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Abstract 

The topic of this thesis is the development of a versatile and geometrically motivated 

differential calculus on non-commutative or quantum spaces, providing powerful but 

easy-to-use mathematical tools for applications in physics and related sciences. A 

generalization of unitary time evolution is proposed and studied for a simple 2-level 

system, leading to non-conservation of microscopic entropy, a phenomenon new to 

quantum mechanics. A Cartan calculus that combines functions, forms, Lie deriva

tives and inner derivations along general vector fields into one big algebra is con

structed for quantum groups and then extended to quantum planes. The construction 

of a tangent bundle on a quantum group manifold and an BRST type approach to 

quantum group gauge theory are given as further examples of applications. 

The material is organized in two parts: Part I studies vector fields on quan

tum groups, emphasizing Hopf algebraic structures, but also introducing a 'quantum 

geometric' construction. Using a generalized semi-direct product construction we 

combine the dual Hopf algebras A of functions and U of left-invariant vector fields 

into one fully bicovariant algebra of differential operators. The pure braid group 

is introduced as the commutant of !:::i(U). It provides invariant maps A ~ U and 

thereby bicovariant vector fields, casimirs and metrics. This construction allows the 

translation of undeformed matrix expressions into their less obvious quantum alge

braic counter parts. We study this in detail for quasitriangular Hopf algebras, giving 

the determinant and orthogonality relation for the 'reflection' matrix. Part II con

siders the additional structures of differential forms and finitely generated quantum 

Lie algebras -it is devoted to the construction of the Cartan calculus, based on an 

undeformed Cartan identity. We attempt a classification of various types of quan

tum Lie algebras and present a fairly general example for their construction, utilizing 

pure braid methods, proving orthogonality of the adjoint representation and giving 

a (Killing) metric and the quadratic casimir. A reformulation of the Cart an calculus 

as a braided algebra and its extension to quantum planes, directly and induced from 

the group calculus, are provided. 
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Introduction 

The topic of this thesis is non-commutative geometry in general and the development 

of powerful and easy to use differential calculi on quantum spaces and some examples 

of their application in particular. I will try to give an as geometric picture as pos

sible while including all necessary mathematical tools. The emphasis will be on the 

formation of concepts (Begriffsbildung). 

In classical differential geometry we have a choice between two dual and equivalent 

descriptions: we can either work with points on a manifold M or with the algebra 

C(M) of functions on M. Non-commutative geometry is based on the idea that 

the algebra C(M) need not be commutative. Such a space is called a quantum 

space - in analogy to the quantization of the commutative algebra of functions on 

phase-space that yields the non-commutative operator algebra of quantum mechanics. 

More general, a non-commutative algebra, viewed as if it was a function algebra on a 

(possibly non-existing) topological space, is called a quantum or pseudo space. One 

could call it a "theory of shadows" -shadows of classical concepts and objects. 

The poor understanding of physics at very short distances indicates that the small 

scale structure of space-time might not be adequately described by classical continuum 

geometry. At the Planck scale one expects that the notion of classical geometry has to 

be generalized to incorporate quantum effects. No convincing alternative is presently 

known, but several possibilities have been proposed; one of them is the introduction 

into physics of non-commutative geometry. Such new physical theories would allow, 

roughly speaking, the necessary fuzziness for a successful description of the. space

time "foam" expected at tiny distances. See for instance the interesting gedanken 

experiment [1] concerning generalized uncertainty relations. 

This certainly was one of the motivations behind the work on quantum defor

mations of the Lorentz and Poincare groups [3, 4, 5] and of Minkowski space in 

terms of .a parameter q and of course behind Connes program [2] of non-commutative 

geometry, but there are also many other possible applications of non-commutative 

calculi in physics like generalized symmetries (e.g. quantum group gauge theory) and 
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stochastics (master equations, random walks, ... ), to mention a few. Continuous de

formations of symmetry groups in physical theories have historically been proven to 

be rather successful in enlarging the class of phenomena that these theories de:xribe 

well; one of the most famous examples is special relativity. For this reason it would be 

very interesting in elementary particle physics to study deformations of semi-simple 

Lie groups. Unfortunately these groups allow only trivial deformations as long as 

one stays within the category of Lie groups, hence giving another motivation for the 

study of the less rigid quantum groups. 

Such generalizations of physical theories might have welcome and also unexpected 

side effects: One of them is the possibility that some q-deformed quantum field the

ories might be naturally finite. This is expected if the deformation parameter has 

dimensions of length, in analogy to amplitudes in string theory which were proven to 

be finite to all orders by S. Mandelstam [6]. Even if q turns out not to be a physical 

parameter, such a theory might still be interesting as a new way to regularize infini

ties [7, 8], using q-identities, known from the study of q-functions, which were first 

introduced in the context of combinatorics nearly a century ago. Here we should also 

mention a quick and easy approach, due to [9], to lattice gauge theory based on a min

imal non-commutative calculus. In chapter 5 we will show at the example of a simple 

toy model that modified time evolution equations, that could be motivated from de

formed space time symmetries, lead to non-conservation of entropy. This might be 

\ of interest in connection with the black hole evaporation paradox. Connes [10] and 

Connes & Lott [ 11] consider a minimal generalization of classical gauge theory and 

study a Kaluza-Klein theory with a 2-point internal space and use non-commutative 

geometric methods to define metric properties; note that it is also possible with these 

methods to gauge discrete spaces. This lead to a new approach to the standard 

model. Frohlich and collaborators [12) introduced gravity in this context. As an ex

ample of new symmetries in "old" theories we would like to mention the work of the 

Hamburg Group of Mack and collaborators [13]: They showed that the internal sym

metries of (low-dimensional) quantum field theories with braid group statistics form 

a larger class than groups and were able to motivate from basic axioms of such field 

theories that elements of weak quasitriangular quasi Hopf algebras with *-structures 

should act as symmetry operators in the Hilbert space of physical states. Particle 

physics phenomenology ftom q-deformed Poincare algebra is for example considered 

in (14], where evidence of q-deformed space time is sought in the observed spectrum 

of p- a, w- J, K 0 mesons and remarkably good agreement of theory and experiment, 

similar to, if not better, than Regge pole theory is found. 
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The theory of non-commutative spaces is quite old, going back to early work 

of Kac [15], Taksaki [16] and Schwarz & Enock [17]. Recently, the interest got re

vived by the discovery of non-trivial examples. Quantum groups, which are a con

tent rich example of quantum spaces, arise naturally in several different branches of 

physics and mathematics: in the context of integrable models, quantum inverse scat

tering method, Yang-Baxter-equations and their solutions, the so called R-matrices, 

Knizhnik-Zamolodchikov equations, rational conformal field theory and in the the

ory of knot and ribbon invariants. Concerning knot theory we should in particular 

mention the discovery of the Jones polynomial [18] and its generalizations, which 

were then reconstructed from quantum R-matrices in the work of Reshetikhin & Tu

raev [19] and later related to the topological Chern-Simons action by Witten [20]. It 

was pointed out by Drinfeld that these examples find an adequate description in the 

language of Hopf algebras. 

There are at least three major approaches to the construction of quantum defor

mations of Lie groups: Drinfeld and Jimbo introduce a deformation parameter on 

the Lie algebra level and provided us with consistent deformations for all semi-simple 

Lie groups. The St Petersburg Group impose q-dependent commutation relations in 

terms of numerical R-matrices among the matrix elements of a matrix representation. 

Manin finally identifies quantum groups with endomorphisms of quantum planes. 

A large part of this thesis is devoted to the study of differential calculi on quantum 

groups rather than quantum planes (these will be considered in the second part of this 

thesis). This path was in part taken because quantum groups have more structure 

than quantum planes and hence provide more guidance in the search for the correct 

axioms. Apart from this purely practical reason, the importance of differential geom

etry in the theory of (quantum) Lie groups and vice versa should, however, not be 

underestimated. Lie groups make their appearance in differential geometry, e.g. in 

principal and associated fiber bundles and in the infinite graded Lie algebra of the 

Cartan generators (£,i,d). Differential geometry on group manifolds on the other 

hand gives rise to the concepts of tangent Lie algebra and infinitesimal representation 

- and infinitesimal group generators, like e.g. the angular momentum operator play 

obviously a very important role in physics. Covariant differential calculi on quan

tum groups were first introduced by S. Woronowicz [21]; differential calculi on linear 

quantum planes were constructed by J. Wess & B. Zumino [22]. Since then much 

effort (23, 24, 25, 26, 27] has been devoted to the construction of differential geometry 

on quantum groups. Most approaches are unfortunately rather specific: many pa

pers deal with the subject by considering the quantum group in question as defined 

7 



by its R-matrix, and others limit themselves to particular cases. In this thesis we 

will develop a more abstract formulation which depends primarily on the underlying 

Hopf algebraic structure of a quantum group; it will therefore be a generalization of 

many previously obtained results, and the task of constructing specific examples of 

differential calculi is greatly simplified. We have to stop short of giving a "cook book 

recipe", however, because of case specific problems in the identification of finite bases 

of generators. 

The thesis is divided into two parts: Part I studies vector fields on quantum 

groups; an algebraic and a geometric construction of a bicovariant quantum algebra 

of differential operators is given. Here we are mainly interested in the underlying 

Hopf algebra and bicovariance considerations, introducing the pure braid group and 

the canonical element in this context. Part II introduces additional structure in form 

of a Cartan calculus of differential forms, Lie derivatives and inner derivations; it is 

devoted to differential calculi on quantum groups and quantum planes and examples 

of their application. 
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· Bicovariant Quantun1 Algebras 
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Chapter 1. 

Quantum Algebras and Quantum 

Groups 

1.1 Introduction 

There are two dual approaches to the quantization of Lie groups. Drinfeld [28] and 

Jimbo [29] have given quantum deformations of all simple Lie algebra in terms of a 

numerical parameter q. For the case of SLq(2) one has for instance 

. qH -q-H 
[X+, X_]= 

1 q-q-
(1.1) 

and consistent rules for taking tensor product representations, given in terms of co

products, that we will come back to later. The second approach is due to the Russian 

school of Faddeev, Reshetikhin and Takhtadzhyan. Consider again SLq(2) which can 

be defined in terms of a two by two matrix 

(1.2) 

its fundamental representation. But instead of. behaving like C-numbers, the group 

parameters a, b, c, d now obey non-trivial commutation relations 

ab = qba, 

bd = qdb, 

where,\= (q- q-1), and 

ac = qca, 

cd = qdc, 

be= cb, 

ad- da =>.be 

detq(T) =ad- qbc = 1. 

(1.3) 

(1.4) 

The remarkable property of such quantum matrices is that, given two identical but 

mutually commuting copies of these matrices, their matrix product is again a quantum 
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matrix who's elements satisfy the same commutation relations, as given above. Later 

we will express this property in terms of the coproduct of T, which is an algebra 

homomorphism. 

In the following we will give a more formal introduction to quantum groups. 

1.1.1 Quasitriangular Hopf Algebras 

A Hopf algebra A is an algebra (A·,+, k) over a field k, equipped with a coproduct 

.D. : A -+ A 0 A, an antipode S : A -+ A, and a counit € : A -+ k, satisfying 

(..D.0il)..D.(a) -

·(t: 0 il)..D.(a) -

·(S 0 il)..D.(a) -

(il0 ..D.)..D.(a), ( coassociativity), 

(counit), ·(il0 t:).6.(a) =a, 
·(il0 S).6.(a) = 1t:(a), (coinverse), 

(1.5) 

(1.6) 

(1.7) 

for all a E A. These axioms are dual to the axioms of an algebra. There are also a 

number of consistency conditions between the algebra and the coalgebra structure, 

..D.(ab) - .6.(a).6.(b), (1.8) 

t:(ab) - t:(a)t:(b), (1.9) 

S(ab) - S(b)S(a), ( antihomomorphism), (1.10) 

.6.(S(a)) - r(S 0 S)..D.(a), with r(a0b) = b0a, (1.11) 

t:(S(a)) - t:(a), and (1.12) 

..D.(1) - 101, S(1) = 1, E(1) = h, (1.13) 

for all a, bE A. We will often use Sweedler's [30] notation for the coproduct: 

(summation is understood}. (1.14) 

Note that a Hopf algebra is in general non-cocommutative·, i.e. r o .6. =F .D.. 
A quasitriangular Hopf algebra U (28] is a Hopf algebra with a universal n E 

u®u that keeps the non-cocommutativity under control, 

(1.15) 

and satisfies, 

and 

(1.16) 
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where upper indices denote the position of the components of n in the tensor product 

algebra u®u&;u : if n = Cti ® f3i (summation is understood), then e.g. 1?.-13 = 
ai ® 1 ® f3i . Equation (1.16) states that n generates an algebra map (R,. ® id): 
u• -+ U and an anti algebra map (R, id ® . ) : u• -+ U: The following equalities 

are consequences of the axioms: 

n12R1sn23 -
(S®id)R -

(id0 s)n- 1 -

(€ 0 id)R -

n23nPn12, 

n-1 
' 

n, and 

(id®f)'R= 1. 

(quantum Yang-Baxter equation), (1.17) 

(1.18) 

(1.19) 

(1.20) 

An example of a quasitriangular Hopf algebra that is of particular interest here is 

the deformed universal enveloping algebra Uqg of a Lie algebra g. Dual to Uqg is 

the Hopf algebra of ''functions on the quantum group" Fun(Gq) ; in fact, Uqg and 

Fun(Gq) are dually paired. We call two Hopf algebras U and A dually paired if there 

exists a non-degenerate inner product <, >: U ®A-+ k, such that: 

< xy,a > - < x 0 y, ~(a) >=< x, a(l) >< y, a(2) >, (1.21) 

< x,ab> - < ~(x),a0b>=< X( 1),a >< X(2),b >, (1.22) 

< S(x),a > - < x, S(a) >, (1.23) 

< x,1 > - f(x), and < 1,a >= f(a), (1.24) 

for all x, y E U and a, bE A. In the following we will assume that U (quasitriangular) 

and A are dually paired Hopf algebras, always keeping Uqg and Fun(Gq) as concrete 

realizations in mind. 

In the next subsection we will sketch how to obtain Fun(Gq) as a matrix repre

sentation of Uqg. 

1.1.2 Dual Quantum Groups 

We cannot speak about a quantum group Gq directly, just as "phase space" loses 

its meaning in quantum mechanics, but in the spirit of geometry on non-commuting 

spaces the (deformed) functions on the quantum group Fun( G q) still make sense. This 

can be made concrete, if we write Fun(Gq) as a pseudo matrix group [31), generated 

by the elements of anN x N matrix A= (Ai;)i,j=I ... N E MN(Fun(Gq))t. We require 

*Notation: "." denotes an argument to be inserted and "il" is the identity map, e.g. {'R, i:l ®f) 
=. o:i{/3i.f}; 'R =. o:i ® /3i E U®U, f E u•. 

twe are automatically dealing with GLq(N) unless there are explicit or implicit restrictions on 

the matrix elements of A. 
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that pij =< . , Aij > be a matrix representation of U9g, i.e. 

Pii : Uqg --+ k, 

/j(xy) = LkPik(x)pkj(y), for Vx,y E U9g, 
(1.25) 

just like in the classical caset. The universal n E U9g@U9g coincides in this repre

sentation with the numerical R-matrix: 

(1.26) 

It immediately follows from (1.21) and (1.25) that the coproduct of A is given by 

matrix multiplication (31, 23), 

AA=A@A, I.e. i i k A(Ai) = Ak ®A i· 

Equations (1.15), (1.22), and (1.25) imply [28, 23), 

< x,Ai,Air > - < Ax,Ai, 0 Air> 

- <ro~x,Air0Ai,> 

- < R(Ax)n-1 ,Air 0 Ai, > 
- Rikl < Ax,Akm ®A1n > (R-1)mnrs 

< Dij Ak AI (R-1 )mn > 
- X, It kl m n rs ' 

i.e. the matrix elements of A satisfy the following commutation relations, 

Rij Ak AI Aj Ai Rrs kl m n = s r mn, 

which can be written more compactly in tensor product notation as: 

R12A1A2 - A2A1R12; 

R12 = (p1® P2)(1?..) - < R,A1 0 A2 >. 

(1.27) 

(1.28) 

(1.29) 

(1.30) 

(1.31) 

Lower numerical indices shall denote here the position of the respective matrices in the 

tensor product of representation spaces {modules). The contragredient representation 

[32] p-1 =< . , SA > gives the antipode of Fun(G9 ) in matrix form: S(Aij) = 
(A-1)i;- The counit is: t(Aii) =< 1,Aii >= oii· 

Higher (tensor product) representations can be constructed from A: 

A1A2, A 1A2A3 , ••• , A1A2 ···Am. We find numerical R-matrices [33) for any pair of 

*The quintessence of this construction is that the coalgebra of Fun(G9) is undeformed i.e. we 

keep the familiar matrix group expressions of the classical theory. 
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such representations: 

R(, , ') ( ) - < 'R,At'A2'" ··An' 0AtA2 ···Am> 1 , 2, ... , n , 1, 2, ... , m 

I II 

- Rt'm • Rt'(m-1) 

· R2'm · R2'(m-1) 

· Rn'm · Rn'(m-1) Rn't 

Let A1 = At'A2' ···An' and An= A1A2 ···Am, then: 

(1.32) 

(1.33) 

R 1,11 is the "partition function" of exactly solvable models. We will need it in sec

tion 3.1.1. 
We can also write Uqg in matrix form (23, 32] by taking representations e- e.g. 

e =< . , A >-of 'R in its first or second tensor product space, 

£+ 
Q -

sL-
(I -

L-
fl -

(il0 e)('R), 

(e 0 il)('R), 

(e 0 if) ('R-1), 

L1" = < 'R2\A0il>, 

SL- = < 'R,A0il>, 

L- = < 'R, SA 0 il > . 

(1.34) 

(1.35) 

(1.36) 

The commutation relations for all these matrices follow directly from the quantum 

Yang-Baxter equation, e.g. 

0 _ < n23n13RP 

R12Lf Lt 
R.Y'R13'R23 , il0 At 0 A2 > 

Lt Lf R12, 
(1.37) 

where upper "algebra" indices should not be confused with lower "matrix" indices. 

Similarly one finds: 

R12L2 L} - L} L2 R12, 

R12Li L} - L} Li R12· 

(1.38) 

(1.39) 

1.2 Quantized Algebra of Differential Operators 

Here we would like to show how two dually paired Hopf algebras can be combined 

using a Hopf algebra analog of a semi-direct product construction. We obtain an 

algebra of differential operators consisting of elements of Uqg with function coefficients 

from Fun(Gq)· Both the inner product with and the action on elements of Fun(Gq) by 
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elements of U9g will be encoded in the product of the new combined algebra. Using 

this construction we can avoid having to work with convolution products and similar 

abstract and sometimes clumsy constructions. In fact we will be able to extend the 

R-matrix approach of [23] so that all (Hopf algebra) relatio:ns can be written in terms 

of simple commutation relations of operator-valued matrices; see for example [24]. 

1.2.1 Actions and Coactions 

Actions. A left action of an algebra A on a vector space Vis a bilinear map, 

[>: A® v-+ v: X® vI-+ X t> v, (1.40) 

such that: 

( xy) 1> v = x t> (y 1> v), 1 t> v = v. (1.41) 

V is called a left A-module. In the case of the left action of a Hopf algebra H on an 

algebra A' we can in addition ask that this action preserve the algebra structure of 

A', i.e. xt> (ab) = {x(l) t>a) (x(2)t>b)* and xt> 1 = 1 €(x), for all x E H, a, bE A'. 
A' is then called a left H-module algebra. Right actions and modules are defined in 

complete analogy. A left action of an algebra on a (finite dimensional) vector space 

induces a right action of the same algebra on the dual vector space and vice versa, 

via pullback. Of particular interest to us is the left action of U on A induced by the 

right multiplication in U: 

< y, x t> a>:=< yx, a>=< y ® x, ~a>=< y, a(l) < x, a(2) >>, 

=> xt>a=a(1)<x,a(2)>, forVx,yEU,aEA, 
(1.42) 

where again ~a = a(l) ® a(2). This action of U on A respects the algebra structure 

of A, as can easily be checked. The action of U on itself given by right or left 

multiplication does not respect the algebra structure of U; see however (1.63) as an 

example of an algebra-respecting "inner" action. 

Coaction. In the same sense as comultiplication is the dual operation to multiplica

tion, right or left coactions are dual to left or right actions respectively. One therefore 

defines a right coaction of a coalgebra Con a vector space V to be a linear map, 

~c : V-+ V ® C: v ~---+ .D.c(v) = v<1> ® v<2)', . (1.43) 

such that, 

(1.44) 

• xt> is called a generalized derivation. 
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Following (33] we have introduced here a notation for the coaction that resembles 

Sweedler's notation (1.14) of the coproduct. The prime on the second factor marks 

a right coaction. If we are dealing with the right coaction of a Hopf algebra H on an 

algebra A, we say that the coaction respects the algebra structure and A is a right 

H-comodule algebra, if D.H(a · b) = D.H(a) · D.H(b) and D.H(1) = 1 ® 1, for all 

a, b E A. In the case of a coaction on a Hopf algebra, there might be additional 

compatability relations between its coproduct and antipode and the coaction. 

DuBJity of Actions and Coactions. . If the coalgebra C is dual to an algebra A 

in the sense of (1.21), then a right coaction of C on V will induce a left action of A 

on V and vice versa, via 

XI> v = v(I) < x,v(2)' >, · (general), (1.45) 

for all x E A, v E V. Applying this general formula to the specific case of our 

dually paired Hopf algebras U and A, we see that the right coaction 6...4 of A on 

itself, corresponding to the left action of U on A, as given by (1.42), is just the 

coproduct D. in A, i.e. we pick: 

for Va EA. (1.46) 

To get an intuitive picture we may think of the left action (1.42) as being a 

generalized specific left translation generated by a left invariant "tangent vector" x E 

U of the quantum group. The coaction 6...4 is then the generalization of an unspecified 

translation. If we supply for instance a vector x E U as transformation parameter, we 

recover the generalized specific transformation (1.42); if we use 1 E U, i.e. evaluate 

at the "identity of the quantum group", we get the identity transformation; but the 

quantum analog to a classical finite translation through left or right multiplication 

by a specific group element does not exist. In section 4.2 we will give a much more 

detailed and geometric discussion of these matter. 

Quantum Matrix Formulation. The dual quantum group in its matrix form 

stays very close to the classical formulation and we want to use it to illustrate some 

of the above equations. For the rriatrix A E MN(Fun(Gq)) and x E Uqg we find, 

.D.A A= AA', (right coaction), 
(1.47) 

(left coaction) , 
(1.48) 
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U9g0 Fun(G9)-+ Fun(G9): 

x t> A= A< x, A>, (left action), 
(1.49) 

where matrix multiplication is implied. Following common custom we have used a 

prime to distinguish copies of the matrix A in different tensor product spaces. We 

see that in complete analogy to the classical theory of Lie algebras, we first evaluate 

x E Uqg, interpreted as a left invariant vector field, on A E Mn(Fun(Gq)) at the 

"identity of Gq", giving a numerical matrix < x, A >E Mn(k), and then shift the 

result by left matrix multiplication with A to an unspecified "point" on the quantum 

group. Unlike a Lie group, a quantum group is not a manifoid in the classical sense 

and we hence cannot talk about its elements, except for the identity (which is also 

the counit of Fun(G9)). For L+ E MN(Uqg) equation (1.49) becomes, 

(1.50) 

and similarly for L- E MN(Uqg): 

(1.51) 

1.2.2 Commutation Relations 

The left action of x E U on products in A, say bf, is given via the coproduct in U , 

X I> bf - (bf)(l} <X, (bf)(2) > 
- b(l)f(l) < ~(x),b(2) 0 f(2) > (1.52) 

- ·~X I> (b 0 f) = b(l) < X(l)l b(2) > X(2) I> f. 

Dropping the "t>" we can write this for arbitrary functions fin the form of commu

tation relations, 

X b =~X I> (b 0 if) = b(l) < X(l)l b(2) > X(2)· (1.53) 

This commutation relation provides A 0 U with an algebra structure via the cross 

product, 
· : (A 0 U) 0 (A 0 U) -+ A 0 U : 

ax 0 by ~---+ ax ·by = a b(l) < X(t)l b(2) > X(2) y. 
(1.54) 

That A 0 U is indeed an associative algebra with this multiplication follows from 

the Hopf algebra axioms; it is denoted A~U and we call it the quantized algebra of 

differential operators. The commutation relation (1.53) should be interpreted as a 

product in A><1U . (Note that we omit 0-signs wherever they are obvious, but we 

sometimes insert a product sign "·" for clarification of the formulas.) Right actions 
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and the corresponding commutation relations are also possible: b<J x=<x, b(t) > b(2) 

and b x=x(ll<x<2b b(ll > b<2l. 

Equation (1.53) can be used to calculate arbitrary inner products of U with A , if 

we define [38) a right vacuum ">" to act like the counit in U and a left vacuum "<" 
to act like the counit in A , 

<X b > - < b(l) < X(l), b(2) > X(2) > 
- £(b(l)) < X(l), b(2) > £(x(2)) 

- < ·(if® £)6-(x), ·(£ ® il)D.(b) > 
- < x,b>, for V x E U, b E A. 

Using only the right vacuum we recover formula (1.42) for left actions, 

xb> b(l) < X(l)' b(2) > X(2) > 
- b(l) < X(l)l b(2) > f(X(2)) 

- b(l) < x, b(2) > 
- X t>: b, for V X EU, bE A. 

As an example we will write the preceding equations for A, L+, and L-: 

Lt At - AtR12Lt, (commutation relation for L + with A), 

L2At - AtR2{L2, (commutation relation for L- with A), 

<A - I<, (left vacuum for A), 

L+ > - L- > - >I, (right vacua for L+ and L-). 

(1.55) 

(1.56) 

(1.57) 

(1.58) 

(1.59) 

(1.60) 

Equation ( 1.56) is not the only way to define left actions of U on A in terms of 

the product in A~U . An .alternate definition utilizing the coproduct and antipode 

in U, 
X(l) bS(x(2)) - b(l) < X(t), b(2) > x(2) S(x(3))t 

b(l) < X(l)' b(2) > £(X(2)) 

- b(l) < x, b(2) > 
- x 1> b, for V x E U, bE A, 

(1.61) 

is in a sense more satisfactory because it readily generalizes to left actions of U on 

A>4U, 

tNotation: 

x 1> by .- X(l) by S(x(2)) 

- X(t) bS(x(2)) X(3) y S(xc4 ))t 
ad 

- (x(t) 1> b) (x(2) 1> y), for V x, y E U, b E A, 

(.6. ® i:l).6.(x) = (i:l® .6.).6.(x) = X(l) ® X(2) ® X(3) = .6.2 (x), 

X(t) ® X(2) ® X(3) ® :Z:(4) = .6.3 (x), etc., see [33]. 
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In this section we will present SUq(2) and show how the deformed Euclidean group 

Eq(2) and its dual, the deformed Lie algebra Uqsu(2), can be obtained from it by 

contraction. The Euclidean group E(2) is a simple example of an inhomogeneous 

group. Deformations of such groups in general have been studied in [36]. Celeghini 

et al. [37] found a deformation of U e(2) by contracting Uqsu(2) and simultaneously 

letting the deformation parameter h = In q go to zero. Here we are interested in the 

case where q is left untouched. 

1.3.1 Eq(2) by contraction of SUq(2) 

The commutation relations for SUq(2) [23, 38], may be written in compact matrix 

notation as 

where 

R12T1T2 = T2T1R12, detqT = 1, yt = r-1, 

~(T) = T®T, E(T) = I' S(T) = y-1' 

q 0 0 0 

T=(~ -q'j) R = q-1/2 0 1 0 0 
- ' 0 >. 1 0 a 

0 0 0 q 

). = q- q-1 and q = q. Now set 

a= v, a= v, 'Y = fn and i = R.n, 

(1.71) 

(1.72) 

where f E 1R- {0} is a contraction parameter. Written in terms of v, v, n and fi, 

relations ( 1. 71) become 

nfi = fin, vn = qnv, vfi = qfiv, etc. 

and give Eq(2) in agreement with [39] as a contraction of SUq(2) in the limite-+ 0: 

vv = vv = 1, 

nv = qvn,. 

nfi =fin, 

vfi = qfiv, 

~(n) = n®v+v®n, ~(v) = v®v, 
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where we have introduced the left adjoint (inner) action in U : 

for V x,y E U. (1.63) 

1.2.3 Complex Structure 

In the previous section we constructed a generalized semi-direct product algebra A ><JU 

using commutation relations 

(1.64) 

that allow ordering of all elements of A ><JU in the form A 0 U. After some easy 

manipulations we derive an alternative commutation relation 

(1.65) 

good for ordering in the form U 0 A. We can now introduce complex conjugation on 

A>4U as an antimultiplicative involution, i.e. 

(1.66) 

Comparing this equation to equation (1.65) gives the following natural choices: 

< x,a >. - < s-1x,a >, 

and hence 

S-1- -s X= X. 

( 1.67) 

(1.68) 

(1.69) 

In this context let us also define a unitary representation: A unitary representation 

T E A1n(A) satisfies Tt = r = ST so that 

(1. 70) 

i.e. the matrix representing the complex conjugate of an element in U is equal to the 

adjoint of the matrix representing the original element. 

In the next section we would like to give two examples to illustrate the material 

presented so far. The first one, SUq(2), is by now the standard example for a quantum 

group; it is due to [34). We pick it as a representative for the R-matrix approach to 

quantum groups. Dropping the reality and the unit determinant conditions one can 

obtain the further examples of SL9 (2) and GLq(2) respectively._ The second example 

is the Quantum Euclidean Group - we show how one can obtain it via a contraction 

procedure from SU9 (2); a more complete treatment of this original work can be found 

in [35]. 

19 



" 

b.(n) = n 0 v + v 0 n, b.(v) = v 0 v, 

f(n) = f(n) = 0, f(v) = f(v) = 1, 

S(n) = -q-1n, 

S(n) = -qn, 

S(v)=v, 

S(v) = v. 

It is convenient to introduce the operators 0, 0, m, and m, defined by 

v = e~8 ' 0 = (}, m = nv, m = vn. 

In this basis, the coproducts take on the particularly nice form 

b.(m)= m01+ei8 0m, b.(m)=m01+e-i8 0m, 

b.(O) = (} 0 1 + 1 0 0. 

The matrix E given by 

satisfies the relations 

b.(E) = E@E, S(E) = E-1, €(E) =I. 

( 1. 73) 

(1.74) 

( 1. 75) 

(1. 76) 

(1. 77) 

These are exactly the relations one would expect for an element of a quantum matrix 

group. Notice that the action of E on the column vector ( ~ ) , where z is a complex 

coordinate, is given by 

z ~---+ ei8 z + m, z ~---+ e-iez + m. (1.78) 

We may therefore identify E as an element of the deformed 2-dimensional Euclidean 

group E9 (2). Fun(E9 (2)) is the algebra of all coo functions in the group parameters 

of E9 (2), i.e. the algebra spanned by ordered monomials in 0, m, and m. Thus, 

Fun(E9 (2)) is taken to be span{Oambmc I a, b, c = 0, 1, ... }. 

1.3.2 Uqe{2) by contraction of Uqsu(2) 

The deformed universal enveloping algebra U9su(2), dual to Fun(SU9 (2)), is generated 

by hermitian operators H, X+, X_ satisfying 

[H X ] ±2x [X X ] 
qH-q-H 

' :i: = ;i:, +' - = q-q-1 ' 

b.( H) = H 0 1 + 1 0 H, b.(X±) =X± 0 qH/2 + q-H/2 0 X:±, 

€(H) = f(X:±) = 0, 

S(H) = -H, 
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Following [23] these relations can be rewritten as 

R12L~ L~ = L~ L~ R12, R12Lt L} = L} Lt R12, 

!:3.(L±) = L±(i)L±, €(£±) = I, (1.80) 

S(L±) = (L±)-1 , 

where L± are given by 

(1.81) 

Using this matrix notation, we can state the duality between the group and the 

algebra by means of commutation relations 

(1.82) 

as explained in section 1.2.2. Equations (1.82) are not only consistent with the inner 

products 

(1.83) 

given in [23] but also contain information about the coproducts of L +, L- and T so 

that equations (1.80) can actually be derived as consistency conditions to (1. 71) and 

(1.82). Complex conjugation can be defined as an involution on the extended algebra 

generated by products of T and £±. This agrees with 

!:3.(/i) = l:1(h), S(li) = s-1 (h) (1.84) 

and 

(1.85) 

Unitarity ofT then implies (L+)t = (L-)-1, i.e. fi ='H, X±= X=T=. In the present 

case equations (1.82) become 

Hv = vH- v, X+v = q112vX+- RqnqH/2 , X_v = q112vX_, 

RHn = R(nH- n), .ex+n = q112nfX+ + vqH12 , .ex_n = Rq112:nX_, (1.86) 

plus the complex conjugate relations. 

The way that the deformation parameter R appears in these relations suggests the 

definition of new operators 
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so that we will retain non-trivial commutation relations for P± and J with v, v, n 

and n in the limit e--+ 0. Inserting P± and J into equation (1.79) we obtain U9e(2) 

as a contraction of U9su(2) in thi::. limit: J = J, P± = P=F, and 

.6.(P±) = P± 0 qJ + q-J 0 P±, .6.(J) = J 0 1 + 1 0 J, 

€(P±) = €(J) = 0, 

S(J) = -J, S(P±) = -q±1 P±. 

(1.87) 

Note that the algebra obtained in (1.87) is the same as the classical 2-dimensional 

Euclidean algebra e(2) (with P± = Px ± iPy and J as hermitian generators) [37]. 
Note, however, as a Hopf algebra it is still deformed; the deformation parameter q 

remains unchanged. 

It was shown by Paul Watts [35) that this Hopf algebra is identical to the one 

obtained by directly constructing the dual Hopf algebra of Fun(E9 (2)) using methods 

similar to [40). The result was 

X q2!J _ 1 , 
< VkJ.ltC,Oambmc >= [k] 9 ![l]9-t!n!8na8tb8kc, [x)9! =IT 

2 
, 

y=l q - 1 
(1.88) 

where {vkJ.lten I k, l, n = 0, 1, ... } is a basis for U9e(2) which is related to our operators 

(1.89) 

These two constructions are summarized in the following (commutative) diagram: 

Uqsu(2) --=e=o~=t:C=;=io:.:.:..n- Uqe(2) 
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Chapter 2 

Bicovariant Calculus 

Having extended the left U-module A to A><lUthrough the construction of the cross 

product algebra, we woll;ld now like to also extend the definition of the coaction of A 
to A><lU, making the quantized algebra of differential operators an A-bicomodule. 

2.1 Left and Right Covariance 

In this section we would like to study the transformation properties of the differential 

operators in A><1U under left and right translations, i.e. the coactions ..4.6. and .6..A 
respectively. We will require, 

.A.6.(by) - .A.6.(b).A.6.(y) = .6.(b).A.6.(y) E A® A><1U, (2.1) 

.6..A(by) - .6..A(b).6.A(Y) = .6.(b).6..A(Y) E A><lU 0 A, (2.2) 

for all b E A, y E U, so that we are left only to define .A.6. and .6...4 on elements 

of U. We already mentioned that we would like to interpret U as the algebra of left 

invariant vector fields; consequently we will try 

.A.6.(y) = 1 0 y EA0U, (2.3) 

as a left coaction. It is easy to see that this'coaction respects not only the left action 

(1.42) of U on A, 
.A.6.(x 1> b) - .A.6.(b(l)) < x, b(2) > 

- 1 b(l) ® b(2) < x, b(3) > 
(2.4) 

- x<1>' bc1) ® ( x<2
> 1> b(2)) 

-. .A.6.(x) 1> .A.6.(b ), 
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but also the algebra structure (1.53) of A>4U, 

AA(x ·b) - AA(b(l)) < X(l), b(2) > A!\(x(2)) 

- b(l) 1 0 b(2) < X(l)l b(3) > X(2) 

- 1 b(l) 0 b(2) < X(1) 1 b(3) > X(2) 

- x(l)' b(1) 0 ( x<2) • b(2)) 

AA(x) · AA(b). 

(2.5) 

The right coaction, AA : U --+ U 0 A, is considerably harder to find. We will 

approach this problem by extending the commutation relation (1.53) for elements of 

U with elements of A to a generalized commutation relation for elements of U with 

elements of A>4U, 
X· by=: (by)(l) < X(l) 1 (by)(2)' > X(2), 

for all x, y E U, b E A. In the special case b = 1 this states, 

x,y EU, 

(2.6) 

(2.7) 

and gives an implicit definition of the right coaction AA(Y) = y(l) 0 y<2)' of A on 

U. Let us check whether AA defined in this way respects the left action (1.42) of U 

on A: 

< z 0 y, AA ( x 1> b) > - < zy , x 1> b > 
- < zy, b(l) >< x, b(2) > 
- < zyx, b > 
- < z(x(l) < Y(l), x(2)' > Y(2)) ' b > 
- < zx(I) 0 Y(t) 0 Y(2) , b(1) 0 x<2)' 0 b(2) > 

(2.8) 

- < zx(l) 0 y, b(l) 0 x<2>'b(2) > 
- < z 0 y, (x(l) 1> b(l)) 0 x<2>'b(2) > 
-. < z 0 y, AA(x) 1> AA(b) >, 

for all x,y,z E U, bE A, q.e.d .. 

Given a linear basis {ei} of U and the dual basis {Ji} of A= u•, < ei, Ji >= 8{, we 

can derive an explicit expression [41) for AA from (2.7): 

(2.9) 

or equivalently, by linearity of AA: 

yEU. (2.10) 
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It is then easy to show that, 

proving that .6...4 satisfies the requirements of a coaction on U, and, 

(2.11) 

(2.12) 

(2.13) 

showing that .6...4 is an U-algebra homomorphism; .6.A is however in general not a 

U-Hopf algebra homomorphism. Using the explicit expression for ..6...4 we can now 

prove that it respects the algebra structure of A~U: 

..6...4(xa) - .6...4(o(1) < X(t),a(2) > X(2)) 

- .6.(a(l)) < X(l),a(2) > .6...4(x(2)) 

- (o(l) 0o(2))(< X(l),o(3) > X(2)(l) 0x(2)(2)') 

- (o(l) 0 0(2))( < X(t), 0(3) > ei< 1>X(2)Sei<2> 0 Ji) 
- O(l) < X(l), 0(3) > ei< 1>X(2)Sei<2> 0 a(2)JiSo(4)0(s) 

ad k . l 
- a(l) < ek 0 X(l) 0 Set, 0(2) 0 0(3) 0 a(4) > ei .I> X(2) 0 f P f a(s) 

. ad . 
- a(l) < ei< 1>X(t)Sei<3>' a(2) > ei<2> 1> X(2) 0 Po(3) 

- a(l) < ei<1>X(t)Sei<4>' a(2) > ei<2>X(2)Sei<3> 0 Jia(3) 

- ei< 1>xSei<2>a(1) ® Jia(2 ) 
ad . 

- (ei 1> x 0 P)(a{l) ® a(2)) 

..6..A(x).6..A(a). 0 

(2.14) 

This not only proofs that .6...4 is a A~U-algebra homomorphism but also that the 

algebra structure of A>4U is compatible with .6_A•. Clearly a less complicated way. 

to see this would be quite welcome. In the next section we will see that .6...4 can be 

obtained for all elements of A>4U via conjugation by the canonical element C E U ®A 

so that the A~U-homomorphism property of A.A is then obvious. 

2.2 The Canonical Element 

So far we have shown how the two dual Hopf algebras A "functions on the quantum 

group" and U "deformed universal enveloping algebra" can be combined into a new 

algebra, the cross product or generalized semi-direct product algebra A>4U, and that 

*In more mathematical terms: The two-sided ideal I := xa- a(l) < X(l)• a(2) > xc2) that we 
factored out of U (A ® U) to obtain A >4U is invariant under A.A in the sense A.A (I) C I® A. 
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this algebra may be viewed as consisting of bicovariant differential operators and the 

functions they act on. This algebra is not a Hopf algebra but it has A and U as Hopf 

subalgebras and can in principle be reconstructed from either one of them. As we 

shall show, the transformation properties of the elements of A><1U are simply given 

through conjugation by the canonical element C of U 0 A - furthermore, we can 

recover many of the familiar relations for quantum groups from the consistency rela

tions which C satisfies in the case where U is quasitriangular [23, 38]. One could even 

take an extreme point of view and base everything on the canonical element C in 

A><1U and its commutation relations, making any explicit reference to the coalgebra 

structures (~, S, £)of A and U superfluous. 

The expression of the coaction in terms of the canonical element was found in collab

oration with Paul Watts [46]. 

Defininition and Relations 

So let us now introduce the canonical element C in U 0 A 

C = ei0l. 

C satisfies several relations; for instance, note that 

((S 0 id)(C)) C - S(ei)ei 0 fJi 
ij k - Dk S(ei)ej 0 f 

- (m o (S 0 id) o ~)(ek) 0 fk 

- 1u£( ek) 0 fk 

- 1u 0Ekfk 

- 1u 0 1.A, 

(2.15) 

(2.16) 

where m is the multiplication map, D~ is the matrix that describes the coproduct in 

U and Ek is the vector corresponding to the counit in U, so 

(S 0 id)(C) = c-1
. 

Similar calculations also give 

(id 0 S)(C) = c-t, 

as well as the following: 

(~ 0 id)(C) - C13C23, 

(id0 ~)(C) - c12C13, 

(t: 0 id)(C) = (id 0 !)(C) - 1u 0 1.A. 
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There is more to C than just the above relations; this is seen by computing the right 

coaction of a basis vector in U. Using (2.10) 

A.Atei) - (ei t> ei) 0 Ji 

- (ei)(1)eiS((ei)(2)) 0 Ji 

- DjmemeiS(en) 0 Ji 

- emeiS(en) 01 F 
- (em 0 })(ei 01.A)(S(en) 0 F) 
- C(ei 01.A)(S 0id)(C), (2.22) 

so for any x E U, 

.6..A(x) = C(x 01)0-1
• (2.23) 

However, when we think of C as living in (A~U) 0 (A~U), with ei and Ji as the 

bases for the subalgebras U and A of A~U respectively, further results follow. For 

instance, for a E A, 

C(a 0 1)C-1 
- eiaS(ei) 0 f Ji 

- (a (I)( ei)(2) ( ( ei)(l), a(2)) )S( ei) 0 D~ fk 

- a (I) ( ( ek)(l), a(2)) ( ek)(2)S( ( ek)(3)) 0 fk 

- a(1)0(ek,a(2))!k 

- a(1) 0 a(2), (2.24) 

(where 1 = 1A~U = 1.A 01u) so that 

C(a 01)C-1 =A( a). (2.25) . 
Thus, the right coaction of A on A~U is obtained through conjugation by C 

A.A(a) = C(a01)C-1 (2.26) 

for any a E A~U. This expression shows explicitly that .6..A is an algebra homomor

phism 
A.A(a/3) - C(a/3 01)C-1 

- C(a 01)C-1C(f3 0 l)C-1 (2.27) 

- A .A (a) .6..A (/3) 

for o:,/3 E A~U, and that it is consistent with the algebra structure of A~U 

C(xa)C-1 - C(a(1) < x(1),a(2) > x(2) 0l)C-1 

- C(a(1) 0 1)0.:..1 < x(1), ac2) > C(x(2) 0l)C-1 

- A(a(1)) < X(1), a(2) > A.A(X(2)) 
(2.28) 

- A.A(xa). 
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Vve can continue doing calculations along these lines, and we find 

c- 1(10x)C = .6.(x) (2.29) 

for x E U. For elements of the cross product algebra this gives the left U-coaction 

(2.30) 

that appears in the general commutation relation 

a/3 = /3(1) < al', /3{2)' > 0'2. (2.31) 

Using these results, together with the coproduct relations for C, we obtain the equa

tion 

(2.32) 

(Interestingly, this equation can be viewed as giving the multiplication on A)4U as 

defined in (3.16).) 

Quasitriangular Case 

In the case where U is a quasitriangular Hopf algebra with universal R-matrix 'R., the 

coproduct relations involving C imply the following consistency conditions: 

n12C13C23 - c23C13n12, 

n23C12 - C12n13n23, 

·n13c23 - C23n13'R.12· 

To see the added significance of these equations, note that 

(C,a 0 id) =a, 

where a E A, and we use the notation 

(x, id) = x 

(2.33) 

(2.34) 

(2.35) 

for x E U. Let p: U---+- Mn(k) be a matrix representation of U, and define then x n 

matrices Aij E A by 

(2.36) 

(These Aij's are what are usually viewed as the non-commuting matrix elements of 

the pseudo-matrix group associated with U [31].) Given p, we can define the U-valued 

matrices 

L+ _ (id 0 p)('R), 

L- - (p 0 id)(n-1
), 
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and the numerical R-matrix 

R = (p ® p)(R). (2.38) 

Furthermore, it is easily seen that (p ® id)(C) =A. Now let us apply (Pik ® r;i1 ® id) 
to the first of equations (2.33); the left side gives 

(Pik ® rlz ® id)(R12C1aC2a) - (Pim ® rln)(R)(Pmk ® id)(C)(Pnl ® id)(C) 

- Rij mnAmkAnl· (2.39) 

The right hand side gives AimAjn~nkl, so using the usual notation, we obtain 

(2.40) 

which gives the commutation relations between the elements of A. Doing similar 

gymnastics with the other two equations in (2.33) gives 

Lt A2 - A2R21Lt, 

L! A2 - A2R-1 L}, (2.41) 

which give the commutation relations between elements of U and A within A><1U. 
(Of course, we also 'have the commutation relations 

L~L~R, 

RLtL-; - L}LtR, (2.42) 

between elements of u, obtained as above from n12nl3n23 = n23n13n12, the quan

tum Yang-Baxter equation.) Thus, we recover all the commutation relations between 

A and £± given in [38). 

2.3 Bicovariant Vector Fields 

The appearance of an infinite sum in equation (2.10) or for that matter (2.26) suggests 

that the elements of U have in general very complicated transformation properties. In 

contrast, the functions in A, especially those constructed from the matrix elements of 

A, have very simple transformation properties given by the coproduct in A (1.27). We 

would like to show how to construct vector fields corresponding to - and inheriting 

the simple behavior of - these functions. This construction can then be used to find 

a basis of vector fields that closes under coaction and hence under (mutual) adjoint 

actions. First we need to proof the following lemma. 
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Lemma: Let Y = Ti 0 yi E U 0U such that Y.6.(x) = .6.(x)Y for all x E U, then 
ad . ad . . ad 

it follows that Ti 0 (x t> Y') = (Ti <J x) 0 T' wtth Yi <J x = S(x(l))Tix(2) for all 

xEU. 

Proof: 
ad . 

Yi 0 (x t> T') - Ti 0x(l)TiS(x(2)) 

S(x(l))x(2)yi 0 X(3)TiS(x(4)) 

- S(x(l))Tix(2) 0 Yix(3)S(x(4)) 
ad . 

- (Yi <J X) 0 T'. 0 

For any function b E .A, define 

}b := (Y,b0ii) E U. 

Proposition: This vector field has the following transformation property: 

Proof: 
.6..A(Yb) - (Yi,b)(ekt>Yi)0fk 

- (Ti <J ek, b) Ti 0 fk 

- (ri 0 ek, b(2) 0 S(b(Il)b<3>) Ti 0 fk 

- Yb(2) 0 S(b(l>)b<3 >· o 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Example: LetT:= 'R..21 'R..12 and b := Aij, then yii := YA;i = ('R..21R.12,Aii0il) is 

the well-known matrix of vector fields L+ S(L-) introduced in {43} with coaction: 

.6..A(YiJ) = ykl 0 S(Aik)A1i· 

This last example may in some cases (when U is factorizable [47]) provide a way 

of computing the canonical element C from R.21 'R..12 : Let J..L be the map 

(2.47) 

then (if® J..L) (C) = ei (R.21 R-12, Ji ® id) = R.21 R.12 and, in cases where J..L is invertible; 

(2.48) 

In the next section we will elaborate more on elements like T and their connection 

to the "Pure Braid Group". There we will also proof the reverse of Proposition 2.45. 

2.4 The Pure Braid Group 

Introduction 

In the classical theory of Lie algebras we start the construction of a bicovariant 

calculus by introducing a matrix n = A-1dA E f of one-forms that is invariant under 
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left transformations, 

A-+ A'A: d-+ d, n-+ n, (2.49) 

and covariant under right transformations, 

A-+ AA': (2.50) 

The dual basis to the entries of this matrix n form a matrix X of vector fields with 

the same transformation properties as n:. 

(classical). (2.51) 

We find, 

(classical). (2.52) 

Woronowicz (21] was able to extend the definition of a bicovariant calculus to 

quantum groups. His approach via differential forms has the advantage that coactions 

(transformations) ...tA : r -+ A ® r and .6....t : r -+ r ® A can be introduced very 

easily through, 

...t.6.(da) - (ii®d).6.a, 

A...t(da) - (d ® ii)Aa, 

(2.53) 

(2.54) 

where A is the Hopf algebra of 'functions on the quantum group', a E A and .6. 

is the coproduct in A . Equations (2.53,2.54) rely on the existence of an invariant 

map d : A -+ r provided by the exterior derivative. A construction of the bicovariant 

calculus starting directly from the vector fields is much harder because simple formulae 

like (2.53,2.54) do not seem to exist a priori. The properties of the element 1 that 

we introduced in the previous section however indicates exceptions: We will show 

that for Hopf algebras that allow "pure braid elements" 1, like e.g. quasi triangular 

Hopf algebras, invariant maps from A to the quantized algebra of differential operators 

A~U can indeed be constructed. Using these maps we will then construct differential 

operators with simple transformation properties and in particular a bicovariant matrix 

of vector fields roughly correspondi:ng to (2.52). 

In the next subsection we will hence describe a map, ~ : A -+ A~U, that is 

invariant under (right) coactions and can 'be used to find .6..4 on specific elements 

~(b) E U in terms of A.A on bE A: .6.....t(~(b)) = (~ ® ii).6.....t(b). 
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1 2 3 4 5 

Figure 2.1: Generators of the pure braid group. 

2.4.1 Invariant Maps and the Pure Braid Group 

A basis of generators for the pure braid group Bn on n strands can be realized in U, 
or for that matter Uqg, as follows in terms of the universal R: 

R21R12, R2tR3tRt3Rt2 =(if® t::..)R2tRt2, ... , 
R2t ... nntntn ... R12 = (if(n-2) ® !:::..)(i[(n-3) ®!:::..) ... (it® t::..)R2tnt2, 

and their inverses; see figure 2.1 and re£;(32]. All polynomials in these generators are 

central in f:::..(n-l)U = {f:::..(n-l)(x) I x E U}; in fact we can take, 

(2.55) 

as a definition. 

Remark: Elements of span{Bn} do not have to be written in terms of the universal 

'R, they also arise from central elements and coproducts of central elements. This is 

particularly important in cases where U is not a quasitriangular Hopf algebra. 

There is a map, ~n : A --+ A® UfiP(n-l) Co.-.+ (A:x1U)®(n-l), associated t.o each 

element of span{Bn}: 

~n(a) := Zn I> (a® if(n-1)), with Zn E span{Bn}, a EA. (2.56) 

We will first consider the case n = 2. Let T = T 1; ® T 2; be an element of span { B2 } 

and ~ (b) = T 1> ( b ® if) = b(1) < T 1;, bc2> > T 2;, for b E A. We compute, 

X • ~(b) - !:::..(x) 1> ~(b) 

- !:::..(x )T 1> (b ® il) 

- Tl:::..(x) 1> (b®il) (2.57) 

- y·l> (x ·b) 

- ~(b(1)) < X(l)' b(2) > X(2)' 
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which, when compared to the generalized commutation relation (2.6), i.e. 

gives, 
~.A(<P(b)) = [<P(b)](l) ® [<P(b)]<2)' = <P(b(t)) ® b(2) 

~ ~.A(<P(b)) = (<P ® rl)~.A(b), 

(2.58) 

(2.59) 

as promised. However we are especially interested in the transformation properties 

of elements of U, so let us define, 

1 b :=< 1, b ® rl >=< 1t;, b > T t;, (2.60) 

for T E span(B2 ), bE A. Using (2.2,2.59) we recover the result of Proposition 2.45 

(2.61) 

Let us now proof the reverse statement: 

Proposition: If there is a linear map T : A -+ U, realized and labelled by some 

element T E U@U via b ~---+ Tb =< T,b ® rl >, Vb E A, such that the resulting 

element in U transforms like 6.A T b = T b<2> ® Sb(l) b(3); then T Espan( B2), i.e. T 
must commute with all coproducts. 

Proof: For all x E U and b E A 

< ~x1,b® rl > - < ~x,b(I) ®rl >< 1,b(2) ® rl > 
- < X(l),b(l) > X(2)lb(2 ) 

- < X(l)l b(l) > T b(3) < X(2), Sb(2)b(4) > X(3) 

- lb(3) < X(t)l b(l)Sb(2)b(4) > X(2) 

- T b~l) < X(t), b(2) > X(2) 
- < T~x,b®rl >. D 

From this follows an important Corollary: 

(2.62) 

If there exists a map ¢:A-+ A')(JU such that ~.A o ¢ = '(¢ ® rl) o ~;then it follows 

that ¢(b)= b(t) < T, b(2) ® rl >with 1 Espan(B2 ) for all bE A and vice versa. 

Here are a few important examples for "pure braid elements": For the simplest 

non-trivial example in the case of a quasitriangular Hopf algebra Y = n 21RP and 

b = Aij, we obtain the 'refl.ection-matrix'[42] Y E Mn(U), which has been intro

duced before by othe~ authors [43, 44] in connection with integrable models and the 
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differential calculus on quantum groups, 

YA;j 

< R 21'RP, Aii ® id > 
- (<Rs1R2s,A0A®id>)ii 

- (<R21 ,A®id><R12,A®id>)ii 

- (L + SL -)ii' 

with transformation properties, 

A --+ AA': 

A --+ A'A: . 

. . k . l 
Yti--+ .6.A(Y1 j) = Y 1 ® S(A1k)A i 

= ((A')-1Y A')ii' 

yij--+ A.6.(Yij) = 1 0 yii· 

The commutation relation (1.53) becomes in this case, 

Y2A1 - LtSL2A1 
- Lt A1SL2"R21 

- A1R12Lt SL2 R21 
- A1R12Y2R211 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

where we have used (1.57), (1.58), and the associativity of the cross product (1.54); 

note that we did not have to use any explicit expression for the coproduct of Y. The 

matrix 4> (A i;.) = A i k yk i . transforms exactly like A, as expected, and interestingly 

even satisfies the same commutation relation as A, 

(2.67) 

as can be checked by direct computation. C. Chryssomalakos [45) found an "expla

nation" for this fact by expressing AY in terms of casimirs. We will come back to 

this in the next section. 

The choice, Y = (1 -'J?,21R 12
)/ >.., where >.. = q- q-I, and again b = Aij gives us 

a matrix X E Mn (U), 

(2.68) 

that we will encounter again in section 4.1. X has the same transformation properties 

as Y and is the quantum analog of the classical matrix (2.52) of vector fields. 

Finally, the particular choice b = detq A in conjunction with Y = R 21R 12 can 

serve as the definition of the quantum determinant of Y, 

(2.69) 
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we will come back to this in the next section, but let us just mention that this 

definition of DetY agrees with, 

det9 (AY) - det9 (A<'R21 'R.12,A0i:l>) 

- det9A < 'R21'R 12
, det9A 0 i:l > (2.70) 

- det9A DetY. 

Before we can consider maps <Pn for n > 2 we need to extend the algebra and 

coalgebra structure of AXIU to (AX1U)®(n-l). It is sufficient to consider (A><1U)02 ; all 

other cases follow by analogy. If we let 

(a 0 b)(x 0 y) = ax 0 by, for V a, b E A, x, y E U, 

then it follows that 

x · a 0 y · b - a(t) < X (I) , a(2) > X(2) 0 b(l) < Y(I} , b(2} > Y(2} 

- (a 0 b)(l) < (x 0 y)(l}, (a 0 b)(2) > (x 0 Y\2) 

- ( x 0 y) · (a 0 b), for V a, b E A, x, y E U, 

(2.71) 

(2.72) 

as expected from a tensor product algebra. If we coact with A on A><1U02 , or higher 

powers, we simply collect all the contributions of .b..A from each tensor product space 

in one·space on the right: 

.b..A( ax 0 by) 
(2.73) 

for Va, bE A, x,y E U. 

2.5 Casimirs . 

Casimirs play an important role in the theory of quantum groups, even more so 

than in classical group theory. They, or rather characters related to them, label 

representations; casimirs- in particular tr9(Y) and Det9 (Y) show up as coefficients 

in the characteristic polynomial for the matrix of bicovariant generators Y and finally 

extra non-classical generators in Quantum Lie Algebras are given by casimirs. Here 

we want to collect some formulas for casimir operators and comment on a few of their 

uses. 

Casin1irs related to ,D.Ad_invariant elements of A 

Centrality of elements of U is synonymous to their invariance under the right A
coaction because of 

(2.74) 
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- if .6.Ac = c ® 1 then xc = c < X(lb 1 > X(2) = c€(X(1))X(2) = ex. In the previous 

sections we have shown how to construct elements of U from elements of .A, preserving 

their transformation properties under adjoint coaction. The quantum determinant 

and the quantum traces are invariant under .6Ad, giving our first group of examples 

for casimir operators: 

(2.75) 

where Tis an element of the pure braid group, i.e. T .6(y) = .6(y)T for ally E U. In 

the case ofT= R 21RP the first set of casimirs coincides with the ones given in [23]; 

there are in fact as many independent ones as the rank of the corresponding group. 

Casimirs arising from the pure braid group 

Let 1 := TiSTi, where T = li ® Ti is an element of the pure braid group. Here is a 

proof that 1 is a casimir: 

TiY(l)®liY(2) - Y(l)Ti®Y(2)yi 

~ liY(l)S(Y(2))S(Yi) - Y(l) YiS(Ti)S(Y(2)) 

~ f(y)f - Y(l)IS(Y(2)) 

~ Yl - IY· o 

(2.76) 

Relation to Drinfeld 's casimir c. Drinfeld [28, 19] showed that the S 2 automor

phism is realized as conjugation by an element u in quasitriangular Hopf algebras. 

Let n = ai ® f3i, then u = S(f3i)ai, S(u) = OjS(f3j) and c = uS(u). If we choose 

T = R 21 R 12 as our pure braid element, then 

TiS(Ti) - f3iaiS(/3i)S(ai) 
- f3iS( u)S(aj) (S( u) )-1 S( u) 
- f3iS- 1 (ai)ajS(f3j) 

(2.77) 

- uS(u) = c 

and similar S(Ti)Ti = s-1 (c). 

Extra Generators 

Classically the commutator of Lie bracket of a casimir c and some vector field y 

vanishes because of the centrality of c; so casimirs do not play a role in classical Lie 
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algebras. In the quantum case the commutator is replaced by the adjoint action and 

then 

in general. We however still have 

ad 
y t> c = Y(t)cS(Y(2)) = f(y)c, 

(2.78) 

(2.79) 

which is zero if f(y) = 0, as is usually the case for a generator of a quantum Lie 

algebra. 

Special properties of AY 

We remarked earlier that AY = AL + S L- satisfies the same algebra as A does. 

C.Chryssomalakos [45] found that this is also true for AYk and gave a nice explanation 

for this fact that I would like to quote here: Using the coproduct of c 

(2.80) 

one easily derives 
AY = ac-1 Ac, (2.81) 

where o:8f =< c, Aii >. In the case of a llibbon Hopf Algebra [32, 19] there is a 

central element w that implements the square root of c; its coproduct is 

(2.82) 

leading to 

(2.83) 

and more general 

(2.84) 

In the case that we are not dealing with a ribbon Hopf algebra, there is an alternative 

expressiOn [45] based ,on another algebra homomorphism A 1-+ AD-1 , where D = 
<u,A>, 

(2.85) 

From the form of these equations it is clear that the map Cr: A 1-+ AYk is an algebra 

homomorphism. It also follows quite easily that this map is invariant in the sense 

A.A oCr= (Cr ® id) o A. This immediately poses the question of a relation to our 
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theory of bicovariant generators and pure braid elements. For the "Ribbon" case we 

find 
yk = o-~S(A)w-kAwk 

_!i < ( -k) A> ( -k) k = 0 2 W (1)l W (2)W , 
(2.86) 

so that yk =< T, A 0 id > with the pure braid element 

(2.87) 

The "Non-Ribbon" case gives 

Y - oS(A)uAD-1u-1 

- o < u(1),A > u(2) < u:-\A > u-1 (2.88) 

< -1 A> -1 - 0 U(1)U , U(2)U , 

such that again Y =< T', A 0 id >with another pure braid element 

(2.89) 

Both examples are hence as expected special cases of the pure braid formulation . 
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Chapter 3 

R - Gyn1nastics 

In this chapter we would like to study for the example of Y E MN(U) the matrix fonn 

of U as introduced at the end of section 1.1.2. Let us first derive commutation relations 

for Y from the quantum Yang-Baxter equation (QYBE): Combine the following two 

copies of the QYBE, 

nt2Rt3n23 = n23Rt3R_l2, and R2tn3tna2 = n32n3tn2t, 

resulting in, 
n2tn31n32RPJ?.Pn23 = n32R31n211?.23n13n12, 

and apply the QYBE to the underlined part to find, 

R21 (R31n13)n12(n32n23) = (n32n23)n2t(n3ln13)nt2, 

which, when evaluated on< . , A1 ® A2 ® id >,gives: 

(3.1) 

3.1 Higher Representations and the •-Product 

As was pointed out in section 1.1.2, tensor product representations of U can be 

constructed by combining A-matrices. This product of· A-matrices defines a new 

product for U which we will denote "•". The idea is to combine Y-matrices (or 

L +, L- matrices) in the same way as A-matrices to get higher dimensional matrix 

representations, 

YJ. • Y2 .- < 'R21'R12 ,A1A2 ® id >, 

Lt • Lt .- < 1?.?\A1A2 ® id >, 

SL!• SL;_ := < 'R12,A1A2 ® id >. 
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Let us evaluate (3.2) in terms of the ordinary product in U, 

Yi • Y2 - < (~ 0 ii)R21'RP, A1 0 A2 0 i1 > 
- < n32n31 n13n23, Al 0 A2 0 i1 > 
_ < (n-1)12n31n13n12n32n23,A10 A2 0 i1 > 

- RliYiR12Y2, 

where we have used, 

R32n31R13R23 _ ((n-t)l2nl2)R32R31R13n23 

_ (n-1)12n3ln32J?Pnl3n23 

_ (n-1 )12n31n13n12n32n23. 

Similar expressions for L + and S L- are: 

Li • Li - Li Li, 

SL} • SL2 - SL} SL2. 

(3.5) 

(3.6) 

(3.7) 

All matrices in MN(U) satisfy by definition the same commutation relations (1.30) as 

A, when written in terms of the •- product, 

R12Lt • Li = Li • Li Ri2 <=> R12Li Li = Li Li R12, (3.8) 

R12SLi • SLi = SLi • SLi R12 <=> R12SLi SLi = SLi SLi R12, (3.9) 

R12Yi • Y2 = Y2 • l1R12 <=> R12(R!lYiR12Y2) 
= (R2lY2R21Yi)R12 

<=> R21YiR12Y2 = Y2R21YiR12· (3.10) 

Remark: Equations incorporating the •-product are mathematically very similar to 

the expressions introduced in ref.[48) for braided linear algebras- our analysis was in 

fact motivated by that work -but on a conceptional level things are quite different: 

We are not dealing with a braided algebra with a braided multiplication but rather 

with a rule for combining matrix representations that turns out to be very useful, as 

we will see, to find conditions on the matrices in MN(U) from algebraic relations for 

matrices in MN(A). 

3.1.1 Multiple •-Products 

We can define multiple (associative) •-products by, 

(3.11) 
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but this equation is not very useful to evaluate these multiple •-products in practice. 

However, the "big" R-matrix of equation (1.32) can be used to calculate multiple 

•-products recursively: Let Y 1 = Yi' • }2, • ... • Yn' and Y II = Yi • Y2 • ... • Ym, 
then: 

y I. y II= Rl,II -Iy IRI,II y IIi 

compare to (1.33) and (3.5). The analog of equation (3.10) is also true: 

RI,II y I. y II= y II. y IRI,II 

¢:> Ru,IY 1RI,II Y II= Y uRn,I Y 1RI,II. 

(3.12) 

(3.13) 

(3.14) 

The •-product of three Y -matrices, for example, reads in terms of the ordinary mul

tiplication in U as, 

Yi • (Y:z • }3) - Rl,(23>YiRt,(23)(Y2 • }3) 
- (R1l R1illR13R12)(R;]Y2R23)}3. 

(3.15) 

This formula generalizes to higher •-products,* 

k k 

Y = II •Yi - II Y,(i) (1. .. 2) - ' - }. .. k, where: 
i=l i=l 

(3.16) 

3.2 Quantum Determinants 

Assuming that. we have defined the quantum determinant det9 A of A in a suitable 

way- e.g. through use of the quantum c:9-tensor, which in turn can be derived from 

the quantum exterior plane -we can then use the invariant maps <I>n for n = 2 

to find the corresponding expressions in U; see (2.69). Let us consider a couple of 

examples: 

DetY .- < R.21R.12,det9A ® id >, 
DetL+ .- < R.2l,det9A ® id >, 

DetSL- .- < R.12,det9A ® id >. 

• All products are ordered according to increasing multiplication parameter, e.g. 

k 

II·~ = Yi • y2 •...• Yk. 
i=l 
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Because of equations (3.6) and (3. 7) we can identify, 

DetL+ = det9-1L+, DetSL- = det9 SL-. 

Properties of det9A, namely: 

A detqA - detqA A (central}, 

A(det9A) - det9A ® det9A (group-like), 

(3.20) 

{3.21) 

(3.22) 

translate into corresponding properties of "Det". For example, here is a short proof 

of the centrality of DetY = YdetqA based on equations (2.7) and {2.61):t 

x Yb - Yb<2> < X(t) , S(b(t))b(3) > x(2), Vx E U; 

=?X YdetqA - Ydet9 A < X(t), S(detqA)det9A > X(2) 
(3.23) 

- Ydet9 A < X(l) , 1 > X(2) 

- Ydet9A x, Vx E U. 

The determinant of Y is central in the algebra, so its matrix representation must be 

proportional to the identity matrix, 

< DetY,A >= td, (3.24) 

with some proportionality constant K that is equal to one in the case of special 

quantum groups; note that (3.24) is equivalent to: 

(3.25) 

where det1 is the ordinary determinant taken in the first pair of m~trix indices. We 

can now compute the commutation relation of DetY with A [24], 

DetYA - A< DetY,A > DetY 

- KADetY, 
(3.26) 

showing that in the case of special quantum groups the determinant of Y is actually 

central in A >4U. * 
Using (3.22) in the definition of DetY, 

DetY - < n21 'RP, det9A ® id > 
- < n31n23

, A(det9A) ® id > 
_ < n31n23 det A ® det A ® id > ' q . q 

(3.27) 

- detq-lL+ · det9SL-, 

tThis proof easily generalizes to show the centrality of any (right) invariant c E U, ~A(c) = c® 1, 
an example being the invariant traces tr(D-1 Yk) [23]. 

iThe invariant traces are central only in U because they are not group-like. 
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we see that '"DetY" coincides with the definition of the determinant of 1 ... given in 

[38]. 

A practical calculation of DetY in terms of the ma.trix elements of Y sta.rts from, 

(3.28) 

and uses DetY = detq •Y, i.e. the q-determinant with the •-multiplication: 

(3.29) 

Now we use equation (3.16) and get: 

where: 

(3.30) 
1 < i < k, 

It is interesting to see what happens if we use a matrix T E A1N(A) with deter

minant detqT = 1, e.g. T := A/(detqA)1fN, to define a matrix Z E A1N(U) [24] in 

analogy to equation (2.63), 

we find that Z is automatically of unit determinant: 

DetZ .- < 'R21 'R.P, detqT ® i1 > 
_ < 'R21n12, 10 i1 > 
_ ( € 0 il) ('R21n 12) = L 

3.3 An Orthogonality Relation for Y 

If we want to consider only such transformations 

x ~---+ A~(x) = A®x, x E C~, A E MN(A), 

(3.31) 

(3.32) 

(3.33) 

of the quantum plane that leave lengths invariant, we need to impose an orthogonality 

condition on A; see [23) .. Let C E MN(k) be the appropriate metric and xTCx the 

length squared of x then we find, 

(orthogonality), (3.34) 
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as the condition for an invariant length, 

xTCx ~--+ .A~(xTCx) = 1® xTCx. (3.35) 

If we restrict A - and thereby A - in this way we should also impose a corresponding 

orthogonality condition in U. Use of the •-product makes this, as in the case of the 

quantum determinants, an easy task: we can simply copy the orthogonality condition 

for A and propose, 

(L+f •CL+ - C => 

(SL-f • CSL- C => 

yT eCY - C, 

L+cT(L+)T = cT, 

(SL-fCSL- = C, 

(matrix multiplication. understood), 

(3.36) 

(3.37) 

(3.38) 

as orthogonality conditions in U. The first two equations were derived before in [23) 

in a different way. Let us calculate the condition on Y in terms of the ordinary 

multiplication in U, 
cij - yki • ckzY1

j 

- Ckz(Yl• Y2)k1 ii (3.39) 

Ckz (R):l Yl.Rt2Y2)k1 ii, 

or, using Cii = q(N-I)RlkiiCkt: 

Cii = q(N-t)Cmn(Yl.Rt2Y2)"m ii" (3.40) 

Remark: Algebraic relations on the matrix elements of Y like the ones given in the 

previous two sections also give implicit conditions on 'R; however we purposely did 

not specify 'R, but rather formally assume its existence and focus on the numerical 

R-matrices that appear in all final expressions. Numerical R-matrices are known for 

most deformed Lie algebras of interest [23] and many other quantum groups. One 

could presumably use some of the techniques outlined in this article to actually derive 

relations for numerical R-matrices or even for the universal 'R. 

3.4 About the Coproduct of Y 

It would be nice if we could express the coproduct of Y, 

(3.41) 

in terms of the matrix elements of the matrix Y itself, as it is possible for the coprod

ucts of the matrices L + and L-. Unfortunately, simple expressions have only been 

found in some special cases; see e.g. [49, 50, 51]. A short calculation gives, 

(3.42) 
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this could be interpreted as some kind of braided tensor product [48, 52], 

i i - k D.(Y i) =: Y k®Y j, (3.43) 

but for practical purposes one usually introduces a new matrix, 

(3.44) 

such that, 

(3.4.5) 

where capital letters stand for pairs of indices. The coproduct of Xij = (I- Y)iij).. 

is in this notation: 

(3.46) 

We will only use oAB in formal expressions involving the coproduct of Y. It 

will usually not show up in any practical calculation, because commutation relation 

(2.66) already implicitly contains D.(Y) and all inner products of Y with strings of 

A-matrices following from it. 
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Chapter 4 

Vectorfields on Quantum Groups 

In this chapter we are trying to find quantum analogs of two important and closely 

related concepts in the classical theory of Lie groups: Lie algebras of left-invariant 

vector fields and general vector fields over the group manifold. We will come back 

to both subjects in part 2, after developing the additional structure of an exterior 

differential calculus. Our approach will be heuristic in nature; stress is on formation 

of concepts (Begriffsbildung), The concept of vector fields can also be approached 

from differential forms, see [53). 

4.1 Quantum Lie Algebras 

4.1.1 Adjoint Action and Jacobi Identities 

Classically the (left) adjoint actions of the generators Xi of a Lie algebra g on each 

other are given by the commutators, 

Xi~ Xi= [Xi, Xi]= Xkf/i, (4.1) 

expressible in terms of the structure constants J/ i, whereas the (left) adjoint action 

of elements of the corresponding Lie group G is given by conjugation, 

h ~ g = hgh-1, h,g E G. (4.2) 

Both formulas generalize in Hopf algebra language to the same expression, 

Xi~ Xi = Xi<1>XiS(Xi<2>), with: S(x) = -x, 

~(X)= X(1) ® X(2) =X® 1 + 1 ®X, for Vx E g, (4.3) 

h ~ g = h(1)9S(h<2>), with: S(h) = h-1
, 

~(h)= h(l) ® h(2) = h ® h, for \lh E G, (4.4) 
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and agree with our formula (1.63) for the (left) adjoint action in U. \Ve can derive 

two generalized Jacobi identities for double adjoint actions, 

ad ad ad 
x t> (y t> z) - ( xy) t> z 

ad ad 
- ((x(l) t> y)x(2)) t> z (4.5) 

ad ad ad 
- (x(l) t> y) t> (x(2) t> z), 

and, 

(4.6) 

Both expressions become the ordinary Jacobi identity in the classical limit and they 

are not independent: Using the fact that~ is an action they imply each other. 

In the following we would like to derive the quantum version of ( 4.1) with "quan

tum commutator" and "quantum structure constants". The idea is to utilize the 

(passive) transformations that we have studied in some detail in sections 2.1 and· 

2A.l to find an expression for the corresponding active transformations or actions. 

The effects of passive transformations are the inverse of active transformations, so 

here is the inverse or right adjoint action for a group: 

(4.7) 

This gives rise to a (right) adjoint coaction in Fun(G): 

A~ S(A')AA', 1.e. 

Fun(G9 ) 3 Aii ~ Akz ® S(Aik)A14 E Fun(G9 ) ® Fun(G9 ); (4.8) 

here we have written "Fun(G9 )" instead of "Fun( G)" because the coalgebra of Fun(G9 ) 

is in fact the same undeformed coalgebra as the one of Fun(G). In section 2.4.1 we 

saw that the Y -matrix has particularly nice transformation properties: 

A ~ S(A')A: 

A ~ AA': 

It follows that: 

A ~ S(A')AA': 

Y ~ 1®Y, 

Y ~ S(A')YA'. 

k . l 
Y z ® S(A'k)A i· (4.9) 

This is the "unspecified" adjoint right coaction for Y; we recover the "specific" left 

adjoint action, 
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of an arbitrary x E U9g by evaluating the second factor of the adjoint coaction (4.9) 

on x: 
ad i k i l 

X [> y j = y l < X' S(A k)A j >, ( 4.10) 

At the expense of intuitive insight we can alternatively derive a more general formula 

directly from equations (1.63), (2.7), and (2.61), 

ad 
X(l)YbS(x(2)) X I> Yb -

- (}b)(l) < X(t), (Y/,)(2)' > X(2)S(x(3)) 

- (}b){l) < X(l)' (}b)(2)' > t:(X(2)) (4.11) 

- (Yb){l) < x, (Yb)(2)' > 

- Yb<2 > < x, S(b(t))b{3) >; 

note the appearance of the (right) adjoined coaction [21] in Fun(G9 ), 

(4.12) 

in this formula. 

We have found exactly what we were looking for in a quantum Lie algebra; the 

adjoint action (4.10) or (4.11) - which is the generalization of the classical com

mutator - of elements of U9g on elements in a certain subset of U9g evaluates to 

a linear combination of elements of that subset. So we do not really have to use 

the whole universal enveloping algebra when dealing with quantum groups but can 

rather consider a subset spanned by elements of the general form }b =< Y, b ® id >, 
Y E span { B2}; we will call this subset the "quantum Lie algebra" g

9 
of the quantum 

group. Now we need to find a basis of generators with the right classical limit. 

4.1.2 R-Matrix Approach 

Let us first evaluate (4.10) in the case where xis a matrix element of Y. We introduce 

the short hand, 

A (kl) _ S(Ai )At 
(ij) = k j, ( 4.13) 

for the adjoint representation and find, 

(4.14) 

where, again, capital letters stand for pairs of indices. The evaluation of the inner 

product< YA,ACB >=: cAcB is not hard even though we do not have an explicit 
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expression for the coproduct of Y; we simply use the commutation relation (2.66) of 

Y with A and the left and right vacua defined in section 1.2.2: 

< }}, SAfA3 > - < Y1SAIA3 > 
- < SAfCR:it1 f 2 YIA3(Rf1)-1 > 
- < SAf(R:;lf2 A3R3tYlRt3(R[1)-1 > (4.15) 

- (R;l f 2 R3tRt3(Rn)-1
, 

'kl 
=> c(ij) (kl) (mn) - ( (R2l)r2 R3tRt3(Rn)-1

)' jmn· 

The matrix Y becomes the identity matrix in the classical limit, so X = (I
Y)/ ..\ is a better choice; it has the additional advantage that it has zero counit and 

its coproduct (3.46) resembles the coproduct of classical differential operators and 

therefore allows us to write the adjoint action ( 4.3) as a generalized commutator: 

ad 
YA I> XB - YA(l)XBS(YA(2)) 

- oAD XBS(YD) 
- oAD XBS(ODE)(!E V'..\XE_+>..XE) 

YE 

- YAXB + (OAE ~ XB)>..XE 
- YAXB + >.. < oAE,AD B > XDXE, 
with: ODE IE = YD, S(ODE)YE = ID; 

=> XA ~ XB = XAXB- < oAE,ADB > XDXE. 

Following the notation of reference [25] we introduce the N 4 x N 4 matrix, 

A DE 
JR. AB ·-

lR.
A (mn)(kl) 

(ij)(pq) -

(4.16) 

(4.17) 

(4.18) 

but realize when considering the above calculation that 1R is not the "R-matrix in 

the adjoint representation" -that would be < n, A E A® AD B > -but rather the 

R-matrix for the braided commutators of gq, giving the commutation relations of the 

generators a form resembling an (inhomogeneous) quantum plane. 

Now we can write down the generalized Cartan equations of a quantum Lie algebra 

~: 

XA ~ Xs = XAXB- IRDE ABXDXE = XcfAcB, 

where, from equation (4.15), 
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4.1.3 General Case 

Equation (4.19) is strictly only valid for systems of N 2 generators with an N 2 x N 2 

matrix IR because X E MN (gq) in our construction. Some of these N 2 generators 

and likewise some of the matrix elements of lR could of course be zero, but let us 

anyway consider the more general case of equation (4.11). We will assume a set of 

n generators Xb, corresponding to a set of n linearly independent functions { bi E 

Fun(Gq) I i = 1, ... , n} and an element of the pure braid group X E span(B2) via: 

(4.21) 

We will usually require that all generators have vanishing counit. A sufficient con

dition on the bi 's ensuring linear closure of the generators Xb; under adjoint action 

( 4.11) is, 
Ad . l 

D.. (bi) = bi ® M 3 i + kt ® ki, (4.22) 

where Mji E Mn(Fun(Gq)) and k~, k~ E Fun(Gq) such that < X, k1 ® id >= 0. The . 

generators will then transform like, 

(4.23) 

from (D...A ® if)D...A(Xb;) = (if® D..)D...A(Xb;) and (if® t)D...A(Xb,) = Xb, immediately 

follows* D..(M) = M@M, t(M) =].and consequently S(M) = M-1
. M is the adjoint 

matrix representation. We find, 

(4.24) 

as a generalization of (4.19) with structure constants fkii =< Xb~o,Mii >. Whether 
ad 

Xb1c 1> Xb, can be reexpressed as a deformed commutator depends on the coproducts 

of the Xb, 's and hence on the particular choice of X and { bi}. 

Equations (4.9) and (4.13)- (4.20) apply directly to Glq(N) and Slq(N) and other 

quantum groups in matrix form with (numerical) R-matrices. Such quantum groups 

have been studied in great detail in the literature; see e.g. [23, 25, 26] and references 

therein. In the next subsection we would like to discuss the 2-dimensional quantum 

euclidean algebra as an example that illustrates some subtleties in the general picture. 

4.1.4 Bicovariant Generators for eq(2) 

In [39] Woronowicz introduced the functions on the deformed Eq(2). This and the 

corresponding algebra Uq ( e(2)) were explicitly constructed in chapter 1 using a con

traction pr<;>cedure; here is a short summary: m, ffi and()= 8 are generating elements 

•This assumes that the Xb, 's are linearly independent. 

51 



of the Hopf algebra Fun(Eq(2)), which satisfy: 

mrn = q2n1-m, ei9m = q2mei9 , ei9m = q2mei9
, 

6(m) = m 01 + ei9 0 m, 6(m) = m 01 + e-ie 0 m, 
6( eie) = e;.e 0 eie' S(m) = -e-iem, S(m) = -eiem, 

( 4.25) 

S(O) = -0, t:(m) = t:(m) = t:(B) = 0. 

Fun(Eq(2)) coacts on the complex coordinate function z of the euclidean plane as 

6.A(z) = z 0 ei8 +10m; i.e. 8 corresponds to rotations, m to translations. The dual 

Hopf algebra Uq(e(2)) is generated by J = J and P± = P=f satisfying: 

[J, P±] = ±P±, [P+, P_] = 0, 

~(P±) = P± 0 qJ + q-J 0 P±,- ~(J) = J 01 + 1 ® J, 
S(P±) = -q±1 P±, S(J) = -J, t:(P±) = f(J) = 0. 

The duality between Fun(Eq(2)) and Uq(e(2)) is given by: 

< p+ k p_lqmJ, ei8amb~ >= 

(4.26) 

( _ 1 )l q-1/2(k-l)(k+l-1)+l(k-1) q(k+l-m)a[k ]q![l]q-l !8lb<5kc, ( 4.27) 

where k,l,b,c E N 0 , m,a E Z, and, 

X q2Y _ 1 
[x]ql = IT 2 1 ' 

y=l q -

Note that P+P- is central in Uq(e(2)); i.e. it is a casimir operator. Uq(e(2)) does not 

have a (known) universal 'R.., so we have to construct an element X of span(B2 ) from 

the casimir P + P _: 

X .- q-!-1 {A(P+P-)- (P+P- ® 1)} 
- q-!-1 {P+P- ® (q2J- 1) + P+q-J ® qJ p_ 

+ P_q-J ® qJ P+ + q'"""2J ® P+P-}. 

( 4.28) 

X commutes with ~(x) for all x E Uq(e(2)) because P+P- is a casimir. We introduced 

the second term (P+P- ® 1) in X to ensure (if® f)X = 0 so that we are guaranteed 

to get bicovariant generators with zero counit. Now we need a set of functions which 

transform like (4.22). A particular simple choice is a0 := ei8 - 1, a+ := m, and 

a_ := ei8m. These functions transform under the adjoint coaction as: 

(4.29) 

0 
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Unfortunately we notice that ao and thereby Xao are invariant, forcing Xa0 to be a 

casim.ir independent of the particular choice of X. Indeed we find Xa0 - qP+P-, 

Xa+ = -..JQ/(q- q-:1 )qJ P+, and Xa_ = qf(q- q-1)qJ P_, making this an incomplete 

choice of bicovariant generators for eq(2). An ansatz with four functions bo := (ei9 -

1)2 , b1 := -mei9m, b+ :- -(ei9 -1)m, and b_ := q-2(ei9 -l)ei9m gives: 

1 mm -e-iem -q-2eiem 

Ad . 0 1 0 0 
( 4.30) !::,.. (bo,bl,b+,b-) = (bo,bt,b+,b-)0 

0 -m e-ie 0 

0 -m 0 ei9 

The corresponding bicovariant ·generators are: 

xbo = q(q2 -1)P+P_, Xb1 = (q- q-1
)-1 (q 2J- 1), 

xb+ = qJP+, xb_ = qqJP_. 
(4.31) 

In the classical limit ( q --+ 1) these generators become "zero", J, P +, and P _ 
respectivelyt. The coproducts of the bicovariant generators have the form expected 
for differential operators · 

A ( ~~) = ( ~~) 
01

+ ( >.SX~+l >.;~:l >.(>.S~1+l) .>.X+(>.S.0Xl+l)) 
0 

( ~:). 
X+ X+ 0 >-X+ 1 0 . X+ 
X- X- 0 >-X- o 1 X-

(4.32) 

The commutation relations of the generators follow directly from ( 4.26), their adjoint 

actions are calculated from (4.24), (4.27), and (4.30) and finally the commutation 

relations of the generators with the functions can be obtained from (1.53), (4.25) and 

( 4.26). 

4.2 General Vector Fields 

In this section we will give a "quantum geometric" construction of the action of 

general, i.e. neither necessarily left or right invariant, vector fields, thereby justifying 

the form of the action that we used in the construction of the cross-product algebra 

of differential operators. 

4.2.1 Classical Left Invariant Vector Fields 

First, recall the left-invariant classical case: The Lie algebra is spanned by left

invariant vector fields on the group manifold of a Lie group G. These are uniquely 

tThe same generators and their transformation properties can alternatively be obtained by con

tracting the bicovariant calculus on SUq(2). 
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determined by the tangent space at 1 (the identity of G). Curves on G can be nat

urally transported by left (or right) translation i.e. h ~ 9h (h ~ h9). This defines 

a left transport Lg-1 of the tangent vectors: Lg-1 (XI) == Xu. x1 is the vector field X 

at the identity of the group and Xu is the new vector field X evaluated at the point of 

the group manifold corresponding to the group element 9; if x is left invariant then 

X = X and in particular 

( 4.33) 

An inner product for a vector field x with a function f can be defined by acting with 

the vector field on the function and evaluating the resulting function at the identity 

of the group: 

< x,f >:= Xt t> fl 1 E k. ( 4.34) 

If we know these values for all functions, we can reconstruct the action of x on a func

tion f, Xu t> flu, at any (connected) point of the group manifold. The construction 

goes as follows (see figure): 

We start at the point 9, transport f and x back to the identity by left transla

tion and then evaluate them on each other. The result, being a number, is invariant 

under translations and hence gives the desired quantity. The left translation L9(J) of 

a function, implicitly defined through Lu(J)(h) = f(9h), finds·an explicit expression 
in Hopf algebra language 

that we now use to express 

Xu t> flu - Lu(Xh t> f(t)(9)!(2) 1
1 

- Xtt>f(1)(9)f(2)1
1 

- f(t)(9) < x, f(2) >, 

( 4.35) 

( 4.36) 

for a left-invariant vector field X· If the drop 9, we obtain the expression for the 

action of a vector field on a function valid on the whole group manifold 

( 4.37) 
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already familiar from the first chapter. The left and right vacua by the way find the 

following 'geometric' interpretation: 

left vacuum <: "Evaluate at the identity (of the group)." 

right vacuum >: "Evaluate on the unit function." 

4.2.2 Some Quantum Geometry 

Group elements (g) do not exist for quantum groups, everything has to be formu

lated in terms of a Hopf algebra of functions. The group operation is replaced by 

the coproduct of functions. A quantum group has only few classical points. These 

correspond to elements of U with group-like coproducts, e.g. the quantum determi

nant of Y in GZq(2): 6-detqY =detqY®detqYo If we take care only to speak about 

functions in A and its dual Hopf algebra U, we can, however, still develop a geometric 

picture for vector fields on quantum groups. "Points" will be labeled by elements of 

U, which is the same as U but has the opposite multiplication; elements of f) are 

right-invariant. Lie derivatives along elements of U take the place of left translations, 

while Lie derivatives along elements of U correspond to right translations. Here is 

the quantum picture of the classical construction given in the previous section: 

1 • 

£g(x) = xt(y) ----

"y" • 
X 

Note that £g(x) = xt:(y) because xis left-invariant. (More precise definitions of these 

·Lie derivatives in connection with right-projectors will be given in section 4.2.4). Be

fore we can read any equations off the picture we have to invent a rule for multiple 

appearances of the same Hopf algebra element in the same term: 

Multiple occurrences of the same Hopf algebra element in a single term 

are not allowed. One should use the parts of the coproduct of this element 

instead- starting with the last part of the coproduct and collecting terms 
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from the right to the left as one moves along the path that the function 

is transported. 

Now can compute x t> f in complete analogy to the classical case 

or, for arbitrary y: 

£11(1/x) t> £!/(2) (f) 1
1 

t:(Y(t))x t> £11<2> (!)1
1 

- X t> £g(f)l1 
- Xt> < y,f(1) > /(2)1

1 

- < y,f(t) >< x,/(2) > 

( 4.38) 

x t> f = !(1) < x,/(2) >, ( 4.39) 

giving a geometric justification for the left action of U on A that we had introduced 

in chapter 1. 

Now we would like to study the adjoint action in U, which can be interpreted as 

a quantum Lie bracket as we shall see. Recall the classical construction: Functions 

and hence curves on a group manifold can be transported along a vector field. \Vith 

the curves we implicitly also transport their tangent vectors. This transport is called 

the Lie derivative of a (tangent) vector along a vector field. Classically we find it to 

be equal to the commutator (Lie bracket) of the two vector fields. Here is how the 

computation goes in practice: Let y be the vector field along which the functions are 

transported and let x be the "tangent" vector field. Consider a function Jon the new 

curve and transport it along the following two equivalent paths: 
r 

1. Go back along y to the old curve, follow the old curve along x and finally return 

along y to the new curve. 

2. Follow the new curve along £ y ( x). 

We have to invent a new rule for backward transport:t 

Moving a function back along a vector field y is the same as movmg 

forward along the antipode S(y) of that vector field. (When moving a 

1-form, one should use the inverse antipode.) 

tNote that we follow the path of the transported function; forward hence means "opposite to 
the direction that the vector is pointing" , backward means "along the direction that the vector is 

pointing'' . 
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.. 

The following picture illustrates the geometric construction of the quantum Lie deriva

tive of a left-invariant vector field along another left-invariant vector field: · 

X I> S(y) I> f S(y)t> J 
X ·------------· 

S(y) 

y 

f 

Y(t) I> X I> S(Y(2)) I> f 
= £ y(x) t> f •---------------

Vve read off this picture that 

£y(x)t>f - Y(t)t>xt>S(Y(2))t>f 

-. (Y(t)xS(Y(2))) t> J, 
(4.40) 

4.2.3 Action of General Vector Fields 

Our derivation of the action of a vector field on a function in the previous section 

relied on the use of left translations in conjunction with left-invariant vector fields. 

In this section we would like to free ourselves from this limitation and show how to 

derive the action of a general vector field - neither necessarily left or right invariant 

-on a function using alternatively left or right translations. 

Left and right coactions .4.6., .6..4 contain the information about transformation 

properties of vector fields. Here is how a vector field transforms (classically) if we 
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left-transport it from a point g on the group manifold back to the identity 

"(4.41) 

here is the behavior under a right translation: 

(4.42) 

If we now redo the construction of the previous section for general vector fields x, 
both for left and right translations, we get the following two equivalent results for 

actions on functions: 

xU) = < x<1), !(1) > x<2
)' fc2) = x<l)' f(l> < x<2

), f(2) > . 

from right translation from left translation 

(4.43) 

Technically there is an ordering ambiguity for f and the primed parts of X, but this 

can be easily resolved by requiring a (f) = af for a E A in both cases; both expressions 

are written as left actions. From this equation we can derive the following relations 

between left and right coactions for x E A•: 

AAX - ei ~ x<I)' !{1) < x<2
>_, fl2) > S !{3) 

- ei(l)X(2)Ser:(2) ~ x<I)'Ji (4.44) 
ad 0 

- ( ei 1> 0 il) r(AD.x)(l ~ jt), 

A-6x - x<2
) Jt3) < x<1

), fl2) > s-1 fl1) 0 ei 

- x<2)'p 0 s-1(ei(2))x<1)ei(l) (4.45) 

- (if~ s-lei ~) r(D..Ax)(Ji ~ 1). 

In this thesis we choose the convention that elements in U ::::::: A • be left-invariant. 

· 4.2.4 Right and Left Projectors 

In this section we will show how to obtain right-invariant vector fields from left

invariant ones by allowing functional coefficients. These right-invariant vector fields 

will live in A><1U- recall that elements of U were chosen to be left-invariant. Let x 

be the left-invariant vector field and x the corresponding right-invariant vector field. 

These vector fields should coincide at the identity, i.e. for any function f 

t:(x) = t:(x), < x, f >=< x, f > . (4.46) 

For this to make sense we have to extend the definition of the inner product a little 

bit to allow elements of A>4U in the first space. Recalling the geometrical definition 

< ¢>,! >:= ¢1> ill' ¢ E A ><1U, f E A (4.47) 
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this is not hard: (a, f E A, x E U) 

<ax,f> := f(a)<x,J>, 

< xa,J > .- < x,af >, 

( 4.48) 

(4.49) 

in perfect agreement with the formulation in terms of vacua. Let .6.A(x) = x<1l0x<2)' E 

U 0 A; it is not hard to. see that 

has the required properties and is right invariant 

.D.A(x) - (S-1x(2)')(1)X(1)(1) 0 (S-1x(2)')(2)x(1)(2)' 

- s-1(x(2)')(3)X(1) 0 s-1(x(2)')(2)X(2)'(1) 

- s-1 ( x<2l') {2)x(1) 0 1f( x<2)' (1)) 

- s-1 (x<2l')x{l) 0 1 

x01, 

but (of course) no longer left-invariant: 

A.D.(x) = (S-1x(2)')(1) 0 (S-1x<2l')(l)x<1l 

= s-1x(2)' 0;<1), 

( 4.50) 

( 4.51) 

(4.52) 

We define U to be the space {xlx E U}. It turns out that the ~-operation is a 

projection operator from A><JU to U; we will call it the right projector. Three explicit 

expressions for such right-invariant vector fields can be quickly derived: 

x = Ji(S-1(ei) ~ x) 

= /~)s-1 /(~) < x, !l2> > ek 

and, for 1 b =< 1, b 0 rl > with T being a pure braid element, 

- -1 1 b = s (b(3))b(1) 1 b(2) 0 

Left- and right-invariant vector fields commute: 

yx - x<1> < Y(1)' x<2>' > Y(2) 

= x < Y(1), 1 > Y(2) 

= xy. 

The right projector is an antimultiplicative operation: 

xy - s-1 ((xy)(2)') (xy)(1) 

- s-ly(2)1 s-1 x(2) 1 x(1)y(1) 

_ s-1y(2)' xy<1> ..__., 
commute 

- s-1y(2)'y(1>x 

- yx. 
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The right invariant vector fields form a Hopf algebra with the same coproduct as U 

because of (4.46), but opposite antipode and multiplication: 

f(x) = x, S(x) = 5-lx. (4.57) 

The Lie derivative of- or the adjoint action on- an element ¢of .A>4U along a 

right invariant vector field comes out formally equivalent to the left invariant version, 

when expressed in terms of the new~ and S: 

£x(¢) - x~ ¢ 

- x(l)¢Sx(2) (4.58) 

- X(i)¢S-lx<2)· 

It immediately follows that 

£x(Y) = 0, for y E U, ( 4.59) 

in agreement with the geometrical picture. Let us now compute the action of a right

invariant vector field on a function a, using only the algebraic relations of the cross 

product algebra and the right vacuum: 

S lj" ad xa > - - 'a(l) < ei I> x,a(2) > 
- s-l Pa(l) < ei ® x, a(2)Sa(4) ® a(3) > 
- a(4)S-

1
a(2)a(l) < x, a(3) > ( 4.60) 

- a(2) < x, a(l) > 
- < x, a(l) > a(2), 

.. ____ as expected from the geometrical considerations of the previous section. The Hopf 

algebra U mimics U very closely. There is even a canonical element C in .A ® [./ that 

determines left coactions by conjugation: 

.A~(x) - C(l ® x)Ft, 

.A~(a) C(l ® a)Ft 

- a(l) ® a(2). 

By symmetry there is of course also a left projector¥ 

that is most useful in the equality 

x = x<2>' ;0>. 
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4.2.5 Applications 

Here is an example of a typical manipulation using projectors onto right-invariant 

vector fields: 
xa - xa 

<=? x<2)' ;<i)a - X(l)(a)x(2) 

<=? x<2l'x(i}(1)(a)x{i')(2) - X(l)(a)xc2)<2l'x~1 ) 

Now use the A:xlii::::: A®U isomorphism, remove the "~"over the second space and 

switch spaces: 

<=? x(ll(2) ®x<2l'x{i')(t)(a) - X(2)(l) 0X(t)(a)x(2)(2)' 

{=? x(ll(2) 0 x<2l' < x<1)(1), a(1) > a(2) - X(2)(l) 0 X(t)(a)x(2)(2)' 
(4.66) 

The expression that we have just derived is incidentally equivalent to a proof that 

.6..A is a A>4U-algebra homomorphism, only this time we did not need to make any 

reference to linear infinite bases { ei} and {Ji} of U and A, that do not necessarily 

exist. Let us now complete the proof: Using the fact that a E A was arbitrary, we 

take it to be the second part of the coproduct of some other element b E A and 

multiply our expression by bc 1) in the first space 

¢:? X(l)(l)(b(l))X(l)(2) 0 X(2)'b(2) - b(l)X(2)(l) 0 X(l)(b(2))X(2)(2)' 

¢:> .6..A(x).6..A(b) - .6..A(X(l)(b)).6..A(X(2)) = .6..A(xa). 0 
( 4.67) 

This example shows that the projections introduced in this section are powerful tools 

in formal computations. The manipulations in the given example were not quite as 

elegant as the corresponding ones using the canonical element, but the projecto.rs are 

much more versatile tools and they do not require the existence of linear countable 

infinite bases that were implicitly assumed for the canonical element. 

For further applications please see the covariance proofs in part II of this thesis. 
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Chapter 5 

A Quantum Mechanical Model 

In this chapter we would like to illustrate at the example of a simple toy model one 

possible way how quantum groups might find use in physics. Quantum mechanics is a 

remarkably good theory as far as experimental verification is concerned, so we will not 

attempt to modify its most basic features as for instance the canonical commutation 

relations. We instead want to focus on a generalization of unitary transformations. 

These transformations form groups in quantum mechanics; we will investigate - at 

the example of time evolution - what happens if we generalize these transformations 

to be elements of Hopf algebras. The introduction of deformed Poincare symmetry in 

physics is expected to lead to similar new phenomena. We will in particular embed 

the operator algebra of a simple quantum mechanical model in a Hopf algebra with 

possibly non-trivial coproduct and propose generalized time evolution equations. We 

find that probability is conserved in this formulation but pure states can evolve into 

mixed ones (and vice versa); microscopic entropy is only conserved for a special stable 

state. The theory could be interpreted as quantum mechanics for open systems. 

Introduction 

There have been a number of proposals for a deformation of ordinary quantum me

chanical systems using quantum groups. In particular systems with quantum group 

symmetries e.g. [55, 56) and with deformed c~onical commutation relations e.g. 

[57, 58) have been investigated in some detail. Here we would like to focus on de

formed time evolution equations, i.e. deformations of the Heisenberg equations of 

motion (Heisenberg picture) and of the Liouville equation for the density operator 

(Schrodinger picture). It turns out to be fruitful to consider both pictures (H.p.j S.p.) 

simultaneously. Let us list some basic requirements on time evolution equations: 

62 



• The equations have to be ·linear. 

• Time evolution should be multiplicative. 

• Hermiticity must be preserved. 

• Probability must be preserved, i.e. the trace of the density matrix must be 

constant. 

• Probabilities must be positive at all times. 

All these requirements are fulfilled by unitary time evolution: 

X(t) [U(t)t 1 X(O)U(t), 

p(t) - U(t)p(O)[U(t)t1
, 

(H.p.), 

(S.p.), 

(5.1) 

(5.2) 

with [U(t)]+ = [U(t)]- 1• In this paper we would like to argue that the above equations 

are not the only possible ones satisfying all the listed requirements; in order to find 

more general equations we, however, need to extend the operator algebra to a Hop£ 

algebra. 

Generalizations of unitary time evolution have been studied before in the 70's in the 

context of completely positive maps and dynamical semi-groups. Lindblad [54] found 

the general form for generators of such semi-groups, however, without being able 

to give a cause for the modified time evolution equation because he does not make 

any .reference to an underlying structure- like Hopf algebras or non-commutative 

geometry in our case. 

5.1 Schrodinger Picture 

Let us briefly review density matrices in "classical" quantum mechanics: All ob

servables are described by operators X constant in time, states are given as time 

dependent density matrices p(t). Expectation values are calculated as usual via 

<X >p(t)= tr(Xp(t)), (5.3) 

where the trace is cyclic (tr(xy) = tr(yx)). The eigenvalues of the density matrix are 

the probabilities of the pure components of the mixed state. In a diagonal basis 

0 <Pi< 1. (5.4) 
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The sum of the eigenvalues of the density matrix must hence be one 

tr(p) = LPi = 1, 
i 

independent of time. Note that 

(normalization) (5.5) 

(5.6) 

the equality is only satisfied for a pure (p = lt/1 >< t/11) state. All mixed states have 

tr(p2 ) < 1. Unitary time evolution not only preserves the trace of p, i.e. it conserves 

probability, 

tr(UpU-1
) = tr(p) = 1 (5.7) 

but also conserves entropy: 

(5.8) 

It preserves hermiticity of p because of ut = u-1 and is multiplicative: U(t 1 + t 2 ) = 

U(ti) · U(t 2 ). Our task is now to find a generalized time evolution for the density 

matrix with all those properties except for the conservation of entropy. To satisfy 

linearity and multiplicativity we choose time evolution to be realized through the 

action (see chapter 1) of some new time evolution operator U 

p(t) = [;If p, u = U(t). (5.9) 

To leave freedom for deformations we ask [J to be an element of a Hopf algebra U 

(rather than a group) and propose the following left action: 

(5.10) 

Due to S(Uc1>)Uc2> = f.(U) and the cyclicity of the trace this time evolution equation 

conserves probability 

(5.11) 

if we impose 

(5.12) 

In order to conserve hermiticity we have to impose 

I [;t = S(U) I, (5.13) 
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because then 
, (p(t))t - (0(2)PS(U(1>)) t 

- s-1(0[1>)pt0[2> 
s-1(0t) ~ Pt 
- op t - Ut>p. 

Entropy is ho~ever no longer necessarily conserved: 

tr (p(t) · p(t)) # tr(po ·Po), in general. 

Example: "Classical" Quantum Mechanics is a special case with 

~(U) = u 0 u, S(U) = u-1
, E(U) = 1, 

p(t) = U(2)PS(U(l>) = U pU-1, 
ut = S(U) = U:-1

• 

5.2 Heisenberg Picture 

(5.14) 

(5.15) 

(5.16) 

Now we stick all the time evolution into the observables, leaving the density matrix 

time invariant. The time evolution equation for the operators easily follows from 

the one for the density matrix using the cyclic nature of the trace and the fact that 

the time evolution of the expectation values should be independent of the particular 

picture. We find: 

I X(t) = X(O) ~ U(t) = S(U(1))X(O)U(2) ,. 

Two consistency requirements give the same conditions on [T 

1(t) = 1 =? E(U) = 1, 

(X(t))t = xt ~ [J => [Jt = S(U), 

as were already obtained in the previous section. 

5.3 Infinitesimal Transformation 

(5.17) 

(5.18) 

(5.19) 

One great thing about working with Hopf algebras is that finite and infinitesimal 

transformations are unified in the sense that they have the exact same form. The 

infinitesimal version of our time evolution equation must have the form 

(5.20) 
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where i is purely conventional and we have inserted 1i to give fi units of energy. The 

conditions on fi are slightly different from the ones on U ;• 

€(H) - o 
fit - -S(H). 

(5.21) 

(5.22) 

How do we obtain the time evolution operator fi from the (hermitian) Hamiltonian 

H? Here is a Conjecture: 

nt=H. (5.23) 

(The 2 might be a "quantum-2".) This choice for fi will automatically satisfy both 

conditions. Finite time translations can be recovered by Taylor expansion 

p(t) = f: t~ cr:i ·= E t~ ((f!) c:)n p = efkt If p, 
n=O n. dt t=O n=O n. zfi 

(5.24) 

where we have used the multiplicative properties of successive actions. Note that this 

is an ordinary exponential function, not a q-deformed one. 

In the following section we will study a system with a finite number of eigenstates. 

In this case equation (5.20) can be converted into a matrix equation by taking the 

inner product with a matrix A E Mn(A) as follows: 

1 - - . 
- itt < H(2)pSH(1), A'1 > 

1 - k . . 
- itt < H, S(A 1)A'i >< p, A3k > 

(5.25) 

or, in a short hand, 
dp(il) 1 - (il) ( 'k) 
-- = -H ('k)P 3 

dt i1i J • 
(5.26) 

This matrix equation can easily be exponentiated to give an explicit solution 

(ii) (il) P(il)(t) = exp in (ik)P~k) (5.27) 

for p. In practice one would now express p in terms of eigenvectors of flCil) (jk) so that 

the matrix exponential diagonalizes with the exponentials of i~ times H's eigenvalues 

along its diagonal. 

5.4 A Simple 2-Level System 

Consider a single particle in a double well potential (Fig. 5.1) with a barrier of height 

•The first condition may possibly be interpreted as requiring a zero energy ground state. 
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v 

-ll!!A.o. ..;m 

Figure 5.1: Double Well 

"" Tm<J . If we are only interested in which dip the particle is localized then we 

are dealing with a 2-level system. A phenomenological hamiltonian that describes 

tunneling through the barrier is easily written down in terms of the x-Pauli matrix: 

(tunneling only) (5.28) 

Instead of viewing the Pauli matrices as the fundamental representation of su(2) 

we would like to consider suq(2) with q E (0, 1] as given in (1.79). All irreducible 

representations of suq(2), e.g. 

2-dim: Uz = ( 
1 

O ) , 
0 -1 

y2 
0 

0 

0 

0 
yl2' 

(5.29) 
are undeformed. This makes it easy to derive a matrix representation of the time 

evolution operator: 

(5.30) 

We will ignore the proportionality constant because it can always be incorporated in 

~0. The time evolution equation in matrix form is 

dt = i~ ( ( ~ ~) p ( ~ q~! ) - ( q: q~. ) p ( ~ ~.)) ' (5.31) 

which reduces to the correct classical limit 

{classical) (5.32) 
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Figure 5.2: q = 1 
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Figure 5.3: q2 = 0.7 

as q --+ 1. Plugging the hamiltonian H into the matrix time evolution equation in 

the Heisenberg picture, 

~~ = i~ ( ( ~ ~)X ( ~ q~~)- ( ~ (5.33) 

gives incidentally 
dH =O 
dt ' 

(5.34) 

i.e. energy is conserved in our toy model. 

5.4.1 Time Evolution and Mixing 

It is instructive to look at an actual computation of the evolution of a system that is 

in an eigenstate I+ > of az at t = 0; the corresponding density matrix 

Po=(~ n {initial pure state} (5.3.5) 

is that of a pure state (tr(p) = tr(p2) = 1). Interesting are the eigenvalues p1 ,P2 of 

p(t) as a function of time. They are the probabilities of the respective pure states 

in the mixture. For q = 1 (Fig. 5.2) nothing much happens, but for e.g. q = 
VQ:7 ~ 0.5 (Fig. 5.3) the system oscillates between a pure and a partially mixed 

state. A behavior like that does not appear in ordinary quantum case and opens 

up interesting possibilities for, say in the present case, a phenomenological quantum 

mechanical description of just one part of a coupled system. Here we do not want to 

plunge too deep into possible interpretations but would just like to point out some 
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Figure 5.4: t ~ 1.9 
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Figure 5.5: q2 = 1/3 

new phenomena that appear when laws of physics are deformed. Just out of curiousity 

let us find the q for which the system becomes totally mixed. Plotting p1,2 against 

q (Fig. 5.4) at fixed time t ~ 1.9t we find qcritical = jlj3; see also Fig. 5.5. The 

significance of this number is unknown. 

5.4.2 Stable State 

An interesting question is whether there exists a stable (mixed) state that is invariant 

under the deformed time evolution. This is indeed the case and has to do with the 

square of the antipode: The square of the antipode is an inner automorphism in 

Uq(su(2)) implemented by elements u and v = S(u) via conjugation [28) 

'Vx E Uq(su(2)). (5.36) 

Let us try vas a density operator: 

v(t) .- U<2)vS(U(1)) 
- v S2 ( U(2)) S ( U(1)) 

- vc(U) 
(5.37) 

- v. 

Thus v has the desired properties. Its 2-dimensional matrix representation 

1 ( q
2 

01 ) 
v = 1 + q2 0 (5.38) 

tThis value was found by iteration. 
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looks like a thermal state for a hamiltonian with dominant part proportional to O"z, 

z. e. 

(5.39) 

and suggests 

q = exp( -6.1 /kT), q E (0, 1). (5.40) 

Higher matrix representations of v give additional support for this hypothesis: 

3-dim: 
0 0) 
q2 0 ' 

0 1 
Jz = ( ~ ~ ~ ) ; 

0 0 -1 

e.t.c. (5.41) 

tor: Time average of Ao :::::: 0. 
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Chapter 6 

Quantun1 Spaces 

6.1 Quantum Planes 

A classical plane can be fully described by the commutative algebra of (coordinate) 

functions over it. This algebra is typically covariant under the action of some sym

metry group, and derivatives on it satisfy an undeformed product rule. A quantum 

plane in contrast to this is covariant under a quantum group whose non-commutative 

algebra of functions A also forces the algebra of functions on the q-plane Fun(M9 ) to 

seize to commute. The transformations of Fun(M9 ) and of the dual algebra of quan

tum derivatives T(M9 ) is most easily described in terms of A-coactions on coordinate 

functions and partial derivatives 

- xi 0 StiJ., 
2 . - aj 0 s ei, 

which we sometimes write in short matrix form as 

X -+ t-l • X, 

a -+ a. S2t. 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Remark: The "S" was inserted here to make these transformations right coactions, 

the 8 2 is needed for covariance (see below). 

Remark: One can use tii in place of Stii· Then X-+ X. t and a-+ St. a. The choice 

is purely conventional. 

6.1.1 Product Rule for Quantum Planes 

Having made the ring of functions non-commutative, we must now also modify the 

product rule in order to retain covariant equations. We make the following ansatz 
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(see [22]) 

(6.5) 

where Oi(xk) = cSf and Lii is a linear operator that describes the braiding of Oi as 

it moves through xk. In place of the coordinate function xk one could write any 

other function in' Fun(M9 ) and in particular (formal) power series in the coordinate 

functions. When we consider products of coordinate functions we immediately see 

that L satisfies 

(6.6) 

which can be reinterpreted in Hop£ algebra language as 6.L = L®L and f( L) = I; 
SL = £-:-1 follows naturally. We are hence let to believe that L should belong to 

some Hopf algebra, the Braiding Hop£ Algebra. In the case of linear quantum groups 

L is for instance an element of the quasitriangular Hopf algebra U of the quantum 

symmetry group. Considering multiple derivatives gives additional conditions that 

can be summarized by requiring that 

(6.7) 

be a Hopf algebra coaction, i.e. 

uf:1(88') = u6(8)u!:i(8'), (id ®u6.)u6. = (6. 0 id)u6., (f ® id)u6 = id. (6.8) 

For arbitrary functions f and derivatives 8 we find a generalized product rule 

Ia J = a (f) + a1' (!)82 j, (6.9) 

where u6.8 = 81•®82. Covariance ofthe product rule (6.5) under coactions is expected 

to give strong conditions on Lii. 

Remark: The formula for the product rule (6.5) was inspired by the form of the 

multiplication of two elements ~, </> in the cross product algebra A><~U 

(6.10) 

where 6.A( </>) = ¢>(1) ® ¢><2)' and u6.(e) = ~1 • ® 6 (see chapter 2). 

6.1.2 Covariance of: 8if = 8i(f) + L/ (f)8i 

We need to use an inductive approach: We start by requiring that 

(anchor) (6.11) 
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~~. 

This is in fact satisfied, because we already have .6..Axi = x1 0 Stil and iff .6..AOj = 
81 0 S2t1i then: .6..A8i(.6.Axi) = 8k(x1) 0 S2tkiStil = oi 0 S 2tkiStil = of 0 1, in 

agreement with .6.A(8i(xi)) = .6.A(o/) = of 0 1. That was the anchor; now the 

induction to higher powers in the coordinate functions: Assume that the action of Oi 
on f is covariant: 

(6.12) 

where f is a function of the coordinate functions xi. Try to proof covariance of the 

Oi-f commutation relation, i.e. 
? 

(6.12) ~ .6..A(8d) = .6..A(8i) . .6..A(f). (induction) (6.13) 

After some computation we find 

(6.14) 

where .6..A(f) = f(l) 0 j<2>'. This simplifies further if we know how Lii acts on f. 
If the braiding Hopf algebra acts like the covariance quantum group, then L/ (f) = 

J(1
) < LJ, J<2>' >, LJ E A* and (6.14) becomes 

(Liiu<2>')s2tkj- s2tlif)u<2>')) 0 J<I> = o, (6.15) 

where ~ : A)4U -+ A~U is the projector onto right-invariant vector fields: x = 

s-1 (x<2>')x(1> with .6..A(x) = x(l) 0 x<2>, such that f}(J<2>') = < L/,J(2)' > J<3>'. 

This is satisfied if 

V'a EA. (6.16) 

(The reverse is true only if A is generated by [Stii] -or [tii], if the choose the con

vention b. .A ( x) = x · t.) In the case where the braiding Hopf algebra is quasi triangular, 

there are (exactly) two natural choices 

L~ J- ' J'O' 
. { s-1L-i. =< n S 2ti. /0\ id > 

i ex s-1L+ii =< 'R,id0Stii > (6.17) 

that satisfy the above equation and all other requirements (coproduct, e.t.c.). 
For the Wess-Zumino quantum plane [22) the action of Lon the coordinate func

tions is linear and of first degree in those functions, so we can use the coaction .6..4 

to express it: 

{ 

k" l 
· k · k l r 3 liX 

Li3 (x ) =< L/,St 1 > x ex ( _1 ) .k 1 r J ilX 
(6.18) 

in perfect agreement with [22). (The overall multiplicative constant (!) is not fixed 

by covariance considerations but is given by the characteristic equation of r and the 

requirement that {5kjli =< Lik,Stil >should have an eigenvalue -1.) 
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6.2 Quantum Groups 

A quantum group is a quantum plane covariant under itself. However, it has more 

structure and the coactions .6...4 and u.6. are now completely determined by the mul

tiplication iri U and A: Let ¢> E A>4U and .6...4¢ = ¢(1) 0 ¢<2)'; then 

£x(¢) =X~¢>= X(t)¢SX(2) = ¢(1
) < x,¢<2)' >, VxEU (6.19) 

determines .6...4. The coaction u.6. is simply the coproduct .6. : U --+ U 0 U, so that 

the product rule becomes 

(6.20) 

where x E U, a E A. This defines the multiplicative structure in the so called cross 

product algebra (60] A>4U. Interestingly, equation (6.18) does not apply in the case 

of a quantum group: In that case tis replaced by the adjoint representation T and 

L becomes 0, a part in the coproduct of the basic generators. Not all elements of 

T are linearly independent. There is a trivial partial sum T(ii) (kl) = 1<5(kl); the same 

sum for 0, O(ii) (kl) =: Y(kl), is in general non-trivial thus leading to a contradiction. 

An explanation for this is that quantum groups have more structure than quantum 

planes. They already contain an intrinsic braiding and do not leave any freedom for 

external input such as 'R in equation (6.18); the product rule is in fact automatically 

covariant by the construction of the cross product algebra. There are, however, some 

indications that 0 and T might be related to a universal ft that lives in the sub-Hopf 

algebra of A generated by the elements of T. 
From the discussion of the quantum planes we would like to keep the idea of a 

finite number of so-called bicovariant generators Xi that close under adjoint action 

Xi~ Xi= Xkf/j and span an invariant subspace of U, i.e . .6..AXi = Xk 0 Tkj· We call 

quantum groups with such generators Quantum Lie Algebras. In following section 

we will give more precise definitions of quantum Lie algebras. 
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Chapter 7 

Cartan Calculus 

7 .0.1 Cart an Identity 

The central idea behind Cannes Universal Calculus [2] in the context of non-commu

tative geometry was to retain from the classical differential geometry the nilpotency 

of d 
(7.1) 

and the undeformed Leibniz rule for d • 

da = d(a) + (-l)Pad (7.2) 

for any p-form a. The exterior derivative d is a scalar making this equation hard 

to deform, except for a possible multiplicative constant in the second term. Here 

we want to base the construction of a differential calculus on quantum groups on 

two additional classical formulas: to extend the definition of a Lie derivative from 

functions and vector fields to forms we postulate 

£od=do£; (7.3) 

this is essential for a geometrical interpretation along the lines of chapter 4. The 

second formula that we can - somewhat surprisingly - keep undeformed in the 

quantum case is originally due. to Henri Cartan 

£Xi = ix;;d + diXil (Carlan Identity) (7.4) 

•we use parentheses to delimit operations liked, ix and £x, e.g. da = d(a) +ad. However, if 
the limit of the operation is clear from the context, we will suppress the parentheses, e.g. d(ixda) = 
d(ix(d(a))). 
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where Xi are the generators of some quantum Lie algebra. The· only possibility· to 

deform this equation and not violate its covariance is to introduce multiplicative 

deformation parameters K, A for the two terms on the right hand side of (7.4) such 

that now £x, = Kix,d + Adix;· For a function a E A that gives 

( ix, vanishes on functions), for da we find 

and finally together 
A 

£x,(da) = -d(£x;(a)), 
K 

in contrast to (7.3) unless ~ = 1, in which case we can easily absorb either K or A 

into i;.:. Being now (hopefully) convinced of our two basic equations (7.3) and (7.4) 

we want to turn to the generators Xi next. 

Several discussions with P. Aschieri helped clarifying the relation between the material 

presented in the next section and Woronowicz's theory. 

7.1 Quantum Lie Algebras 

A quantum Lie algebra is a Hopf algebra U with a finite-dimensional biinvariant sub 

vector space Tq spanned by generators {Xi} with coproduct 

(7.5) 

More precisely we will call this a quantum Lie algebra of type II. Let { wi E Tq *} be 

a dual basis of 1-forms corresponding to a set of functions bi E .A via wi = S~1)d~2 ); 
i.e. 

AD.(xi) - 1 ®Xi, 

D.A(Xi) - Xi® Tii, Tii E Fun(Gq), ' (7.6) 

ix, (wi) - - < xi,sbi >= st, (7.7) 

.AD.(wi) - 1 ®wi, (7.8) 

D.A(wi) - J ® s-1Tij· (7.9) 

If the functions bi also close under adjoint coaction D.Ad(bi) = bi ® s-lTij, we will 

call the corresponding quantum Lie algebra one of type I. Getting a little ahead of 
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ourself's let us mention that we can derive an expression for the exterior derivative 

of a function from the Cartan identity (7 .4) in terms of these bases 

(7.10) 

and that this leads to the following f- w commutation relations [21] 

(7.11) 

7.1.1 Generators, Metrics and the Pure Braid Group 

How does one practically go about finding the basis of generators {Xi} and the set of 

functions { bi} that define the basis of 1-forms { wi}? Here we would like to present a 

method that utilizes pure braid group elements as introduced in the first part of this 

thesis. 

Let us recall that a pure braid element T is an element of U 0U that commutes 

with all coproducts of elements of U, i.e. 

T~(y) = ~(y)T, VyEU. (7.12) 

T maps elements of A to elements of U with special transformation properties under 

the right coaction: 

T:A--+U: b~--+Tb=<T,b0n>; 

~.A(Tb) = Tb(2 > 0 S(b(l>)b(3) =< T 0 n, r 23(.D.Ad(b) 0 n) >. 
(7.13) 

An element T of the pure braid group defines furthermore a bil_inear quadratic form 

on A 

(, ):A0A--+k: a 0 b 1-+ (a, b)=-< T, a 0 S(b) >E k, (7.14) 

with respect to which we can construct orthonormal (bi, bi) = 8{ bases {bi} and {bi} of 

functions that in turn will define generators Xi := T b; and 1-forms wi := S(~1))d~2). 
Typically one can choose span { bi} = span { bi}; then one starts by constructing one 

set, say { bi}, of functions that close under adjoint coaction 

(7.15) 

If the numerical matrix 

17]ij := - < T' bi 0 Sbj > I (metric) (7.16) 
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is invertible, i.e. det( 17) =f:. 0, then we can use its inverse 17ij := ( 77-1 
)ij to raise indices 

(7.17) 

This metric is invariant - or T is orthogonal - in the sense 

17ji - - < Sxj,bi > 
- - < Sxi, bk > STk1T1i 

(7.18) 
- - < Xk, Sb1 > TkiT1i 

- 7JklTkiT1
i, 

where we have used the Hopf algebraic identity 

< D.A(x), Sa® id >= S( < Sx ® id, D.Ad(a) > ), (7.19) 

which we will proof in an appendix to this section. Once we have obtained a metric 

17, we can truncate the pure braid element Y and work instead with: 

(truncated pure braid element) 

(7.20) 

which also commutes with all coproducts. In part I of these thesis we have shown 

how to construct casimir operators from elements of the pure braid group. For the 

truncated pure braid element that gives the quadratic casimir: 

(casimir) (7.21) 

Now we would like to show that we have actually obtained a quantum Lie algebra of 

type I:t 

. . k' k' . 
- < Xi, Sb' >= - < Y, bi ® Sb' >=- < Y, bi ® Sbk > 17 3 = 17ik17 3 =of, (7.22) 

and 

(7.24) 

tNote, that i has to be carefully chosen to insure the correct number of generators. Furthermore, 

we still have to check the coproduct of the generators. If they are not of the form .6.xi = Xi® 1 + 
0;/ ® Xj then we can still consider a calculus with deformed Leibniz rule (see next section). 
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Examples 

The r-matrix approach: Often one can take bi Espan{tnm}, where tnm is a quan

tum matrix in the defining representation of the quantum group under consideration. 

If we are dealing with a quasitriangular Hopf algebra, a natural choice for the pure 

braid element is 

(7.25) 

where the term n 21n 12 has been introduced and extensively studied by Reshetikhin & 
Semenov-Tian-Shansky [43] and later by Jurco [44], Majid [59} and Schupp, Watts & 
Zumino [60}. These choices of bis and T lead to the r-matrix approach to differential 

geometry on quantum groups. The metric is 

(7.26) 

q-3 0 0 0 

0 0 q-l 0 
(7.27) fJGLq(2) =-

0 q-3 0 0 

0 0 0 q-l 

Now we will evaluate the metric in the case of GL9 (n). The r-matrix of GL9 (n) 

satisfies a characteristic equation 

f-2 - )..f- 1 = 0 (7.28) 

which we can use in the form 

(7.29) 

where pijkl = ofst is the permutation matrix, to replace (r2l)t2 in equation (7.26). 

That gives 
1/12 - - (P12t2 ((ri2t2 )-

1))t2 

- -tr3 (P23(r23ta)-1) P12 

- -D2P12· 

(7.30) 

~In its reduced form, this matrix agrees [41] with a metric obtained along more standard lines 
from quantum traces (except perhaps in the casimir sector X 1

1 + q-2 X 2
2). The formulation in 

terms of the pure braid element has the great advantage that it does not require the existence of an 
element like u that implements the square of the antipode. 
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In the last step we have used 

(7.31) 

where u = ·(S0id)1?P is the element ofU that implements the square of the antipode. 

With the explicit formula ("112 = -D2P 12) for the metric we immediately find an 

expression [60] for the exterior derivative d on functions in terms of X and the 

Maurer-Cartan form n = r 1dt: 

d = -tr(D-1f2X). {on functions) (7.32) 

The pure braid approach to the construction of quantum Lie algebras is however 

particularly important in cases (like the 2-dim quantum euclidean group) where there 

is no quasitriangular Hopf algebra and where the bis are not given by the elements of 

t i . 
J• 

The 2-dim quantum euclidean group is an example of a quantum Lie algebra 

that has no universal nand where the set of functions {bi} does not arise from the 

matrix elements of some quantum matrix. In section 4.1.4 we constructed such a set 

of functions 

and a pure braid element 

by hand. Now we can put the new machinery to work and calculate the (invertible) 

metric 
0 1 0 0 
1 0 0 0 

(7.35) 7JEq(2) = 
0 0 0 -1 

0 0 -q -2 0 

which immediately gives an expression for d on functions: 

(7.36) 
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7.1.2 Various Types of Quantum Lie Algebras 

The functions d := -S!J play the role of coordinate functions their span{d} =: RJ.. 
is the vector space dual to the quantum tangent space 'Tq, such that 

as vector spaces, with§ 

l®'Tq®'Tq.L - u 
1 EB R.L tiJ R - A 

< Tq,R >=0, < Tq.L,R.l. >= 0. 

(7.37) 

(7.38) 

Let RL 'span{bi} and R be the spaces obtained from R.l. and R by application of 

s-1 on all of their elements. In the following we will state various desirable properties 

that different kinds of quantum Lie algebras might have; we will comment on their 

significance and we will derive the corresponding expressions in the dual space. The 

proofs are given in an appendix to this section. 

i) (7.39) 

The left hand side states the right invariance of Tq, which is important for the covari

ance of the cartan identity (7.4) and the invariance of the realization (7.10) of d. The 

right hand side is essential to Woronowicz 's formulation of the differential calculus 

because it allows to consistently set WJi = 0. 

ii) 'b.Tq c u 0 (Tq $1) AR=R (7.40) 

The left hand side is necessary to ensure the existence off -w commutation relations 

that are consistent with an undeformed Leibniz rule for d. It also implies a quadratic 

quantum commutator for the Xi: 

(7.41) 

where 

(7.42) 

is the so-called "big R-matrix". If ii) is not satisfied we have the choice of giving 

up the f - w commutation relations, so that the algebra of forms A is only a left 

A-module, or we can try a generalized Leibniz rule for d. The right hand side of the 

equation is equivalent to R.A = Rand states that R is a right A-ideal; it is the second 

§We write here vector spaces in place of their elements in an obvious notation. 
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fundamental ingredient of Woronowicz 's theory. If the Leibniz rule is satisfied then 

ii) follows from Wr = 0 => r E R $1: Let a E A, then 

(7.43) 

€(ra) = t(r)t(a) = 0 and hence raE R. AR = R is in agreement with the intuitive 

picture that the ideal R is spanned by polynomials in the ci of order 2 or higher, i.e. 

span{ ei} ~ {1, ci ,cid , ... }. 

iii) (7.44) 

The right hand side keeps us out of trouble with covariance when we set i7: .L = 0. The 
q 

cleft hand side is a sufficient condition for .6-.A(Tq•) C Tr/ 0 A. Quantum Lie algebras 

that satisfy iii) have particular nice properties in connection with pure braid elements 

and a (Killing) metric. That merits a special name for them: 

Quantum Lie Algebra of type I : i) ,ii) ,iii) 

Quantum Lie Algebra of type II: i) ,ii) 

We will mainly be dealing with type I, in fact, all examples of quantum group calculi 

known to me are of this type. Quantum Lie algebras of type II are mathematically 

equivalent to Woronowicz's [21] theory. 

iv) (7.45) 

The LHS enables us to define partial derivatives instead of left-invariant ones: It 

implies .6.ci = Mi; ®d + ci ®1 with .6.M = M®M, SM = M-1 , t(M) =I and 

then Xkci = Mi k + Mi; < Ok1, d > Xz + cixk, such that On := S-1 Mk nXk gives a 
commutation relation 

(7.46) 

worthy of a partial derivative. (In the case of GLq(n) we can use (7.30) to show 
that c(mn) = (D-l)nkStkm, M(mn)(ij) = Stim8j, and O(ij) = tikXk;.) The exterior 

derivative (on functions) becomes 
\ 

d = wixi = d(d)S-1(Mi;)Mnian = d(cn)on. (7.47) 

v) 6R.L c (R.L $1)@ A # T,/U = Tq.L (7.48) 

This and ii) imply quadratic X- c commutation relations that close in terms 9f the 
elements of Tq and Rl.. The right hand sides of iv) and v) state that Tq is a left 

(right) U-ideal, which supports the picture of a Poincare-Birkhof£-deWitt type basis 

for U in terms of the Xi, i.e. {1, Xi, XiXj, .. . }. Here and in the discussion following ii) 

we have to be careful though with higher order conditions on the generators. 
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7.1.3 Universal Calculus 

Given (infinite) linear bases {ei} of U and {Ji} of A we can always construct new 

counit-free elements ei := ei -1e:(ei) and f. := P- 1e:(Ji) that span (infinite) spaces 
Tq u and Rl.u respectively satisfying properties i) through v); in fact 1 EB Tq u = U and 

1 EB RJ..u =A as vector spaces. The f- w commutation relations, however, become 

trivial in that they are equivalent to the Leibniz rule for o•; we are hence dealing with 

a Connes type calculus [7], a "Universal Calculus on Hopf Algebras". It is interesting 

to see what happens to the formula for the partial derivatives in this limit: 

A Subbialgebra and the Vacuum Projection Operator 

To simplify notation we will assume that the infinite bases of U and A have been 

arranged in such a way that eo = lu, r = 1A and ei, fi with e:(ei) = e:(Ji) = 0 for 

i = 1, ... , oo span Tq and RJ. respectively. Greek indices a, {3, ... will run from 0 

to oo whereas Roman indices i, j, k, ... will only take on values from 1 to oo unless 

otherwise stated. A short calculation gives 

(7.49) 

and 

!::l.M=M®M, S(M) = M- 1
, e:(M) =I. (7.50) 

Using the definition from the previous section we will now write down partial deriva

tives 

(l > 1!) (7.51) 

which take on a peculiar form when using the explicit expression forM 

8n - s-1(f[t)) < en, Jl2) > ez 

- s-1(1(1)) < en, 1(2) > ea 

- s-1(j01
) < en,J13 > eae(3 (7.52) 

- s-tcp~)eaen 

- Een, 

where we have introduced the "vacuum projector" E in the last step. It was first 

disoovered (quite accidently) in collaboration with C. Chryssomalakos [46) and has 

11To distinguish this calculus from quantum Lie algebras we use the symbol 6 instead of d for the 
exterior derivative 
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interesting properties like 

Ea - E€(a), aEA, (7.53) 

xE E€(x), xEU, (7.54) 

E2 - E. (7.55) 

Prof. B. Zumino [7) pointed out that the classical expres~ion of E is related to a 

Taylor expansion. Note also that 

E=8o-l. (7.56) 

As expected we can express b on functions in terms of partial derivatives 

(7.57) 

The partial derivatives are of course no longer left invariant, but it turns out that we 

can actually define a coproduct for them making the space EU = { Ey; y E U} C A><1U 
a unital bialgebra. Inspired by 

(7.58) 

we define 

lE = E, {7.59) 

in consistency with the axioms for a bialgebra. EU is however not a Hopf algebra 

because it does not have an antipode - at least not with respect to the multiplication 

in A >4U - so EU might be of use as an example of a quantum plane. 

Quantum Lie Algebras in a Universal Calculus 

If the span Tquof the generators {ea. Ia = 1, ... , oo} of the universal calculus contains 

a finite dimensional subspace, Tq spanned by {Xili = 1, ... ,N}, that satisfies axioms 

i) and ii) then one may ask how to obtain the finite calculus from the infinite one. 

Let b be the exterior derivative of the universal calculus and d the exterior derivative 

of the finite calculus. One ~ight be tempted to try an ansatz like 

(7.60) 

where 6 = wa.ea. and d = wiXi on functions. This equation is covariant if axiom iii) is 

also satisfied, but we run into problems with the f - w commutation relations. From 

the Leibniz rule for 5 we obtain 

i=l, ... ,N; r=N+l, ... ,oo, (7.61) 

85 

,. 



i.e. the f -w commutation relations do not close within the finite calculus. So unless 

one decides to do without a bicovariant calculus we have to make the second term 

vanish. The naive choice is to try and set 0 equal to zero. This could be nicely 

expressed in terms of another axiom 

but the right hand side neither has a classical limit nor does it lend itself to a de

scription of .A in terms of a Poincare-Birkhoff-deWitt basis. The only choice left is 

to set the forms wr corresponding to functions in R (recall: < Tq, R >= 0) equal to 

zero. Following Woronowicz's approach we hence set 

WR=O h --t d. (7.62) 

Deformed Leibniz Rule? 

Here we want to briefly mention what might happen if axiom ii) is not satisfied. We 

will still have WR = 0 in consistency with axiom i) but the generators Xi now have 
coproducts 

i,j=l, ... ,N; r=N+l, ... ,oo (7.63) 

that do not close in U ® (Tq $1). After some thought we can convince ourselfs that 

we should use f - w commutation relation 

(7.64) 

with a braiding matrix Bi E U that satisfies C:t.(B) = B®B, S(B) = B-1 , €(B) =I 
and a bicovariance condition for all f E A 

(7.65) 

where Tis the adjoint representation. We will then need to change the Leibniz rule 

ford to 

(7.66) 

This is a fully bicovariant first order differential calculus with a deformed Leibniz 

rule. It might be of use in reducing the number of forms in quantum calculi to the 

classical number. 

Appendix 

Here we will give fairly detailed proofs of propositions i) and ii) and symbolic proofs 

of the related propositions iii) through v ). 
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Proof of i). We start by proofing a lemma about the relation of coactions in U 

and A: 

s-1 (x<2>') < x(l>, Sa> - s-1 (x<2l')S(a(2)) < x<1l,Sa(1l > a(3l 

- s-1 (x<2l')x{ll(Sa(tl)a(2) 

- x(Sa(I))a(2) 

- < x, Sa(2) > Sa(1)a(3)· 0 

Another useful identity: 

Vx E U, f EA .. 

i) "=>": Assume 6..A'Tq C Tq ®A, then for Vx E Tq, S(a) E R 

(7.67) 

(7.68) 

(7.69) 

so that Sa(2) ® S(a(1))a(3) C (R $ 1) ®A, but €(Sa(2))S(a(1))a(3) = €(Sa) = 0 and 

hence Sa(2) 0 S(a(1))a(3) C R 0 A, or 

0 (7.70) 

i) "-¢=": Assume 6_Adfl C R0A, then again for Vx E Tq, a E R 

(7.71) 

so that x<1> 0 s-1 x<2l' c (Tq $1) ®A; with 0 =< x, 1 >=< x<1>, 1 > x<2>' from (7.68) 

that gives x<1> 0 s-1x<2>' c Tq ®A and also 

0 (7.72) 

Proof of ii). 

ii) "=>": For ~ x E Tq, a E A andrE R assume l::.x E U 0 (Tq $1), then 

< x, ar >=< 6.x, a® r >= 0, (7.73) 

which implies arE {R $ 1) or, taking into account that f(ar) = e:(a)€(r) = 0, 

arE R. 0 (7.74) 
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ii) "¢::": Assume that for all x E 'Tq, r E R there exists a r' E R such that 

r' = ar; then we find 

0 =< x,r' >=< x,ar >=< .6.x,a 0 r > (7.75) 

which can be restated as 

.6.x E U ® (Tq $1). 0 (7.76) 

Symbolic proof of iii). 

Symbolic proof of iv). 

0 =< R.L, Tq.l. >=< RJ..,U'Tq.1. >=< .6-RJ..,U 0 T./ >=<A 0 (RJ.. $1),U 0 TqJ.. > 
(7. 78) 

Symbolic proof of v). 

0 =< R.l., Tq.l. >=< RJ.., T;/U >=< .6.R.l., TqJ.. ® U >=< (RJ.. $ 1) ® A,TqJ.. ® U > 
(7.79) 

7.2 Calculus of Functions, Vector Fields 

and Forms 

The purpose of this section is to generalize the Cartan calculus of ordinary commu

tative differential geometry to the case of quantum Lie algebras. As in the classical 

case, the Lie derivative of a function is given by the action of the corresponding yector 

field, i.e. 
£:c(a) = x 1> a= a(1) < x, a(2) >, 
£:ca = a(1) < X(t),a(2) > £:c<2>· 

The action on products is given through the coproduct of x 

x 1> ab = (x(l) 1> a)(x(2) 1> b). 

(7.80) 

(7.81) 

The Lie derivative along x of an element y E U is given by the adjoint action in U: 

(7.82) 
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To find the action of ix; we can now attempt to use the Cartan identity (7.4)11 

Xi t> a - £x,(a) 

- ix1(da) + d(ix,a). 
(7.83) 

As the inner derivation ix, contracts !-forms and is zero on 0-forms like a, we find 

(7.84) 

An equation like this could not be true for any x E U because from the Leibniz rule 

for d we have d(l) = d(l · 1) = d(1)1 + ld(1) = 2d(1') and any ix that gives a 

non-zero result upon contracting d(1) will hence lead to a contradiction. From (7.84) 

we see that the troublemakers would be x E U with E(x) =f. 0, but as E(Xi) = 0 we 

have nothing to worry about. Without loss of generality we can now set 

d(l) = 0 and i 1 = 0. 

Next consider for any form a 

£x,(da) - d(ix1da) + ix1(dda) 

- d(£x1a) + 0, 

(7.85) 

(7.86) 

which shows that Lie derivatives commute with the exterior derivative; £x,d = d£x;· 

We will later need to extend this equation to all elements of U: 

{7.87) 

From this and (7.80) we find 

(7.88) 

To find the complete commutation relations of ix; with functions and forms rather 

than just its· action on them, we next compute the action of £ x; on a product of 

functions a, bE A 
£x;(ab) = ix;d(ab) 

= ix,(d(a)b+ ad(b)) 
{7.89) 

and compare with equation (7 .81). Recalling that the Xi have coproducts of the form 

0/ EU, (7.90) 

11The idea is to use this identity as long as it is consistent and modify it if needed. 
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we obtain 
ix;a = (Oii t> a) ixi 

= £o;i(a) ixi' 
(7.91) 

if we assume that the commutation relation of ix, with d( a) is of the general form 

. d( ) . (d ) "b 'di " . "'x• a = "'x• a + rru ng term · "'x? . ..___..,. 
eA 

A calculation of £xJd(a)d(b)) along similar lines gives in fact 

ix;d(a) - (Xi t> a)- d(Oii t> a) ixi 

- ix;(da)- £o;i(da) ixi 

and we propose for any p-form a: 

(7.92) 

(7.93) 

(7.94) 

Missing in our list are commutation relations of Lie derivatives with vector fields 

and inner derivations. It was shown earlier in chapter 2 that the product in U can be 

expressed in terms of a right coaction D.A : U-+ U ®A, denoted D.A(Y) = y<1> ® y<2>', 
such that xy = y(l) < X(1), y<2>' > X(2). In the context of (7.82), this gives 

£x(Y) - X(I)YS(x(2)) = Y(l) < x,y<2
)' >, 

££ £ £ -£ ~ £ X y - £z(l) (y) X(2) - y(l) < X(l)l Y > x(2) • 

For the special case Xi, Xi E Tq that becomes 

£x;£x~c = £x,(£x~c) + £o,i(£x~c)£Xi 
= £xJilk + £Xa£Xbk-bik 

and - using the Cartan identity -

where 
~ b b a 

R'" ik =< oi , T k > . 

7.2.1 Maurer-Cartan Forms 

The most general left-invariant 1-form can be written [21) 

Wb := S(b(l))d(b(2)) = -d(Sb(l))b(2) 
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(7.101) 

corresponding to a function b E A. If this function happens to be tik, where t E 

Mm(A) is an m x m matrix representation of U with ~(tik) =tii 0 tik and S(t) = t-I, 
we obtain the well-known Cartan-Maurer form Wt = t-1d(t) =: n. Here is a nice 

formula for the exterior derivative of wb: 

d(w&) - d(Sb(1))d(b(2)) 

- d(Sb<t>)b(2)S(b(3))d(b(4)) 

The Lie derivative is 

£ x(wb) - £X(l) (Sb(t))£x<2> ( db(2)) 

- < X(t), S(b(t)) > S(b(2))d(b(3)) < X(2)' b(4) > 
- W&(2) < x, S(b(t))b(3) > 
- < X(l)! S(b{l)) > W&(2) < X(2), b(3) > . 

For x = Xi and b = tk n this becomes a quantum commutator: 

£x,(t) - < Xi,St > ·f2+ < oJ,st > .n. < s-1xj,St > 

(7.102) 

(7.103) 

= < Xi,St > ·f2- < Oii, St > ·f2· < s-10/,St > · < Xk,St > (7.104) 

= < Xi,St > ·f2- £o;"(n)· < Xk,St > 
and, if we denote a St-matrix representation for the moment by "-", 

(7.105) 

The contraction of left-invariant forms with ix - i.e. by a left-invariant x E U -
gives a. number in the field k rather than a. function in A as was the case for d(a). 

(The result must be a. number because the only invariant function is 1.) 

ix(w&) - ix( -d(Sb(t))b(2)) 

- -ix( dSb(t))b(2) 
(7.106) 

- - < x,S(b<t>) > S(b(2))b(3) 

- - < x,S(b) >. 

As an exercise and to check consistency we will compute the same expression in a 

·different way: 

ix, (wb) - ix,(Sb(t)d(b(2))) 

- <OJ, S(b(t)) > S(b(2))ix1( rlb(2)) 

- < oi3, S(bct>) > S(bc2>)b<3> < x3, bc4> > (7.107) 

- < Oii,S(bct>) >< x;,b(2) > 
- - <Xi, S(b) > . 
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The Exterior Derivative on FUnctions 

We would like to express the exterior derivative of a function fin terms of the basis of 

1-forms {wi} with functional coefficients. There are two natural ansatze: d(f) = wiai 

and d(f) = biwi with appropriate aj, bi E A. Applying the Cartan identity (7.4) to 

f we find 

giving two alternate expressions for d(f) : 

d (j) = wi___£ Xi (f) = - £ Sxj (f)J. (7.108) 

The Woronowicz and Castellani groups use the second expression, while we prefer 

the first one because it allows us to write d as an operator wi Xi on A. An operator 

expression just like this, hut written in terms of partial derivatives, is at least clas

sically valid on all forms. (For quantum planes that also holds [7]). Combining the 

two expressions ford one easily derives the well-known f- w commutation relations 

(7.109) 

The classical limit is given by 0/-+ 18}, so that forms commute with functions. 

On the Invariance of d = WfliXi· Recall: .6..A(wi) = wb;
2 

® S(bh>)b~3> -. . . . . ( ) 

-W'® < Sxj, b(2) > Sb(t)b(s)· Assuming .6..AXi =Xi® T3i (axiom i)) we would like 
to show 

(7.110) 

'l..e. 

(7.111) 

or equivalently 

{7.112) 

This turns out to be a purely Hopf algebraic identity for any x E U, a E A (see 

equation 7 .67): 

(7.113) 
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7.2.2 Tensor Product Realization of the Wedge 

From (7.103) and (7.106) we find commutation relations for ix; with wi, 

ix,wi - 8{- £o,~c (wi)ix~c 
- of- wm < Oik, s-1(Tim) > iX/cl 

(7.114) 

which can be used to define the wedge product 1\ of forms as some kind of antisym

metrized tensor product••: as in the classical case we make an ansatz for the product 

of two forms in terms of tensor products 

(7.115) 

with as yet unknown numerical constants uii mn E k, and define ix, to act on this 

product by contracting in the first tensor product space, i.e. 

But from (7.114) we already know how to compute this, namely 

and by comparison we find 

or 

A ij 0 ; s-1 (Ti ) 
0" mn =< m' n >, 

wi 1\.wi - wi ®wi- < Omi,S-1(Tin) > wm ®wn 

- (/- a)iimnWm ®wn 

- wi ® wi- wk ® £o~ci(wi). 

(7.116) 

(7.117). 

(7.118) 

(7.119) 

These equations can be used to obtain the (anti)commutation relations between the 

wis; by using the characteristic equation for a' projection matrices orthogonal to 
the antisymmetrizer I - a can be found, and these will annihilate wi 1\. wi. The 

resulting equations will determine how to commute the 1-forms. In some rare cases 

the w-w commutation relations are of higher than second order. We are then forced 

to consider orthogonal projectors to the operator W, introduced below. There is 

another reason why we want to emphasize the tensor product realization of the wedge 

product rather than commutation relations given in terms of projection operators: 

In the case of quantum groups in the A, B, C and D series a typically has one 

.. So far we have suppressed the /\-symbol; to avoid confusion we will reinsert it in this paragraph. 
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eigenvalue equal to 1, so there is exactly one projection operator Po (41] orthogonal 

to (1- &), but while (1- &) has a sensible classical limit- it becomes (1- P) where 

Pis the permutation matrix- P0 , on the other hand might change discontinuously 

as q reaches 1 if ( 1 - a) had other eigenvalues ~i that become equal to 1 in that 

limit because the corresponding projection operators Pi will now all be orthogonal to 

( 1 - P) = ( 1 - a) I q=l. The approach of the group in Miinchen trying to circumvent 

this problem in the case of SOq(3) was to impose additional conditions on the wedge 

product "by hand", requiring that all projection operators ~ (see above) vanish on 

it. In the present context we would have to simultaneously impose similar conditions 

on products of inner derivations and check consistency of the resulting equations on 

a case by case basis. 

Example: Maurer-Cartan-Equation 

dwi -

(7.120) 

In the previous equation we have introduced the adjoint action of a left-invariant 

vector field on ano~her vector field. A short calculation gives 

S -1 ad ( c:c c:b ~ cb ) s-1 ra !' a Xk t> Xz = X&Xc ukuz - u kl = Xa < Xk, l >= Xa k l (7.121) 

as compared to 

(7.122) 

with fi::b kl =< Ok b, Tcz >. The two sets of structure constants are related by 

fa J'a Rij · Jkz=-iz kl· (7.123) 

Please see [61] for a detailed discussion of such structure constants. 

Using the same method as for w we can also obtain a tensor product decomposition 

of products of inner derivations 

• . 0 • • ,.. 1.J • • 
~Xm A tx,. = ~Xm ® tx,. - 0" mn'l.x; ®~Xi' (7.124) 
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defined to act on 1-forms by contraction in the first tensor product space. This can 

again be used to find (anti)commutation relations for the is via projection matrices 

as mentioned above. 

Remark: The tensor product decomposition of the wedge product is invariant under 

linear changes of the {Xi} basis, but it does depend on our choice of quantum tangent 

bundle. With the extreme choice of U =span{~} (viewed as a vector space) for 

instance we get a Connes type "Universal Cartan Calculus". 

The "Anti-Wedge" Operator. There is actually an operator W that recursively 

translates wedge products into the tensor product representation: 

for any p-form a. Two examples: 

w.i /\ wk - wn <$) ixn (wi /\ wk) 

- W71 <$) (h~wk- £onm(wi)h~) 
- wi <2)wk- wn ® £on"(wi) 

- wi ®wk -wn ®wmujknm 

and, after a little longer computation that uses W twice, 

wa /\ wb /\we = wa ® (wb A we)- wi ® (wi A we)a-abij 

+wi ® (wi A wk)ualij&belk 

(7.125) 

(7.126) 

- wa ® wb ®we- wa ® wi ® wk(Jbcjk (7.127) 
-wi ®wi ®we&abij + wi ®wi ® wk(JlejkUabil 

+wi ®wi ®wk&-aliia-bclk- wi ® wi ® wk&-aniz&-benm&-lmik· 

In some cases this expression can be further simplified with the help of the charac-

teristic equation of &-. ' 

7 .2.3 Summary of Relations in the Cart an Calculus 

Con1mutation Relations For any p-form a: 

da = d(a) + ( -1)Pad 
. 

ix,(a) + (-1)P £o,j(a)ixj zx,a = 
£x,a = £,a(a) + £o,;(a)£x; 
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Actions For any function f E A, 1-form WJ = S !(l)df(2) and vector field¢ E AXJU: 

ix;(f) - 0 (7.131) 

ix;(df) - df(l) < Xi, !(2) > (7.132) 

ix; (wJ) -<Xi, Sf> (7.133) 

£x(f) - x(f) = !(1> < x,f(2) > (7.134) 

£x(wJ) - Wf(2) < x, S(J(1))!(3) > (7.135) 

£x(¢) - X(l)q)S(X(2)) (7.136) 

Graded Quantum Lie Algebra of the Cartan Generators 

dd - 0 (7.137) 

d£x - £xd (7.138) 

£Xi - dix; + ix;d (7.139) 

[£x,,£x,.L - £xJi1
k (7.140) 

[£xn ix,.L - • f., l 
"x' i k (7.141) 

The quantum commutator [ , ]q is here defined as follows 

(7.142) 

This quantum Lie algebra becomes infinite dimensional as soon as we introduce deriva

tives along general vector fields (see below). 

7 .2.4 Braided Cart an Calculus 

There are several graphical representations of the relations that we derived in the pre

vious sections. One that emphasizes the nature of differential operators is illustrated 

here at the example of equation (7.130): 

£x,af3 - £x· a {3 + £,x• a 1 . c:__; 

- £x,(a) {3 + £o,;(a)~x; ~ 

- £x;(a) {3 + £o,; (a)£x;(f3) 

There is another graphical representation that is special in as it shows that we are in 

fact dealing with a graded and braided Lie algebra in the sense of [62]. Recall that in 
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the braided setting the coproducts and antipodes of the generators {Xi} take on the 

classical linear form 

~Xi = Xi ® 1 + 1 ®Xi, (braided), (7.143) 

while the multiplication of tensor products acquires braiding 

(a®b)·(c®d)=a'll(b®c)d EW®V, 

described by a "braided-transposition" [62] operator 'lllv,w : V ® W --+ W ® V. This 

notation suggests that the braiding is of a symmetric nature with respect to the two 

spaces V and W. In the present case it turns out to be more fruitful to assign all 

braiding to the generators Xi - or linear combinations of them - as they move 

through various objects. The general braiding rule can be stated symbolically as 

(7.144) 

where Xi could be part of an object like £ or i. If Xi is part of i, i.e. of de

gree -1, there will be an additional ( -1)P grading, depending on the degree p of 

0. Here is a summary of all braid relations involving Cartan generators: For D E 

{ £ x~o, ix,., d, vector fields, forms, functions} 

'IJI: £Xi® 0 I-+ £o;i(0)@ £Xi' 

for 0 E { d, vector fields, forms, functions} 

(7.145) 

W: ix; ® 0 I-+ ( -1)P £O;i(D)@ iXi' (7.146) 

and finally 

'l! : d ® d I-+ -d ® d. 

Let us now look at the graphical representation of the adjoint action (7.136) (Xi, 4>) ~--+ 

£x;(¢) = Xi(l)~S(Xi(2)): 

Xi ~ 
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Xi®</> 

(Xi ® 1 + 1 ®Xi) ® </> 

(Xi ® 1 + 1 ® -xi) ® ¢> 

Xi®</>® 1-1 ® £o;;(¢) ®Xi 

Xi</>®1- £o;i(~)®x; 

Xi</>- £o;i( <l>)x; 



(In the right column we have translated the various graphical manipulations into 

their algebraic counterparts.) Taking this diagram as the definition of a braided (and 

graded) commutator we can now express all Cartan relations in graphical form: 

Lie derivatives. Note that £ 0 ii(d) = o{d because dis invariant. 

£Xi O 

£Xi@ iXk 

(£Xi 0 1 + 1 0 £Xi) @ iXk 
(£Xi 0 1 + 1 0 £ -xJ @ iXk 

£Xi @d 

(£xi01+10£x;)0d 
(£Xi 0 1 + 1 0 £-xi) ® d 

£Xi @ d 0 1 - 1 @ of d 0 £Xi 

£Xi d 0 1 - d @ £Xi 

£x,d -d£xi 

=0 

The relation [£x,, £x"L = £xJilk h~ a very similar picture, so we did not show it 
here. 

Inner derivations. a is a p-form here. 

~Xi O 

( ixi ® 1 + 1 0 ixJ ® a 

( ix; ® 1 + 1 0 i_xJ 0 a 

ix; 0 a 0 1 - 1 0 ( -1 )P £ O;i (a) ® ixi 

ixia® 1- {-1)P£o;i(a) 0ixi 

ix;a- (-1)P£o;i(a)ixi 

= ix;(a) 

ix; 0d 

( ix; 0 1 + 1 ® ixJ 0 d 

( ixi ® 1 + 1 ® i_xJ 0 d 

ix; 0 d 0 1 + 1 0 of d @ iXi 

ixi d 0 1 + d 0 ix; 

ix;d+ dixi 

Exterior derivative. Here we use that d is a derivation in. the sense "6(d)" = 
d®1 + 1 ®d. 
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d 0 

d®a d®d 

( d ® 1 + 1 0 d) 0 a (d ® 1 + 1 ®d)® d 

( d ® 1 + 1 0 -d) ®a (d®1+1®-d)®d 

d ® a ® 1 - 1 @ ( -1 )P a @ d d®d®1+1®d®d 

da ® 1 - ( -1 )P a ® d dd@1 +d®d 

da- (-1)Pad 2dd 

(d, D)q =d(a) =0 

7.2.5 Lie Derivatives Along General Vector Fields 

So far we have focused on Lie derivatives and inner derivations along left-invariant 

vector fields, i.e. along elements of Tq. The classical theory allows functional co

efficients, i.e. the vector fields need not be left-invariant. Here we may introduce 

derivatives along elements in the A><I'Tq plane by the following set of equations valid 

on forms: (note: t:(X) = 0 for x E Tq) 

'tfx. - fix, (7.148) 

£fX - difx + ifxd, (7.149) 

£fX - f £x + d(f)ix,, (7.150) 

£Jxd - d£/x· (7.151) 

Equation (7.150) can be used to define Lie derivatives recursively on any form. There 

does not seem to be a way to generalize {7.162), i.e. to introduce Lie derivatives of 

vector fields along arbitrary elements of A><1U or A><1'Tq in the quantum case. Excep

tions are the right-invariant vector fields x E A~U, where 

for¢> E A><JU. ' (7.152) 

7.3 Universal Cartan Calculus 

The equations presented in this section were obtained in collaboration with P. Watts 

starting directly from Hopf algebras without explicitly referring to any bases. 

As we have already mentioned in the section on quantum Lie algebras, given (infinite) 
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linear bases { ei} and {Ji} of the Hopf algebras U and of A, we can always construct 

new counit-free elements ei := ei - 1c:( ei) and Ji := Ji - lE(Ji) that span (infinite) 

spaces Tqu and RJ..u respectively satisfying properties i) through v); in fact 1EB7qu = U 
and 1 EB RJ..u =A as vector spaces. Using some Schmidt orthogonalization procedure 

one can rearrange the infinite bases of U and A in such a way that e0 = 1u, jD = 1.A 

and ei, fi with c:(ei) = c:(Ji) = 0 for i = 1, ... , co span Tqu and RJ..u respectively. 

Greek indices ex, (3, ... will run from 0 to co, whereas roman indices i,j, k, ... will only 

take on values from 1 to co, unless otherwise stated. To avoid confusion with the 

finite dimensional quantum Lie algebras we will use the symbol 5 instead of d for the 

exterior derivative. 

Given orthonormal linear basis { ei} and {Ji} of Tqu and RJ..u we can now express 

5 on functions a E A as 

(7.153) 

note, however, that all of these w5 -1 1;s are treated as linearly independent and even 

in the classical limit stay linearly independent because (7.153) in conjunction wit.h 

the Leibniz rule for 5 only gives trivial commutation relations (awb = WbS-1a<2Ja(l)

c:(b)ws-1a<2>a(1)) for forms with functions that do not permit reorganization of the 

infinite set of w5 -1 ps into a finite basis of 1-forms. This is the case for Cannes' non

commutative geometry ([10] and references therein) and is in contrast to the ordinary 

text book treatment of differential calculi that has forms commuting with functions. 

Here is a summary of basis-free commutation relations for the Universal Cartan 

Calculus valid on any form. All of these equations are identical to the corresponding 

quantum Lie algebra relations when written in terms of the bases {ea} and {/0
}. 

x, y E U, a E A, a is a p-form and v E A><1U is a vector field. 

£xa - a(l) < X(t), a(2) > £ x(2J (7.154) 

£x5(a) - 5(a(t)) < X(t), a(2) > £x<2> (7.155) 

£xcx - £X(1)(0.) £X(2) (7.156) 

~xa - a(l) < X(t), a(2) > ix(2) (7.157) 

ixD(a) - a(1) < x- h(x), a(2) > -c5(a(t)) < X(t)' a(2) > ix<2> (7.158) 

.~xCX - ix(a) + ( -l)P £x(1) (a) ix(2) (7.159) 

5o. - 5(a) + (-1)Po.5 (7.160) 

65(a) - -(-l)Pc5(a)5 (7.161) 

£x(v) - X(1)vS(x(2)) (7.162} 
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82 - 0 (7.163) 

8£x - £x8 (7.164) 

£X - 8ix + 1t(x) + ixD (generalized Cartan identity) (7.165) 

£x£y - £ (2)' £ 
y(l) < X(l)l Y > X(2) (7.166) 

£xiy - • (2)' £ 
ty(l) < X (1), Y > X(2) (7.167) 

The "generalized Cartan identity" is due toP. Watts. 
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Chapter 8 

Quantum Planes Revisited 

With the new tools that we have developed in the previous sections we are now 

ready to take a second look at quantum planes. The first two sections that follow 

will be devoted to the realization and action of quantum Lie algebra generators on a 

quantum plane. After introducing the basic equations we will spend some time on the 

important question of their covariance. The third section finally gives an introduction 

to the construction of a Cartan calculus on quantum planes with the surprising result 

-first observed by Prof. B. Zumino [7) in the example of the 2-dimensional quantum 

plane - that the £a - x commutation must contain inner derivation terms in order 

to be consistent with a Lie derivative that commutes with d. For simplicity we will 

however suppress these inner derivation terms in the following two sections. 

8.1 Induced Calculus 

In this section we wish to show hpw the calculus of the symmetry quantum group 

induces a calculus on the plane. Originally, I was interested in this topic trying to 

develop as general applicable a formalism for a calculus on quantum planes as we have 

presented it in part I in the case of quantum groups. As we have already mentioned, 

quantum planes do not have a Hopf algebra structure - at least not in the unbraided 

theory - and so we have to look for a different approach than the one that we used 

to construct the cross product algebra. Later it turned out that a better approach is 

based on U-coactions leading to the introduction of the generalized product rule in 

the first section of this chapter. The material presented here is however of interest in 

its own right: We will study realizations of quantum group generators in terms of the 

calculus on a quantum plane. This will also give an explanation for the appearance 

of "inner derivation terms" in the generalized product rule. 
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The central idea of this section, inspired by a comment of Prof. B. Zumino, is to 

give the coordinate functions on the quantum plane functional coefficients in A, i.e. to. 

make them variable with respect to the action of vector fields in U. Let x~ E Fun{Mq) 

be the "fixed" coordinate functions and define new variable ones via xi := (t- 1 )i;x~. 
Instead of the differentials dx~ we will use 6xi =-(Ox )i because 

6x = 6r1 
• xo = r 1 

· t · 6(t-1
) · xo = -r1 

· 6(t) · r 1 
• xo = -n · x, (8.1) 

where Sis the exterior derivative on the quantum group and n = t-16t is the Maurer

Cartan Matrix. By "pullback" the group derivative will become the derivative on 

the plane, inducing a differential calculus there. It then immediately follows that 

.6A(dxi) = dxi ® (t- 1)ii, which will ultimately give us the desired commutation 

between Lie derivatives and d. 

Turn now to the quantum group. Reserving Latin indices i,j, ... for the plane 

coordinates, let us use Greek indices for the adjoint representation of the quantum 

group. Let { V 01 } • be a basis of bicovariant generators with coproduct .6va = va ® 1 + 
Oaf3 ® Vf3 spanning Tq C U and let { Wa} be the dual basis of 1-forms; iva ( wf3) = 6~, 
Oi; = w01iva(Oi;) = -W01 < V 01 , (t-l)i; >.Via the Cartan identity £v = iv6 +Siv one 

computes actions of Tq on Fun(Mq): 

i • ( ~ i) (t-l)i i V 01 I> X = tv0 VX =< Va, j > X • {8.2) 

Now we can make an ansatz for a realization of the group generators in terms of 

functions and derivatives on the planet 

VOl ..:.. ~Oi, 

where J! E Fun(Mq) is easily computed, using Oi(xi) = 6f to be 

J~ = Va(xi) =< V 01 , {C1)i; >xi. 

{8.3) 

{8.4) 

In some lucky cases there is an inverse expression for the partial derivatives on the 

plane in terms of the group generators. With it E Fun(Mq) 

(8.5) 

an expression that is classically only valid locally and may exclude some points unless 

we are dealing with an inhomogeneous group, but will give explicit 8- x commutation 

relations if it exists: 

OiXi = ~01V01Xj = Oi(xi) + .ft0af3(xi)J/ Ok. 

L;"'(xi) 

*We write v instead of x here to avoid confusion with coordinate functions x E Fun(Mq)· 
t::: means: "equal when evaluated on Fun(Mq)" 
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Example: GL1(2), Manin-Wess-Zumino Quantum Plane 
q 

The coordinate functions x, y of the Manin plane satisfy commutation relations xy = 

qyx that are covariant under coactions of the quantum matrix group GL1(2). This 
- q 

quantum group has four bicovariant generators v1 , v2 , v+, v_; we will focus on the last 

two for the moment, giving their fundamental r 1 representations 

(8.7) 

and the first tensor product representations 

! 0 q 0 0 

0 1 0 0 
r1 = 

0 -A q 1 0 
(8.9) 

0 0 0 ! 
q 

We immediately find 

~ J-Ot -3 -1 U:r: = :r: Va = q Y V+ 7 
~ -1 -1 Uy = q X V_, (8.10) 

which we only have to check on pairs of functions because of the form of (8.6): 

XX (1 + q2)x XX 0 

8:r: 
xy q2y 

8y 
xy qx 

(8.11) - -
yx qy yx X 

yy 0 yy y+q2y 

From this we read off the following 8- x commutation relations in perfect agreement 

with the results given in [22] 

8xx - 1 + q2 x8:r: + (q2
- 1)y8y, (8.12) 

8:r:y - qy8:r:, (8.13) 

8yx - qx8y, (8.14) 

8yy - 1 + q2 y8y. (8.15) 
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Using the other two generators v1 , v 2 gives identical results. This method works for 

all linear quantum planes (7) and can be formulated abstractly in terms of r-matrices. 

If one does not want to extend the algebra by introducing inverses y-1 , x-1 of the 

coordinate functions, it is also possible to obtain the above commutation relations as 

a vanishing ideal of xy thereby also avoiding the questionable use of J. 

8.2 Covariance 

Let us collect some of the equations valid on a quantum plane. Let j, g E Fun{Mq) 

be functions and 8i be derivatives on the quantum plane, let V0 be generators of the 

quantum Lie algebra - corresponding to the symmetry quantum group of the plane 

-with coproduct .6.va = Va ® 1 +Dab® vb, and let Lii be a linear automorphism of 

Fun(Mq): 

Vaf 

Va 

8d 

-

-

-

Va(f) + Oa b(f)vb, 
i f Ja{)i, 

ai(f) + L/ (f)aj. 

From this equations we can form a new one 

J~L7(J) = O~(j)J~, 

that can sometimes be rewritten as 

Examples 

Quantum group as plane: Fun(Mq) :=.A. 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

Plane-Like Generators: O(ii) := tikXki * J(~1? = (r1)ki8{, L(li)(nm)(j) = 
tl iO(ii) (km) (j}(t-1 )kn· 

~Careful: An expression linear in the partials may not always exist, in particular for eq(2) we 
get a power series instead. It does exist for Wess-Zumino type quantum planes and then we have 
J! =< V0 , (t-l)ij > x3. 
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Linear quantum plane: The algebra of functions on the linear quantum plane is 

invariant under coactions ofGLq(N); 6..A(xi) = xi®Stij, J~ =< Va,Stij > xJ. Using 

(8.19) we find 

so that Lik (xi) should be homogenous of first order in x, which suggests 

Covariance of: v f = V(t)Cf)v(2) 

Here: v E U, f E Fun(Mq) and v(f) = f(l) < v, j<2>' >. 

Covariance of v(J) alone: 

6.A(v )(6.AJ) - J(l) < v(l>, j<2>' > ®v{2)'J{3)' 

- J{l) < v, J{3)
1 > 0/(2)' S(J{4)')J{S)' 

- f{t) 0 v(J(2)') 
(8.21) 

- 6.A(v(J)), D 

where we have used identity (7.68). 

Covariance of the complete commutation relation: 

- J{l) < v{I) (I)l J(2)' > v<t) (2) 0 v(2)' J(3)' 

- f(l)v{l)(2) 0 v<2)' v(i}(1)(f<2>') 
- j(l)V(2)(1) ® V(t)(j(2)') V(2)(2)' (8.22) 

- 6.A(V(t)(/))~A(V(2)) 
def D..A(vf). 0 

The underlined parts were rewritten using a compatability relation between the right 

A-coaction and the coproduct in U: 

(8.23) 

Please refer to section 4.2.4 for the definition of the right projector "~". 

Covariance of: 8d = Oi {!) + Lij (J)8J 

See section 6.1.2. The main result was the following condition on LiJ: 

(8.24) 
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This proof is somewhat involved and we should keep in mind that equation vaf = 
va(f) + Oab(f)vb is already based on ~A being an algebra homomorphism; neverthe

less, in several steps: 

~A is a homomorphism of Fun(Mq)><IT(Mq)· Proof on a function f: 

~A(J~8J) - ~A(vaf) 
_ v£1) J(l) ® v£2)' J(2)' 

- < v£1)' Stkl > xl8kf(I) ® v£2)'J(2)' 

- < Va, sts r > x18kj(l) ® StrtS2tk sf(2)' 
(8.25) 

- xl8kf(1) ® Str l < Va' St8 r > S 2tk sf(2)' 

- ~AJa8 ~A(8sf), 0 

and also 
~A(J~8i(J)) - xi8i(J(l)) ® St8 j < Va, Strs > S 2tirf(2)' 

~AJar ~A(8i) (~A!) (8.26) 
- ~AJ~ ~A (8i(f)). 0 

A short aside, checking consistency of Oab(J)Jt with ~A being an algebra homo

morphism of Fun(Mq)· 

. D.A(Oab(J)Ji) D.A(8i) def D.A(Oab(f)Jt8i) 
~A(Oab(J)vb) 

- D.A(O~(J)) ~A(vb) 
- D.A(Oab(f)) D.A(Ji8i) 

def D.A(Oab(f)) D.A(Ji) D.A(8i)· 

Synthesis: Comparing 

and 

we finally find: 

D..A(J~Lik(J)) - ~A(J~) D..A(Lik(J)) 
- D..A(Oab(J)Jbk) 
- D.A(Oab(J)) D.A(Jbk). 
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Remark: Given a linear operator Lii : Fun(Mq) -+ Fun(Mq), satisfying the appropri

ate consistency conditions, - equation 

(8.29) 

could very well be used to give explicit covariant x - x commutation relations. 

8.3 Cartan Calculus on Quantum Planes 

So far we have only dealt with functions and (partial) derivatives that we combined 

into an algebra of differential operators on the quantum plane via commutation rela

tions 

(8.30) 

Now we would like to construct differential forms through an exterior derivative d : 

Fun (Mq) -+ A 1 (Fun (Mq)) that is nilpotent and satisfies the usual graded Leibniz 

rule. Lie derivatives are introduced next, recalling that they act on functions like the 

ordinary derivatives, that they correspond to £ 8; (f) = ai (f)' and requiring that they 

commute with the exterior derivative £a, o d = d o £a;. Just like it was the case for 

quantum Lie algebras, the linear operator Lii should also act like a Lie derivative, i.e. 

we extend its definition from functions to forms by requiring that it commute with 

d. Inner derivations ia; are defined as graded linear operators of degree -1 orthogonal 

to the natural basis ~i := d(xi) of 1-forms: ia; (ei) = 8f - in consistency with the 

Cartan identity 

(8.31) 

that we want to postulate. For the exterior derivative of a function we can choose 

between two expansions in terms of 1-forms 

(8.32) 

that we contract with iaJ to find 

aj(f) = aj = iai(biei) (8.33) 

and 

(8.34) 

The second expression has to wait while we quickly derive x-e-commutation relations 

with the help of the first expression and the Leibniz rule for d: 

df 

= d(f) + fd 

eiad 
ei ai (f) + ei Lij (J)aj 
= eiai(J) + Jejaj, 
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valid on any function and hence 

1e = ~iL/(f), (8.36) 

so that the second expression takes the (not so pretty) form 

(8.37) 

which, unlike in the quantum group case, does not simplify any further. Lie derivatives 

and inner derivations along arbitrary first order differential operators Ji~, Ji E 

Fun(M9 ) are introduced by the following set of consistent equations: 

'LJio; - .r· tai, (8.38) 

£ Jio; - di pai + i Jio; d, (8.39) 

£Ji8; - f £a;+ d(f)ia;, (8.40) 

£ pa,d - d£Ji8,· (8.41) 

\:Ve will not give a complete set of commutation relations here because the reader can 

easily obtain most of them from the quantum group treatment simply by replacing 

£ O;i -t Lij. The problem of defining a Lie bracket of vector fields on the quantum 

plane has, however, not found a satisfactory solution yet. 

8.4 Induced Cartan Calculus 

\:Ve would like to complete the program started in section 8.1, where we induced a 

calculus on the plane from the calculus on the symmetry quantum group of that plane 

using a realization Va ....:.. J~ 8i of the bicovariant group generators in terms of functions 

and derivatives on the plane. From this expression we get the following two relations 

for the Cartan generators on the plane: 

(8.42) 

(8.43) 

Commutation relations for the inner derivation with functions are easily derived; 

(8.44) 

and hence 

(8.45) 
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or, if a Jt exists, 

(8.46) 

and finally 

(8.47) 

Commutation relations for the Lie derivatives with functions can now be calculated 

using the Cartan identity. \Ve will present the result of such a computation for \Vess

Zumino type linear planes (where ]f exists): 

£e;x1 = b~ + JtOab(x1)J; £ak 
• 

L;k(x1) (8.48) 

+ (d(]fOab(x1)Jt)- Jiad(Oab(x1))Jt) iek. 

Classically: Oab(x1) -t b~x 1 and functions commute \'·:ith functions and form1 so 

that the last term in the above equation vanishes. The quantum case has a little 

surprise for us: As was first discovered by Prof. Zumino through purely algebraic 

considerations in the case of the GL9 (2)-plane, an inner derivation term is necessary 

in the £ 8 - x commutation relations in order to get consistency with the undeformed 

Cartan identity. Let us illustrate this at our standard example. 

Cartan Calculus for the 2-dimensional Quantum Plane. Using x- d(x) 
commutation relations from (8.36) 

we obtain 

xd(x) - q2d(x)x, 

xd(y) (q2
- 1)d(x)y + qd(y)x, 

yd(x) - qd(x )y, 

yd(y) - q2d(y)y, 

£a"x - 1 + q2x£ez + (q2
- 1)y£e11 + q.\d(x)iez + .\2d(y)ie11 , 

£azY - qy£a'Jl.+ .\d(y)ia .. , 

£a
11

X - qx£a
11 
+ .\d(x)ia

11
, 

£a
11
Y - 1 + q2yia

11 
+ q.\d(y)ia

11
, 

(8.49) 

(8.50) 

(8.51) 

(8.52) 

(8.53) 

(8.54) 

(8.55) 

(8.56) 

directly from (8.48) after a lengthy computation. Alternatively, we could have started 

with ia - x commutation relations 

(8.57) 
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ta:zY - qytaz' (8.58) 

tallx qxtall' (8.59) 

tallY 
2 . (8.60) - q yza"' 

which have the great advantage that they have the exact same form as the well-known 

8- x relations. This also means that all of our covariance considerations are still 

valid here. 

( 
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Chapter 9 

A Torsion-free Tangent Bundle for 

SUq(2) 

Introduction 

In the classical theory of Lie groups one can introduce a tangent bundle over the group 

manifold. There are two natural choices for the connection: Either one imposes the 

condition of zero curvature and then chooses a vanishing connection in an appropriate 

gauge- such that the torsion is given by the RHS of the Cartan-Maurer equation 

- or one can attempt to set the torsion equal to zero to obtain a (Riemannian or G

Structure type) non-vanishing curvature. The first scenario generalizes quite easily to 

the quantum group case. In this chapter we will try to generalize the more interesting 

case of vanishing torsion at the example of SU9 (2). 

To establish notation, a review (including some additional relevant material) of 

the theory of quantum Lie algebras is given in the next section, followed by the 

description of a tangent bundle structure over a quantum group. We then elaborate 

on the example of SU9 (2) giving all R-matrices and structure constants explicitly. 

9.1 Quantum Lie Algebras 

Quantum Lie Algebras are Hopf algebras U9g that contain a finite-dimensional sub 

vector space that closes under left and right coactions. Let { ei} be a linear basis of 

generators for this space• and { ej} a dual basis of 1-forms corresponding to a set of 

*In this chapter we will not consider a linear basis of the whole Hopf algebra so there should not 
be any confusion from this notation. 
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.AA(ei) -

A.A(ei) -
ie; (d) -

.AA(ei) -
A.A(ei) -

1 ® ei, 

e·0Ti. J ,, Tii E Fun(Gq), 

- < ei,Sll >= 8f, 

1 @ei, 

ei ® s-lri;. 

. (9.1) 

(9.2) 

(9.3) 

(9.4) 

The exterior derivative on functions can be expressed in terms of these bases as 

(9.5) 

The Leibniz rule for d requires that the generators { ei} have a coproduct of the form 

(9.6) 

A Cartan calculus can be introduced on these quantum Lie algebras with equations 

like 

£e,a -

te,a -
£e, -

ei -

£e,(a) + £e,,(a)£ei 

ie,(a) + (-1)P£e,,(a)ie, 

die;+ ie,d 

Sbh>dbh> =: eb•, 

(9.7) 

(9.8) 
(9.9) 

(9.10) 

where a is a p-form, for a more complet.e list see section 7.2.3. As in the classical 

case we make an ansatz for the product of two forms in terms of tensor products 

(9.11) 

with as yet unknown numerical constants &ii mn E k and define ie, to act on this 

product by contracting in the first tensor product space. This leads to the following 

explicit expression for &iimn: 

A ij s-1B j Ti 
0 mn =< m' n > (9.12) 

and, in a particular example that we will need later, 

dei = debi -

(9.13) 
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In the previous equation we have introduced the adjoined action of a left-invariant 

vector field on another vector field. A short calculation gjves 

(9.14) 

and similarly 

(9.15) 

where 
T>Cb b ICkl =< fh ,Tel> (9.16) 

is the so-called "big R-matrix" related to at by 

(9.17) 

A little more work gives 
.r a r'a Rkl 
Jm n =-Jk l mn• (9.18) 

\\'ere we to impose zero curvature now and chose a vanishing connection, then the 

right hand side of equation (9.13) would give the torsion two form. 

The calculus on quantum Lie algebras is by construction covariant undet left and 

right coactions. It has however a closely related additional symmetry: All equations 

that we have given are invariant under linear changes of the bases ei and ei: 

ME AfN(k). (9.19) 

The adjoined matrix representation T and the braiding operator () transform as ex

pected under this change of basis 

T i T-i ( "1-t)i Tz Mm 
j -+ j = i• l m j' (9.20) 

(9.21) 

such that now 

(9.22) 

and 

AT=T®T, fT=l, ST=t-t, (9.23) 

z. e. T (like T) satisfies the appropriate relations for a matrix representation of U9g. 

tThe Hat "·" denotes the action of the permutation matrix pijkl = 6f6t, i.e. ir = P(1'. 
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9.2 Quantum Tangent Bundle, Torsion,· Curva

ture 

In tills chapter we are going to use a formulation [63) of the theory of fiber bundles 

where all forms are pulled back to the base manifold. This formulation is well suited 

for the generalization to quantum groups because it makes it easier to keep track of 

subtle distinctions between the calculi of base vs. fiber. 

The base manifold in the problem under consideration is a quantum group, im

plicitly defined by the Hopf algebra of functions Fun(G9 ) on it. The typical fiber of 

the tangent bundle is the invariant space span{ ei}, i.e. the "quantum Lie algebra". 

\Ve chose a basis {Xi} of sections on the tangent bundle and consider "pointwise" 

infinitesimal transformations within the fiber along elements A~-' of Uqg 

(9.24) 

where we have used ..6..AXi = Xi 0 f'ii· In order to justify the word "infinitesimal" 

the A~-< should be linear combinations of the ei and possibly s-1 eit. These heuristic 

considerations suggest that the connection 1-form should have the following form 

(9.25) 

which enters in the expression of the covariant derivative \7 on the section basis: 

(9.26) 

This equation is basically a reformulation of (9.24) in differential form language and 

equation (9.26) replaces the metricity condition on win the sense of G-structures: In 

the classical theory we construct classes of G-bases fixing one orthogonal basis {xi} 
and getting all other orthogonal bases by transforming {xi} by a Lie subgroup of the 

general linear group. For quantum groups we choose transformation matrices of the 

form < x, T >. Later we will come back to the question which metric - if any - is 

preserved by said transformations. Using properties of \7 like 

V(x + 1/J) - Vx + \71/J, 

V(J,P) - df®f\71/J, 

\7/u+vtP - f\7u1/J+\7v1/J, 

f E Fun(Gq), 

\7u1/J = iu(?/J), 

(9.27) 

(9.28) 

(9.29) 

~Higher power$ of S do not result in new generators in the example under consideration in the 
next section. 
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we can easily calculate the covariant derivative of an arbitrary section '1./; = Xi'lf}: 

(9.30) 

For section-valued p-forrrts we introduce an exterior covariant differentiation D: 

(9.31) 

in accordance to the undeformed Leibniz rule. 

The last ingredient, enabling us to define torsion, is the fusion form TJ = Xi 0 ei, 

viewed as a section valued 1-form. It effectively identifies elements in the fibers of 

the tangent bundle with the tangent space over the points of the base manifold. One 

usually takes the canonical element ei 0 ei as a natural choice for the fu~ion form, 

but TJ = Xi 0 ei = e1!1!1 i 0 ei, where !111 i is a co~stant numerical matrix that may 

hov.;ever differ from 81 i, is also a mathematically acceptable description and will in 

fact be quite important in the quantum case as we shall see. The torsion 2-form 0 is 

defined as the exterior covariant derivative of the fusion form 

e = n 77 VXi 1\ ei +Xi 0 dei 

Xj@ (w-ii 1\ ei + deJ) (9.32) 

\Ve will later try to set 0 = 0. The curvature 2-form of a section 1/; is Q = D\71/;, 

i.e. the exterior covariant derivative of the section valued 1-form \71/;. In terms of the 

section basis we find 

- D(xj®w-ii) 

Xk ® (wkj 1\ w-1 i + d.. .. li) 

-. Xk00\. 

The Ricci tensor can also be defined in this context: 

(9.33) 

(9.34) 

For simple Lie algebras it has the particularly simple form of the Killing metric times 

a constant. 

Using tools from the previous section we can ex-pand the torsion 2-form in terms· 

of tensor products 

dej - -ek 0 e1 J£j1, 
wii 1\ ei - w~'jieJ..L 1\ ei = w/iek 0 e1 (8~6f- (71-Likl) 
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and the condition of zero torsion becomes 

j ( CIJ. c1 ~ IJ.i ) (I j 
WIJ.iOkol-(j kl =Jkl• (9.37) 

This is a set of linear equations for wiJ.ii with non-trivial null space, i.e. we will get a 

solution viJ.ii and vectors NIJ.ai with Nj.J.0 i(o~oj- (71J.iki) = 0 such that 

W i.- v ;·+""nir..r a. ni E k 
IJ. ' - IJ. ' ~ a1

"1J. '' a • 
(9.38) 

a 

To decide whether it is possible to find an wiJ.ii that satisfies all conditions, in partic

ular 
. ? -. 

,, J . ..:...<A TJ. > 
"""IJ. '- IJ.l ' ' 

(9.39) 

it is now instructive to look at the concrete example of SUq(2). 

9.3 Example SUq(2) 

... or Slq(2) if one modifies the reality condition. Recall [23], [38] the commutation 

relations for SUq(2), here written in compact matrix notation as 

r12t1t2 = t2tlrl2, detqt = 1, tt = C 1' . 

~(t) = t0t, £(t) =I, S(t) = rl, (9.40) 

where t E A1n(Fun(SU9(2))) and r is the "small" r-matrix 

[

q 0 0 

1 0 1 0 
r =< n,t10t2 >= rn 1 

yq 0 q- q 1 

0 0 0 

(9.41) 

The deformed universal enveloping algebra U9su(2), dual to Fun(SUq(2)), is gener

ated by operators H, X+, X_ satisfying 

€(H) =£(X±) = 0, 

S(H) = -H, 

Following [23] these relations can be rewritten as 

L±L±-L±L± r12 2 1 - 1 2 r12, 

~(L±) = L±0L±, 

S(L±) = (L±)-1 , 

r12Lt L! = L! Ltr12, 

€(£±) =I, 
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where L± are given by 

(9.44) 

and 
_ . ( qH/2 0) 

L =<'R,St0id>= -H/2 , -...;q>..x_ q . 
(9.45) 

where>..= q- !· Urutarity of T·implies (L+)t = (L_)_\ i.e. fi = H, X±= X=f. 

Following the method described in section 2.4.1 we can construct a matrix of 

bicovariant generators corresponding to an element 1 0 1 - n 21 R of the "pure braid 

group": 

(9.46) 

The right coaction is then 

i j i k ~.Ax 1 = x k 0 St jt 1, (9.47) 

so that span{ ei} forms an invariant subspace as required. c := e1 + q-2e4 by the 

way is the casimir. The functions bi E Fun(G9 ) see equation (9.2) can ~e chosen 

as linear combinations of the elements of t [35] because t (and St) form faithful 

(anti)representations of the eis. Classical commutators become adjoint actions 

where the Rand f can be calculated [60] from r (see section 4.1.2) 

(9.48) 

and 

M = ± (Mt- ~k<">.,). (9.49) 

Explicitly: J0
(kl) 

1-q2 0 0 _1+q 0 0 1 0 0 _1 0 0 0 0 0 0 q3 q q q 

0 l+q2-q4 0 0 _1 0 0 q 0 0 0 0 0 -q 0 0 q3 q 

0 0 -q 0 0 0 0 0 q-3 0 0 _1 0 0 1 0 q q 
-1+q2 0 0 1 0 b _l 0 0 1 0 0 0 0 0 0 q3 -q-q q q 

(9.50) 
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0 

-q 

0 

0 

0 

0 

_1 +q 
q 

0 

0 
1 -q-q 

0 _1 

0 
q 

0 

0 

0 

0 
! 
q 

0 
_! 

q 

0 

0 

0 

0 
_l 

q 

0 

! 
q 

0 

0 
_! 

q 

0 0 0 0 0 

0 0 0 1 0 
0 

0 q 

0 q 0 0 

0 0 0 0 

-q 0 

0 0 
(9.51) 

obtained by similar methods. In both matrices rows are labeled by a E { 1, ... , 4} 

and columns are labeled by (kl) E { (1, 1), (1,2), ... , (4,4)}. 

Using the explicit expressions for a (see appendix) and f'a (kl) we find the fol1o\\·ing 

particular solutions vi(,..i) of (9.38): 

0 0 0 0 0· 0 1 q 

01 0 0 00 0 q 

0 0 -q-3 0 0 0 0 

0 0 0 0 0 0 _! 

0 0 0 0 0 
q 0 0 0 0 
0 0 0 0 _! 

q 

0 0 0 0 0 

0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

(9.52) 

q 

The null space of said linear equation, i.e. of a-1, is spanned by Nt,..i)• a= 1, ... , 10: 

0 0 

0 0 

0 0 

0 0 
0 0 
0 0 
0 0 
0 1 

0 1- q-2 

1 0 

0 

0 

0 

0 

0 

1 
-4 -2 q -q 

0 

0 

0 

0 0 0 0 

0 0 0 1 

0 0 0 -1+q-2 

0 0 1 0 
1 0 0 1- q-2 

0 0 0 0 

0 0 0 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 1 0 0 0 

0 0 0 0 q-2 

0 0 0 0 0 

q2 0 0 0 0 

0 0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 
1 0 0 0 

0 0 0 0 
0 0 1 0 

0 0 0 0 
0 1 0 0 

0 0 0 0 
(9.53) 

The fact that there are 10 null vectors shows by the way that the number of inde

pendent 2-forms is reduced from 4 x 4 = 16 to 16- 10 = 6 = 4 x 3/2 as one would 

expect. 

We will now investigate choices for w of gradually increasing complexity starting 

with a simple ansatz with Af =I 

W i. -<A yi. >- Av f i.+ A'v fli. 
J.l 1 - J.l' ' - p.J v ' p.J v ' (9.54) 

corresponding to 

A A ll + A'IJ s-1 
J.l = #-leV J.l ev• (9 .. 55) 
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In the classical case we would find A" jJ. = -A'" jJ. = ~8~ as a solution. Explicit com

putation shows however that there are no solutions for A" jJ. and A'" jJ. in the quantum 

case. Next we try an ansatz with trivial A" jJ. and A'" jJ. in analogy to the classical 

solution, but we allow the basic generators e~.~ and s- 1 e~.~ in (9.55) to be multiplied 

by elements z, z' E U9g 

i.- 's-1 yi. -zi rk·+Z'iJ'z. wjJ., -< zejJ.- z ejJ., , >- kJjJ. , z jJ., (9.56) 

where zC')ik =< z('),Tik >. Hence solving 

. . . l . k 
v/i + n~NIJ.ai = Z'Jz!'jJ. i + z;kfjJ. i (9.57) 

for { n~, Z'it, zi k} gives 

0 ...L 0 0 0 0 0 0 0 0 2q 

0 b 0 0 0 0 0 1 _!1_ 0 - -q-q3 1+q2 

0 0 0 0 0 1 _ _!1_ 
0 0 0 - q+q3 1+q2 

0 .=..l 0 0 0 0 0 0 0 0 2q 

_l 0 0 0 1 0 0 0 
4 4 

0 ':l 
(l+q2f2 0 0 0 22 

(I+q2)2 0 0 

0 0 - 22 
(l+q2)2 0 0 0 22 

(l+q2)2 0 
1 0 0 0 _l 0 0 0 4 4 

(9.58) 

as a particular solution and 

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 
(9.59) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

as the corresponding null space. The first 10 columns in both matrices are labeled 

by a, the next 4 columns are labeled by k, and the last 4 are labeled by l. j is the 

row index. Two comments about the null space are in order: Note that the first ten 

columns are zero. This means that n~ and hence wiJ.ii are in fact uniquely determined 

by our ansatz. Note also that both f and f' and thereby ejJ. and s-1 ejJ. were necessary 

to satisfy the equation. All that remains is some arbitrariness in the definition of K 

and ]{'. This actually comes from the existence of an invariant form e1 + e4 • Being 

invariant means d(e1 + e4
) = 0 or f'IJ. 1i + f'jJ. \ = 0; by equation (9.18) the same is 

true for f. \Ve use this remaining freedom to diagonalize 

1 0 0 0 4 

0 22 0 0 
K=-K'= (I+q2)2 (9.60) 

0 0 22 0 (I+q2)2 

0 0 0 1 
4 
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corresponding for instance to 

and 

z = -z' = ! + q( 1 - q
2
) (e4- s-1e4) 

4 4(1 + q2 ) 2 
(9.61) 

(9.62) 

If z and z' had been invariant elements ( casimirs) then A~ would have had nice 

transformation properties. The way it is, the solution is somewhat unsatisfying. 

Luckily it turns out that z can be eliminated v.rithout having to change our solution 

for w if we allow for a non-trivial Af matrix. As can be seen by inspection of the 

explicit forms of f and f': 

(9.63) 

where 2 

(l:q2)2 0 0 0 

0 2 0 0 
Af = 2(1+q2) (9.64) 

0 0 2 0 2(1+q2) 

0 0 0 
2 

(l:q2)2 

such that now 

. 1 - . 
w/ i =< x~- s- XJ.L, TJi >, z. e. A~= x~- s-lXw (9.6.5) 

9.4 Appendix 

k;"kl: 

1 0 0 0 0 0 
0 1- q-2 0 0 1 0 
0 0 1- q2 0 0 0 

1 +q-4- ~ 0 0 2- q-2- q2 0 0 
0 q-2 0 0 0 0 
0 0 0 0 0 1 

1 -2 -q 0 0 1- q2 0 0 
0 -1 + q-4 - q-2 + q2 0 0 1-q-2 0 
0 0 q2 0 0 0 

-1 + q-2 0 0 -1 +q2 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 1 0 0 
0 -1 +q-2 0 0 0 0 
0 0 -1 +q2 0 0 0 

-1- q-4 + 22 
q 0 0 (-~+qf 0 0 
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0 0 0 0 0 0 0 0 0 o· 
0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

-1 + q-2 0 0 1- q-2 0 0 1 0 0 0 

" 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 
... 

0 1- q2 0 0 0 0 0 q2 0 0 
(9.66) 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 q-4- q-2 0 0 1- q-2 0 0 q-2 0 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 
1- q-2 0 0 -1 + q-2 0 0 0 0 0 1 

Here is the "big" a, which describes the 1\ product 

1 0 0 0 0 0 

0 1 - q2 0 0 1 0 

0 0 1- q-2 0 0 0 
1 + q-4- 2. 

q' 0 0 2- q-2- q2 0 0 

0 q2 0 0 0 0 

0 0 0 0 0 1 
-1 + q-2 0 0 -1 +q2 0 0 

0 0 0 0 q-4- q-2 0 

0 0 q-2 0 0 0 
1- q-2 0 0 1- q2 0 0 

0 0 0 0 0 0 

0 0 -1 + q-4- q-2 + q2 0 0 0 

0 0 0 1 0 0 

0 -1 +q2 0 0 0 0 

0 0 -1 + q-2 0 0 0 
1 -4 + 2 - - q ql 0 0 -2+ q-2+ q2 0 0 

~ 
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0 0 0 0 0 0 0 0 0 o· 
0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 
1- q-2 0 0 -1 + q-2 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 1- q-2 0 0 0 0 0 q-2 0 0 
(9.6i) 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 1- q-2 0 0 1- q2 0 0 q2 0 

0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

-1 + q-2 0 0 1- q-2 0 0 0 0 0 1 

,., 
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Chapter 10 

Toward a BRST Formulation of 

Quantum Group Gauge Theory 

In this chapter we will give a brief intro'duction to a BRS type formalism for quantum 

gauge theories. All fields will live on the base manifold. A BRS formulation has two 

main advantages here: It can be formulated as a purely algebraic th~ry with ab

stract operators 6, d, t, ... (see [64] for a beautiful example of the use of this abstract 

algebra in the context of anomalies) and it emphasizes the coalgebra aspect of the 

quantum structure group -which is undeformed in the case of matrix pseudo groups. 

This will lead to equations that are of virtually identical form as their classical coun

terparts; this was the base of Isaevs [65] approach to quantum group gauge theory. 

VIle will however go a step beyond this work in as we will give an interpretation of 

objects like d(t) =j:. 0, where d is the exterior derivative on the base manifold of a 

bundle with quantum group valued fiber, even thought E .1\fn(A) may not have any 

base-dependence, thereby justifying the coexistence of such different objects within 

one algebra. ~we will not attempt any further (physical) interpretations of e.g. the 

connection form here, because this subject is still controversial at the moment. Nev

ertheless we hope to give an easy-to-use formalism that could serve as a starting 

platform for further investigations. Articles of related interest are [66]; see [67] for an 

abstract treatment of quantum group gauge theory and many examples. 

Let A = Fun( Gq) be the algebra of functions on the quantum structure group and 

B =Fun(M) be the - possibly non-commutative - algebra of functions on the base 

manifold; for instance space-time. The symbol 6 shall denote the exterior derivative 

of A(A) and d ditto of A(l3) - classically: d = d(x"') o~P; we will require them to 

anti commute 

od =-do. (10.1) 
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The quantum matrix (ti;(;=l E Mn(A) (in the fundamental representation) shall 

describe the gauge transformation of a column vector t/;0 of fields, Ao is th~ quantum 

Lie algebra valued matrix of connection 1-forms and v finally, the "ghost", is an 

abbreviation for the Cartan-Maurer form t- 16(t). As in the chapter on the induced 

calculus we make t/;0 and Ao "variable" with the help of A-coactions: 

'!/; .- C 1 t/Jo = "D..A(tPo)", 

A .- C 1 Aot + C 1d(t) = "D..A(Ao)". 

To justify the name "coaction" for 

(10.2) 

(10.3) 

(10.4) 

we have to extend the notion of the Hopf algebra A to a graded Hopf algebra A $ 

A0d(A) via 

Consider e.g. 

D. 0 d .- (d 0 if+ ii 0 d) 0 D., 

e:od .- dot::A-+{0}, 

Sod .- doS. 

e.t.c .. 

(10.5) 

(10.6) 

(10.7) 

(10.8) 

It is straightforward to show that (10.4) does indeed satisfy the axioms of a coaction: 

(10.9) 

Vv'e are now ready to derive a set of BRS transformations 

6(tj;) - 6(C1t/Jo) = C 1t6(C1)t/;o = -C16(t)C1'1/Jo 

- -vt/;, (10.10) 

6(dt/J) - d(v)t/J- vd(t/J), (10.11) 

6(v) - -v2 
' (10.12) 

c5(t) - tv, (10.13) 

6(c1
) - ct -v ' {10.14) 

6(c1d(t)) - -vC1d(t)- t-1d(t)v- d{v), (10.15) 

6(A) - 6(C1)Aot- C 1 Aod{t) + 6(C1d(t)) 

- -vA- Av-d(v), (10.16) 
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simply by applying 6 and working out the algebra; the first and last lines should 

give a flavor of these computations. All these equations correspond via the Cartan 

identity £Xi = 6iXi + ix,6 to infinitesimal gauge transformations. The 6ix; term is 

actually zero on functions and on left-invariant 1-forms like v, so we only need the 

second term ix;6, i.e. all gauge transformation information is already contained in 

the BRS 6; e.g. 

and 

£xJI/J) - ix;(6'1/;) 

- -ix;(v'I/J) 

- <Xi, St > '1/J =: >..i-,p 

£x;(v) - 6(ix;v)+ix';(6v) ----·a 

- -ix, (v2) 

- -ix; (v)v + £o,i (v)ixJ(v) 
- >..iv+ £o,J(v)>..j = {>..i,v}9 

- >..iv + Af/v(.AJ-1 )zi )..i, 

(10.17) 

(10.18) 

with .l\1/ =< 0/, St >. Next we introduce a covariant derivative D such that D'lj; 
transforms covariantly 

6(D'I/J) = -v(D'I/;) (10.19) 

in analogy to 6 ( '1/J) = -v'I/J. This is not really an extension of the algebra as D = d +A 
-in fact that is exactly what motivated A's transformation properties. From d and 

A we can construct another covariant tensor 

F := d(A) + AA, (10.20) 

the "field strength". A short (purely algebraic) computation gives 

6(F) = -vF + Fv. (10.21) 

It is now time to give an interpretation to objects like d(t), where dis the exterior 

derivative on the base space so that we have to give .B-dependence to t in some way: 

i) It is always possible to construct a new explicitly .B-dependent tw E A-fn(B ®A) 

tw := w-1tW, (10.22) 

where W E A1n(l3) is a pointwise invertible Matrix of functions on the base space. 

Here we were careful not to destroy t's Hopf algebra properties that are reminiscent 

of a representation, i.e ~tw = tw ® tw, Stw = t~ and dw = I. This type of 

B-dependence is essentially classical because it could be obtained from the adjoint 
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action on t of an element 1 E 13 ®U that is 8-dependent and group-like. A/= 1 ® 1: 

1 '[:? t =< ,-t, t > t < /, t >; see also [68]. More important is: 

ii) Implicit 8-dependence. Say, we have a 8-dependent gauge transformation g, i.e. 
t(g) E Mn(8), we then define (dt) on it by 

( dt) (g) := d (t(g)); (10.23) 

that can be classically expressed as: 

a 
(dt) (g(x)) := d(x"')-

8 
(t(g(x))). 

X~" 
(classical} ( 10.24) 

(It would be interesting to see whether one could actually rewrite (dt) as a matrix 

dt ::::::: d(xiJ)¢~(Xo I> t) 

for every given choice of gauge, parameterized by¢~ E 8.) 
Remark: In our formulation we are actually more interested in actions than contrac

tions, but remembering A o d = (d 01 + 1 ®d) o A, this is easily accomplished: 

xt> d(a) = d(ap)) < x,a(2) > +a(1)d(< x,a(2) >). (10.2.5) 

If we contract with an element x of U a product of say two functions in A, we look 

at the coproduct of U to determine how to split up x into parts, each contracting 

its respective function: < x,ab >=< x(1),a >< x(2 ), b >. As soon as x becomes 

also a function on the base, say x = L, {3a X a E 13 ® U, as is the case for local 

gauge transformations- and we are trying to contract things like t-1d(t), we have a 

problem: we need to give rules for where to put the 13-dependence in coproducts like-

( 1 0.26) 

because otherwise it might sneak past the d and escape to the left .... There is an 

infinity of possible rules for Ax; f3aXa(1) 0 Xa(2)' Xa(l) ® f3aXa(2), f3aXa 0 1 + Xa(l) 0 
{3a(Xa(2) - 1£(Xa(2))), .•. are examples. Luckily {3a E 8 and notE k, so that it need 

not commute with ®and one has at least the opportunity to give rules. No matter 

what we choose, we must not violate the Leibniz rule, in particular we must be in 

consistency with d(1) = d(ll) = 2d(l), which implies that only x with zero counit 

can have 8-dependence. In the classical case that singles out one natural choice: 

This riddle is solved by ex-tending the Cartan calculus to include Lie derivatives along 

elements of 8 ® Tq via 

(10.27) 

127 

li·' 



.. 

(Note the appearance of the exterior derivative d of the base and the correspond

ing inner derivation i in this equation.) Here is an example, showing how t- 1d(t) 

transforms under a gauge transformation along ,3°xa: 

£13"x,.(r 1dt) - {3a£xa.(t- 1dt) + d(j3a)ixa.(t- 1dt) 

- /3a < Xa(l),r 1 > t- 1(d(t) < Xa(2),t > +td(< \a(2),t >)) 
=0 

+d(j3a)ixa. (t- 1dt) 

- j3a( < Xa, t-1 > t- 1d(t)+ < Oab, t-l > t-1d(t) < _\b, t >) 
+d(/3a) < -xa, t-1 > 

- j3a [Aa, t-1d(t)]q- d(j3a)Aa. 
(10.28) 

(Compare to (10.18).) This calculation implicitly used further relations of the ex

tended Cartan calculus: 

£:xd - d£x 

ixd -dix· 

(10.29) 

(10.30) 

Before we leave the subject let us make a short remark about ordering problems. If our 

base space has more than 1+1 dimension we cannot define a physical (local) ordering 

on it; only a lexicographic ordering is possible. Does this lead to contradictions 

if we are dealing with non-commutative functions? Not necessarily, as long as \\'e 

are ordering within the column vector of fields and otherwise use global commutation 

relations and in particular just one global copy oft. Consider for instance the quantum 

structure group SUq(2) and two column vectors 1/J and 1/J' at different points on the 

base space. They will satisfy the following four mixed commutation relations• 

and they will both transform according to the same copy oft: 

'1/J' ._ s-11/J'. 

·(An interesting idea would be to try and give 8-dependence to the braiding operator 

Dab, but that will affect the multiplication in A in a ·..vay that may lead to inconsis

tencies.) Are we dealing with a non-local theory because of the global commutation 

• In a more conservative approach along the lines of the previous chapter the t/;0 would be merely 

the (commuting) coefficients of a section basis - the ordering problem would then presumably show 
up somewhere else. 

128 



relations? The commutation relations of the fields contained in .,P are obviously non

local, however, the real physical observables are gauge invariant objects like trq(F) 

(see [69] for a discussion of such a set of observables) and those could very well be 

central in the algebra and in that sense "local". Tills subject matter is quite contro

versial, so we want to leave it at that for now- hoping that the new tools provided 

will be beneficial in future discussions. 
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