the convolution theorem [109] one can show that the asymptotic form of this 

effective kernel is given by 

Jim (x'le-iTtf1ilx)eff = W(x'- x), 
p-+00 

(3.48) 

where 

p = m(x'- x)jt (3.49) 

and 

l
+oo dp . 

W(x) = - ezpxf1i w(p) 
-oo 2n-1i 

(3.50) 

is the Fourier transform of the momentum filter. In the trivial case where w(p) = 

1, i.e. no filter, then Eq. (3.47) gives the exact kernel. If we set w(p) = 1 if IPI 
< Pmax and zero otherwise, we recover Makri's effective kernel, which we have used in 

a uniform grid DVR. Its asymptotic form, Eq. (3.29), is trivially obtained from Eqs. 

(3.48)-(3.50). Now consider the case where w(p) has a Gaussian form 

(3.51) 

Then the effective propagator is 

( 'I -it't/1il ) ( 'I -it'tj'lil ) ( , t A ) X e X eff = X e . X exact X 9smooth X ,x, ;m,~X, (3.52) 

where 

{ [-iB
3
(x'- x)

2
] [i (B)]} 9smooth(x', x, t; m, D.x) exp A 2 + B 2 exp 2 tan-1 A 

x { ( A
2 

)

1
/

4 
[-iAB2(x' _ x)2]} 

A 2 + B2 exp A 2 + B2 

A - 1/2D.x2 

B m/21it 

D.xb.p - fi. (3.53) 
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This effective propagator has three remarkable features. First, it is clear from Eq. 

(3.53) that the phase factor in 9smooth identically cancels the very rapid oscillations in 

the exact free particle kernel as t goes to zero, i.e. B ~ A. This is crucial to the stabil­

ity of the effective propagator. Second, the form of the filtering function, a Maxwell­

Boltzmann distribution, suggests that we are imposing an artificial temperature for 

which kBTfilter/2 = ~p2 /2m. This is analogous to the approach of Coalson [65] in 

which an artificial temperature was used to compute dipole autocorrelation functions. 

Imposing an artificial temperature in the propagator is tantamount to propagation 

in complex time, which Doll [64] showed is stable even with numerical matrix mul­

tiplication (NMM). In addition, Thirumalai and Berne [63] have carried out NMM 

calculations of the propagator in complex time in the study of (non-artificial) temper­

ature dependent correlation functions. Using ~p = Pmax for the N(E) calculations at 

E = 0.52 eV, the artificial temperature is Tfilter rv 50,000 I<. Clearly this temperature 

is not low enough to interfere with the microcanonical density operator, but might 

be low enough to filter out the high momentum components which are unimportant 

to the dynamics. 

Finally, an approximation to the coordinate propagator containing the same 

real Gaussian as in Eq; (3.53) has been previously obtained in the context of "dis­

tributed approximating functions" by Kouri, Hoffman and co-workers [74-76]. They 

were also seeking a more well behaved coordinate free particle propagator. To this 

end, they analytically propagated a Hermite polynomial fit to an initial wave packet, 

and observed what effective propagator would have evolved the exact wavepacket to 

obtain the same result. It is clear, from the present analysis, that their approach 

is tantamount to filtering out high frequency components in the propagator from 

the start, without the need to fit an initial wavepacket. The intriguing aspect of 

this propagator, as Kouri, Hoffman and co-workers correctly point out [74-76], is 

the possibility of performing a path integral Monte Carlo evaluation of the real time 

propagator using the real Gaussian in Eq. (3.53) as the sampling distribution. How­

ever, there are some potential problems that may arise from this strategy. First, 

importance sampling based on free particle dynamics may require very small time 

slices, and may not be able to anticipate the details of long time dynamics. Second, 
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a Gaussian filter, which is characterized by only one parameter, may not be flexible 

enough to damp the high momentum components while giving the small components·· 

unit weight. Nevertheless, the possible success of this approach bears further thought 

and numerical testing. 

There is another perspective with which we can generalize Makri's effective 

propagator. Most studies of path integration begin with an exact propagator for 

some reference system, including the coupling with the split-operator expression. By 

using an exact reference propagator, infinite frequencies have implicitly been included, 

which then have to be filtered. The art is in constructing a convenient filter which 

does not also filter out the interesting dynamics. 

On the other hand, conventional basis set quantum calculations begin with 

very low frequencies, and try to build in higher frequencies if necessary and if possible. 

· The finite basis set already has an implict "filter," in that only finite frequencies are 

included. That these two approaches can be equivalent was demonstrated in this 

Chapter. 

To build on this idea, we consider a Hamiltonian H partitioned as H = H 0 

+ H 1 , where Hois a simple reference system whose eigenvalues {en} and eigenvectors 

{vn} are known. The propagator is then approximated as: 

e -iHot/21i e -iH1 t/li e -iH0 t/21i 

N N ~ 

L L ·Vn' e-ien,tf21i [v~,. e-iHlt/li.. vn] e-ient/21i.V~·, 
n'=l n=l 

(3.54) 

where the first approximation is in the splitting, and the second is in the finite basis 

representation. The u~e of a finite basis automatically filters out high frequencies. 

This is precisely the form used in the present Chapter, where H 0 =V-ie and H 1 = 

T. Furthermore, the eigenvectors are DVR states, and the eigenvalues are Vn - ic.n. 

Equation (3.54) offers the possibility of using a different, more adapted reference 

system. For example, a vibrational problem may be better represented using harmonic 

oscillator states than free particle states. The key is not to use the exact harmonic 

oscillator propagator, but rather, its finite basis approximation. Topaler and Makri 
( 

[110] use this approach as their method of choice in path integral calculations of 
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the rate constant flux autocorrelation function and of the intramolecular vibrational 

relaxation wavefunction correlation function. 
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Chapter 4 

The Newton Algorithm 

4.1 Introduction 

In the previous Chapter, we described a new computational approach for 

reactive scattering calculations on large systems. There are two basic ingredients in 

this approach. First, the use of absorbing boundary conditions (ABC) to compute di­

rectly averaged reaction probabilities allows numerically exact scattering calculations 

while only sampling the localized chemical interaction region. Second, the use of a 

grid basis coupled with iterative methods provides the solution to the ABC system 

without the need to store the Hamiltonian matrix. The relatively small arid sparse 

Hamiltonian matrix which results from these two components is crucial to extending 

theory to larger systems. In the present Chapter, we extend both of these aspects, 

yielding a powerful computational algorithm for treating the reactivity of complex 

chemical systems. 

In Chapter 3 we focused on the cumulative reaction probability, using the 

ABC formulation of quantum reactive scattering theory. As emphasized, the calcu­

lation of averaged reaction probabilities should be more economical, and thus more 

applicable to larger chemical systems. However, many revealing measurements of 

chemical reactivity involve scattering cross sections [1, 2], which involve reaction 

probabilities weighted by the initial translational energy [3]. Thus, to compute cross 

sections, we need reaction probabilities with initial state selection. Iri. this Chapter, 
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we derive the ABC formulation of the initial state selected reaction probability [4]. 

In addition, we demonstrate that this quantity is obtained more economically than 

the state-to-state probability, while offering interesting details about the chemical 

reaction. 

The direct calculation of the initial state selected reaction probability relies 

on the ABC Green's function. We proposed an iterative method in Chapter 3 called 

the power series Green's function (PSG). In the present Chapter we extend this 

method for two reasons. First, the short time propagator implicit in the PSG requires 

optimization of the time step. Although we showed that this optimization gives 

smooth convergence due to filtering out high momentum components, a superior 

method would avoid the need for these convergence tests. Second, the split operator 

short time propagator is based on exponentiating the kinetic energy. While this is 

straightforward for rectilinear coordinate systems, it is extremely inconvenient for 

curvilinear kinetic energy terms such as Coriolis coupling. Thus, we seek an iterative 

calculation of the ABC Green's function which is more automated and flexible than 

the PSG, for use on complex systems. 

In the field of time dependent wavepacket propagation, a method exists 

with many of the attributes we seek. The Chebyshev polynomial expansion [5] of the 

unitary time propagator is extremely accurate, easy to automate, and only requires 

applying the Hamiltonian on a vector. This expansion has been used extensively 

to study photodissociation, gas surface scattering, and gas phase reactive scattering 

[ 6]. Inspired by the success of the Chebyshev algorithm, we are led to ask: Does an 

analogous polynomial expansion exist for the ABC Green's function? Much of this 

Chapter is devoted to answering this question. 

We derive a convenient and well behaved expression for the initial state 

reaction probability in the ABC formulation. After analyzing various polynomial ex­

pansions for the ABC Green's fucntion, we discover that no direct expansion yields 

a tractable algorithm for large systems. We eventually advocate a method, called 

the Newton algorithm, which is quite similar in spirit to the PSG. However, the 

Newton algorithm is a vast improvement over the PSG, providing the flexibility and 

convenience of the Chebyshev method. We illustrate the Newton algorithm on the 



4.2. QUANTUM REACTIVE SCATTERING FORMULATION 79 

calculation of three dimensional reaction probabilities for the D+H2(v,j) --+DH+H 

initial state selected reaction. These calculations demonstrate that the Newton algo­

rithm is capable of arbitrary accuracy with a very modest amount of computational 

effort [7]. 

4.2 Quantum Reactive Scattering Formulation 

We outline the formal scattering theory required to define a direct calculation 

of the IRP. In addition, the ABC modifications to the formal theory are discussed in 

this Section. 

4.2.1 Formal Theory 

The IRP at total energy E is defined by 

Pn,.(E) = l:Pnp,n,.(E), (4.1) 
np 

where Pnp,n,.(E) is the state-to-state reaction probability from reactant state nr to 

product state np. This quantity has been of interest to many groups, most recently 

Neuhauser and Baer [8] and Thompson and Miller [4], because it is less computation­

ally intensive than the fully state-selected reaction probability Pnp,n,.(E). Based on 

the analysis of the reactive flux operator F (see below), Miller [9] has shown that the 

IRP can be obtained directly via 

(4.2) 

where I'll~ (E)) is a scattering eigenstate of the Hamiltonian operator if= K + V. As 
r . 

such, the problem is reduced to determining the scattering wavefunction. Although 

at first sight this seems like very little progress, below we show that the use of ABC 

allows us to accurately compute the IRP without a complete determination of the 

wavefunction. In the present study, as well as in Ref. 4, we evaluate lwt(E)) with an 
' integral equation. For the purpose of seeing how to correctly use ABC, it is instructive 

to show the derivation of the integral equation we use. 
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We consider a one dimensional radial system. with coordinate R. The mul­

tidimensional generalization is extremely straightforward. The time independent 

Schrodinger equation for a scattering system at energy E with outgoing waves (de­

noted by "+") in all open channels and an incoming wave in reactant channel nr is 

given by: 

(E- H)l'l'! (E)) = 0. r . 

The state ket can be written in integral equation form via the Lippmann-Schwinger 

equation [3] 

(4.4) 

where Gci(E) is the unperturbed Green's function given by 

(4.5) 

In addition, lq,nr(E)) is the corresponding unperturbed scattering state satisfying the 

conditions 

(E- K)lq>nr(E)} = 0 

lim (Riq>nr(E)) = 0. 
R-+O+ 

(4.6) 

The first condition demonstrates that I q,nr (E)) is indeed a free wave, and the second 

chooses the physically important "regular" solution. 

Equation ( 4.4) is not immediately useful because it represents the unknown 

ket in terms of itself. However, it can be solved formally by the method of successive 

approximations [3], which is based on the fact that l'l't(E)) ~ lq,nr(E)) when V 
weakly perturbs K. The first step, then, is to replace l'l't(E)) on the right hand 

side of Eq. ( 4.4) with I q,nr (E)), yielding the so-called first Born approximation: 

(4.7) 

Substituting the first Born wavefunction into the right hand side of Eq. ( 4.4) gives 

the second Born approximation: 

lw~}(E)) lq,nr(E)) + Gci(E) V lq,nr(E)) + Gci(E).V Gci(E) V lq,nr(E)) (
4

.
8

) 

l~nr(E)) + [Gci(E) + Gci(E) V Gci(E)] V lq,nr(E)). 
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Iterating this procedure ad infinitum yields the Born expansion for the state ket: 

.1w~r(E)) - lcpnr(E)) + { Gt(E) E~=o [vbt(E)r} V lcpnr(E)) 

- lcpnr(E)) + Q+(E) V lcpnr(E)). 
(4.9) 

Assuming convergence of the geometric expansion E~=O zn = (1- z)-1 in Eq. (4.9), 

the fully perturbed Green's function satisfies 

b+(E) Gt(E) [i- VGt(E)] -
1 

- lime-.o+(E + i€- k)-1 [i- V(E + i€- k)-1r1 

- lime-.o+ {[i- V(E + i€- k)-1
) (E + i€- K)} -

1 ( 4.10) 

- lime-.o+ (E + i€- fl)- 1
• 

Next, making the observation that 

the state ket becomes: 

(4.11) 

This is almost the final form of the desired integral equation. Before proceeding, 

though, we make three general points regarding Eq. (4.11). 

First, there is no longer any explicit reference to the coupling term V in 

the Hamiltonian which is disregarded in defining lcpnr(E)). Although the Lippmann­

Schwinger equation defines lcpnr(E)) as a free wave, Eq. (4.11) does not require that 

choice. Indeed, lcpnr(E)) is only really required to satisfy two boundary conditions. 

First, it is required to be an eigenstate of ii with energy E for large R, i.e. when the 

colliding particles are well separated. Second, lcpnr(E)) is regular at the origin, i.e. it 

is required to vanish in the limit that the colliding particles coincide. 

The second point is that Eq. (4.11) allows us to split our effort in determin­

'ing the reaction probabilities. That is, the closer lcpnr(E)) is to lwt(E)), the less 

dynamical information is required from Q+(E). We can see this by considering a two 

. dimensional reactive system with reactant/product translational coordinates Rr/ Rp· 

The reactant interaction region is where Xnr(Rr, E) = (Rr Iff - Elcpnr(E))- # 0. 
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Clearly, Xnr(Rr, E) must vanish in the limits of small and large Rr. The same applies 

for the product interaction region defined by the function Xnp ( Rp, E). In terms of 

these quantities, the reactive transition amplitude Tnp,nr(E) is given by: 

Tnp,nr(E) - (<I>np(E)IVIwt(E)) 

((H- E)<I>np(E)I [i + a+(E) (H-E)] I<I>nr(E)) 

- (xnp(E)I<I>nr(E)) + (xnp(E)IG+(E)Ixnr(E)). 

(4.12) 

Thus, it is clear that to determine the reactive transition amplitude, one only needs to 

know the Green's function elements which couple the reactant and product interaction 

regions. 

The total interaction region (TIR) is the portion of configuration space where 

a square integrable (L2 ) basis set would be used to expand G+(E). The computational 

effort of such a calculation would depend very strongly on the size of the L 2 basis set 

required. If I<I>nr(E)) were "distorted" to contain the effects of long range interac­

tions (i.e. elastic and inelastic scattering), the L 2 basis set used to represent the TIR 

where only reactive events take place would be much smaller than if I<I>nr(E)) were 

a completely undistorted wave. Inelastically distorted waves have been used in both 

time dependent [10] and time independent [4, 11] reactive scattering calculations. 

Although inelastically distorted waves are not explicitly constructed in this disser­

tation, we nevertheless attempt to include the effect of any long range interaction 

in I<I>nr(E)). For example, in Chapter 5 we show how a certain angular momentum 

coupling scheme can reduce the TIR. 

The third point, which is a corollary of the second, is pursued in the ABC 

formulation. Namely, the form of G+(E) in the region where Xnr(Rr, E)~ 0, i.e. the 

asymptotic region, does not affect the reaction probabilities. Therefore, we are free to 

alter the nature of the Green's function in the asymptotic region, as long as the TIR 

elements are correct. This point is fully exploited in the next Section, in discussing 

the use of absorbing boundary conditions. 

The final modification to the integral equation is not absolutely crucial, but 

rather is a matter of convenience. Defining the pre-limit Green's function by 

(4.13) 
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we can write Eq. (4.11) as 

l'lli;jE)) lim.,-o+ [i + G"(E) (H-E)] lcpnr(E)) 

lim"-o+ G"(E) [(E + i€- ii) + (ii- E)] lcpnr(E)) 

- lim£--+0+ G"(E) i€ lcpnr(E)). 
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(4.14) 

This integral equation for the state ket is convenient for two reasons. The first 

point is somewhat trivial: it is easier to construct i€ lcpnr(E)) than it is to obtain 

(H-E) lcpnr(E)). The second reason, which is more important, will become clear 

after introducing the absorbing boundary conditions. 

Much of the formal analysis given above relies on defining the Green's func­

tion in terms of the Born expansion. As such, these arguments seem to depend on 

the convergence of the Born expansion. However, the state kets in Eqs. ( 4.4), ( 4. 9), 1 

(4.11), and (4.14) formally solve the Schrodinger equation provided that the following 

Green's function relations hold: 

i (E- K)Gt(E) 

(E- H)G+(E) 

- (E + i€- ii)G"(E). 

( 4.15) 

That is, the integral equations derived above are well defined regardless of the con­

vergence properties of the Born expansion. . 
Thus far in this Chapter, we have shown how to obtain the IRP directly 

from the scattering wavefunction, for which a convenient integral equation was con­

structed. We have emphasized that only the TIR portion of the Green's function 

contributes directly to the reaction probability. However, we have not yet shown how 

to determine the Green's function. In principle, the TIR portion of G"(E) is correct 

only if € is made small enough, i.e. only if the boundary conditions are properly en­

forced. As € ~ o+, G" (E) develops outgoing waves in all open channels extending 

over an infinite region ofasymptotic space. Thus, the reaction probabilities is correct 

only if the asymptotic region is sampled in some fashion in determining (;+(E). In 

previous L2 variational Green's function calculations [12], the outgoing waves have 

been represented by including infinitely delocalized functions in the basis set. Unfor­

tunately, this gives rise to an awkward structure in the resulting Hamiltonian matrix. 
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For technical reasons discussed below, this structure makes it very difficult to perform 

IRP calculations on large chemical systems. To solve this problem, we outline the 

ABC version [13, 4] of the Green's function in Eq. ( 4.13) and the integral equation 

in Eq. ( 4.14), which facilitates IRP calculations on large chemical systems. 

4.2.2 Absorbing Boundary Conditions 

The basic principle behind the ABC formulation is that accurate reaction 

probabilities can be determined while only sampling a finite region of space. This is 

achieved by replacing the infinitesimal energy € in Eqs. ( 4.13) and ( 4.14) with a finite, 

coordinate dependent function €( q) ~· 0. This modification gives the ABC analogues 

of Eqs. (4.13) and (4.14), 

(;ABC (E) = (E + i€- ff)-1 (4.16) 

and 

(4.17) 

The kernel of (;ABC(E) is an L 2 function which decays exponentially where €(q) is 

non-zero. In what follows, we omit the "ABC" superscript with the understanding 

that we are using the ABC formulation . . 
To obtain accurate reaction probabilities in an efficient manner with the 

ABC formulation, the absorbing potential €( q) must satisfy three criteria. The first 

and second pertain to accuracy, and the third to efficiency. First, €( q) should be 

negligible in the TIR, where the Green's function directly contributes to the reaction 

probabilities. Second, the absorbing potential should not be so strong that it reflects 

amplitude back into the interaction region, effectively contaminating the outgoing 

wave character with incoming waves. Third, the absorbing potential should be strong 

enough to absorb the ABC Green's function as fast (in space) as possible, thereby 

reducing the L 2 basis set size required to represent it. The optimal absorbing poten­

tial, determined by the competition between accuracy and efficiency, is found through 

empirical testing. 



4.2. QUANTUM REACTNE SCATTERING FORMULATION 85 

As an aside, we note that since c( q) """ 0 in the strong chemical interaction 

region, the product €l{l?nr(E)) projects onto the asymptotic portion of l{l?nr(E)) only. 

Thus, it is not necessary to explicitly regularize !{l?nr(E)) at the origin. This is 

the second convenient aspect of the integral equation in Eqs. (4.14) and (4.17), as 

discussed in the previous Section. 

We now turn our attention to the calculation of averaged reaction proba­

bilities (e.g. the IRP) with the ABC formulation. This is perhaps its most impor­

tant application, because one can determine averaged reaction probabilities with only 

partial information about the scattering wavefunction. In particular, since the IRP 

contains only initial state selection, the TIR which determines this quantity is larger 

on the reactant side than it is on the product side. That is because state selection is 

determined by inelastic scattering, which is usually a longer ranged interaction than 

is reactive scattering. The absorbing potential in all product chemical arrangements 

can be brought very close to the chemical. exchange region, withoug losing accuracy 

in the IRP. Consequently, the size of the L2 basis on the product side is greatly re­

duced by calculating the IRP. Thus, the ABC formulation facilitates more economical 

calculations for more averaged reaction probabilities. 

The ABC analog of the IRP in Eq. ( 4.2) is obtained by representing the 

reactive flux operator F as the following commutator [13, 14), 

A 1 A A 

F = in [h(f), H-E], (4.18) 

where h( x) is the step function, i.e. h( x) = 1 for x > 0 and h( x) = 0 otherwise. Also, 

f is some function which, via the equation f = 0, defines a dividing surface between 

reactants and products. Using the fact that [cf. Eq. (4.16)] 

(H-E) G(E) = -i + i€ G(E), 

the IRP becomes: 

Pnr(E) = ~({l?nr(E)I€ at(E) Ep G(E) €l{l?nr(E)) + 

~({l?nr(E) l€p lmG(E) € l{l?nr(E)). (4.19) 
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In Eq. ( 4.19), f.P - f.h(f) is the absorbing potential in the product region of con­

figuration space. In practice, the magnitude of the vector f.pl~nr(E)) is vanishingly 

small. [An exception to this occurs when lcl>nr(E)) is extremely vibrationally excited. 

We do not consider such initial conditions.] As such, the second term in Eq. (4.19) is 

negligible, and the final form for the ABC version of the IRP is given by 

2 . 
Pnr(E) = ~(ll!nr(E)I f.p lll!nr(E)), (4.20) 

where lll!nr(E)) is given by Eq. (4.17). In the ABC formula for the IRP, the op­

erator 2€pfh has replaced the reactive flux operator F, and the ABC wavefunction 

has replaced the exact one. Equation ( 4.20) is the working formula for the reactive 

scattering calculations reported in the remainder of this dissertation. 

To complete the discussion of the ABC formulation, we make two general 

comments. First, the formal Green's function involves an infinitesimal "absorbing 

potential" € --+ o+ over an infinite region of space. The ABC Green's function, on 

the other hand, is defined by a finite absorbing potential over a finite region of space. 

With some care (and some convergence tests), the reaction probabilities obtained 

from both should be identical. Second, all methods which obtain the Green's func­

tion must simulate the outgoing wave boundary conditions. Previous L 2 variational 

methods enforce the boundary conditions directly in the basis set, giving the problems 

mentioned above. The ABC formulation, on the other hand, effectively enforces the 

boundary conditions in the Hamiltonian. Although this latter procedure is somewhat 

more .ad hoc than the former, it has a distinct advantage which we exploit in the next 

Section. 

4.3 Polynomial Expansions 

A finite basis representation of ~q. ( 4.17) gives 

(4.21) 

which is the solution to the non-Hermitian linear system of simultaneous equations: 

( 4.22) 
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As the strength of e goes to zero and the spatial extent of the basis becomes complete, 

Eq. ( 4.22) approaches the time independent Schrodinger equation with scattering 

boundary conditions in Eq. ( 4.3). As such, appropriate convergence tests are required 

to ensure that e is not too strong and that the basis samples a sufficiently large region 

of configuration space. Figure 4.1 illustrates, for a simple collinear reaction system, 

the space required to obtain a typical IRP accurately. We notice that the grid size 

on the product side (upper left) where no state selection is obtained, is smaller than 

that on the reactant side (lower right). In addition, the absorbing potential on the 

reactant side must be more gentle than that on the product side. This demonstrates 

the computational economy of directly calculating the IRP. 

The ABC method reduces the quantum reactive scattering problem to solv­

ing the linear system in Eq. (4.22). The most straightforward method of solution is 

LU decomposition [15], which requires storage of the Hamiltonian matrix. In LU 

decomposition, the s;y-stem matrix is initially factorized into the product of a lower 

triangular and an upper triangular matrix, requiring N 3 /3 operations where N is the 

system size. If solution vectors are computed for a small number of right hand side 

vectors (i.e. initial reactant states Dr), this factorization is the most time consuming 

step. Given the specific right hand side vector and the results of the factorization, 

the solution vector is obtained rapidly with back substitution. This is the method of 

choice for small systems (i.e. one or two dimensions), or for larger systems in which 

L2 basis set contraction schemes allow the Hamiltonian matrix to be stored. These 

contraction schemes are somewhat system dependent, and have only been tested on 

three dimensional scattering systems [16, 17]. A more general approach, however, 

for performing scattering calculations on large systems is the use of a grid represen­

tation for the Hamiltonian in conjunction with an iterative solution of the resulting 

sparse linear system. This is because iterative methods do no require storage of the 

Hamiltonian and are especially rapid when used to solve sparse systems. 

The power of a grid representation derives from the simplicity of the kinetic 

energy - usually a sum of one dimensional terms. As such, a basis representation 

which is diagonal in coordinate space gives a simple form for the Hamiltonian matrix. 

In particular, constructing the Hamiltonian is simple with a grid because no multi-
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Figure 4.1: Configuration space required to determine the IRP accurately, for collinear 
H+H2 (v = 1) atE= 0.99 eV. The solid contours denote the potential energy surface, 
the dashed contours show the absorbing boundary regions, and the dots are the centers 
of basis functions used for the calculation. The jagged line between the two absorbing 
potentials is the dividing line between reactants (below) and products (above). We 
note that the grid is much smaller on the product side, where there is no state 
selection, than on the reactant side. Also, the absorbing potential can be much 
stronger on the product side. This demonstrates the economy of directly calculating 
theiRP. 
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dimensional quadratures over the potential function are required. Also, the resulting 

matrix is sparse because the potential is diagonal. To appreciate the sparsity, we 

consider a two dimensional system with rectilinear coordinates (x,y). The coupling 

is contained in the kinetic energy - we consider the x dependent term. Labeling the 

x grid with (i, i') and they grid with (j,j'), the (ij, i'j') element of f'x is 

(ijjTxji'j') - (ijj£x ® lYji'j') 

- (ij£xji') 8j,j'· 
(4.23) 

Since in most cases the factor 8j,j' = 0 and the potential is diagonal, the Hamiltonian is 

sparse. We suppose now that an F dimensional system has n grid points per degree of 

freedom, yielding a total grid size N = nF. To multiply the grid Hamiltonian into an 

arbitrary vector requires (nF+1)N multiplications, as opposed to N 2 for a full matrix. 

On the down side, any localized basis set has large kinetic energy components. As 

discussed below, the time required by most iterative methods is roughly proportional 

to the spectral range of the system. An important area of active research is, thus, the 

development of grid methods which retain sparsity while reducing the spectral range 

[18]. 

The two most frequently used grid methods to solve the Schrodinger equation 

are the discrete variable representation [19-21] (DVR), and the fast Fourier transform 

method [6, 22] (FFT). [Please see Chapter 3 for a critical comparison between the 

two grid methods.] In this dissertation, we exclusively use DVR because it allows 

us to tailor the grid, in a simple fashion, to the shape of the physical and absorbing 

potentials. 

A method of solving linear systems is usually called "iterative" if it in­

volves several steps (i.e. iterations) of a matrix multiplying a vector. [We note that 

all numerical wavepacket propagation schemes fall into this class (see also Chapter 

3).] Most iterative methods involve applying a line~r function of the Hamiltonian 

matrix, thereby forming the solution vector as an expansion in powers of the Hamil­

tonian. The number of operations required by such an iterative method would be 

Niter( nF + 1 )N, where Niter is the number of iterations required for convergence. 

For the reasons stated in the Introduction, namely numerical convenience and effi-
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ciency, we ask the question: Can the ABC wavefunction be reliably obtained with 

such a polynomial expansion? Several possible polynomial based iterative schemes 

are analyzed to answer this question. 

4.3.1 Direct Expansion 

We define a direct polynomial expansion of the ABC Green's function (and 

equivalently the ABC wavefunction) by anything having the form: 

N 

G(E) ~ L en(E) Pn(H- ie), (4.24) 
n=O 

where Pn(z) is a polynomial in z, and Cn is an energy dependent coefficient. 

The Distorted Born Expansion 

The distorted Born expansion [3) (DBE) is a simple example of a polynomial 

expansion for the scattering Green's function. The form is not strictly that given in 

Eq. (4.24), but is close enough to be seriously considered. Defining H 0 as a reference 

system (whose ABC Green's function is easy to construct), and H 1 = H- H 0 as the 

perturbation, the DBE is 

00 

G(E) = Go(E) L.: [H1 Go(E)r, (4.25) 
n=O 

where 

Go(E) = (E + ie- H 0 )-
1

• (4.26) 

This converges only if the eigenvalues of [H1 G0 (E)) all have modulus less than one. 

Clearly, in the limit that H 1 is small (and G0 (E) approaches the full ABC Green's 

function), the convergence of the DBE is guaranteed. Thus, a sufficiently good ref­

erence Green's function is required for the DBE to be useful. For this reason, the 

DBE has been used mostly has a means of obtaining first order corrections to the 

dynamics of reasonable reference systems, i.e. the distorted wave Born approximation 

(DWBA). An important example of a sophisticated implementation of the DWBA is 

the S-matrix version of the Kohn variational principle [23). 
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For small systems, the matrix [H1 G-o( E)] in the ABC formulation can be 

diagonalized and its eigenvalues inspected to test for convergence of the DBE. We 

show the results of such an exercise for two different systems. The first, in Fig. 

4.2, is for collinear H + H2 at total energy E = 0.99 e V, using a two dimensional 

grid basis. In this case, H 1 is the off-diagonal portion of the Hamiltonian matrix, 

and G 0 (E) is the ABC Green's function for the remaining diagonal part. In Fig. 

4.2, the interior of the unit circle defines the convergence regime. Since there are 

eigenvalues of [H1 G 0 (E)] with modulus greater than one, the DBE would diverge. 

A more sophisticated reference system is required. The second system considered is 

the three dimensional H +02 reaction at E = 3.0 e V, represented in an adiabatically 

contracted basis set [18]. In this latter case, G 0 (E) is the inverse of the portion of the 

Hamiltonian which is diagonalized in the contraction, and H 1 the remainder. Figure 

4.3 shows that even with this more sophisticated reference system, the DBE would 

diverge. Thus, we seek a more generally reliable alternative. 

The Krylov Space 

Two popular methods for solving the N x N linear system Ax = b are 

based on constructing the Krylov representation of A [24, 25]. The Krylov space of 

dimension p is defined as the span of the set of vectors 

(4.27) 

where p ::; N and usually p ~ N. We can define an orthonormal basis VP for the 

Krylov space spanned by (4.27), with the properties 

( 4.28) 

and 

(4.29) 

This basis can be generated using Gram-Schmidt orthogonalization, yielding there­

cursion relations: 

f3ovo b. 

f3i+I Vi+ I - A vi - L:~=o (vj, A vi) Vj, for i = 0, ... ,p- 2 
(4.30) 
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Figure 4.2: The eigenvalue spectrum of [HI G 0 (E)] for collinear H+H2 at total energy 
E = 0.99 e V, using a two dimensional grid basis. In this case, HI is the off-diagonal 
portion of the Hamiltonian matrix, and G 0(E) is the ABC Green's function for the 
remaining diagonal part. Since there are eigenvalues of [HI G 0 (E)] ·with modulus 
greater than one, the DBE would diverge. 
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Figure 4.3: The eigenvalue spectrum of [H1G 0 (E)] for three dimensional H+02 at 
total energy E = 3.0 eV, using a three dimensional grid basis. In this case, Go( E) is 
the inverse of the portion of the Hamiltonian which is diagonalized in the contraction, 
and H1 the remainder. Since there are eigenvalues of [H1 G 0 (E)] with modulus greater 
than one, the DBE would diverge. 
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where /3; is chosen so that II v; II = \/(vi, vi) = 1. The matrix A in the Vp basis is 

the p x p matrix A defined by: 

/ 

A;i = (v!AVP)ii = (v;,Avi). (4.31) 

Since Avj E span(Vj+I), and v; E span(Vj+I) only if i::; j + 1, A has the important 

property that A;j = 0 for i > j + 1. This kind of matrix, known as upper-Hessenberg, 

is usually much easier to manipulate than A because A is almost upper triangular. 

Thus, the philosophy behind the Krylov space based methods (KSM) is to transform 

the original linear system into the simpler form Ax= b where x = V!x and b = V!h, 

which can be solved more easily. The computational effort is usually dominated by the 

construction and orthogonalization of the transformation matrix V P' which requires 

a matrix vector multiply at each iteration. 

The KSM are particularly useful in two cases. To discuss the first, we define 

the eigenvalues of A by {.At,.A2, ... ,.AN} such that I.Atl < I.A2I < ... :::;I-ANI· The 

KSM converges rapidly when the condition number C = I.ANI/I.A1 I is small. That is 

because the KSM tend to span the eigenvectors of A from both ends of the spectrum 

first, filling in the intermediate spectral region only after several iterations have been 

performed. The second case in which the KSM are useful is when A is Hermitian. In 

that case, A is also Hermitian, and thus tridiagonal. The recursion relations in Eq. 

( 4.30) simplify to the following three term recursion relation: 

f3ovo - b 

for i = 0, ... , p - 2 
(4.32) 

where 

A;; - CYi - (vi,Avi) 

Ai+t,i - f3i+l - (vi+t, Av;) (4.33) 

- II (A- a;)v;- f3;vi-1 II . 

This is known as the Lanczos recursion formula (26], first developed for computing 

eigenvalues of Hermitian matrices. The vectors so obtained are called the Lanczos 

vectors. The tridiagonal linear system can be solved almost trivially with the LQ 
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method [15]. This is the basic approach behind the SYMMLQ algorithm of Paige 

and Saunders [27]. SYMMLQ only requires the storage of three Lanczos vectors, 

in addition to the { ai} and {,Bi} values, and thus is applicable to the solution of 

large systems. It is used in the S-matrix Kohn variational scattering calculations of 

Groenenboom and Colbert [11]. 

The accuracy of the Lanczos r~cursion formula is notoriously sensitive to 

the finite precision arithmetic used in actual numerical calculations. This is because 

the Lanczos vectors which are not explicitly orthogonalized to eachother (e.g. vi+l 

and Vi_2 ) can become numerically linearly dependent. As such, although the solution 

vector must converge in no more than N iterations in infinite precision, such con­

vergence is not guaranteed for SYMMLQ if -it is numerically implemented with the 

Lanczos recursion formula. In addition, although the two equations for ,Bi+l in Eq. 

( 4.33) are mathematically identical, the second is better behaved in finite precision. 

Lanczos based algorithms which stablilize the effect of round off error have been de­

veloped [28], which make them powerful methods for diagonalizing or solving sparse, 

Hermitian systems. Of course, the ABC formulation of quantum reactive scattering 

gives a non-Hermitian matrix A = (E + ie- H). To use the KSM for the ABC 

system, there are three basic approaches one may take. 

The simplest approach is to convert the non-Hermitian linear system in Eq. 

(4.22) into a Hermitian one by premultiplying both sides by (E- ie- H), yielding 

the following linear system: 

( 4.34) 

where [A, B] =AB-BA is the commutator. One could then use the SYMMLQ 

algorithm to find the ABC wavefunction. Although this approach should work in 

principle, it is not advised because the condition number of the Hermitian system 

is roughly the square of that from the original system. That usually spells disaster 

for an iterative scheme, because the number of iterations required for convergence 

depends quite strongly on the condition number. 

The second approach forces the Krylov representation of the ABC linear 

system to be complex symmetric, and uses a somewhat inferior version of SYMMLQ 
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to solve the resulting equation. Although A is complex symmetric with real basis 

functions (e.g. a grid representation), A is non-symmetric because the V P basis is 

complex when computed for the ABC system. However, for any basis representation, 

using a biorthogonal inner product (BIP) forces A to be complex symmetric. The BIP 

uses the transpose rather than the Hermitian adjoint to compute the inner product, 

I.e. 

(u, v)BIP = UT. V. (4.35) 

We note that the BIP is the inner product for which the eigenvectors of a complex 

symmetric matrix are orthogonal, which is the mathematical grounding for its use. 

With this modification, the Lanczos recursion formula becomes 

f3ovo - b 

for i = 0, ... , p - 2 
(4.36) 

where 

Ai+I,i ""- !3i+t - (vi+l,Avi)81p (4.37) 

- II (A- ai)vi- f3ivi-1 IIBIP . 

Now A is complex symmetric, and the { ai} and {f3i} values are in general complex. 

· Unfortunately, since a vector space with this inner product does not have a meaningful 

norm, it can be difficult to gauge the convergence of the approximate solution vector 

to the actual one. In fact, the convergence properties of the complex symmetric 

Lanczos algorithm are known to be much worse than the Hermitian one [29, 30]. 

Presumably, this is because the instabilities due to numerical round off error are 

greatly exacerbated using the BIP. In addition, it is much more difficult to stabilize 

the complex symmetric Lanczos algorithm than it is the Hermitian one [31]. For these 

reasons, we sought a more reliable alternative. 

To avoid the difficulties outlined above in applying the KSM to the ABC 

problem, it is clear that one should implement the KSM as originally outlined in 
t 

Eqs. ( 4.29 )-( 4.31). That is, one simply uses the usual inner product for which a 
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meaningful norm exists, obtaining a non-symmetric upper-Hessenberg form for A. 
The Gram-Schmidt orthogonalization procedure is no longer a three term recursion 

relation, but rather requires explicit orthogonaliztion to all the previously computed 

Lanczos vectors. This is the basic approach of the generalized minimum residual 

method (GMRES) of Saad and Schultz [32], which obtains its added generality and 

stability at the expense of having to s~ore all the computed Lanczos vectors. We wish 

to make three general comments about its use. First, since explicit orthogonaliztion 

is performed, GMRES is guaranteed to converge in no more than N iterations. If this 

is required, L U decomposition is again the method of choice since storing N Lanczos 

vectors is tantamount to storing the Hamiltonian matrix, and L U decomposition 

can give solution vectors for all right hand sides at total energy E. GMRES is the 

method of choice, however, when the Hamiltonian matrix can not be stored, while the 

Lanczos vectors required for convergence can be (i.e. many fewer than N iterations 

are required). Therefore, we believe that GMRES is the first iterative method to try 

when L U decomposition is not possible. 

The second remark concerns the numerical procedure known as precondi­

tioning. This is a general name given to reducing the number of iterations required to 

solve a linear system. [Theoretical chemists think of "preconditioning" in the broader 

sense of choosing a better reference system, i.e. choosing coordinates, basis functions, 

or asymptotic states which better describe and decouple the system dynamics. All 

these would change the size of the linear system to be solved. Therefore, although 

this broad sense of preconditioning is clearly quite important, we restrict ourselves to 

the more narrow notion of preconditioning to be discussed below.] We suppose that 

an N x N matrix P, which is close to A in some sense, is known and easily invertible. 

Then the preconditioned linear system is given by p-1 Ax = p-1 b. Of course, in the 

limit that P -+ A, the preconditioned system becomes lx = A - 1 b, and the system is 

solved. That this limit is not practically attainable is the subject of this Chapter. A 

preconditioner intermediate between 1 (i.e. no preconditioning) and A (i.e. complete 

preconditioning) can, however, be quite useful. 

Preconditioning can affect the linear system in two somewhat distinct ways. 
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First, it makes the system more diagonally dominant, i.e. the spectral dispersion is 

reduced: In the limit of complete diagonal dominance, the !inear system is diagonal 

and . solution is trivial. Second, preconditioning reduces the spectral range of the 

system.: In the limit of complete preconditioning, the new system has N eigenvalues 

equal to unity, and the spectral range is zero. Consequently, the condition number 

C = i>•NI/I>-1 1 = 1 and solution is again trivial. One may think of preconditioning 

the ABC linear system as similar to choosing a better reference Green's function in 

the distorted Born expansion. Alternatively, in the time domain, preconditioning is 

tantamount to choosing a better reference system in the Interaction Picture [33]. 

Preconditioning is especially relevant to GMRES because it both allows 

and requires preconditioning. The SYMMLQ algorithm can only be successfully 

preconditioned when used to solve a positive definite system. That is because the 

preconditioner must be applied symmetrically via 

(4.38) 

The resulting system [ p-112 AP-112) is Hermitian only if A is Hermitian and P is 

positive definite. But P is close to A only if A is also positive definite. However, 

GMRES is able to handle arbitrary systems with arbitrary preconditioners. This 

fact, coupled with the storage requirements of GMRES, make preconditioning an 

important component of any attempt to use GMRES to solve large systems. 

In all preconditioning schemes, it is important that the system Py = c be 

relatively easy to solve, because such a system is solved at each GMRES iteration. 

Two particularly simple preconditioners are P = diagA and P = tridiagA, both 

of which only require O(N) operations to solve Py = c. The tridiagonal precon­

ditioner has demonstrated extremely impressive results for one dimensional elastic 

scattering systems [34]. That is presumably because the tridiagonal preconditioner is 

tantamount to using a three point finite difference formula for the second· derivative 

kinetic energy coupling. Unfortunately, such an approximation to the kinetic energy 

for a multidimensional system gives rise to a matrix which is more complicated than 

tridiagonal. Accordingly, the tridiagonal preconditioner in multidimensional reactive 

systems has not given such impressive results [34]. Manolopoulos et al. have devel-
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oped a powerful preconditioner for performing inelastic atom surface scattering cal­

culations with the log derivative version of the Kohn variational principle [35]. They 

construct a one dimensional average potential, and use multiple copies of this refer­

ence system for the various internal states that comprise the total L 2 basis, yielding a 

block diagonal preconditioner. Manolopoulos et al. were able to converge the solution 

vector to eight digit accuracy after 23 preconditioned GMRES iterations, whereas 50 

unpreconditioned GMRES iterations gave only one digit accuracy. Unfortunately, no 

such dramatic results have been reported for reactive scattering systems. In fact, the 

many arrangement nature of a reactive system may make successful preconditioning 

very difficult, because there are several different reference (i.e. asymptotic) systems. 

Nevertheless, this is an important and active field of research [36]. 

When LU decomposition is not possible, and preconditioned GMRES runs 

out of memory before converging, what alternatives remain for solving the ABC 

system? One may "restart" GMRES, in which the solution vector is constructed 

from the available Lanczos vectors. Denoting this unconverged solution as x 0 , one 

then defines the exact solution as x = x 0 + 8x, and solves for 8x via A8x = b - Ax0 . 

If memory runs out again, the approximate solution vector is updated x 0 -7 x 0 + 8x, 

and the procedure repeated. This iterative refinement may converge if x 0 is in the 

neighborhood of x, i.e. if the number of Lanczos vectors that can be stored is not too 

far from the total number required. Thus, the question remains: Does any algorithm 

exist which is accurate, has a fixed and small memory requirement, and is guaranteed 

to converge. To pursue such a method, we consider next the Newton polynomial 

expansiOn. 

Newton Polynomial Expansion 

We may be able to make some progress in solving the ABC system by appeal­

ing to the Newton polynomial expansion, which is a useful method for approximating 

scalar functions. A special case is the Chebyshev polynomial expansion, which is 
I 

widely used in commercial algorithms for evaluating special functions [37, 38]. Based 

on the Chebyshev expansion for u(x) = e-ixt for x real, Tal-Ezer and Kosloff [5] 
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have developed a very powerful method for solving' the time dependent Schrodinger 

equation by expanding the unitary propagator in Chebyshev polynomials. We seek 

an analogous method for the ABC Green's function by defining the non-Hermitian 

matrix Z =H-ie. The ABC Green's function is then g(Z) = (E- z)-1
, a function 

of the complex (matrix) variable Z. The central idea behind the work of Tal-Ezer 

and Kosloff is that the convergence properties of the matrix expansion for g(Z) can 

be understood in terms of the scalar expansion for g(z), as long as z is in the eigen­

value spectrum of Z. Therefore, we examine the convergence properties of the scalar 

function g(z) = (E- z)-1 . 

The Newton polynomial expansion arises from the theory of interpolation 

in the complex plane (39, 40]. Its mathematical background is beautifully discussed 

by Berman et al. in Ref. 40. It is more numerically. stable than a Taylor expansion 

because the interpolation based expansion is referenced to several points, while the 

Taylor expansion is referenced to a single point. Among the various formulations 

of polynomial interpolation, the Newtonian formulation is most suited to the devel­

opment of iterative methods with small memory requirements. That is because the 

Newton expansion builds the higher degree terms from the lower ones. This allows 

the successively higher powers to be accumulated recursively, thereby requiring a 

minimal amount of core memory. In other interpolation schemes, e.g. the Lagrangian 

formulation, this is not possible. 

To implement the Newton polynomial expansion, we first suppose a function 

f is analytic on a compact domain D. Furthermore, defining the boundary of D as 

r, f is evaluated at complex sampling points {zk} on r giving the set of interpolation 

support points {(zk, fk)}, where fk = f(zk)· An approximate representation off on 

Dis given by 

where 
K 

PK(z) = L ak Rk(z). (4.39) 
k=O 
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In Eq. (4.39), Rk(z) is the Newton polynomial of degree k defined by 

{ 
1 k = 0 

Rk(z) = k , 
. nj:6(z- Zj) k > 0 

( 4.40) 

and ak is the kth divided difference coefficient [41], determined by requiring that 

Pk(zk) = fk for each k. For example, considering k = 0: 

fo = Po(zo) = aoRo(zo) = ao. 

Evaluating for k = 1 gives: 

!I = P1(z1) - aoRo(zi) + a1R1(z1) 

- ao + a1(z1 - zo) 

fo + a1(z1- zo). 

( 4.41) 

( 4.42) 

As such, the coefficients { ak} are built up iteratively, in a way which can be summa­

rized by 

( 4.43) 

It is clear from Eq. ( 4.43) why the Newton expansion coefficients are called divided 

differences. It is also apparent from the definition of the Newton polynomials in Eq. 

(4.40) that they are ideal for iterative methods. 

The Newton interpolation of a scalar function is very robust numerically, 

provided that two stabilizing procedures are followed. These pertain to the particular 

way in which the sampling points {zk} are chosen. First, the points should be chosen 

uniformly from the unit circle, or some mapping of the unit circle. From complex 

analysis, it can be shown [42] that such uniform sampling gives uniform convergence 

of the interpolation on D. As such, this expansion is sometimes called the uniform 

polynomial approximation. Second, the sampling points must be staggered with 

respect to the order in which they are taken. This is to minimize numerical linear 

dependence among the functions {Rk(z)}. The theory behind these procedures is 

discussed quite thoroughly by Berman et al. in Ref. 40. 

If the sampling points are chosen uniformly on the upper half circle and 

projected down onto the real axis, they are Gauss-Chebyshev quadrature points. To 
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see this, we recall that the Chebyshev polynomials can be written as Tn(cos 0) = 
cos( nO), where 0 E [0, 1r] is the phase which sweeps out the upper half circle. The 

set of n Gauss-Chebyshev quadrature points is obtained by setting Tn(xk) = 0, and 

solving for Xk = cos Ok. From the formula above, it is clear that { Ok} satisfy ok = 
1r(2k + 1)/2n for k = 0, ... , n- 1. Since the phases depend linearly with k, they are 

uniformly distributed. It can be shown [43] that a Newton expansion with Gauss­

Chebyshev sampling points is identical to the Chebyshev polynomial expansion. The 

Chebyshev polynomials are, in fact, the most uniform polynomials. That is, they are 

the only classical orthogonal polynomials on D = [-1, +1] with the property that 

the maximum absolute value they take is uniform throughout D. This fact is the 

origin of their great utility. (E.g. Legendre polynomials peak near the endpoints of . 

D, and thus would give relatively poor interpolation accuracy near the center of D.) 

Thus, the Chebyshev polynomial expansion is a special case of the uniform Newton 

interpolation scheme when Dis a line segment. 

To use the Newton interpolation polynomials for a matrix expansion, one 

would shift and scale the matrix so that its eigenvalues fall within the unit circle (or 

some mapping of the unit circle), i.e. the domain D. This procedure enhances numer­

ical stability and efficiency. If the unsealed eigenvalues fall outside D, the expansion 

would rapidly diverge. The scaling makes the Newton expansion an interpolation 

scheme (rather than an extrapolation). If the unsealed eigenvalues fall within D, but 

in a very small portion of D, the scaling expands the spectrum to fall just inside 

D. This makes the already stable calculation more efficient by interpolating only the 

relevant spectral region. 

The matrix expansion can be viewed as several simultaneous scalar expan­

sions where the scalars correspond to eigenvalues. The only information required is 

the action of the matrix on a vector, and the spectral range of the matrix. The uni­

form polynomial approximation gives uniform accuracy throughout the entire spectral 

range. This is in contrast to the KSM, which use not only the matrix but also the 

right hand side vector. Indeed, the accuracy of the KSM is not uniform throughout 

the spectrum, but rather is greater in the more dynamically relevant region. Dynam­

ical relevance is measured in terms of the overlap of the right hand side vector and . 
\ 
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the Hamiltonian eigenvectors. This means that the Newton expansion is not strictly 

the most efficient method, since it does not use the spectral decomposition of the 

right hand side vector for importance sampling. However, the Newton expansion can 

be more automated. That is, given the spectral range of the system matrix and the 

convergence properties of the relevant scalar interpolations, the convergence proper­

ties of the matrix expansion are known. This is not so for the KSM. Thus, although 

the KSM may be more efficient in terms of computer time, the Newton expansion is 

more automatic and may be more efficient in terms of human time. 

We note that there is a version of the Newton expansion which uses non­

uniform sampling, analogous to preconditioning the Newton expansion. It can be 

shown [44] that a Newton expansion using sampling points obtained as eigenvalues 

from a KSM calculation is mathematically equivalent to using the original KSM to 

obtain the solution. If relatively low accuracy is desired, this non-uniform polynomial 

approximation, called the residuum method, may be preferable. However, for higher 

accuracy, the uniform and non-uniform sampling usually have comparable efficiency 

[45], with the uniform sampling being more automated. For this reason, we use the 

uniform polynomial approximation exclusively in this diss<::rtation. 

We now discuss the sampling region relevant for solving the ABC system. 

The ABC Green's function is analytic, as a function of the total energy E, in the 

upper half plane - as is the formal Green's function. If the Hamiltonian supports 
f 

no bound states, the ABC Green's function is also analytic on the real energy axis. 

Thus, it formally has a polynomial expansion for real total energies. Since the poles 

of G(E) are in the lower half plane, as are the eigenvalues of Z, the sampling points 

must enclose a region in the lower half plane. Were we to use a finite, constant ab­

sorbing potential, i.e. €( q) = €, the eigenvalues of Z would lie on a line segment in the 

lower half plane. With the proper shift and scale of Z, the Chebyshev expansion could 

be used to represent the ABC Green's function. However, once €(q) is coordinate de­

pendent, the eigenvalues of Z have varying imaginary parts. Even if a line segment D 

were placed in the densest region of the spectrum, most of the eigenvalues of Z would 

lie above or below D. In effect, we would be using an extrapolation scheme, which 

is known to perform poorly at best, and to diverge in most cases. The Chebyshev 
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expansion is, thus, strictly inappropriate for the present problem. We must utilize, 

instead, the more general prescription provided by the Newton interpolation scheme. 

Based on the analyticity of the ABC Green's function, the sampling points 

· { Zk} are chosen from the lower half circle pushed slightly below the real axis, i.e. 

(4.44) 

where 8 must be small enough to include in D the eigenvalues closest to the real axis. 

In Eq. (4.44), the staggered angles are chosen by 

fh =mod { ~; [ k + n:g mod(k, nstag)l , 27r} (4.45) 

where k = 0, 1, ... , K - 1. In Eq. ( 4.45), the parameter nstag determines the amount 

of staggering. It is the number of sampling points chosen during each "pass" around 

the circle. Setting nstag = 1 or K produces no staggering. We have found nstag = 4 

or 8 to give the best results in the present calculations. Figure 4.4 demonstrates the 

sampling points using K = 64, nstag = 4, and 8 = 0. The lines in the interior of D 

manifest the staggering, in which four points per pass are taken. The points on the 

real axis are Gauss-Chebyshev quadrature points. 

We now examine the convergence properties of the Newton polynomial ex­

pansion of g ( z) = ( E - z) -I. We need to choose a typical total energy E, and a 

typical eigenvalue z. In this choice there are two distinct limits, namely that IE- zl 
is relatively small or large. Clearly in the first case, the polynomial expansion behaves 

poorly, and in the second it may behave well. To guide us in making relevant choices, 

we recall that the matrix Z is shifted and scaled so that the lower half unit circle just 

encloses the spectrum of Z. Thus, all values of E and z are unitless for the present 

purposes. Since we plan to use a grid representation which usually contains large 

kinetic energy components, E is typically just above -1. We use E = -0.8. 

All tests reported in this paragraph use 64 support points, staggered by 

nstag = 4. The abscissa is the number of Newton polynomial terms taken, and the 

ordinate is the common logarithm of the relative error from the exact result. For 

the first test, we assume that we can use a very strong absorbing potential. In that 
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Figure 4.4:. The Newton interpolation sampling points used to represent the eigenvalue 
spectrum of the ABC linear system. This sampling uses K = 64 points shifted down 
from the real axis by 8 = 0. The lines in the interior manifest the staggering. At 
each pass around the circle, nstag = 4 points are taken: The points on the real axis, 
whi.ch are projected down from the upper half circle, are Gauss-Chebyshev quadrature 
points. 
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case, the eigenvalues of Z are pushed far below the real axis, and 8 can be quite 

large. Using 8 = 5 and z = -5.5i, the convergence of the Newton expansion is 

shown as the dashed line in Fig. 4.5. We see that machine accuracy is obtained using 

18 Newton terms. The subsequent oscillations are the result of numerical round 

off error. Next we consider the effect of a' more moderate absorbing potential, in 

which 8 · 0.4 and z = -0.9i. In this case, the domain D is closer to the pole at 

z = E. Although formally g is still analytic on D, the convergence behavior may 

be sensitive to the presence of the pole. The convergence for this case is shown as 

the solid line in Fig. 4.5. We see that although the expansion is clearly converging,· 

it does so less rapidly than in the first case. Also, it shows systematic oscillations, 

resulting from the effect that the pole has on every fourth sampling point and Newton 

term. Thus, we conclude that the Newton expansion converges more rapidly with a 

stronger absorbing potential. This is qualitatively similar to the time domain, in 

which a stronger absorbing potential absorbs a wavepacket more rapidly in time (also 

see Chapter 3). In additon, we conclude that the pole can perturb the convergence 

properties of the Newton expansion of g(z) = (E- z)-1 . 

To determine whether the Newton expansion of g(Z) = (E - z)-1 is a 

feasible solution to the ABC system, we examine the eigenvalue spectrum of Z. If 

eigenvalues of Z are not too close to E, a direct expansion is feasible. Otherwise, 

an alternative method may be preferable. Figure 4.6 shows the shifted and scaled 

eigenvalue spectrum of Z for collinear H+H2 atE= 0.99eV (cf. Figs. 4.1 and 4.2). 

The scaled and shifted total energy, E = -0.789, is marked by the "x" on the real 

axis. In this case, the eigenvalue closest to E is 0.0238 scaled energy units from the 

pole. Thus, the ABC eigenvalues can be quite close to both the real axis in general 

and the pole at z =E. 

We note that this eigenvalue spectrum is remarkably similar to those found 

m complex coordinate scaling theory [46]. We also see that assignments can be 

made at low enough (real and imaginary) energy, but at higher energies meaningful 

assignments are difficult to make. The various progressions become mixed by the 

anharmonicity ai;ld coupling between modes. It is also interesting that, although the 

scaling procedure expands the spectrum to approximately fill the lower half circle, 
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Figure 4.5: Newton expansion of the function g(z) = (E- z)-1 for E = -0.8. In 
all calculations, 64 support points are used, staggered by nstag = 4. The dashed plot 
corresponds to a strong absorbing potential, using 8 = 5 and z = -5.5i. Here we 
see rapid convergence, obtaining machine accuracy with 18 Newton terms. The solid 
plot corresponds to a moderate absorbing potential, using 8 = 0.4 and z = -0.9i. In 
this case, convergence is less rapid, presumbaly because the pole at z = E is closer 
to D. In addition, the convergence in the second case shows oscillations_ whenever a 
sampling point comes close to the pole. 
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Figure 4.6: The scaled and shifted ABC spectrum for collinear H+H2 atE= 0.99 eV. 
{.Ass} are the scaled and shifted eigenvalues of Z =H-ie. The scaled and shifted 
total energy, E = -0.789, is marked by the "x" on the real axis. The eigenvalue 
spectrum shows structure reminiscent of that found in complex coordinate scaling 
theory. Assignments can be made at low enough (real and imaginary) energy, but at 
higher energies meaningful assignments are difficult. The eigenvalue closest to E is 
0.0238 scaled energy units from the pole. 
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there is still much empty space. That 1s, a more efficient representation of this 

reaction would be provided by a sampling domain which is more rectangular [40). 

Such optimization may prove beneficial for large scale calculations. 

The results in Fig. 4.6 present a potential difficulty in applying the Newton 

expansion to solve the ABC system. To solve the ABC system portrayed in Fig. 

4.6, the sampling domain must both exclude the pole at z = -0.789 and include the 

eigenvalue at z"' (-0.789) + i(-0.0238). The difficulty pertains to the choice of 8, 

the parameter which controls the downward shift of the sampling domain D from the 

real axis. In general, if 8 is too small (a cautious choice), the expansion may converge 

too slowly because of the strong influence from the pole. Alternatively, if 8 is too 

large (an adventurous choice), the expansion diverges rapidly because D does not 

include the entire spectrum of Z. The proper choice of 8 is thus absolutely crucial. 

The optimal choice would be 8 = -Im[>.ABc], where >.ABC is the complex eigenvalue 

closest to the real axis. 

To examine the sensitivity of the convergence behavior to the precise place­

ment of the sampling domain, convergence tests are performed with various values 

of 8. In what follows, 1024 support points staggered by nstag = 8 are used to ex­

pand g(z) = (E- z)-1 forE= -0.8 and z = (-0.8) + i(-0.024). Figure 4.7 shows 

the convergence behavior for three values of 8. The dotted line is the most cautious 

choice, 8 = 0.012. Accordingly, the expansion is stable with slow convergence. The 

dashed line is a more optimal choice, 8 = 0.02. The corresponding convergence is 

clearly much more rapid. The solid line is the most adventurous choice, 8 = 0.07. 

The sampling domain excludes z with this choice, and the expansion diverges. Previ­

ous studies have shown that it may be very difficult to determine accurately complex 

eigenvalues with smallimaginary parts for large systems [29, 30). Thus, this fact cou­

pled with the extreme sensitivity to the choice of 8 makes solving the ABC system 

with the Newton expansion seem unfeasible. 

We have shown that the convergence behavior of the Newton expansion for 

g(Z) = (E- Z)-1 is extremely sensitive to the eigenvalue of Z closest to the real axis, 

denoted by AABC· This has made it unfeasible to solve the ABC system with the 

Newton expansion. We can make great progress, however, by physically analyzing 
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Figure 4.7: Newton expansion of the function g(z) = (E- z)-1 for E = -0.8 and 
z = ( -0.8) + i( -0.024), and for various values of 8. This value of z is typical for 
eigenvalues of Z which are close to the real axis, and present the most stringent 
test for the convergence of the Newton expansion. In all calculations, 1024 support 
points are used staggered by nstag = 8. The dotted plot, for which 8 = 0.012; shows 
stable but slow convergence. The dashed plot, for which 8 = 0.02, shows more rapid 
convergence. The solid plot, for which 8 = 0.07, excludes z from the sampling domain 
and diverges. The convergence behavior is thus very sensitive to the choice of 8. 
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the meaning of this numerical result. 

In formal scattering theory, the complex energies Eres for which a+(Eres) 

diverges correspond to resonances, i.e. collision complexes. The real part of Eres 

locates the position of the resonance in energy space, and the imaginary part of Eres 

determines the lifetime of the complex. Defining rres = -2Im[Eres], the lifetime is 

given by Tres = ii jr res. Thus, a resonance energy close to the real axis indicates a long 

lived collision complex. In the ABC formulation, all the eigenvalues of Z are complex 

energies for which G(E) diverges. However, most (or all) of these do not correspond 

to physical resonances, but rather control how much time is required for reaction and 

absorption. The total time for the reaction in the ABC formulation is determined by 

the eigenvalue of Z closest to the real axis, i.e. AABC. Thus, T ABC = ii jr ABC is the 

total time for reaction and absorption, where r ABC = -21m[ AABC]. 

We use this time dependent picture to construct a useful computational 

framework for solving the ABC system. First, we recall the Fourier integral represen­

tation of the ABC Green's function (see also Chapter 3): 

G(E) = (iii)-1 fooo dt ei(E-Z)t/n. ( 4.46) 

Because the magnitude of e is finite in the ABC formulation, this integral converges 

in finite time (as opposed to the infinite time required by formal scattering theory). 

Second, we use the Newton expansion to represent the exponential in Eq. (4.46). 

Since u(Z) = e-iZtf1i. is an entire analytic function [i.e. u(Z) has no poles], we can 

choose 8 = 0 to define the sampling region. 

We still need to determine TABC, which by the above analysis is tantamount 

-.:')- to determining AABC. This was the stumbling block discovered above in the time 

independent expansion. However, determining TABC is trivial in the time domain. 

It is simply the finite time required to evaluate the ABC Green's function in Eq. ( 4.46), 

determined by monitoring the exponential decay of the integrand and stopping the 

calculation when the integrand becomes negligible. In this way, we can solve the 

ABC system with an algorithm which is accurate, has a fixed and small memory 

requirement, and is guaranteed to converge. We pursue this "indirect" polynomial 

expansion for the ABC Green's function in the next Section. 
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Before proceeding with the description of the "indirect" polynomial expan­

sion, we pause to ask: Why is there no computationally tractable direct polynomial 

expansion for the ABC Green's function? To answer this, we note that the ABC for­

mulation was originally derived [13] to exploit the fact that a reactive collision results 

from forces which are highly localized in space. However, none of the approaches 

discussed above for solving the ABC system exploit the fact that the collision event 

is also local in time. Indeed, the inverse operator implicitly accounts for infinite time 

dynamics [cf. Eq. (4.46)], which physically speaking, is the source of the pole. By 

passing to the time domain, we can fully exploit the finite time nature of the collision 

event. And by construcing only finite time dynamics, we effectively remove the pole, 

yielding a stable and accurate computational framework. 

4.3.2 Indirect Expansidn 

We solve the ABC system by numerical half Fourier transformation of the 

Newton expansion for the ABC propagator. This approach introduces certain con­

vergence parameters which we describe below. 

Time Decomposition 

Beginning with Eq. ( 4.46), we decompose the time integral into a sum of 

terms involving relatively short time propagators, giving: 

oo 1(n+l)At G(E) = (ifi)-1 L dt ei(E-Z)tfli. 

n=O nAt 
(4.47) 

Changing integration variables t --+ t + nf:!..t gives 

(4.48) 

With this decomposition, the infinite time integral in Eq. ( 4.46) is evaluated exactly 

by only explicitly integrating up to f:!..t. Two criteria determine the optimal choice for 

.6.t. First, if .6.t is too large, numerical roundoff error precludes accurate interpolation 

of {(zk, uk)} for u(z) = e-izAt. That is because for long time, the {uk} for {zk} below 

the real axis aie comparable to machine precision. Roundoff error dominates when 
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a small uk is added to a Uk of order unity. Second, if i:l.t is too small the Newton 

expansion is not optimally efficient. Thus, the competition between stability and 

efficiency determines an optimal range for i:l.t. 

Scaling and Shifting 

We describe the details of shifting and scaling the matrix Z. In addition to 

enhancing the stability and efficiency of the expansion, as discussed above, the shift 

and scale also help to determine l:l.t. We begin by rewriting the ABC propagator as 

where 

Z- (Z) 
Zs = i:l.Z/2 . 

In Eqs. (4.49) and (4.50), the following quantities are: 

is = f:l.tf:l.Zj2fi 

(Z) = [Re(Amax) + Re(Amin)]/2 

f:l.Z/2 = max{iAmax- (Z)I, iAmin- (Z)I}, 

( 4.49) 

(4.50) 

(4.51) 

where Amax and Amin are the eigenvalues of Z with largest and smallest real part, 

respectively. In the case of a positive definite Hamiltonian matrix H and a weak 

absorbing potential e, !Amini ~ 0 and the above relations simplify to (Z) = i:l.Z/2 = 

Re(Amax)/2. In practice, Amin and Amax are determined with a low-order Lanczos 

calculation [26]. 

In actual calculations, e-iZ,t. is the matrix which is expanded in Newton 

polynomials according to 

K 

e-iZ,t, ~ L ak(ts) Rk(Zs), (4.52) 
k=O 

and Eqs. (4.39-4.45). The number of terms required for convergence is determined 

directly by t 5 , not by i:l.t. Given the spectral range i:l.Z and the optimal scaled time 

t 5 , the optimal time step i:l.t is obtained from Eq. (4.51). 
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We obtain the relationship between ts and the number of Newton terms 

required to interpolate to a certain relative error, e.g. 10-3 • Denoting that function 

by Kopt(ts), we seek the t 8 dependence of !newt = Kopt(ts)/t8 • The optimal scaled time 

is given by the shortest time for which !newt reaches a minimum value. To obtain 

this, we examine the convergence properties of the Newton expansion for the scalar 

function u( z) = e-izt. for several values of t 8 • Figure 4.6 shows that a value of z which 

is characteristic of the ABC spectrum is z ...:.. ( -0.5) + i( -0.1). All the calculations 

reported in this paragraph use 256 support points staggered by nstag = 8. Figure 4.8 

shows the convergence of interpolations using ts = 10, 20, 30, ... , 100. We see that in 

order to attain a certain accuracy, more Newton terms are required for longer times. 

That is because more sampling points and polynomial terms are required to represent 

the more rapid oscillations in the longer time exponentials. We also see the effect of 

roundoff error for longer times, causing the expansion to converge to progressively less 

accurate vaiues. The dashed horizontal line marks the 10-3 accuracy level. Using this 

accuracy to obtain !newt as a function of t8 , !newt reaches the minimum value of 1.6 

at ts = 50. Thus, t 8 = 50 is optimal, requiring Kopt(ts = 50) = 80 terms~ Based on 

these results, we use t 8 =50 as the optimal scaled time for all scattering calculations 

reported in this dissertation. It is significant that this scaled convergence result is 

not dependent on the physical system under study, but rather is a fact of scalar 

interpolation. As such, no re-calibration is necessary when applying the method to 

different physical systems. 

Time Integration 

The time dependent picture requires evaluating the time integral which 

Fourier transforms the time Green's function to the energy Green's function. This 

is a very small price to pay. This integration can be performed with· essentially no 

approximation or additional effort. Indeed, after representing the ABC propagator 

with the Newton expansion, the integral factor in Eq. ( 4.48) becomes 

(4.53) 



4.3. POLYNOMIAL EXPANSIONS 115 

10.0 

5.0 

'-0 
'-'- 0.0 ~ 

/ fnewt ~ 
;;;... 
•• ..... 

--~ ts ~ 
~ 

-5.0 ~ 
'-

Q 
~ 

OJ) 
0 
~ 

-10.0 

.:.15.0 
0 50 100 150 200 250 
Number of Newton polynomial terms 

Figure 4.8: Convergence ofthe Newton expansion for u(z) = e-izt. using z = ( -0.5) + 
i( -0.1), and for several values of is. More terms are required for longer times to 
represent the more rapid oscillations in the exponential function. Roundoff error 
is more prevalent for longer times, giving progressively less accurate results. The 
optimal time is is =50, the shortest time for which !newt reaches the minimum value 
of 1.6. 
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where 

( 4.54) 

The integral in Eq. ( 4.54) must be evaluated numerically. Once the expansion coef­

ficients {ak(ts)} are known, Gaussian quadrature with Nquad points can be used to 

obtain the energy dependent coefficients exactly. 

Summary and the Residual 

Using the same polynomial expansion for the other exponentials m Eq. 

(4.48), the ABC Green's function becomes 

(4.55) 

where 

( 4.56) 

Eqs. ( 4.55) and ( 4.56) give the working expressions in the time dependent solution of 

the ABC system. 

To summarize, we construct the RHS vector of the linear system in Eq. 

(4.22). Next, we choose sampling points {zk} in the region where the eigenvalues of 

Z 5 are likely to be [cf. Eqs. (4.44) and (4.45)]. A set of scalar interpolations is then 

performed using u(z) = e-izt, each for a different time as required to converge the 

integral in Eq. ( 4.54). With the energy dependent coefficients {bk(E, .b.t)} computed, 

we apply the matrix in Eq. (4.53) (i.e. the Fourier transform up to .b.t) to the starting 

vector. This is done in the standard fashion, in which the successively higher powers of 

Zs are accumulated recursively, thereby requiring a minimal amount of core memory. 

This yields a new vector, to which the remaining exponential matrices are applied. 

Convergence of the first sum in Eq. ( 4.55) is monitored by examining the 

modulus of the vectors being summed. We define the partially summed ABC wave­

function as 

N 

w~)E) = (ifit1 L Vn 

n=O 
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where the summand vector is given by 

(4.57) 

The residual is defined as 

(4.58) 

When rN falls below the input accuracy tolerance denoted by 8 (not to be confused 

with the downward shift of the sampling domain, which is now set to zero), the 

calculation is stopped and the reaction probability computed using Eq. (4.20) in the 

finite basis. The resulting total propagation time gives an operational definition for 

TABC, as discussed above. This procedure is not only straightforward, but also gives 

the desirable feature that the input accuracy tolerance 8 is almost identical to the 

resulting error in the reaction probability. 

4.4 Quantum Reactive Scattering Calculations 

We illustrate the accuracy and convergence properties of the time dependent 

solution to the ABC system by performing IRP calculations for three dimensional 

D+H2(v,j) ~ DH+H with zero total angular momentum. We defer all discussion of 

the basis set, asymptotic state, and absorbing potential used for the present calcu-:­

lations. Thorough descriptions of these are given in the following Chapter. Instead, 

we wish to focus on the convergence properties of the time dependent solution with 

respect to the three convergence parameters: !newt, Nquad, and 8. As such, when 

reporting error in scattering calculations, the error is measured from an ABC calcula­

tion which is well converged with respect to the parameter in question. By measuring 

error in this way, we subtract out the error from the ABC approximation and focus 

only on the error incurred by using the time dependent solution. 

4.4.1 Reaction Probabilites 

To measure error in this way, we must first be sure that the ABC reaction 

probabilities are converging to the correct reaction probabilities. Figure 4.9 shows 
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the IRP for the D+H2(v,j) atE= 0.9eV for all the 14 energetically accessible initial 

states. The solid lines are obtained using the ABC Green's function method. The 

data in the dashed lines are from Groenenboom and Colbert [11], who used the S­

matrix version of the Kohn variational principle [23] to obtain the entire S-matrix 

at this energy. The large probabilities are from the v = 0 reactant vibrational state, 

and the smaller probabilities (multiplied by 20) are from v = 1. The agreement is 

excellent for all initial states, even those for which the reaction probabilities are quite 

small, which are more difficult to converge with the ABC formulation. 

The initial state j = 1 reaction probabilities are the largest for both v = 0 

and 1. This phenomenon is also observed in studies of the H 2(v,j) + OH --+ H + 
H20 reaction [47]. This can be explained by considering the role of orbital angular 

momentum and its classical counterpart, the impact parameter. For zero total angular 

momentum, the initial orbital angular momentum quantum number l must equal the 

initial rotational quantum number j. The j = 0 collision involves mostly low impact 

parameters, including the energetically unfavorable "T shaped" configuration of the 

three particles. The j = 1 collision, on the other hand, couples most strongly to 

impact parameters greater than zero, avoiding the "T shaped" configuration and 

involving near collinear geometries more than j = 0. Since these collinear geometries 

are more reactive, the j = 1 state gives a larger reaction probability. Larger j 

values couple to larger impact parameters, which give progressively smaller reaction 

probabilities as shown in Fig. 4.9. 

These ABC calculations use !newt = 1.6, Nquad = 40, and 8 = 4 X 10-4 • We 

study the convergence with respect to these parameters below. 

4.4.2 Convergence Tests 

Degree of Expansion 

Using the optimal scaled time t 5 = 50 determined above, we demonstrate 

convergence of the reactive scattering calculations with respect to !newt· Figure 4.10 

shows the convergence of IRP calculations for the D+H2 (v,j) system with the follow­

ing initial states: [E = 0.9 e V ( v,j) = (0, 0), (0, 4)], [E = 1.0 e V ( v,j) = (0, 6), (1, 4)] 

.. 
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Figure 4.9: The initial state selected reaction probability for D+H2 (v,j) -+DH+H at 
the total energy E = 0.9 e V, from all energetically accessible initial states. The solid 
lines are the present calculation, and the dashed lines are from the S-matrix Kohn 
variational principle calculations of Groenenboom and Colbert, in which the state­
to-state reaction probabilities are summed for comparison. The larger probabilities 
are from the v = 0 vibrational state, and the smaller (multipli~d by 20) are from the 
v = 1 vibrational state. Excellent agreement is obtained for all initial states, even 
those with small probabilities which are most challenging for the ABC method. 
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and [E = 1.1 eV (v,j) = (0, 2), (1, 2)]. We note that for these calculations, !newt= 1.5 

corresponds to 75 Newton terms and !newt = 2.0 to 100 terms. We see rapid conver­

gence for alfiRPs. In fact, the convergence is roughly independent of the system, i.e. 

energy and initial condition, bei~g studied. In these examples, three digit accuracy 

can be obtained using !newt = 1.6, which is completely consisitent with the results of 

the scalar interpolations. This is our optimal convergence criterion for the IRP, since 

the use of ABC typically introduces error of that order. Figure 4.10 also shows that 

very modest amounts of additional effort would be required to attain higher levels of 

accuracy. Thus, the Newton expansion convergence is sufficiently rapid and system 

independent, that very accurate calculations can be performed with minimal effort in 

convergence tests. 

Order of Time Quadrature 

The convergence of the reaction probability Pv=O,j=4 (E = 0.9eV) is exam­

ined with respect to the order Nquad of the time quadrature. The solid line uses Gauss­

Legendre quadrature, the squared line uses the trapezoidal rule, and 'the dashed line 

uses Gauss-Chebyshev quadrature (of the first kind). The Gauss-Legendre quadra­

ture is clearly the most efficient, attaining machine accuracy with Nqu~d = 28 points. 

The trapezoidal rule shows second order convergence, i.e. the slope of the log( relative 

error) vs. log(Nquad) plot is ~ -2. The Gauss-Chebyshev quadrature demonstrates 

second order convergence as well. This indicates that the integrand does not resemble 

the weight function in Gauss-Chebyshev quadrature, w(x) = (1 - x2 )-112• We use 

Nquad :._ 40 for all subsequent scattering calculations to ensure that .exact integration 

is obtained (provided that t 8 =50). We note that Gauss-Legendre quadrature with 40 

points exactly integrates a polynomial of degree"' 80, which is precisely the Newton 

polynomial used. 

Total Propagation Time 

Thus far we have shown how to control the error introduced by the time 

dependent solution of the ABC system. The remaining source of error ·comes from 
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Figure 4.10: Convergence of initial state reaction probabilities for various energies and 
initial states of the D+H2(v,j) system with respect to the Newton polynomial con­
vergence parameter !newt· The systems studied are [E = 0.9eV (v,j) = (0,0), (0,4)], 
[E = l.OeV (v,j) = (0,6),(1,4)] and [E = 1.1eV (v,j) = (0,2),(1,2)]. Rapid con­
vergence is seen for all systems studied. Three digit accuracy can be obtained reliably 
using !newt = 1.6, consistent with the results of scalar interpolations. Higher levels of 
accuracy can be obtained with very modest amounts of additional effort. 
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Figure 4.11: Convergence of the initial state reaction probability Pv=O,j=4 (E = 0.9 eV) 
for the D+Hz(v,j) system with respect to the order Nquad of the time quadrature. 
The solid line uses Gauss-Legendre quadrature, the squared line uses the trapezoidal 
rule, and the dashed line uses Gauss-Chebyshev quadrature (of the first kind). The 
Gauss-Legendre quadrature is clearly the most efficient, attaining machine accuracy 
with Nquad = 28 points. For all subsequent scattering calculations, we use Nquad = 40. 
This choice for Nquad is consistent with exact Gaussian integration of an soth degree 
Newton polynomial. 
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using a finite total propagation time TABC· We control this error by monitoring the 

residual rN defined in Eq. ( 4.58), and stopping the calculation when rN < 8, an 

input convergence parameter. We expect to see exponential decay of the integrand 

via rN = e-r(N+l).t.tfli, which defines an effective absorption rate r. By definition, 

then, we have 8 = e-rTABc/n. Therefore, the total propagation time satisfies TABC ex 

-log10 8. Although specifying either TABC or 8 as the input convergence parameter is 

formally equivalent, 8 is more convenient. Figure 4.12 demonstrates the convergence, 

with respect to -log10 8, of the initial state reaction probabilities studied in Fig. 

4.10. The thick solid line is what would occur if 8 perfectly controlled the error in 

the reaction probabilities. The solid line with squares is the average of the error, and 

the dashed line with circles is the maximum error from the systems studied; all as a 

function of 8. We see the remarkable result that, even in the worst case of maximum 

error, 8 reliably controls the error in the reaction probability. Thus, even if we were 

studying a system in resonance (i.e. a small effective absorption rate r) requiring 

a larger TABC, 8 would not change. This kind of control is an important aspect of 

any numerical method, i.e. that one be able to determine a priori how accurate the 

calculation is and consequently how much computational effort is required. 

4.5 Concluding Remarks 

We have derived the ABC formulation of quantum reactive scaftering theory, 

and applied it to the calculation of the initial state selected reaction probability. By 

exploiting the highly localized nature of forces in reactive scattering, the ABC formu­

lation facilitates the direct calculation of detailed or averaged reaction probabilities 

while sampling only a finite region of space. 

We have not been able to find a direct polynomial expansion which is accu­

rate, has a fixed and small memory requirement, and is guaranteed to converge the 

ABC Green's function. We have attributed this to the fact that none of the direct 

expansions considered above exploit the finite time nature of the reactive collision. By 

implicitly containing the effects of infinite time dynamics, the direct expansions suffer 

from numerical instability by attempting to represent a nearly singular function. 
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Figure 4.12: Convergence of initial state reaction probabilities for various energies 
and initial states of the D+H2 (v,j) system with respect to the total propagation 
time convergence parameter 8. The systems studied are the same as in Fig. 4.10. 
The thick solid line is what would occur if 8 perfectly controlled the error in the 
reaction probabilities. The solid line with squares is the average of the error, and 
the .dashed line with circles is the maximum error from the systems studied; all as a 
function of 8. We see the remarkable result that, even in the worst case of maximum 
error, 8 reliably controls the error in the reaction probability. 
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We have found that exploiting the time dependent picture of the ABC 

Green's function leads to a stable and efficient algorithm for solving the ABC system. 

The new method is based on half Fourier transforming the ABC propagator, which is 

accurately represented in a Newton polynomial expansion. We have shown that this 

approach, called the Newton algorithm, is capable of obtaining converged reaCtion 

probabilities with very straightforward accuracy control. 

The Newton algorithm was applied to calculating initial state selected reac­

tion probabilities for three dimensional D+H2 (v,j)--+ DH+H with zero total angular 

momentum. We found that the probabilities with initial j = 1 were the largest, and 

attributed this effect to a small amount of orbital angular momentum helping to focus 

the system into more reactive geometries. 

Although not stated in the body of this Chapter, we discuss the computa­

tional effort required by these reactive scattering calculations. The three dimensional 
I 

grids contained ca. 4000 points, using no more than 3 Mbytes of core memory. In 

addition, for each energy and initial reactant state, the entire calculation required ca. 

35 seconds on an IBM RS 6000/Model 550. The scaling of CPU time from the two 

dimensional scattering case (collinear reaction-data not shown) to the three dimen­

sional case is very encouraging. Our preliminary findings suggest that the scaling is 

roughly N 1 . This scaling law is highly system dependent, however. The most extreme 

case where deviations from this scaling law would arise are systems with eigenvalues 

close to the real axis (resonances)cin which the CPU time would be roughly propor­

tional to the inverse of the imaginary part of the resonant eigenvalue. In the case of 

D+H2 , where a broad resonance has been observed at E rv 0.95 eV [48], we a find 

negligible effect on the CPU time. As such, in cases where very sharp resonances are 

not important, this gentle scaling law should hold. 

To speculate on the requirements for larger systems, we recall that the op­

eration count for the Newton algorithm is Niter(nF + 1)N, where 

Niter - (TABC/ b..t)Kopt(is) 

TABcb..Zjfi X fnewt/2 

~ TABcb..Zjfi. 
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. This result is ubiquitous in time dependent studies, and is closely related to the 

condition number of the ABC system. To estimate the CPU time required to perform 

a six dimensional ( 6D) reactive scattering calculation with 106 grid points, we assume 

that TABC, n, and !newt are unchanged in the 6D system. Furthermore, assuming 

that the spectral range in the 6D system is doubled from the 3D case, the CPU 

time is roughly 10 hours on the IBM RS 6000/Model 550. Thus, with the present 

assumptions, the 6D calculation is now feasible. 

We discuss the relationship between the time dependent solution to the 

ABC system and conventional wavepacket propagation methods. There are two es­

sential differences. First, in the ABC formulation the starting vector is energy de­

pendent, whereas typical wavepacket calculations use an energy independent starting 

vector. Second, we perform the Fourier transform at the beginning of the propaga­

tion, whereas most wavepacket calculations transform after propagation. Our method 

is expected to perform most efficiently for direct reactions, i.e. those which do not 

involve complex formation. 

In the next Chapter, we apply the Newton algorithm to the calculation 

of numerically exact cross sections and rate constants for the vibrationally excited 

reaction D+H2 (v = 1,j) --+ DH+H. We show that the ABC Newton method is the 

most direct route to date for accurate reaction cross sections. 
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Chapter 5 

1) Rate Constant 

5.1 Introduction 

In the previous Chapter, we developed a theoretical formalism using ab­

sorbing boundary conditions (ABC) to compute efficiently the initial state selected 

reaction probability (IRP). The ABC formulation derives its efficiency from focusing 

on the highly localized region of space where reactive forces are important. We de­

scribed a numerical solution of the ABC system, called the Newton algorithm, which 

is ideal in many ways. First, it only requires locating the region in energy space where 

the eigenvalues of the ABC system are likely to be. Second, once the proper spectral 

range is determined, the Newton algorithm gives rapid convergence with automated 

accuracy control. Finally, the Newton algorithm has a fixed and small memory re­

quirement, making it applicable for larger chemical systems. The Newton algorithm 

derives its efficiency from exploiting the time dependent picture of the ABC Green's 

function, which removes problematic poles encountered in other solution algorithms. 

In the present Chapter, we apply the ABC Newton method to demonstrate its com­

putational efficiency. As we will show, we are able to converge initial state selected 

reaction cross sections in as little CPU time as 10 minutes on an IBM RS/6000. 

An important and non-trivial application of the ABC initial state selected 

formalism is the calculation of the D+H2 (v = 1).--+ DH+H rate constant. This quan­

tity has received much attention in an attempt to resolve a fairly large discrepancy 
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between experiment [1-4] and theory [5-12] with the experimental results typically 

being one or two orders of magnitude larger than the theoretical ones. Surprisingly, 

the experimental rate constants varied much more from group to group than did the 

theoretical ones. For the following discussion, we report the rate constant kv=1 (T) in 

units of 10-13 cm3 molecule-1 sec-1 . 

Early experimental measurements of this rate constant were obtained by 

determining the concentration of the product H atoms with electron paramagnetic 

resonance (EPR). The first published experimental value, measured by Keuba et al. 

[1] in 1979 is kv=1 (T = 300 K) = 120 ± 50. This value is reasonable for an activation­

less reaction, and thus generated excitement regarding the efficiency of vibrational 

excitation in promoting chemical reaction. This experiment was followed by two the­

oretical calculations, a distorted wave Born approximation (DWBA) by Sun et al. [5] 

in 1980 yielding kv=1 (T = 300 K) = 5.0, and a quasiclassical trajectory calculation 

(QCT) by Mayne and Toennies [6] in 1981 giving kv=1 (T = 300K) = 1.7. From pre­

vious tests, it is known that the DWBA is accurate in the threshold energy region but 

overestimates reaction probabilities for higher energies, and thus overestimates the 

rate constant. Also, since the QCT calculation lacks the contribution from tunneling, 

it underestimates the exact rate constant. In principle, then, the two theoretical re­

sults bracketed the exact rate constant for the potential energy surface (PES) used in 

these calculations. The ab initio surface was computed by Siegbahn and Liu [13] and 

fitted by Truhlar and Horowitz [14, 15]. The Liu-Siegbahn-Truhlar-Horowitz (LSTH) 

PES is the most accurately known PES for a neutral molecular reactive scattering 

system. Thus, this discrepancy between experiment and theory is quite significant. 

Glass and Chaturvedi [2] performed a measurement in 1982 which accounted 

for one order of magnitude in the discrepancy. As opposed to the Keuba experiment, 

Glass and Chaturvedi prepared H2(v = 1) without recourse to vibrationally excited 

HF*. Using vibrationally excited HF* was thought to contribute indirectly to the 

detected population of products through the following mechanism: 

D+HF* --7 HD + F 

F+H2 --7 HF +H. 

EPR detection of the H atoms produced by the reactions above gives a rate con-
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stant which is too large. Indeed, by avoiding this source of contamination, Glass 

and Chaturvedi obtained kv=1(T = 297 K) = 9.8 ± 3.0. A similar experiment was 

performed by Rozenshtegn et al. [3] in 1984 yielding kv=l (T = 297 K) = 16.1 ± 4.9. 

Since the error bars of these two measurements overlap, this order of magnitude for 

kv=l (T = 300 K) was thought to be correct. A variety of calculations were performed 

between 1983 and 1985, yielding results between 0.9 and 2.9 (a prediction of 10.0 

was made by Pollack et al. [10] which was based on some theoretically ill-defined 

"reinterpretations.") Thus, a smaller but persistent discrepancy remained. 

Dreier and Wolfrum [4] accounted for roughly another order of magnitude 

by using coherent anti-Stokes Raman scattering (CARS) spectroscopy to monitor 

directly most of the reagents in the system. They obtained kv=l (T = 310 K) = 1.9 

± 0.2. This measurement should be more reliable than the previous ones because of 

the direct observation of all reagent concentrations. We speculate why the previous 

measurements gave larger values for the rate constant. The Glass and Rozenshtegn 

experiments both involved a great excess of D atoms over H2 ( v = 1) molecules. These 

experiments might have detected H atom contamination from the reaction D+ HD --+ 

D2 + H, where HD is the nascent product from the D+H2 under study. Thus, the 

Glass and Rozenshtegn experiments might not have detected nascent populations. 

Based on the direct and thorough nature of the Dreier measurement, we take their 

result for comparison. 

The most accurate theoretical treatment of this rate constant is by Zhang 

and Miller [16] in 1989, using the S-matrix version of the Kohn variational principle. 

Their result is kv=l,j=o(T = 300 K) = 1.63. However, they reported the rate constant 

for D+H2(v = 1,j = 0), and the experiment by Dreier and Wolfrum involved ather­

mal distributi~n of reactant j-states. With the extreme importance of fundamentally 

understanding the role of vibrational excitation in chemical reactions, we undertook 

the calculation of this rate constant with the present initial state selected formalism. 

We will show that quantitative agreement has now been obtained [17]. 

As important as exact reactive scattering calculations may be, approxima­

tions are indispensable in developing useful tools for estimating the reactivity of com­

plex systems. An important model is the J -shifting approximation [18-20] (JSA), 
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which allows one to estimate observables such as cross sections and~ rate constants 

when only J = 0 calculations are possible. It does so by ignoring the Coriolis coupling, 

and by assuming that the centrifugal coupling is only important near the transition 

state geometry. In this way, a vibration rotation decoupling approximation is made, 

which allows the total energy to be partitioned into a contribution from the J = 0 

Hamiltonian (the "vibrational" part), and a contribution from the overall rotational 

Hamiltonian. 

The accuracy of the JSA was tested by Bowman [18], who examined the 

J = 4 partial cumulative reaction probability for H+H2. He found excellent agree­

ment with the exact results of Chatfield et al. [21] up to total energy E ~ 1.2eV. In 

addition, Takada et al. [22] used the JSA to compute cross sections and rate constants 

for D+H2(v = j = 0). Comparing to the exact results of Zhang and Miller [16], they 

too found excellent agreement for low enough energy. However, the JSA has never 

been tested in the important case of an initial state selected reaction with rovibra­

tionally excited reactants. This is particularly significant in developing estimates of 

reaction rates to compare with the state and bond selected experiments of Crim and 

- co-workers [23], and Zare and co-workers [24]. In the present study, we test the JSA 

in the calculation of D+H2(v = 1,j) rate constants. We will show that the JSA 

is qualitatively correct when selecting individual j -states, and is semi-quantitative 

once the rate constants are thermally averaged over the j -states. 

5.2 . General Methodology. 

We now discuss the formalism used in the present Chapter to obtain the ini­

tial state selected rate constant for an atom-diatom reaction. We briefly review the 

general· tate constant formulae and the ABC method of obtaining reaction probabili­

ties. The Newton algorithm for the ABC Green's function was thoroughly discussed 

in the previous Chapter. 
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5.2.1 General Rate Constant Formulae 

The quantity of experimental interest is the thermal rate constant with ini­

tial vibrational state selection, kv(T), This corresponds to a rate measurement of the 

total yield of a reaction where all the motions of the reactants are in thermal equilib­

rium at temperature T, except for the diatomic vibration. The latter is promoted to 

a non-equilibrium state by laser excitation. This rate constant can be obtained from 

averaging the more detailed (v,j)-selected rate constant via 

00 

kv(T) = L Pv,j(T) kv,j(T) (5.1) 
j=O 

where 

(5.2) 

is the rotational distribution of reactant diatomics in vibrational state v. In Eq. (5.2), 

cv,j is the reactant diatomic rovibrational energy, kB is Boltzmann's constant, and Wj 

accounts for any symmetry statistics of the reactant diatomic (e.g. for H2 , Wj = 1 for 

even j, and 3 for odd j). We note that there is also an average over K, the projection 

quantum number of j, which is discussed below. 

The reaction of a diatomic molecule in state ( v, j) with an atom approaching 

with a distribution of velocities has a rate constant given by [25] 

(5.3) 

where Vt is the translational velocity, O"v,Avt) is the initial state selected reaction 

cross section, and ( · · ·) denotes an average over the velocity distribution. If the 

velocity average is determined by Maxwell-Boltzmann distribution, the rate constant 

is labelled by the temperature of the distribution, and is given by [25] 

kv,j(T) = vs::~ (kBT)- 2 fooo dEt Et e-EtfkBT O"v,j(Et), (5.4) 

where Et = f..ltVi /2 is the initial translational energy of the reactants, and f..lt is the 

translational reduced mass. The initial state selected reaction cross section can be 



136 CHAPTER 5. THE D+H2(v = 1) RATE CONSTANT 

obtained from quantum mechanical reaction probabilities by partial wave expansion 

[25], in which 

J+j 
7r 

00 2J + 1 J 
av,AEt) = p I: 2 . + 1 I: Pv,j,l(Et), 

t J=O J l=IJ-jj 

(5.5) 

where kt is the translational wave vector associated with Et and J.Lt· We perform the 

average over K by averaging the space-fixed (SF) reaction probabilities over l, the 

orbital angular momentum quantum number. In Eq. (5.5), P!,j,l(Et) is the initial 

state selected reaction probability defined by 

(5.6) 

where {v',j', l'} is the open channel space of products at total energy E = Et+ev,j, and 

PJ,j',l'+-'-v,j,l(E) are the state-to-state reaction probabilities. The reaction probability 

in Eq. (5.6) is the fundamental quantity of interest which we obtain with the ABC 

formalism reviewed below. 

5.2.2 ABC Formulation of Quantum Reactive Scattering 

The ABC approach to quantum reactive scattering was originally derived 

to compute the cumulative reaction probability [26, 27]. It was then applied to 

the calculation of initial state selected and state-to-state reaction probabilities [28]. 

Thorough discussions of the theory can be found in these references. For completeness, 

a brief outline of the formulae relevant for atom..:diatom reactions is provided below. 

We use ABC to achieve two related goals [29-32]. First, by absorbing all 

outgoing flux the scattering problem is converted into an effective non-Hermitian 

bound state problem, in which standard L 2 basis set techniques may be used. Second, 

by placing the absorbing potentials very close to the interaction region, some [29, 28] 

or all [26] of the asymptotic state information can be implicitly averaged, facilitating 

more economical calculations. In this spirit, the ABC initial state selected reaction 

probability is given by [28] 

P!,i,z(Et) = ~('l1~1,(Et)l €P l'l1~1,(Et)} (5.7) 
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where €p is the absorbing potential operator in the product region of configuration 

space. In Eq. (5.7), l'l'~1z(Et)) is the ABC scattering wavefunction defined by: 

(5.8) 

where the ABC Green's function is given by 

(5.9) 

In Eq. (5.8), € is the absorbing potential operator for all chemical arrangements and 

I<P~1z (Et)) is a reference scattering state with incoming-wave boundary conditions in 

channel (v,j, l, J, M, Et)· The reaction probabilities are independent of the quantum 

number M, to be defined below. In what follows, we omit the "ABC" superscript 

with the understandi;ng that we are using the ABC formulation. 

We note that use of an absorbing potential in Eq. (5.9) in the definition 

of the Green's function is tantamount to replacing the infinitesimal energy € that 

arises in formal scattering theory with a coordinate dependent function c(q). This 

replacement is valid as long as c( q) is negligible in the strong chemical interaction 

region, and absorbs all flux by the edge of the L 2 basis. 

5.3 Defining the Linea:r System 

We define the precise linear system to be solved for the D+H2 quantum 

reactive scattering calculations. This entails the choice of system coordinates, basis 

set, asymptotic state, and absorbing potential. We note that, with respect to the 

coordinates and basis set, much of our work parallels that of Choi and Light [33] in 

their calculations on the Ar-HCl van der Waals complex. 

5.3.1 The Coordinates 

We use the mass-scaled (MS) body-fixed (BF) center of mass Jacobi coordi­

nates of the reactant D+H2 to define the differential HamiJtonian operator. The two 

Jacobi vectors are R for the scattering coordinate, and r for the vibrational coordi­

nate. The internal coordinates are q = (r, R, 1) where r = lrl is the MS bond length 
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of H2 , R = IRI is the MS scattering coordinate, and 1 = cos-1 [r · RfrR] is the bend­

ing angle. This choice seems reasonable because the initial state selection requires 

that more grid points be placed in the reactant region. Also, the use of body-fixed 

coordinates allows for more economical exact calculations (vide infra) [34, 35). The 

coordinates which define the plane of the three particles are the Euler angles to be 

defined below. Figure 5.1 demonstrates the lab-fixed (LAB), SF and BF coordinate 

frames. The six dimensional Hamiltonian operator in the center of mass translational 

frame and body-fixed rotational frame is given by 

A A A A R ( j - .))2 32 A 

H( J, r, R, 1) = Tr + T + R2 + -
2 
+ V ( r, R, 1), 

2p. 2p.r 
(5.10) 

where j is the total system angular momentum vector operator, J is the diatomic 

molecule angular momentum vector operator, and the system mass is 

( 
MvMH MH ) 1

/
2 

p. = Mv + MH + MH = 1298.796 au. 

In Eq. (5.10), the following quantities are: 

n,2 a2 

(5.11) 

and V(r,R,1) is the LSTH PES. 

We can use the isotropy of field free space to reduce this six dimensional 

Hamiltonian to a set of four dimensional ones. The three dimensional vector operator 

j yields three quantum numbers from quantizing the square modulus } 2 , the space­

fixed z-axis projection }zsF' and the body-fixed z-axis projection }zBr We define 

I J M I<) as the simultaneous eigenstate of these three operators, satisfying 

}2!JMI<) 

}zsFIJMK) 

}zBF!JMK) 

n2J(J + 1)IJMK) 

nM!JMK) 

nK!J M K). 

(5.12) 
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A 

sr:: 

A 

c -

B EF 

LA:g 

B 
Figure 5.1: The laboratory (LAB) frame, space-fixed (SF) frame, and body-fixed 
(BF) frame for the A+BC system in Jacobi coordinates. All are right handed axis 
systems. The SF frame originates on the center of mass (CM) of the A+BC system, 
and is parallel with the LAB frame, which originates on the experimental apparatus. 
The BF frame also originates on the center of mass of the A+BC system, but rotates 
in space with the system so that the BF z-axis lies on the Jacobi scattering coordinate 
R, and the BF x-axis lies in the plane of the three particles. The transformation from 
the SF frame to the BF frame is a three dimensional rotation symbolized by 'R, which 
may be specified in terms of the Euler angles ( <1?, 0, w). [The two versions of A+ B C 
in this Figure are identical in every way. The axis systems, however, are different in 
the two pictures.] The details and conventions are discussed in the main text. 
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The position representation of IJ M K) using Euler angles is related to the Wigner 

rotation matrix element (sometimes called the element of the irreducible rotation 

group). For completeness, we describe our convention for the Euler angles, and for 

the three dimensional rotation operator. The Euler angles are(~, e, w), which define 

a three dimensional rotation from a space-fixed axis system (XsF, YsF, ZsF) to a 

body-fixed axis system (XBF,YBF, ZBF) whj.ch rotates with the molecular system. 

The first angle ~ gives a counterclockwise rotation about the ZsF axis, giving an 

intermediate axis system (X', Y', Z sF). The second angle e gives a counterclockwise 

rotation about theY' axis, giving a second intermediate axis system (X", Y', ZBF) 

The third angle W gives a counterclockwise rotation about the ZBF axis, giving the 

final body-fixed axis system. The complete three dimensional rotation is effected by 

the quantum mechanical rotation operator 'k(~, e, w) defined by 

(5.13) 

By representing the rotated angular momenta )zsF and )y, as the result of rotational 

transformations of the original angular momenta in the SF frame, the above expression 

for ft(~, e, w) can be written with the angles in the opposite order, and all rotations 

referenced to the original axis system, i.e. 

(5.14) 

This latter form is more useful for our subsequent discussion. Based on the eigenstates 

IJ M) and IJ K) of a linear rigid rotor, our convention for the Wigner rotation matrix 

element is [36] 

n~,K(~, e, w) = (JMI 'k(~, e, w) IJK). (5.15) 

Many other conventions exist for this matrix element. Our choice is the (we hope) 

consistent active convention, which is adapted from the text by Rose [36]. 

We choose to mount the body-fixed z-axis ZBF along the Jacobi scattering 

coordinate R. In so doing, (~,e) are the azimuthal and polar angles of R, respec­

tively, measured from a SF reference frame. In addition, W is the angle which brings 

the body-fixed x-axis XBF into the plane of the three particles, with a non-negative 
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dot product with the Jacobi vibrational vector r. The body-fixed y-axis YBF orthog­

onal to the plane of the particles. Furthermore, this choice of body-fixed quantization 

means that orbital angular momentum has no body-fixed projection. Writing these 

quantities classically to illustrate the point, we have that LzBF = ZBF • (R X P) 

ex: R · (R x P) = 0. As such, the body-fixed projection quantum number for total 

angular. momentum is equal to that for the diatomic angular momentum, since the 

orbital motion does not contribute along the ZBF direction. 

Based on these definitions, we can obtain the four dimensional Hamiltonian 

from the six dimensional one by integrating out the Euler angles. We first specify the 

Euler angle representation of I J M K). This is 

(5.16) 

The prefactor gives the proper normalization for integrating Euler angles over Jg1r d~ 
x J~1 d cos e x Jg1r d'I!, and the complex conjugate gives the phase convention which 

reduces to that used by spherical harmonics in the case where either M or ]{ is 

zero. At this point, we could proceed to integrate out the Euler angles with a basis 

set of the { bf.J K ( ~' e' 'I!)}. This partially diagonalizes the Hamiltonian, yielding , . 

blocks labelled by J and M = 0, ±1, ... , ±J. These blocks depend on J, but are 

indepedent of M. Thus, the manifold of M states merely contributes a degeneracy 

which gives rise to the factor of 2J + 1 in Eq. (5.5). Each block for a given J and 1\1. 

is a (2J + 1) x (2J + 1) matrix labelled by K', ]{ = 0, ±1, ... , ±J. ]{is not conserved 
' 

because the axis which defines its projection rotates dynamically in space. We can 

further block diagonalize the J M block by exploiting the conservation of overall 

parity, i.e. that the system is invariant to inversion through its center of mass. We do 

this by integrating out the Euler angles with a parity adapted version of the overall 

rotation functions. This reduces by roughly half the computational effort required 

for each reaction probability, as we will show. These can be constructed by analyzing' 

the effect on Df.J,K(~, e, 'I!) of the overall parity operator. We leave the details as 

an exercise to the reader. The parity adapted Wigner functions Bi[K(if!, e, 'I!) with 
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parity P are defined by 

where NK = [2(1 + OK,o)]-112 • After integrating out the Euler angles with the parity 

adapted Wigner functions {Bif.K(if!, 0, '11)} the Hamiltonian block with parity P 

becomes [33, 36] 

OK',K { jrr + jrR + jr-r + 2=~2 [J(J + 1)- 2K2] + V(r,R,!)} 

8K',K+I { (1 + 8K,o)112 211~2 AjK ]+} (5.18) 

OK',K-1 { (1 + 0K,1)112 211~2 A"JK }-}. 

The inversion symmetry quantum number P determines the range of K' and K, i.e. 

when J +Pis even K',K = O, ... ,J and otherwise K',K = l, ... ,J. In Eq. (5.18), 

the following quantities are 

1 ( 1 1 ) '\2 
- 2p, r 2 + R2 J 

(5.19) 

AjK = .jJ(J + 1)- K(K ± 1). 

Also,]± are the usual raising and lowering operators for the diatomic angular momen­

tum in the body-fixed system. The portion which is off diagonal in K, the body-fixed 

projection quantum number, is called the Coriolis coupling with the second line in Eq. 

(5.18) called the "+" Coriolis coupling the the third line the "-" Coriolis coupling. 

We now describe the basis set used to represent the remaining operators 

in the Hamiltonian. The use of a grid for the internal degrees of freedom and a 

delocalized basis set for the overall rotation requires that special attention be given 

to the Coriolis terms. These involve coupling in both the overall rotation and internal 

bending. 

5.3.2 The Basis Set 

In the present calculations we use a discrete variable representation [37-39] 

(DVR) for each internal degree of freedom. The DVR gives a diagonal potential 
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matrix, and thus, all the coupling is in the one-dimensional kinetic energy matrices. 

This is a poor, but convenient representation because the multi-dimensional Hamil­

tonian matrix is sparse, which facilitates iterative calculations based on the sparse 

matrix-vector multiply [40, 41), In practice, we first define a direct product grid in 

four dimensions, called the primitive grid. This is then truncated based ,on several 

criteria to give the final grid used to represent the ABC wavefunction. First, we 

discuss the construction of the primitive grid, and the relevant kinetic energy matrix 

elements~ Then we discuss the truncation algorithm. 

For the two radial coordinates, we use the radial sinc-DVR given by Colbert 

and Miller [42). Considering the scattering coordinate first, a grid of R values is 

defined by R;. = itlR where i = 1, 2, 3, .... The point at zero is automatically deleted 

because of the Jacobian weight at the origin. The radial kinetic energy matrix element 

IS 

T~ = n,2 (- )i'-i { 7r2 /3- 1/2i2' 
,,, 2 J:lR2 1 _2_ - _2_ 

f.1- (i'-i)2 (i'+i)2' 

i' = i } 

i' =J i 
(5.20) 

The same applies for the r coordinate, except with the vibrational grid spacing tlr. In 

practice, we have used the same grid spacing for the two radial coordinates, because 

they are associated with the same mass fi-· The grid spacing is chosen by requiring 

that t~e number of points per de Broglie wavelength ( N B) is roughly 4, as was found 

by Colbert and Miller [42). 

For the bending angle, we use an associated Legendre (AL) DVR which 

properly removes the singularity in the Hamiltonian for collinear geometries when 

K > 0. We symmetrize the AL DVR to exploit the exchange symmetry of the two 

identical H atoms, allowing us to use half as many angular grid points. 

For simplicity, we use a K-independent grid [43, 44]. That is, we obtain 

grid points {xi} and weights { Wi} for the K = 0 AL functions (i.e. the usual Gauss­

Legendre DVR). We then use these points and weights to construct the angular 

kinetic energy for all values of K in the Hamiltonian. This is to be contrasted with 

the treatment of Choi and Light [33) who use different points and weights for each 

K-block. Both approaches are valid, and we wanted to keep the basis set as simple 

as possible. 
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Using NAL symmetrized AL DVR states, and labeling the exchange sym­

metry blocks by p = 0 or 1, the (p, K)-dependent angular kinetic energy matrix 

elements are given by 

2NAL-:-l 

j'f,i(P, K) = 2: si(P) { y'W; PiK(xi') [n2 j(j + 1)] PiK(xi) v'wi}. (5.21) 
i=K 

With the phase convention that PjK (cos 1) = v'21f }jK ( 1, 0), where Yzm ( 8, </>) is the 

usual spherical harmonic [45], the symmetry factor Sj(p) is given by Sj(p) = 1 + 
(-1)i+P. 

We now discuss the grid representation of the Coriolis coupling. For the 

present discussion we consider only the "+" Coriolis term [i.e. the second line in 

Eq. (5.18)], leaving the detailed derivation of the "-" Coriolis term as an exercise 

for the reader. In addition, we focus on the W = [b"K',K+l x )+] portion of the 

"+" Coriolis term, since the remaining factors ate diagonal in the present treatment. 

Before beginning the derivation, we note that the differential operator corresponding 

to the body-fixed)+ depends only on the polar angle 'Y· This may seem strange since 

raising and lowering operators usually depend on both the polar and azimuthal angles 

which define the rotation. However, our "three angle" [i.e. ( <P, E>, w)] definition of the 

body-fixed frame replaces the W dependence of )+ with K dependence. There is an 

analogous "two angle" [i.e. ( <P' e)] definition of the body-fixed frame in which )+ in 

that reference frame does depend on both the polar angle 1 and the azimuthal angle 

w [46]. 

The finite basis representation (FBR) of the "+" Coriolis term using a sym­

metry adapted AL basis set with symmetry p gives 

2NAL-l 

wJ:~K(P) = b"K',K+l I: y'wi Pf,K,(xi) [nAjK] PfK+I (xi) y'wi, 
i=O . 

(5.22) 

where PJK(x) = Jsj(p)PiK(x). After applying the b"K',K+l to the K' dependence of 

the summand, this expression reduces to 

(5.23) 



5.3. DEFINING THE LINEAR SYSTEM 145 

Now performing the FBR to DVR transformation and applying the hK',K+l to the 

resulting K' dependence, we get wp:,~K(P) = hK',K+l X jj;'i(P, K) defined by 

2NAL-1 · 

jj;'i(p, K) = 2:: si(P) {~ Pj,KH(xi') [nA}K] PiK(xi) foi}. (5.24) 
j=K+l 

To complete the definition of the basis set, we note that j;;i(P, K) = jt,(p, K- 1). 

The primitive grid is truncated in the following fashion. For each DVR grid 

point in the primitive grid, a diagonal element of 

A h2 . A 

T"Y + -R2 J(J + 1) + V(r,R,1) 
2J.L 

is constructed. If that energy exceeds some input Vcut, the point is discarded; oth­

erwise it is retained in the basis. [47). Also, if a point is asymptotic, based on some 

convergence criterion related to the definition of the ABC, it is also discarded. In this 

way, the grid is tailored to the shape of the PES and the ABC. The sparse matrix­

vector multiply with a truncated DVR grid was first discussed by Groenenboom et 

al. [40, 41], and their method is adopted here. 

To complete the definition of the truncated basis set, we consider the allowed 

values of K, the body-fixed projection quantum number. In principle K = 0, ... , J 

for even J + P and 1, ... , J for odd J + P. With a finite basis for the Jacobi 

angle, however, K can not exceed min(J,2NAL- 1). We have found that for the 

reaction probabilities considered in the present Chapter, convergence is reached with 

Kmax = 2, in accord with the basis set contraction results of Zhang (35]. This rapid 

convergence with respect to Kmax facilitates exact calculations with very modest 

increases in CPU time as J increases, and is one of the many useful aspects of the 

body-fixed representation. 

5.3.3 The Reference Scattering State 

The reference scattering state can be chosen as a distorted wave (with any 

level of distortion) or as a free wave, as long as it is regular at the origin and is 

an eigenstate of the asymptotic Hamiltonian, H0 = limR-..oo H. Groenenboom et al. 
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[41] and Thompson and Miller [28] have found it very useful to use inelastically dis­

torted waves in their reactive scattering calculations, because they could represent the 

chemical reaction by focusing on the local exchange region. For the simplicity of the 

present application we use (almost) free waves, including only the centrifugal phase 

shift. This is the lowest level of distortion which facilitates practical calculations. 

With this level of distortion, the reference scattering state is the product of 

a translational state, a vibrational state, and a rotational state: 

(5.25) 

For the translational function, we choose the spherical Hankel function of the second 

kind {h~2)(x)} [45]. properly normalized to give unit incoming flux: 

(Rlhl(Et)) = . ikR h?)(kR) ,..._, _1_e-i(kR-l1r/2). 

..;vi ..;vi 
(5.26) 

In Eq. (5.26), k = -J2J.LEt/1i and Vt = fikt/ J.lt, where J.lt and kt are defined in Eqs. (5.4) 

and (5.5), respectively. We note that these are the same incoming-wave boundary 

conditions used in many of the S-matrix Kohn variational principle calculations [16]. 

Also, in Eq. (5.25), l</>v,;) is the diatomic rovibrational state. 

The rotational state jJMjl) in Eq. (5.25) is a SF coupled eigenstate of 12 , 

J ZsF, ]
2

, and I}. This asymptotic rotational state is used in most modern reactive 

scattering calculations [48]. It is useful for three reasons. First, it exploits the fact that 

J is conserved. Second, in the ABC formulation of quantum scattering, the absorbing 

potential may be non-zero only for values of R large enough that the asymptotic 

state nearly solves the Schrodinger equation. The term in the Hamiltonian which is 

responsible for mixing l-states is the PES, which is typically a much shorter ranged 

interaction than the 1/ R2 term which couples the BF labels {K}. As such, the SF 

representation allows the use of smaller L 2 basis sets. Third, the strength of the 

coupling which mixes the {K} manifold increases as AjK ,..._, J [cf. Eqs. (5.18) and 

(5.19)], and as such would require re-optimization of the basis set and absorbing 

potential for each value of J. Thus, the SF representation allows us to use a single, 

relatively small L 2 basis for all values of J. 
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We have argued for the use of an asymptotic state with SF labels. However, 

we must represent this state with BF angles since these are used to simplify the 

Hamiltonian by integrating out overall rotation. This was done in 1968 by Miller 

[48]. We give a detailed derivation of the position representation of the angular state 

IJMjl) using BF angles, i.e. (<P,e, "W,,). This is useful because it demonstrates the 

relationship between BF and SF labels . .It also indicates how symmetry is used in 

the present calculations. The derivation involves three steps .. First, we write down 

the coupled eigenfunction using SF angles. We then express the SF angles as rotated 

BF angles. Finally we use Clebsch-Gordan coefficients· and orthogonality relations to 

simplify the result. Recalling that ( <P, e) are the SF angles of Rand defining (</>,B) as 

the SF angles of r, we have the well known result for the coupled angular momentum 

eigenfunction Y/zM(<P,G,</>,0) = (<P,G,</>,OIJMjl): 

j 

Y/zM (<P, e, </>,B)= L Yim(B, </>) ll,M-m(e, <P) c (j, l, m, M- mlj, l, J, M)' (5.27) 
m=-j 

where the Clebsch-Gordan coefficient C (j1 ,j2 , mb m2 lh,h,j, m) is a vector coupling 

coefficient for the addition of angular momenta .)1 and .)2 to yield the total angular 

momentum J. For a subsequent step in the derivation, it is convenient to express 

Yz ,M -m ( e' <P) in terms of a Wigner function via 

(5.28) 

with the Wigner function defined in Eqs. (5.14) and (5.15). Next, we express Yim(B, </>) 

as a rotated spherical harmonic with BF angles via 

j 

Yim(O, </>) = 2: YjK(l, 'W) Dk,m(O, -0, -<P). (5.29) 
K=-j 

This follows from the fact that the SF and BF angles of r transform via 

IB, </>) = R(<P, e, O)l,, -w). (5.30) 

It may seem that we are using a two angle rotation, which is inconsistent with the 

construction of the BF Hamiltonian. In fact, we eventually use a three angle rotation, 

applying the third rotation trivially as the final step in the derivation. 
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We can now begin to construct the SF rotational function with BF angles. 

To do this we note that given ( e, q,), we can take either ( 8, </>) or (I, ~) as the other 

two independent angles. As· such, whenever we use the angles (!, ~) as independent 

variables, we denote (B, ~) as the values taken by the transformation function which 

gives the SF angles in terms of the BF angles, i.e. that defined in Eq. (5.30). We 

can then define the rotational function XfzM (q,, e, ~'I)= YfzM (q,, e, ~'B). Using the 

unitarity of the rotation operator Rand Eqs. (5.28) and (5.29), Xf.fi(q,,e, w,,) is 

given by 

Xj.M(if>, 0, W,-y) - ~ mt;Kt_i Y;K('Y, W) C (j,l,m,M- mlj, l,J,M) 

X { D~-m,o(q,, 8, 0) D~,K(q,, 8, 0) r. (5.31) 

This simplifies by using the angular momentum coupling relation for Wigner rotation 

matrix elements: 

l . 
DM-m,o(q,, e, 0) D~.K(q,, e, 0) = 

j+l 

L c (j, l, m, M- mlj, l, J', M) D~.K(q,, e, 0) c (j, l, K, Olj, l, J', K). (5.32) 
J'=li-ll 

Simplification occurs by plugging in this result and using Clebsch-Gordan orthogo­

nality relations: 

j+l 

x 'L [n~.K(q,,e,o)]* C(j,Z,K,olj,Z,J',K) 
J'=li-ll 

j 

x L C(j,l,m,M-mlj,l,J',M) C(j,l,m,M-mlj,l,J,M) 
m=-j 

j+l 

X 'L· [D~,K(q,,e,o)]* C(j,l,K,Oij,l,J',K) x 8J',J 

J'=li-ll 
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x t }jk(I,W) [Dk,K(~,e,o)]* C(j,l,K,Oij,l,J,K). (5.33) 
K=-j 

This is almost the final form for the rotational function. To complete the derivation, 

we note that 

(5.34) 

where PjK( cos I) and Dit,K(~, e, w) are defined in Eqs. (5.21) and (5.16) respectively. 

The final form for the rotational function is then 

xf,M ( q,, e, w,,) = .IW_ Kt/;K( cos,) D~ .K( 'P, e, 11!) 

X c (j, l, K, Olj, l, J, K). (5.35) 

This final step completes the three angle rotation used to define the SF function with 

BF angles. 

We make four general comments about the rotational function in Eq. (5.35), 

for which the demonstration is left as an exercise for the reader. First, this rotational 

function is an eigenfunction of the parity operator with parity P = j + l. This is plau­

sible because the sum ranges over positive and negative values of K, as does the sum 

which defines the parity adapted Wigner function defined in Eq. (5.17). The Clebsch­

Gordan coefficients have the required symmetry properties [36] to give definite parity. 

Second, this rotational function also has definite symmetry when exchanging atoms B 

and C [see Fig. 5.1]. Such an exchange maps cos II-+ -cos 1, giving an overall phase 

factor (-1)i from our definition of PjK(cosl)· Thus, the rotational function has ex­

change symmetry p = j. Third, [PjK(cosl) X Dit,K(~, e, w)] is a rotational function 

with BF labels and angles, whereas the function in Eq. (5.35) has SF labels and BF 

angles. Therefore the Clebsch-Gordan coefficients furnish the transformation from SF 

labels to BF labels. Indeed, one can say that the coefficients { C (j, l, K, Oij, l, J, K)} 

transform between the "K" and "l" representations. Finally, based on the constraints 

of vector addition which determine the non-zero Clebsch-Gordan coefficients, the sum 

over K has non-zero contribution from only K = 0, ±1, ±2, ... , ± min(j, J). 
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To complete the discussion of the frame transformation and the use of sym­

metry in the present calculations, we indicate the transformation between a BF ro­

tational state and the SF rotational state. We label the BF rotational state by 

IJI<Pip) where I<P labels a symmetrized Wigner state with inversion symmetry P, 

and ip labels a symmetrized AL DVR state with exchange symmetry p. Computing 

the transformation element is made easy by inserting unity resolved in BF angles 0 

= (<P, e, w, 1 ): 

(JMI<PipiJMjl) j dO (JMI<PipiO)(OIJMjl) 

J dO Qf,~ Pp ( <P, 8, iJ!, I) X f.zM ( <P, 0, iJ!, I). (5.36) 

In Eq. (5.36), Xf.1M(<P,e, W,l) is given by Eq. (5.35), and Qf,~Pp(<P,e,·w,l) is the 

BF function given by 

(5.37) 

where BflK(<P, e, w) is the parity adapted Wigner function defined in Eq. (5.17). 

Finally, Af.K( cos 1) is the AL DVR basis function with exchange symmetry p, and 

corresponding to grid point i. By analytically integrating over the Euler angles and 

using the angular grid to integrate over cos 1, the transformation becomes: 

(JMKPipiJMjl) = { .jWi Pl (x;)} x { J :~: ~ C (j, I, K, Olj, 1, J,K)} x 

{ __!_ [1 + (-1)i+P]} X { 
1 [1 + (-1)i+l+P]} .(5.38) 

V2 J2(1 + bK,o) 

The transformation element is completely independent of M, as is the Hamiltonian 

operator in Eq. (5.18). This demonstrates that the reaction probabilities are indepen­

dent of M. Formally they must be, since our choice of SF z-a.xis orientation should 

not affect the dynamics. The first factor in Eq. (5.38) is the usual DVR-FBR transfor­

mation element [39]. The second factor is the frame transformation. The remaining 

factors demonstrate the relationship between the symmetry of the BF rotationa). state 

and the SF rotational state. In particular, since the SF rotational state has both def­

inite exchange and inversion symmetry, it projects onto the block of the Hamiltonian 
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with exchange symmetry p = j and inversion symmetry P = j + l. Using the proper 

symmetry blocks, these factors are V2 for K = 0 and 2 for K > 0, multiplying the 

reaction probability in Eq. (5.7) by 2 and 4, respectively. Thus, the D+H2 initial 

state selection allows the calculation of properly symmetrized reaction probabilities 

while only explicitly treating ca. ~ of the full Hamiltonian. 

We summarize our use of different rotational reference frames in reactive 

scattering. Our purpose is to choose basis functions for overall rotation which min­

imize coupling in the Hamiltonian. To make the discussion concrete, we define the 

orbital angular momentum vector operator L = j- j. The choice of reference frame 

is determined by the competition between the PES V and the orbital kinetic energy 

j} /2J1R2
• When choosing basis functions to represent the motion of the system when 

the collision partners are strongly interacting, the BF frame is preferable. In this case, 

V ~ f} /2J1R2
• The BF frame is diagonal in V, and thus diagonalizes most of the 

Hamiltonian. Alternatively, when choosing basis functions to represent the motion 

of the system when the collision partners are well separated, the SF frame is prefer­

able. In this case, f} /2J1R2 ~ V. The SF frame is diagonal in f} /2J1R2 , and thus 

diagonalizes most of the Hamiltonian in this case. Finally, one may regard the SF 

asymptotic rotational function as an analytically distorted wave, with the Clebsch­

Gordan transformation from the K representation to the l representation providing 

the distortion. 

5.3.4 The Absorbing Potential 

The optimum absorbing potential is one which absorbs all outgoing flux with 

negligible back reflection, as fast (in space) as possible. Several studies have sought 

reliable guidelines for determining optimal absorbing potentials [32, 49-52]. We have 

found excellent convergence behavior with a quartic function: 

[ 
z- zo ] 4 

E[z( q)] = >. 
Zmax- Zo 

(5.39) 

where z = max[Ra, Rb(q), Rc(q)], and (a, b, c) label the three chemical arrangements. 

The parameters (A, zo, Zmax) are different in different arrangements. They are set to 
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give more gentle absorption in the reactant arrangement (Re =a) than in the product 

arrangements (Pr = b, c), as demanded by the initial state selection. The parameter 

Zmax determines the end of the grid in a particular arrangement. It is smaller in the 

product arrangements where no state selection is required. Converged values of these 

parameters will be reported below. 

5.3.5 Summary of the Methodology 

With the vector ie ~~.j,z(Et) now defined, we use the Newton method to ap­

ply G(E), thus giving the ABC scattering wavefunction and the reaction probability. 

The partial wave expansion and the Boltzmann average over relative translational 

energy and initial rotation give the desired rate constant. 

5.4 Results and Discussion 

We now present the results of our quantum reactive scattering calculations 

on the D+H2 (v = 1,j) system. As stated in the Introduction, the present Chapter 

has two main goals. The first is to demonstrate the efficiency of the present method 

in a non-trivial application. For this purpose, we report the D+H2 reaction probabil­

ities P!,j,z(Et) and cross sections crv,j(Et), in addition to the typical amounts of core 

memory and CPU time required for these calculations. The second objective is to 

determine the j and T dependence of kv=l,j(T), for the purpose of comparison with 

both experiment and approximate theory. 

5.4.1 Reaction Probabilities and Cross Sections 

We have obtained converged reaction probabilities and cross sections ac­

cording to Eqs. (5.7) and (5.5), respectively. There are 13 convergence parame­

ters to optimize. These fall into four roughly independent groups: ABC parameters 

(.\Re, )..Pr, z~, z6r) for defining the absorbing potential (cf. Eq. (5.39)], parameters 

(NB, NAL) for constructing the primitive basis; parameters (z~x' z~~x' "Vcut, Kmax) 

for truncating the basis; and, the Newton inversion parameters Unewt, T 8 , 8) defined 
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ARe= 1.8 X E APr= 1.0 X E 

Absorbing potentials 

z~ = 4.5ao z6r = 3.9ao 

Primitive basis set NB = 3.7 NAL = 7 

z?::ax = (7.4- 10.4) ao z~~x = (5.5- 8.5) ao 

Truncated basis set 

'Vcut = (2.5- 4.2) eV Kmax = 2 

T 8 =50 

Newton inversion fnewt = 1.6 

8 = 2 X 10-2 

Table 5.1: Optimized convergence parameters for the present quantum reactive scat­
tering calculations. These values are sufficient to give better than 3% accuracy for 
0.15 eV < Et < 0.37 eV, and better than 6% accuracy otherwise. E =total scattering 
energy, Re is reactant, and Pr is product. 

in Ref. 53 and in the previous Chapter. Table 5.1 shows the optimized values. These 

parameters are sufficient to obtain better than 3% accuracy for the lower transla­

tional energies (0.15 eV < Et < 0.37 eV), and better than 6% accuracy for the higher 

translational energies. We focus attention on the truncation parameters. 

The parameters (z?::ax, z~~x' 'Vcut) require careful optimization. For small 

Et, the initial translational energy, z?::ax and z~~x must be large enough to encompass 

the long de Broglie wavelengths. Alternatively, for larger Et, the parameter 'Vcut 

must be set to allow the wavefunction to sample larger portions of the PES. This 

competition between small and large translational energies caused the truncated grid 

sizes to be roughly independent of the energy, with grid sizes falling in the range 

Ngrid = 6500 ± 1500. .. 
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Reaction Probabilities 

We demonstrate the convergence of selected reaction probabilities with re­

spect to (z:!!x, z:;::x), which control the spatial extent of the grid and the strength 

of the absorbing potential. J\.s (z:!!x, z:;::x) increase the grid samples more space, 

the absorbing potential becomes more gentle, and the reaction probabilities should 

converge to the exact values. Since we ultimately compute thermal rate constants, 

we need to converge reaction probabilities with small initial translational energies. 

For example, the D+H2(v = 1,j = 0) channel becomes energetically accessible for 

total energy E > 0. 786 e V [where V ( r = r eq, R = oo, 1) = 0 defines the zero of total 

energy]. The threshold for this reaction probability occurs in the total energy range 

E E (0.85eV,0.90eV). Fig. 5.2 demonstrates the convergence behavior of the reac­

tion probabilities P!~~j=O,l=o(E) forE= 0.85 and 0.88 eV. These calculations used 

'Vcut = 2.8 e V. Fig. 5.2 shows that large grids are required to represent the long de 

Broglie wavelengths forE = 0.85 e V. Even a small change in energy from E = 0.85 e V 

to 0.88 e V allows the use of smaller grids. We also see that the E = 0.85 e V prob­

ability is more stable when turning on the abs~rbing potential slightly farther into 

the asymptotic region. Finally, Fig. 5.2 shows that the E = 0.85 e V probability is 

known roughly to within a factor of 2, whereas the E = 0.88 e V probability is known 

to within 10%. Fortunately, we are not interested in temperatures low enough that 

these probabilities give the dominant contribution. In fact, these are the smallest 

reaction probabilities used to compute the rate constants reported below. 

Reaction probabilities which give dominant contributions to their respective 

rate constants at T = 300K are P!~~j=O,l=o(E = l.OeV), P!~~j=l,l=5 (E = 1.014eV), 

and P!~~j=l,l=s(E = 1.104eV). The convergence of these reaction probabilities with 

respect to (z:!!x,z:;::x) is shown in Fig. 5.3, using Vcut = 2.8eV and (zt:e,z[r) = 

( 4.5 ao, 3.9 ao). These reaction probabilities can be obtained with significantly smaller 

grids than are re~uired for the threshold probabilities shown in Fig. 5.2. In addition, 

these probabilities are stable to roughly 3% with respect to changes in (z:!!3:, z:;::x)· 

Since these are the most important probabilities for the subsequent rate constant 

calculations, we expect the rate const~ts to be accurate to roughly 3% as well. 
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Figure 5.2: Convergence with respect to (z~~x' z~~x) of the D+H2(v = 1,j = 0, l = 0) 
reaction probabilities at total energy E = 0.85 and 0.88 eV. Large grids are required 
to converge very small reaction probabilities. The convergence is more stable when 
the absorbing potentials turn on farther out in the asymptotic region of space. The 
E = 0.85 e V probability is known roughly to within a factor of 2, whereas the E = 
0.88 e V probability is known to within 10%. 
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Figure 5.3: Convergence with respect to (z~x' z~~x) of the D+H2 reaction proba­
bilities P;[~~i=O,l=o(E = l.OeV), P;[~~i=I,l=s(E = 1.014eV), and P;[~~l,l=s(E = 
1.104eV). The abscissa z has the same meaning as in Fig. 5.2, i.e. (zmax,z~~x) = 
(z + 1.9 a0 , z). These probabilities give significant contribution to the rate constants 
reported below. Small grids can be used to obtain these probabilities, which are at 
energies above threshold. These probabilities. are known to roughly 3%. 
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Converged reaction probabilties for the D+H2 (v = 1,j) system with total 

J = 0 are shown in Fig. 5.4. The j = 0 probabilities are compared with the S -matrix 

Kohn variational principle (SMKVP) results of Zhang and Miller [16]. The agreement 

is generally very good over the entire energy range, and is truly excellent for total 

energies E < 1 e V. The j = 1 probability increases from threshold most rapidly. This 

phenomenon was observed in the previous Chapter, and was attibruted to a small 

amount of orbital angular momentum ( l = 1) present in the initial state, helping 

to focus the system into more reactive geometries. We note that the j = 2 energy 

dependence roughly follows that for j = 0, and that the j = 3 curve rises to the 

same level as that for j = 1. This may be the result of some approximate symmetry 

dependent selection rule which determines reactivity. Determining what portion of 

the Hamiltonian controls this effect may allow estimates of reactivity for more complex 

systems. 

Cross Sections 

In order to obtain the reaction cross section, reaction probabilities with 

J ~ 0 must be obtained to perform the sum over partial cross sections in Eq. (5.5). 

Zhang has studied the convergence of partial cross sections with repsect to Kmax [35]. 

He found that the J = 10 partial cross section for H+H2 at total energy E = 0.6 and 

1.0 e V converges with Kmax = 3 and 4, respectively. In principle, the optimal value 

of Kmax depends onE and J, in addition to the initial rotational quantum number j. 

To avoid such complication, we examined the convergence of D+H2 full cross sections 

with Kmax for various values of E and j. Figure 5.5 shows the convergence of av=O,j 

at E = 0.85 e V for j = (0, 1, 2). We see rapid convergence of these cross sections as 

Kmax increases, gaining nearly three digit accuracy with Kmax = 2. Similar results 

were obtained atE= 1.1 eV, which require J as large as 24. Based on these results, 

we have used Kmax = 2 for all subsequent calculations reported in this Chapter. 

The partial cross sections required to 1 construct <Tv=l,j=o(E) are shown in 

Fig. 5.6 for various total energies. These were computed using Kmax = 2, based on 

the convergence behavior seen in Fig. 5.5. The linear increase for small J results 
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Figure 5.4: Reaction probabilities for the D+H2(v = 1,j) system. Comparison is 
made with the S -matrix Kohn variational principle (SMKVP) calculations of Zhang 
and Miller [Ref. 16] for the j = 0 transition. Excellent agreement is seen, especially 
for total energies below 1 eV. The j = 1 probability increases from threshold mosf 
rapidly, and is matched by the j = 3 curve at high energy. We attribute this rapid 
increase in the j = 1 energy dependence to the result of orbital motion. 
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. Figure 5.5: Convergence with respect to Kmax of the D+H2 (v = O,j) reaction cross 
sections at total energy E = 0.85eV, for j = (0,1,2). We see rapid convergence 
as Kmax increases, gaining nearly three digit accuracy for Kmax = 2. The j = 0 
calculation for Kmax = 2 required only 10 minutes. 
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from the product of reaction probabilties weakly dependent on J and the 21 + 1 

SF projection degeneracy. The exponential decrease for larger J values results from 

the repulsive centrifugal force keeping the reactants well separated. The competition 

between these two effects gives a different maximum partial cross section for each 

energy. This maximum qccurs at larger J values as energy increases, which is ex­

plicitly demonstrated by the two partial cross section curves marked at E = 0.91 e V 

and 1.35 e V. Qualitatively, Fig. 5.6 suggests that for a given value of J, reaction is 

possible only after an energy roughly equal to J(J + 1) is spent in overcoming the 

centrifugal barrier. This idea is made more quantitative below in our discussion of 

the J -shifting approximation. 

The D+H2 (v = 1,j) reaction cross sections are shown in Fig. 5.7, as a func­

tion of total energy. The thick lines show the present calculations for j = (0, 1, 2, 3), 

and the thin dotted line is the j = 0 result of Zhang and Miller obtained from the 

SMKVP [16]. We see complete agreement for j = 0 between the two methods over 

the entire energy range. The discrepancies between the SMKVP and the ABC-DVR.: 

Newton method for J = 0 and E > 1 eV seem to have averaged out in the sum over 

orbital and total angular momentum. 

The initial state selected reaction cross sections in Fig. 5. 7 demonstrate 

the very smooth energy dependence that results from averaging over partial waves 

and final states. We also see that the cross sections systematically decrease with 

increasing j. This contrasts the j dependence of the J = 0 reaction probabilities 

shown in Fig. 5.4, in which probabilities for j = 1 and 3 are the largest for many 

energies. The j dependence of the cross sections in Fig. 5. 7 results from computing· 

the "helicity averaged" cross section. In principle, the cross section depends on the 

initial orientation of the diatomic molecular rotation (i.e. BF projection quantum 

number I<, or helicity in the language of particle physics). Since most experiments 

do not prepare reactants with orientational selection, we average over the helicities. 

This average over I< is performed in the SF representation as discussed above, by 

averaging over l. Different l states have different parities, which can have a large 

effect on the magnitude of the reaction probabilities. The j > 0 cross sections involve 

an average over even and odd parity, whereas the j = 0 cross sections arise from only 

.. 
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Figure 5.6: The dependence of the partial cross sections O'!=I,j=o(Etotal) on total 
angular momentum J, for various total energies. The linear increase for small J 
results from the 2J + 1 SF projection degeneracy. The exponential decrease for 
larger J results from the centrifugal force keeping the reactants well separated. The 
exponential decrease occurs at larger J values for larger initial translational energies, 
as demonstrated by the two marked total energies Etotal = 0.91 e V and 1.35 e V. 
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even parity calculations. Since the odd parity block lacks the K = 0 component, the 

transition state is not energetically accessible and the reaction probabilities are quite 

small. 

We now report the computational effort required by these calculations, which 

were performed on an IBM RS/6000 Model 550. Total propagation times ranged 

from 60 fs (higher Et) to 100 fs (lower Et)· This corresponds to the time required for 

reaction and absorption. The linear system size (i.e. the dimension of the Hamiltonian 

matrix) ranged from 5000 (J = 0, small grid) to 25000 (J > 2, large grid). The 

number of Newton expansions performed for each Green's function calculation varied 

from 10 to 20. With Knewt = fnewt X 7 8 = 80, this corresponds to 800-1600 matrix­

vector multiplies for each reaction probability. 

All timings are for the j = 0 cross sections. Timings for higher j values are 

roughly obtained by multplying the j = 0 timings by 2j + 1, the number of terms in 

the average over orbital angular momentum. The cross sections in Fig. 5.5 required ca. 

3~ minutes times Kmax + 1, for a calculation using Kmax· Thus, converged reaction 

cross sections are obtained in 10 minutes. The cross sections in Fig. 5. 7 are more 

demanding, however, because the total energy is higher, and the initial translational 

energy is lower than that in Fig. 5.5. The lower energy cross sections and the very 

high energy cross sections in Fig. 5. 7 required ca. 60 minutes per energy, and those 

at the intermediate energies required ca. 40 minutes per energy. Furthermore, with 

respect to core memory, all calculations presented required less than 4.5 Mbyte. This 

is possible because the Newton method is an iterative algorithm which is based on 

storing only a small number of vectors. Thus, these very modest memory and time 

requirements of the ABC-DVR-Newton method suggest that it may be the most direct 

route to date for calculating accurate reaction cross sections. 

5.4.2 Rate Constants 

We now present the results of our rate constant calculations using Eqs. (5.1-

5.4). In this section we wish to emphasize two comparisons: the present theory vs. 

experiment, and the present theory vs. an approximate theory. 
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Figure 5.7: Reaction cross sections for D+H2 (v = l,j) as a function of total energy 
( e V). The thick lines show the present calculations for j = (0, 1, 2, 3), and the thin 
dotted line is the j = 0 SMKVP result of Zhang and Miller [Ref. 16] which agrees 
completely with the present calculations over the entire energy range. In contrast 
with the J = 0 reaction probabilities, the cross sections decrease systematically with 
increasing j because of symmetry. 
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The theory we test is the J -shifting approximation ( JSA), made popular 

in quantum reactive scattering theory by Bowman [18, 54] and Schatz [55]. The 

JSA assumes that K is conserved, and further that the centrifugal coupling is only 

important near the transition state geometry. Reaction probabilities for J, K > 0 are 

obtained by a (J,_K)-dependent energy shift from the J = 0 result via [18] 

(5.40) 

This allows one to estimate observables such as cross sections and rate constants 

when only accurate J = 0 calculations are possible. As stated in the Introduction, 

Bowman [18] and Takada et al. [22] have examined the accuracy of the JSA, in both 

cases finding good agreement with exact results for low enough energy. The former 

study tested H+H2 cumulative reaction probabilities for J = 4, while the latter 

examined D+H2 (v = j = 0) cross sections and rate constants. Our calculation of 

exact D+H2 [v = 1, j = (0, 1, 2, 3)] rate constants provides an interesting opportunity 

to test this approximation further. 

In this Chapter, we use the linear transition state JSA. This assumes con­

tribution from K = 0 only, and gives the following (v,j)-selected rate constant: 

kJS.A(T) = A(T) Qt (T) ioo dE e-Et/kBT pJ7~(E) 
v,J rot t v,J,J t ' 

. 0 
(5.41) 

where 

(5.42) 

and 

00 

Q;ot(T) = L (2J + 1) e-:B*J(J+l)/kBT. (5.43) 
J=O 

In Eq. (5.42), the factor of j + 1 counts the number of !-states in the sum over orbital 

angular momentum which contain a K = 0 component. In Eq. (5.43), B: is the 

rotation constant of the linear transition state species, which is 8.6 cm-1 for the 

LSTH PES description of D+H2 • The above assumptions are expected to be satisfied 

at lower temperatures, but less so at higher temperatures. , 
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Figure 5.8 demonstrates the temperature dependence of exact and JSA rate 

constants for the D+H2 (v = 1,j) reaction. The temperature range is 200 -1000]{, 

plotted in inverse Kelvin. The exact rate constants were obtained from Eq. (5.4) and 

the cross sections in Fig. 5.7, and the JSA rate constants were obtained from Eqs. 

(5.41)-(5.43) and the J = 0 reaction probabilities in Fig. 5.4. Very good agreement is 

obtained for all j values. In all cases, the JSA predicts the correct Arrhenius activation 

energy (i.e. negative of the slope of log k(T) vs. 1/kBT), and is qualitatively correct 

in predicting the Arrhenius prefactor (i.e. y-intercept). The overall agreement is truly 

excellent for j = 1 and 2. However, the JSA systematically underestimates the rate 

constant by roughly 40% for j = 0 and 3. 

The activation energies obtained from Fig. 5.8 are all ca. 0.17 e V. To put this 

number in perspective, the activation energy from the D+H2(v = O,j = 0) Arrhenius 

plot is 0.32 eV (taken from Table XI in Ref. 16). Due to tunneling, this is slightly 

less than the classical barrier height on the LSTH PES which is 0.425 eV. On the 

other hand, the H2(v = O,j = 0) --+ H2 (v = l,j = 0) vibrational excitation energy 

is 0.52 eV. As such, only 0.15 eV out of 0.52 eV (29%) is converted into reactive 

translational energy. Although the vibrational excitation does enhance reactivity (by 

three orders of magnitude), it does so relatively inefficiently. Thus, the D+ Hz system 

demonstrates a large amount of vibrational adiabaticity. 

We now consider experimental results for the D+H2 (v = 1) rate constant. 

As discussed in the Introd_uction, the measured rate constant for this reaction has 

been quite sensitive to the particular experimental procedure employed (1-3]. Dreier 

and Wolfrum (4] have measured the rate constant by applying CARS spectroscopy to 

monitor directly most of the reagents in the system. Since the other experiments have 

involved indirect probing of some sort (1-3], we consider. the CARS measurement to 

be the most reliable. Thus, we take their result, kv=l (T = 310 K) = (1.9±0.2) x 10-13 

cm3 molecule-1 sec-,-1 , for comparison. 

The most accurate theoretical treatment of this system is by Zhang and 

Miller (16], who calculated the exact rate constant for D+H2(v = 1,j = 0). Their 

published result is kv=l,j=o(T = 300 K) = 1.63 x 10-13 cm3 molecule-1 sec-1 . Al­

though the j dependence of this rate constant is not expected to be too strong, a full 
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Figure 5.8: Exact and approximate (JSA) rate constants for the D+H2(v = 1,j) 
reaction. The JSA predicts the correct Arrhenius activation energy (i.e. slope) in 
all cases, and is qualitatively correct in predicting the Arrhenius prefactor (i.e. y­
intercept). Agreement is excellent for j = 1 and 2. However, the JSA systematically 
underestimates the rate constant by roughly 40% for j = 0 and 3. 
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L EXA JSA Pv=l,j 

0 2.10 1.37 11.9% 

1 1.98 2.23 63.6% 

2 1.70 2.03 12.5% 

3 1.31 0.976 11.2% 

Table 5.2: Exact (EXA) and approximate (JSA) theoretical rate constants for 
D+H2(v = 1,j) at T = 310 K (10-13 cm3 molecule-1 sec-1 ). Both EXA and JSA 
employ the ABC-DVR-Newton method. However, the JSA uses only J = 0 reaction 
probabilities, and approximates the partial wave expansion. The final column repre­
sents the rotational mole fractions of H2 (v = 1) at T = 310 K. We note that although 
the JSA gives noticeable error, it is most accurate for the most populated state.· 

description of the experiment requires a thermal average over j-states. At T = 310 I<, 

j = (0, 1, 2, 3) accounts for 99.2% of the total population. We now present the results 

of an ABC-DVR calculation of these rate constants. 

Table 5.2 shows kv=I,j(T = 310 K) with dimensions 10-13 cm3 molecule....:1 

sec-1
, for j = (0, 1, 2, 3). Both exact partial wave expansion and JSA are shown 

for comparison, in addition to the respective mole fractions of the j-states at T = 
310 K. We note that the JSA is very reliable at predicting the order of magnitude 

of the rate constants. However, there is noticeable error, ranging from -34.8 to 

+19.4%. Furthermore, the JSA is poor at predicting thej dependence of the exact 

rate constants at this temperature, decreasing with increasing j. However, the scatter 

in error and the fact that the most populated j-state is most accurately treated by 

the JSA suggests that it might do well to predict the average rate constant. 

Table 5.3 shows the comparison between the CARS experiment, the present 

exact theory, and the JSA for the rotationally averaged rate constant at T = 310 J(, 

using the same units as in Table 5.2. As hoped (and expected!), the exact theory 

agrees quantitatively with the experimental result. Thus, we can truly regard the 

determination of the D+H2 (v = 1) rate constant as a solved problem in gas phase 

reaction dynamics. What is more intriguing, perhaps, is that the JSA predicts the 
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Method 

Experiment 

EXA theory 

JSA theory 

kv=1 (T = 310 K) 

1.9 ± 0.2 

1.87 

1.95 

Table 5.3: Comparison between experiment, exact theory (EXA), and approximate 
theory (JSA) of rate constants for D+H2(v = 1) at T = 310 K (10-13 cm3 molecule-1 

sec-1 ). The theoretical values are obtained from Table 5.2 by averaging over the 
populated j-states. The experimental value is from Dreier and Wolfrum [Ref. 4]. 
Both the EXA and JSA rate constants agree quantitatively with experiment. 

rate constant quantitatively as well. Clearly, from the analysis of Table 5.2, there 

is fortuitous cancellation of error in the average JSA rate constant. It is reasonable 

to question whether this cancellation obtains at all temperatures, or only in this 

temperature range. 

To answer this question, we have computed the rotationally averaged rate 

constant as a function of temperature, comparing exact theory to the JSA result. The 

common logarithm of the resulting rate constants is plotted in thick lines against in­

verse temperature in Fig. 5.9. In addition, the exact and JSA (v = 1,j = 0)-selected 

rate constants are plotted in thin lines to demonstrate the systematic error. We see 

in Fig. 5.9 that the average JSA rate constant quantitatively predicts the exact one 

up to ca. T = 700 K. At higher temperatures, the assumptions inherent in the JSA 

naturally tend to break down, as is manifest in Fig. 5.9. Thus, we have shown that 

for this system, the JSA gives the correct order of magnitude for the more detailed 

[v = 1,j = (0,1,2,3)]-selected rate constants, and is semi-quantitative for the less 

detailed (v = 1, < j >)-selected rate constant. 

5.5 Concluding remarks 

We have described what may be the most efficient full dimensional represen­

tation of a quantum reactiv~ scattering system. This involves different representations 
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Figure 5.9: Comparison between exact theory (solid) and the J -shifting approxi­
mation (JSA-dash) of D+H2(v = l,j) rate constants for < j > (thick) and j = 0 
(thin) as a function of temperature. With respect to the j = 0 rate constants, the 
JSA consistently underestimates the exact rate constant by ca. 35%. However, with 
respect to the < j > rate constants, the JSA is nearly exact at the lower tempera­
tures T :::; 700 K, and is semi-quantitative throughout the entire temperature range. 
Noticeable error occurs at the highest temperatures as the assumptions inherent in 
the JSA break down. 
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for the interaction region and the asymptotic region. In the interaction region, we 

use a body-fixed reference frame for the overall rotation and a grid for the internal 

motions. In the asymptotic region, we use a space-fixed reference frame for the overall 

rotation and an absorbing potential to model outgoing wave boundary conditions for 

the internal motions. This approach is used to minimize vibration rotation coupling, 

and to allow the use of very efficient sparse matrix techniques to solve the scattering 

equations. 

The ABC-DVR-Newton algorithm has been applied to the non-trivial prob­

lem of determining accurate reaction cross sections for D+H2 (v = 1,j) over a wide 

energy range. These cross sections were found to have very smooth energy depen­

dence, and to systematically decrease with increasing j. In favorable circumstantces, 

the present method gives converged reaction cross sections in 10 minutes on an IBM 

RS/6000 Model 550. In the most challenging cases, the calculations required no more 

than 60 minutes per energy (for j = 0). In all cases, the core memory required was 

less than 4.5 Mbyte. We believe that the ABC-DVR-Newton method has all the nec­

essary ingredients to move exact quantum reactive scattering calculations past the 

three atom problem. 

The rate constants kv=I,j(T) were computed and thermally averaged over 

J - (0, 1, 2, 3) at T = 310 I< to model the experiment by Dreier and Wolfrum [4]. 

Our result is kv=I (T = 310 I<) = 1.87 X 10-13 cm3 molecule-1 sec-1 , in quantitative 

agreement with their value (1.9±0.2) x 10-13 cm3 molecule-1 sec1 . We thus consider 

the subject of the D+H2 (v = 1) rate constant to be solved, with experiment and 

theory in complete agreement. 

The J-shifting approximation (JSA) was tested against the exact kv=I,j(T) 

and kv=I(T) rate constants forT= 200-1000]{. The [v = 1,j = (0, 1,2,3)]-selected 

JSA rate constants were qualitatively correct, but were in error by as much as 41%. 

The error systematically cancelled for the (v = 1, < j >)-selected rate constant, 

giving a semi-quantitative description of this averaged quantity for T < 700 ]{. 

Although the most detailed attributes of the D+H2 reaction are still under 

discussion, e.g. the geometric phase [56], we can confidently say that the average 

behavior of this system is well understood. 

•. 

., 
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Chapter 6 

General Conclusions 

We conclude by summarizing the results presented in this dissertation, dis­

cussing their impact on the field of reaction dynamics, and suggesting futur'e directions 

of research in theoretical chemistry. 

6.1 The H/D+H2 System 

We have analyzed the sensitivity of quantum reactive scattering calculations 

for H + H2 to small changes in the molecular potential, and find no qualitative changes 

and very small quantitative changes in the resulting cross sections. The fact that these 

calculations (at least for H+H2 ) do not show anomalous sensitivity helps to put ab 

initio reaction dynamics on firm ground. It is true that the difference between the 

potentials considered in Chapter 2 is, in some sense, trivial. Nevertheless, the fact 

that the difference in the resulting dynamics is also trivial is an important result. 

In addition, we have studied the initial state selected D+H2 (v = 1,j) ~ 

DH+H reaction. For the first time, the initial vibrationally excited rate constant 

kv=1 (T = 310K) agrees quantitatively with experiment. Based on these D+H2 cal­

culations, the H+H2 calculations in Chapter 2, and the recent D+H2 differential cross 

section calculations of Kuppermann and Wu [1] in their study of the gemetric phase 

effect, we conclude that many of the quantitative aspects of the H+H2 reaction (and 

isotopic analogues) on its ground electronic state are well understood. 
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A less well known system is the F + H2 :-+ HF + H reaction. The potential 

for this system is characterized by an early barrier and a large exoergicity, and the 

dynamics involve complex formation. The early barrier provides an interesting study 

of the Polanyi rules, which predict that reaction is more favorable with translational 

energy on the F + H2 side, or with vibrational energy of the HF + H side. In addition, 

exoergic reactions are important for the development of new sources of fuel. Fur­

thermore, reactions which form collision complexes facilitate the study of transition 

state structure (or in the language of particle physics, allow the study of new parti­

cles). Thus, the experimental and theoretical characterization of this reaction is an 

important step in reaction dynamics. 

Experimental product state distributions [2-8] observe [HF(v = 2)] in excess 

of [HF(v = 3)], whereas the most accurate theoretical descriptions [9-11] predict the 

opposite trend in the vibrational branching ratio. The discrepancy is attributed to 

error in the F+H2 potential, which is known less well than the H+H2 potential. In 

order to guide quantum chemists as they improve the F+H2 potential, it may be useful 

to perform a functional sensitivity analysis for this system. This will pinpoint certain 

molecular configurations as being most important for determining the vibrational 

branching ratio. One hopes that the exisiting F + H2 potential is not so inaccurate 

that it will point to the wrong configurations. 

6.2 Integral Equations 

We have developed two main integral equation approaches for quantum re­

active scattering calculations. The physically important scattering solution to the 

Schrodinger equation has outgoing wave boundary conditions, which are automati­

cally enforced by the Green's function-integral equation technique. The two methods 

we have discussed differ in how they apply the boundary conditions. The first method, 

the S -matrix version of the K~hn variational principle (KVP), constructs the out­

going wave Green's function by explicitly including in the Kohn basis asymptotically 

outgoing functions in all energetically accessible channels for all chemical arrange­

ments. The second method, the absorbing boundary condition (ABC) formulation, 

\ 

•· 

,, 
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constructs the outgoing wave Green's function effectively by absorbing all flux which 

leaves the interaction region. This absorption is effected by adding an empirical, 

negative imaginary absorbing potential to the physical Hamiltonian. As such, the 

KVP enforces the boundary conditions in the basis set, whereas the ABC formula­

tion enforces the boundary conditions in the Hamiltonian operator. Both methods 

give a non-Hermitian Hamiltonian matrix, which is closely related to the complex 

coordinate rotation technique. 

We have found the ABC formulation to be superior to the KVP for two rea­

sons. First, the ABC formulation provides a single theoretical framework for directly 

computing the state-to-state reaction amplitude S1i(E), the initial state selected reac­

tion probability Pi(E) = Lf 1Sti(E)l2
, and the cumulative reaction probability N(E) 

= Li Lf 1Sti(E)j2
• That is, by constructing the Green's function effectively, different 

levels of state resolution can be obtained, with concomitant amounts of computa­

tional effort. The second reason pertains to the structure of the Hamiltonian matrix. 

Since the ABC formulation enforces boundary conditions in the Hamiltonian, no de­

localized waves need to be included in the basis set. As such, a grid representation of 

the ABC Hamiltonian is sparse, which facilitates iterative linear system solving. On 

the other hand, because of the outgoing waves in the Kohn basis, a grid representa­

tion of the KVP Hamiltonian is essentially full, which severely limits the scope of its 

applicability. [We note that a sparse block of the KVP Hamiltonian can be projected 

out, but this requires that all initial conditions be considered, which also limits the 

scope of its applicability.] Thus, we advocate the use of ABC in quantum reactive 

scattering theory. 

The practicality of computing the ABC Green's function in a polynomial of 

the Hamiltonian is discussed. We find no feasible expansion which has a fixed and 

small memory reqUirement, and is guaranteed to converge. We have found, however, 

that exploiting the Fourier integral (i.e. time dependent) representation of the ABC 

Green's function leads to a stable and efficient algorithm. We attribute this to the 

fact that by passing to the time domain, we can fully exploit the finite time nature 

of the collision event. And by construcing only finite time dynamics, we effectively 

remove the poles which make direct expansions unfeasible. Following Park and Light 
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[12], one can think of the time variable as corresponding to the "number of iterations" 

in a Lanczos based method. Thus, the time domain provides a natural representation 

for developing iterative methods in quantum mechanics. 

All the calculations reported in this dissertation involved relatively short 

time propagations (TABC < 120 fs). One may ask how efficient our scattering algo­

rithm would be for treating reactions with long lived collision complexes (e.g. TABC > 
1 ps). In these cases, the conventional wisdom is to use a time independent method 

(e.g. the KVP or hyperspherical coordinate propagation). [In complex forming reac­

tions, these "single energy" methods may give results quickly for each energy, but a 

very fine energy grid is required to trace out the energy dependence near the reso­

nance.) However, the purpose of this dissertation is to develop methods for reactions 

which are sufficiently complicated (e.g. heavy masses or many atoms) that conven­

tional methods, which obtain state-to-state amplitudes, are intractable. As such, we 

must treat the complex forming reaction with the ABC method, directly obtaining 

averaged reaction probabilities [13). If the .Hamiltonian can not be stored for LU 

decomposition, and GMRES does not converge because the condition number is large 

for resonant energies ( cf. Chapter 4, Section 4.3.1), we are forced to use the time de­

pendent Newton algorithm. Thus, we have returned to the time dependent picture, 

even for the treatment of long lived collision complexes. 

Given this situation, is it computationally efficient to perform time depen­

dent propagation on an energy dependent starting vector (ESV)? It does not seem 

efficient to run long propagations, each for a single energy only, when a single long 

wavepacket propagation provides dynamical information for a band of energies. An 

answer in favor of the ESV might claim that the ESV calculation provides the most 

direct route to dynamics at a single energy .. However, this argument may not be 

compelling. Indeed, one can center an initial wavepacket in energy space around 

the energy of interest to obtain accurate dynamics for that energy. This wavepacket 

calculation may not require more effort than the corresponding ESV calculation. In 

addition, the wavepacket calculation contains dynamical information at other ener­

gies, albeit somewhat less accurately. Furthermore, as emphasized by Friesner et al. 

[14], the time dependent picture allows one to match the resolution in energy space 
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obtained for the dynamical quantities with the amount of error in the underlying po­

tential, or with the energy resolution of a corresponding experiment. The implication 

here is that a fully time dependent wavepacket formulation may be optimal. 

In principle, time dependent formulations exist for computing the cumula­

tive reaction probability [16, 17] and the thermal reaction rate constant [16]. However, · 

an efficient implementation which gives results at many energies or temperatures, re­

spectively, is difficult because of the mixed state nature of these dynamical quantities. 

On the other hand, efficient time dependent wavepacket ABC formulations exist for 

computing the state-to-state reaction amplitude [10] and the initial state selected 

reaction probability [15]. Thus, if one is interested in state resolved reaction prob­

abilities for systems which form long lived collision complexes, the time dependent 

wavepacket ABC formulation is advocated. 

The ESV calculations in Chapters 4 and 5 on the relatively direct D+H2 re­

action demonstrate remarkably rapid convergence. This appears to be an extremely 

attractive computational framework for solving the four atom reactive scattering prob­

lem in full dimensionality (i.e. six dimensions with J = 0), allowing the ab initio study 

of many reactions of interest to science [18, 19] and technology. Indeed, such studies 

are now underway [20]. 

6.3 And Beyond ... 

6.3.1 Quantum Reaction Rate Theory 

An important avenue of future research in quantum reactive scattering the­

ory IS the development of reduced dimensionality theories [21], which are able to 

estimate the reactivity of relatively complex systems by fixing or averaging over spec­

tator modes. The difficult aspect of this work is in determining coordinate systems 

for which the spectator modes are indeed globally inert. 

The use of quantum reactive scattering theory to predict rate constants for 

chemical reactions is presently relegated to the 3 o_r 4 atom world. It is crucial to ex­

tend reaction rate theory to larger systems. One possibility for this is to use classical 
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mechanics. Although classical mechanics is surprisingly accurate for a wide variety 

of systems, it clearly lacks tunneling and zero point energy constraints which may be 

important for certain portions of the total system. As such, an interesting area of 

research involves the development and characterization of mixed quantum-classical 

methods [22, 23]. A time dependent dynamical formulation is useful here, since clas­

sical mechanics is most efficiently implemented as an initial value problem. The 

complicated aspect of this approach is isolating which modes are crucial to the re­

action, and treating them with the appropriate mixture of quantum and classical 

mechanics. 

6.3.2 Gas Phase Reaction Dynamics 

Many exciting questions remain in gas phase reaction dynamics. The goal 

of bond and state selective chemistry is still not fully realized, although this type of 

control has been observed in the local mode H+H20 system [18, 19]. An interesting 

new approach for chemical·control involves preparing reactants in a coherent super­

position of states [24], for which some theory already exists [25]. In applying these 

techniques to complex reactive systems, one hopes that the hard won coherence is 

not lost before the reaction proceeds. 

As stated by Lee [26], using vibrational excitation to promote reactivity 

efficiently is difficult because intramolecular vibrational energy redistribution is so 

rapid. A fascinating question, then, pertains to the use of electronic excitation to 

promote reactivity. This may be important, for example, in studying the chemistry 

of nitrogen-oxygen compounds, which often have open shell configurations involving 

many interacting electronic states. From the theoretial perspective, performing a 

coupled surface quantum reactive scattering calculation remains challenging. Because 

the nonadiabatic coupling is singular at curve crossings, perturbation theory is not 

useful. The most convenient treatment involves diabatic electronic states, because 

diabatic couplings are more smooth. At present, though, surface hopping approaches 

are the method of choice [27]. 

•' . 
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6.3.3 Physical Chemistry 

Physical chemistry is an enormous field, touching practically every form 

of matter. However, until now we have only discussed gas phase phenomena. A 

fundamental question, then, pertains to the applicability of gas phase principles to 

chemistry in liquid solution, on solid surfaces, . in bulk solids, and in porous me­

dia. The basic question is: does reactivity drastically change from the effect of the 

medium, or is it only gently perturbed such that gas phase principles remain appli­

cable? For example, canonical transition state theory (CTST) can be applied to a 

condensed phase system [28] by first isolating certain modes as constituting the "re­

active system," with the remaining degrees of freedom providing a "bath." For fixed 

system configurations, one thermally averages over the bath, obtaining a free energy 

surface describing the adiabatic motion of the reacting system. Variational CTST 

rates are then computed by placing the dividing surface at the temperature depen­

dent bottleneck in this free energy function. A very important issue is how to treat 

recrossing effects caused by the solvent. Calculating dynamical corrections is usually 

not feasible. An interesting new approach involves expanding the space of variational 

parameters used to optimize the dividing surface. In particular, Pollak [29] has shown 

that the Kramers-Grote-Hynes [30-32] treatment of solvent friction (i.e. recrossings) 

is really variational CTST. The challenging aspect of this approach is choosing which 

bath modes are most responsible for the recrossings. In any event, the development 

of a reliable, predictive model for these effects is of paramount importance. 

One of the most important concepts in chemistry is catalysis. The develop­

ment of effective catalysts requires knowledge of reaction paths and transition state 

structures. An important component in the future of physical chemistry, therefore·, is 

the application of principles in reaction dynamics to the development of new materials ' 

with useful catalytic properties. I believe that the remarriage of physical chemistry 

and materials science will provide many years of excitement and discovery to come. 
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