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Inorgénic’Materials'Research Division, Lawrence Berkeley Laboratory and
Department of Materials Science and Engineering, College of Engineering

University of California, Berkeley, California 94720
ABSTRACT

In this paper we report the behavior of thé plastiq deformation of
ﬁn idealized crystal made by stacking paiallel slip planes; Eacﬁ slip
pléne 1s.as§umed to contain active sources of diSlogations 1eading to a
constant density of non-interacting dislocations in the plane which
vvglidé through‘randomly distributed localized poinf obstacles, repfesent—
ing.small precipitates. The dislocation is assumed to have a constant -
line tension and the dislocation—obstaéle interaction is taken to have
a simple step form.

Using results of computer simulation of therma}ly activated glide
through random arrays of point obstacles we modelléd‘deformation as a -

function of temperature and applied stress, detefmining the strain raté

and the morphological characteristics of slip.
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I. INTRODUCTION

The plastic deformation of a typical crystal is accomplished through
the motion of dislocations. At moderate temperature the dominant form.
of dislocation motion is planar glide, which is iméelled-byvthe local
vélue ofvfhe resolved shear stress and opposed b& tﬁéjresistance of'thé‘v
miérosfructufe. The dominant impediment to glide igloften due to local
micrdstrucfurél features such as small‘precipitates, "forest" disloca-
tions, or soiute atoms.which éct as local barriers to dislocétion motion.(l)
" When these are spread diffusely through the lattice they may often be
rggarded as pb;nt barriers in an approximétely rand§m distribution.

Under suitable idealizations the p;pblem.of‘therﬁally activated
"dislocation glide through a field of point barriérsAcan be simulated on

(2—4) (4-6) we have-

a computer for direct solution. In previoué papers
discussed how statistical analysis and computer simulation may be
combined to yeild an essentially complete solutibn»fdr the velocity of
dislocation_glide as a function of the applied stress, the temperature,
and the nature of the barriers. By édding an assumption on the disfri- 
bution of:mabile dislocations, the results may be extended to model
deformationvpf a single crystal which is assuﬁed to defofm through
simultaneous glide of noﬁ-interacting dislocafions on a&jagent slip
blanes}

In Reference 4 we reported preliminary results of a simulatidn of
the deformation of a simple crystal at constant strain rate.' The resﬁlté
were interesting in that the crystal not only shoﬁed_ﬁhe anticipated

trend df flow stress with temperature but also exhibited a characteristic

shift in the morphology of deformation with temperature: low temperature
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deformation concentrated on well-defined slip planes which fecame less
pronounced as the temperature was raised.

To continue exploration of this behavior we simulated the plastic
deformation of an ideal crystal made up of a stacking_of slip p;anes
‘containing randomly dispersed obstacles having roughly the properties
expected of small dispersion or precipitate particles. Each slip plane
was assumed to contain active sources of dislocations leading to a
constant density of non-intergcting dislocations in the plane. We then
modelled deformaﬁion asbaifunction of teﬁperature and applied stress,
determining the strain rate and the morphological:éﬁaracteriétics of
.slip. The results are reported below. We first ieﬁiQQ the basic
equations'govérning thermally activated glide.and.déSCribe the simulation

procedure.

IT. BASIC EQUATIONS

The assumptions and basic equations governing thermally activaﬁed-
glide of a siﬁple dislocation thrbugh a field of réﬁdomiy—distributed
point barriers were developed in detail in'Referencé 5. They may be
summarized és follows: | |

Consider a crystalyplane which is the giide.plane of a disloéation.
~Let is contain a random distribution of microstructurgl barriers which
are represénted(7) as point obstacles to dislocatioﬁ glide. The array
is described by the statement that its pbints are_randomly distributed

and by a characteristic length



where a is the mean area per point. A disiecatieh‘in this plane is
modelled as alflexible, extensible string having a. constant line tension,
I, and a Burgers' vector of magnitude b, teken to lie in the plane. 1The
resolved shear stress, 1,-1mpelling glide of this dislocation may be

conveniently written in dimensionless form
T = Tlsb/zr L o (2)

Let the dislocation be pressed against a configuration of poiﬁf
obstacles (denoted by 1) by the applied etress'r* (Figufe 1). Between
two adjacent obstacles the dislocation will take the'ferm of a circular
arc.of dimensionless radius R*(=l/2 T*)t 1f the"distance_between aﬁy
two adjacent obstaclea along (i) exceeds.ZR* or ifethe dislocation line
anywhere intersects itself then.the configuration;(i).is‘transparent to -
‘ ;he dislocetidn and will be by-passed mechanically. If (1)'15 not
transparent its ﬁechanical stability is govefned by the strength of the
dislocation-obstacle interaction.

fhe obstacles are modelled as idenﬁical barriers to the dislocation:
whose effective range of interaction (d) is smelllebﬁpared to their meaﬁ
separation_tzs).- They may hence be treated as poiﬁ; obstacles. A;,the

th

k - obstacle on 1 the disloeation-line forms the asymptbtic angle ‘

' w‘i‘(o < w: < w). The force, Fl;, that the dislocation exerts on the'k‘th_

obstacle may be written in dimensionless form

k

gk - F‘i‘/zr - cos(%«p‘;) . )}

The dislocation—obstacle interaction is governed by a force—displacement

relation( ) g8(x/d), the effective dimensionless point force on the
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dislocation as it sweeps through (o; folds ardﬁnd(s)) the obstacle. The
maximum, Bc’ of this function measures the mechanical strength of the
obstacle. A hon—transparent line configuration oflbbstacles constitutes
a mechanically stable barrier to the glide of é dislqcation under stress
(t*)vif 8:'< Bc for all obstacles k.on i, ﬁence if;éi < Bc, whére Bi.iS
the mgximﬁm of the B?. The smallest sﬁress 1* at which Bi.> B; for all
configurations within the array (i:e., 81 > Bc where_Bl is the minimum
of Bi) is the critical resolved shear stress r:f‘ When T* < T: the
dislocation will encounter at least one stable configuration within the
array, and can glide only with the help of therméijéétivation.

To phrase a particular case for the prgsent Study we chose an
obstacle strength Bc = 0.6, which theoretical Qork>5y Bac§n; Kocks; and.
Scattergood(s) suggests will approximate the effeétive strength of an
"impenetrable' particle in the glide.plane. The force-displacement
relation, B(x/d), for such a particle dependé on;details of the in;er#
action; for simplicity we choose an interaction ofvsimple step form:

B = B, when 0 < x/d < 1; B = 0 otherwise. .. |

If configuratioﬁ i is mechanically stable it must be passed by
thermal activation. 'We ignore the possibility of ther@ally,acpivated'
boﬁfout betﬁegn obstacles and require that actiyatipn occgr at a parti?.-
cular obstacle. The energetic barrie; to thermal actiﬁation at the-k;h
obstacle on i is

ek = as_ - 85 @

where a is the dimensionless reciprocal temperature

o = 1/ = 2ra/xr . D o)



The residence time of the dislocation in configuratibh i is the time

required for thermal activation past at least onevbbstacle-point in 1.

vThe expgcted value of the residence time is(S)
* -1 )
<t > = A ’ o _ (6)

' * ,
where t 1is dimensionless time vt, v is the mean frequency with which
the dislocation attempts an obstacle (assumed constant), and Ai is the
activation parameter

Ny

. k
A= X eml-as - D] o

where the summétion is taken over the Ni obstacles on i. The probability

that activation will occur first at obstacle k on i is

D = Kl emlats, - 81 @
In fhéfmally activated giide the dislocation:encdunters a seﬁuencg”

of obstacle configurations as it moves through the.array/(Figuré 2).
" These define the "glide path" (x) of the dislocaﬁibn. To compute the.
glide veloﬁiﬁy, we assume that fhe giide is-contrélied b& thermal
activation in the sense that the time required fdtfglide between_supces_
sive stablevﬁdnfigurations along x is negligiblé poﬁpéred'to-thé tiﬁgr
‘required for thermal activation past these configurations. If ihefe ére'
 r stable configurations aloﬁg a particular path X through the array”theﬁ“
the expected transit time of a dislocation along_x is | |

<t*> » i. a7t ' SRR - " 9)

x £ - . - |

Given that the dislocation may take any one of many available glide
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paths through the array the expected transit time iS'.

*
>
X

- %
t > = <t
<t > =3 (10)

X

where ux is the probability that the path x is follb@ed in a given trial.
The velocity'of glide is defined in a statistical_senée only, but has

the ergodic average
* * - v
v > = n1/2/<t > v - 1)

where <v*> is the dimensionless area»sweﬁt out by tﬁe dislocatipn ?er

unit time divided by its projected length, the edge length of thevarfay.‘
The detefmination of the velocity qf.glide th?éqgh a random afray N

of point obétacles is complicated since the availébléiglide paths chang¢: '

with the applied stress and the relative probabilities of these'péths,' H

éhange with temperature. The glide path becomes precisely defined qnly

in the li@it of very low or very high temperature'(T#) or when the appligd

stress (T*) is very close to the critical value kf:) for,athermairgiidév:

' through the_afray. When T* is gmall or T* n T: theideIOCation tendé'to

fo}low the fminimum-éngle" path (xo) obtained undér_thg constraint_thafb

the dislocation pass each configuration i by activating‘past the point k

- at which the angle ¢§ takes on its minimum value_(br,_equivaiently, at -

~ which B‘; takes on its maximum value, 8,). In the limit T >0 the

velocity is given by the Arrhenius equation

\

2 expi-a(s, - 8] | a2

*‘
<y > = n

where 81 is the minimum of the Bi, i.e., the maximum force on the most

. : , *
stable configuration encountered during glide. In the limit T -+ = the
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glide path becomes a 'random" path (xR) whose configurations aré obtained
through avrandom sequence of activation events. _In'this case the veloc-
ity 1s agaiﬁ governed by an Arrhenius‘equation, with pre-exponential and
activatioﬁ énergy given by suitable weighted averagéélover the random
configurations.(s) At intermediate témperatﬁre the equations governing
glide are mére complex, and cannot easily be set invArrheniué form.
Given a satisfactory analysis for planes of randomly distributed.
obstacles one may immediately treat the plastic défqrmation of an
idealized crystal modelled as a stackinglof_planeé of the same fype.
| The model then requires an additional assumption regarding the distribu—»
tion of dislocations dver the glide planes. The simplest aSSumptiqn,
whiéh we shall make in the following, i; that eaéﬁ glide plane contains
#ctive sources of non—interacting dislocations so that the expected
number of‘dislocations is the same for all planesxan&_all times during:
) S

steady state deformation. In earlier work we termed this a "uniform"

distribution of dislocations.
Given a crystal ﬁade'up of S parailel glide planes containing a
uniform distribution of dislocations the steady state strain rate may

be written in the dimensionless form
x ok '
¥ = (ob/2 )V - SR (13)

ﬁhere p is the expected number of dislocations interéecting_a dimension-
" less area perpendicular to the glide planes and % is the average of the

expected glide velocity for the individuél planes in the crystal:

. S v
k1 x A . |
v o= §-£§i<v£> _ N .:_ o (14)
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with <vz> the expected value for the glide velocity of the lth plane.

If the individual glide planes contain a finite number of obstacles,
then there may be appreciable scattef in the exﬁected glide velocity
from oné plane to another. This will be reflected4in an inhomogeneity of
the crystal‘deformation, which will tend to concentrate on those planes
over which glide is easiest (<v*> is 1argesp). Asvﬁé-shall show.bélow,
this pla#e-to—plane variation in glide velocity becomes less panOunced
as the temperature (T*) is increased or as the stress;(r*) is deéreased.'_
Hence crysﬁal deformation becomes more uﬁiform as stress is lowered at

constant temperature or as temperature is raised at constant stress.

III. SIMULATION' PROCEDURES

In the:work reported here we considered a crystél made up of ten
parallel glide planes each of which contained an expecfed number (103)
of obstacles in a Poisson distribution. The stréngth of the obstacles
was fixed at Bc = 0.6 and the force-displacement relation was assumed ;o_
have the simple step form described above. The»dislbcations were assumed'
;niformly distributed over the glide planes. Hence thé.dislocation
density (p) in equation (13) could be treated as an arsitrary constant
and the steady state strain rate ?* measured by the velocity g*. ‘The
simulation problem was hénce reduced to the probley of computing 3* as a
function of temperature and stress. ”

To determine 3* we found the expected glide véloéity <v*? for each
of the ten planes as a function of temperature and étréss, and summed
according to equation (14). The glide velocities were found.thrbugh
diréct computer simulation. The simhlatioﬁ_code employed‘is é modifica-

_ tion(g) of that described in Reference 4. 1Its procedure is essentially

as follows.



Using a pseudo-random number generator the code first fillé the
area of a square of size n (103 in this case) with é random distribution
of points of density one. The array is assumed pgfiddic.across all
boundaries. The code then introduces a dislocation Aqross the lower
bouﬁdary of the array and éllows it to move forward until it contacts
points of the array. The dislocation bows out between adjacent points
in a circle of continuously changing radius. The bow-out is terminated
by one of_thrée 1imits. First, the dislocation'ségmeﬁt may bow out to
vthe equilibrium radius R* without contacting any third obstacle or
violating the conditions of mechanical equilibrium (¢ ? wc) at either of
the adjacent obstacles. In this case the dislocation segment is recog-
nized to be mechanically stable. Second, the dislocation may bow to the
extent that i; violates the condition ¢ > wc at one of the adjacent
obstacles. In this case the dislocatibn is allowed té_passlfhe obstacle,
a new‘segment is defined by the obstacles adjacentiﬁo_the Bypassed
obstacle and the bow—ouf process begun anew. Third, the dislocation
may contact a third obstacle during bow-out. In this case the segment
is divided, and the stability of the new segments tested by éllowiﬁg
them to bow out in turn. This process of bowing the dislocation between
obstacles, defining new segments when obstacles éfevcontacted, and |
passing obstacles when § falls below wc is continued until a dislocation
configuratioﬁ'is found in which all obstacles are connected by segméntS»
wﬁich have the equilibrium radius R* and the angles at ali obstacles
are greater than the critical angle wc. The dislocation is finally
tested for sélf-intersections, which, given the method of constfuction,

must occur at some point other than at an obstacle. If there are
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lself—intersections, the dislocation is joined at the point of inter-
:section, and a new search is begun. If theré are no intersections, the
configuration is recognized to be mechanically stabie;.

Given a stable configuration, the code compuﬁesuthe angles w: along
it, and uses the assigned value of the thermal parémeter, a; to compute‘
the mean residence time according to equation (6). It then calls a
random number and chooses an activation site according to the proba-
bility assignment given in equation (8). The cﬁosén.point is passed, aﬁd
the code then initiates a new search to establish.the“neit stable con-
figuration. in this way a statistically chosen glide path is generated
and a transit time is computed according to equafion (9). Bylallowing
several sequential passages the ergotic average of the transit time is
vestimated (équation 10) and the glide velocity <v*§ found.

In simulating deformation of a crystal in which several glicé
planés must be treated simultaneously over a rangé_of stress and
temperaturé it is tedious and expensive to carry out a full statistical
computation of <v*>. In Reference 5 we identified approximate techniques
which appeared particularly promising for use at low temperatﬁre. In
Reference 4 these were specifically studied. Thg_ﬁdst-promising.was the
minimal sequence approximation, which ignores the Ehange in glide péth
with temperature and assumes that the glide path isrreasonably approxi-
matéd by the "minimum angle" path, xo' This assﬁmption greatly simplifieSI
thg computational effort necessary in simulating glide. Since the path:
'xo is fixed by stress(4) a single computer simulation experiment at a
- glven value of T* yields sufficient_inforqation to determine the glide
velocity for glide along X, through a particularﬁgrray at any value of

the temperature.
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When the obstacle strength is large, as in therpfesent case, the
minimél sequence approximation yields a good estimate for the glide
velocity over a large range of temperature. In Figure 3 we ¢ompare
glide velocity computed in the minimal sequence approiimation to tha£
obtained from stochastic freatment of thermal activatibn for the stress.

.T* = 0.4, As is apparent from the figure, the approximation yields a
reasonable résult for values of the thermal parameter (o) as low-asllo,
which corresﬁonds to the lowest realistic value of a for a deformable
metal (Cd at its melting point). We henée employed the minimal sequence

approximation to simplify the simulation of crystal deformation.

IV. SIMULATION RESULTS

Figure 4 illustrates the central resﬁlté obtéiﬁea from simulation
of the deformation of an idealized crystal made up'qf'ten parallel glidé
planes having area 103, a uniform distribution of ﬁoh-interacting—disloi
cations, and a Poisson distribution of obstacles having strength Bc = 0,6_
and an intefactidh function, B(x/d), of simple steb'form. The. figure
shows the glide velocity (plotted as -ln v*) as a fuﬁction of a(=1/T*)
for four valués of the applied stress, :*. The light curves show thev_
data for each'of the in&ividual glide planes making up the grystai
(taken in the minimal sequénce app;oximation); the.heavy line gives thé
resulting deformational velocity (%*) for the crystal‘és a whole;' .

The glide velocities for the individual planes vary o?er a range  [
which increases as the temperature is lowered.or‘gpe stress is raised. -

The source of this scatter is straight-forward, as may be easily seen

from the expression for the glide velocity in the low temperature

limit:
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<v*> =-n1/2exp[—a(8c - 81)] .

When thg feciprocal temperature a 1is large, the Qelocity is quite
sensitive ;o_small plane-to-plane variations in the yélué of 61, the
maximum’fbrée exerted on thg most stablé configuraﬁidﬁ encountered in'
glide along the minimum angle path. We illustrated that variation in

- Reference 4. In a finite array the variation is significant, and tends

_ : % -
to increase with the stress vt . As temperature is raised the properties

of the most stable configuration become iess dominaﬁt? In the high
temperature limit the glide velocity is determined_by“an average over
the forces. Unless T* is so near T: that there are only a few stable
configurations in the array this average tends to be independent of the
specific array, and the variation of <v*> Secomes very small. |
The conséquences of‘tﬁe élane—to—plane variatidn in glide velocity
are illustrated in Figure 5, where we show the appeérénce of a hypotheti-
cal tensile bar made of‘our model crystal and'straiﬁéd'ZOZ in tension at
each of two fesolved sheér stresses, r*‘= 0.01 and r* = 0.4, at tempera-i
tures T* = 10_3; 10—2, and'lO—l. At low stress (T* = 0.01) the Aefoyﬁa—
tion is markedly inhomogenequs at the lowest tempefa;ure (T* = 10;3),
but rapidly”bécomes homogeneous as temperature isvtaised. At high stréss
(T* = 0.4)‘the deformation remains inhomogeneoﬁsiéven ét T* = 10-1,‘which
roughly corresﬁonds to the highest dimensionless temperature attginable
in a typical metal. | |

The second salient qualitative feature of the data represented in
Figure 4 concerns the possibility of representing théideformational
velocity by an Arrhenius equation. As T -+ 0 the-velocity’s is given

precisely by an Arrhenius equation of the form
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k1 '

v = (Qexp[-a(B - 8, )] (15)
where Blm is the largest of the Bl values for the S planes composing the
crystal; However, as T* is iﬁcreased (u.deEreased) 3* deViates from
equation (15) by an amount which ,represents a balance between the
increasing géntribution of glide on secondary planes énd the increasing
importance of secondary activation events in the primary glide plaﬁe\

As discusse& in Reference 5, at intermediate_temperature 3* tends to fall
below the values predicted by the asymptotic relation (15), a fesult
reflected in the slight upward concavity of the curves at r* = 0.01-0.25.
' However; as r* approaches T: this effect is reversed(A) and 3* tends to
exceed the‘value predicted by equation k15); thus,ﬁhg_slight downward “
concavi;y of the curve for T* = 6.4. Note, however, that the data Shown
here span many orders of magnitude of %*. Were we tb confine the data

to a range (5-10 orders of magnitude of ¥) which might be experimentaiiy
measurable, the data would be well fit by an Arrhenius equation at inter-
mediate temperature. : ' Vi’/

At very high values of T* (ébove the melting.point of a plausible
crystal in ;his specific example) a pronounced downward-cdncavity is
observed,vas shown in the data exhibited in Figure 3. .Thiévphenomenonv
reflects the rapid increase in %* as the probable glide path of tﬁe
dislocation changes from one dominated by the minimum angle path,.xo, to
tﬁe‘much easier glide paths which approach the randémfpath, Xg* The
effect ié a rapid thermal ﬁsoftening" of the cryétaig'which has its
source entirely in the thermal choiqe of glide patﬁ;”the properties énd

distribution of obstacles remains the same.
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Figure 6 illustrates the variation of glide velocity with stress
in tests condpcted at constant temperature. In keeping with the conven-

tional représéntation,
Y o (16)

the data are plotted in logarithmic coordinates. The stress exponent n
is then thg slope of the curve. As is apparent ffom Figufe 6 the d#ta'
do not éhow a well-defined stress exponent. 'Th;'patametér n is a |
function of both r* and T*. However, again the éata'span many orders of
magnitude'éf strain rate; were the data confined td,é:plausible experi-‘
mental range a reasonably constant stress exponent would be obtained.

At low temperature (T* = 10_3) the value of n is large and incrgases
rapidly withistress, from a value of the order of 80 at T* = 0.0i to a
value aboﬁe 300 at T* - 0.4. As temperature incréasés both the stress
exponent and its stress variation diminish. At T* = 10--2 the stress‘ 
exponent 1is n10 at low stress, increasing to n35 as stress approéchés
t:. At T* = 10_1.the stress exponent 1is near 1.0 at lowAstress,
increasing to about 10’ near T:.

The variation of slip morphology with stréss'at_constant tempera-
ture is illustrated in Figure 7, where we have sﬂé&n\idealized
tensilé baré,after a strain of 207 at four valueé of‘streSS (r* = 0.01
to T* = 0.4) at I* = 10_2. The tendency of the élip to become more
inhomogeneous as stress is raised is apparent in the figure.

Finally, we coﬁéider the variatién of‘the flow stress (the v%lue

* : o vk
of T necessary to sustain a constant strain rate; measured by v in this

model) with the testing temperature. The result dépénds on the preéise‘

s
T
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value of ;* chosen; when T* > 0 the flow stress is an increasing funotion
of strain rate. Plots for two choices of 3* are shown in Figure 8. The
flow stress decreases monotolically f?om'the valoo ;: when T* ; 0. As
expected, tﬁe_fate of decrease falls-as>the strain'rote is raised.
Since in this simple example there‘is no athermalfcomponentAto the flow
stress, the flow stress asymptotically approaches zero as T* approacheé
infinity for all finite values of v. | |

The cﬁange in slip morphology with temperafurg at constant strain
rate (3*) is illustrated in Figure 9. The results qualitatively repro-
duce those reported in Refefence 4., Deformation raﬁiaiy bécomesﬂ
‘homogeneous as T* is raised, since both the increaoe in ;emperature'and

the decrease in flow stress favor homogeneous slip.
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 Fig. 1. Configuration of a dislocation pressed against an array of

obstacles by .a stress T. ' ‘ PR
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Fig. 2. Seqyence of four possible configurations as a dislocation glides

into a random array of point obstacles. The activation side is

indicated by the symbol (A).
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Fig..S; Comparisoﬁ of the results using minimum angle approximation
(dashed 1ihe) and statistically chosen path. The data bars

indicated results of four independent trails.
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Fig. 4. Comparison of the velocity-temperature relations for ten arrays of 10~ obstacles having

BC = 0.6 at each of four stresses (light lines). Also included are the velocity-
temperature curves for a crystal made up of these ten arrays under the assumption of a

"uniform" distribution of dislocations over the planes (circles, heavy lines).
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Fig. 5. Illustration of the deformation of a hypothetical crystal made
up of ten glide planes whose properties are shown in Fig. 4.
This figure shows the change in the appearance of the deformed
crystal with temperature, assuming that the crystal contains a
uniform distribution of dislocations of fixed density, and is
given a total shear strain y = 207.
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Fig. 6. Illustration of the variation of glide velocity with sﬁress in- |

' % . : * .
is plotted against log T at constant temperature (T = 10 ~,

10’2, 10

tests conducted at constant temperature. In this figure fn<v >

-3

_1).
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Fig. 7. Variation of slip morphblogvaith stress. at. constant tempera-
. ture. Idealized tensile’bars are shown after a strain of 207

at four values of stress (t = 0.01, 0.1, 0.25, 0.4) at T = 10 ~.
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Fig. 8. The-variation of the flow stress with thé testing temperature at

constant strain rates (n<v > = -10, -2G).
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'Fig. 9., Illustration of slip-ﬁorpholggy with temperature at constant

' *
strain rate (2n<3 > = =10).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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