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COMPUTER SIMULATION OF PLASTIC DEFORMATION 
THROUGH PLANAR GLIDE IN AN IDEALIZED CRYSTAL 

by 

Sabri Altintas, Kenton Hanson, and J. W. Morris, Jr. 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering 

University of California, Berkeley, California 94720 

ABSTRACT 

In this paper ~e report the behavior of the plastic deformation of 

an idealized crystal made by stacking parallel slip planes. Each slip 

plane is assumed to contain active sources of dislocations leading to a 

constant density of non-interacting dislocations in the plane which 

glide through randomly distributed localized point obstacles, represent­

ing small precipitates. The dislocation is assumed to. have a constant 

line tension and the dislocation-obstacle interaction is taken to have 

a simple step form. 

Using results of computer simulation of thermally activated glide 

through random arrays of point obstacles we modelled deformation as a 

function of temperature and applied stress, determining the strain rate 

and the morphological characteristics of slip. 

I 
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I. INTRODUCTION 

The plastic deformation of a typical crystal is accomplished through 

the motion of dislocations. At moderate temperature the dominant form 

of dislocation motion is planar glide, which is impelled by the local 

value of the resolved shear stress and· 'opposed by the resistance of the 

microstructure. The dominant impediment to glide is often due to local 

microstructural features such as small precipitates, "forest" disloca­

tio~s, or solute atoms which act as local barriers to dislocation motion. (l) 

when these are- spread diffusely through the lattice they may often be 

regarded as point barriers in an approximately random distribution. 
' . 

Under suitable idealizations the prpblem.of thermally activated 

dislocation glide through a field of point barriers can be simulated on 

a computer 'for direct solution. (2- 4) In previous papers(4- 6) we have 

discussed how statistical analysis and computer simulation may be 

combined to yeild an essentially complete solution for the velocity of 

dislocation glide as a function of the applied stress, the temperature, 

and the nature of the barriers. By adding an assumption on the distri-

bution of mobile dislocations, the results may be extended to model 

deformation of a single crystal which is assumed to deform through 

simultaneous glide of non-interacting dislocations or. adjacent slip 

planes. 

In Reference 4 we reported preliminary results of a simulation of 

the deformation of a simple crystal at constant strain rate.· The results 

were interesting in that the crystal not only showed .the anticipated 

trend of flow stress with temperature but _also exhibited a characteristic 

shift in the morphOlogy of deformation with temperature: low temperature 
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deformation concentrated on well-defined slip planes which became less 

pronounced as the temperature was raised. 

To continue exploration of this behavior we simulated the plastic 

deformation of an ideal crystal made up of a stacking of slip planes 

containing randomly dispersed obstacles having roughly the properties 

expected of small dispersion or precipitate particles. Each slip plane 

was assumed to contain active sources of dislocations leading to a 

constant density of non-interacting dislocations in the plane. We then 

modelled deformation as a function of temperature and applied stress, 

determining the strain rate and the morphological characteristics of 

slip. The results are reported below. We first review the basic 

equations governing thermally activated glide and describe the simulation 

procedure. 

II. BASIC EQUATIONS 

The assumptions and basic equations governing thermally activated . 

glide of a simple dislocation through a field of randomly-distributed 

point barriers were developed in detail in Reference 5. They may be 

summarized as follows: 

Consider a crystal plane which is the glide plane of a dislocation. 

Let is contain a random distribution of microstructural barriers which 

are represented(7) as point obstacles to dislocation glide. The array 

is described by the statement that its points are randomly distributed 

and by a characteristic length 

{1) 
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where a is the mean area per point. A dislocation in this plane is 

modelled as a flexible, extensible string having a. constant line tension, 

r, and a Burgers' yector of magnitude b, taken to lie in the plane. The 

resolved shear stress, -r, impelling glide of this dislocation may be 

conveniently written in dimensionless form 

* • = -r.t b/2r s 
(2) 

Let the dislocation be pressed against a configuration of point 

* obstacles (denoted by i) by the applied stress • (Figure 1). Between 

two adjacent obstacles the dislocation will take the form of a circular 

* * arc of dimensionless radius R (=1/2 • ). If the distance between any 

* two adjacent obstacles along (i) exceeds 2R or if the dislocation line 

anywhe.t;e intersects itself then the configuration ,(i) is transparent to 

the dislocation and will be by-passed mechanically. If (i) is not 

transparent its mechanical stability is governed by tlte strength of the 

dislocation-obstacle interaction. 

The obstacles are modelled as identical barriers to the dislocation 

whose effective range of interaction (d) is small compared to their mean 

separation (R.s). They may hence be treated as point obstacles. At.the 

kth obstacle on i the dislocation line forms the asymptotic angle 

lji~(O ~ ljl~ ~'II'). The force, F~, that the dislocation exerts on the kth 

obstacle may be written in dimensionless form 

(3) 

The dislocation-obstacle interaction is governed by a force-displacement 

relation(]) B(x/d), the effective dimensioniess point force on the 
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dislocation as it sweeps through (or folds ar~und(S)) the obstacle. The 

maximum, B , of this function measures the mechanical strength of the 
c 

obstacle. A non-transparent line configuration of obstacles constitutes 

a mechanically stable barrier to the glide Qf a dislocation under stress 

(T*) if B~ < Be for all obstacles k on i, hence if Bi < Be' where Bi is 

k * the maximum of the Bi. The smallest stress T at which ei > Be for all 

configurations within the array (i.e., B1 >Be where. e
1 

is the minimum 

* is the critical resolved shear stress T • 
c 

* * When T < T the 
c 

dislocation will encounter at least one stable configuration within the 

array, and can glide only with the help of thermal activation. 

To phrase a particular case for the present study we chose an 

obstacle strength B = 0.6, which theoretical work by Bacon, Kocks, and c . . 

Scattergood(B) suggests will approximate the effective strength of an 

"impenetrable" particle in the glide plane. The for~e-displacement 

relation, B(x/d), for such a particle depends on details of the inter-

action; for simplicity we choose an interaction of simple step form: 

a = a when 0 ~ x/d ~ 1; B = 0 otherwise. c 

If configuration i is mechanically stable it must be passed by 

thermal activation. We ignore the possibility of thermally activated · 

bow~out between obstacles and require that activation occur at a parti-. 
cular obstacle. 

. . th 
The energetic barrier to thermal activation at the k . 

obstacle on i is 

(4) 

where a is the dimensionless reciprocal temperature 

* . 
a = 1/T = 2rd/kT • (5) 
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The residence time of the dislocation in configuration i is the time 

required for thermal activation past at least one obstacle point in i. 

The expected value of the residence time is(S) 

(6) 

lc 
where t isdimensionless time 'Vt, vis the mean frequency with which 

the dislocation attempts an obstacle (ass1.m1ed constant), and Ai is the 

activation parameter 

A = i 
(7) 

where the summation is taken over the Ni obstacles on i. The probability 

that activation will occur first at obstacle k on i is 

(8) 

In thermally activated glide the dislocation encounters a sequence 

of obstacle configurations as it moves through the array (Figure 2). 

These define the "glide path" (x) of the dislocation. To compute the 

glide velocity, we ass1.m1e that the glide is controlled by thermal 

activation in the sense that the time required for glide between succes-

sive stable configurations along x is negligible compared to the time 

required for thermal activation past these configurations. If there are 

r stable configurations along a particular path x through the arraythen. 

the expected transit time of a dislocation along x is 

lc 
<t > .. 

X 

n -1 
I: J\ 
i=l 

(9) 

Given that· the dislocation may take any one of many available glide 
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paths through the array the expected transit time is 

·* 1: * <t > = l-1 <t > 
· X X 

X 
(10) 

where \.1 is the probability that the path x is follo'W'ed in a given trial. 
X 

The velocity of glide is defined in a statistical sense only, but has 

the ergodic average 

* 1/2 * <v > = n /<t > (11) 

* where <v > is the dimensionless area swept out by the dislocation per 

unit time divided by its projected length, the edge length of the array. 

The determination of the velocity of glide through a random array 

of point obstacles is complicated since the available glide paths change 

with the applied stress and the relative probabilities of these paths. · 

change with temperature. The glide path becomes precisely defined only 

* in the limit of very low or very high temperature (T ) or when the applied 

* * stress (T ) is very close to the critical value (T ) for athermal glide 
c 

* * * through the array. When T is small or T "' T the dislocation tends to 
c 

follow the "minimum-angle" path (x ) obtained under the constraint that 
0 

the dislocation pass each configuration i by activating past the point k 

at which the angle ~~ takes on its minimum value (or, equivalently, at 

k * which Bi takes on its maximum value, Bi). In the limit T -+ 0 the 

velocity is given by the Arrhenius equation 

(12) 

where al is the minimum of the ei, i.e"., the maximum force on the most 

stable configuration encountered during glide. . * In the limit T .-+ ao the 
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glide path becomes a "random" path (xR) whose ~onfigurations are obtained 

through a random sequence of activation events. In this case the veloc-

ity is again governed by an Arrhenius equation, with pre-exponential and 

activation energy given by suitable weighted averages over the random 

configurations. (S) At intermediate temperature the equations governing 

glide are more complex, and cannot easily be set in Arrhenius form. 

Given a satisfactory analysis for planes of randomly distributed 

obstacles one may immediately treat the plastic deformation of an 

idealized crystal modelled as a stacking of planes of the same type. 

The model then requires an additional assumption regarding the distribu-

tion of dislocations over the glide planes. The simplest assumption, 

which we shall make in the following, is that each glide plane contains 

active sources of non-interacting dislocations so that the expected 

number of dislocations is the same for all planes and all times during' 

steady state deformation. In earlier work(S) we termed this a "uniform" 

distribution of dislocations. 

Given a crystal made up of S parallel glide planes containing a 

uniform distribution of dislocations the steady state strain rate may 

be written in the dimensionless form 

. * "'* y = (pb/i )v 
s 

(13) 

where p is the expected number of dislocations intersecting a dimension-

"'* less area perpendicular to the glide planes and v is the average of the 

expected glide velocity for the individual planes in the crystal: 

"'* v 
1 s * 

=- E<v > 
s R.=l R. 

(14) 
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* th with <v~> the expected value for the glide velocity of the t plane. 

If the individual glide planes contain a finite number of obstacles, 

then there may be appreciable scatter in the expected glide velocity 

from one plane to another. This will be reflected in an inhomogeneity of 

the crystal deformation, which will tend to concentrate on those planes 

* over which glide is easiest (<v >is largest). As we shall show below, 

-
this plane-to-plane variation in glide velocity becomes less pronounced 

* * as the temperature (T ) is increased or as the stress (T ) is decreased. 

Hence crystal deformation becomes more uniform as stress is lowered at 

constant temperature or as temperature is raised at constant stress. 

III. SIMULATioN· PROCEDURES 

In the work reported here we considered a crystal made up of ten 
. . 3 

parallel glide planes each of which contained an expected number (10 ) 

of obstacles in a Poisson distribution. The strength of the obstacles 

was fixed at 6c = 0.6 and the force-displacement relation was assumed to 

have the simple step form described above. The dislocations were assumed 

uniformly distributed over the glide planes. Hence the dislocation 

density (p) in equation (13) could be treated as au arbitrary constant 

. * "'* and the steady state strain rate y measured by the velocity v • The 

"'* simulation problem was hence reduced to the problem of computing v as a 

function of temperature and stress. 

"'* * To determine v we found the expected glide velocity <v > for each 

of the ten planes as a function of temperature and stress, and suimned 

according to equation (14). The glide velocities were found. through 

direct computer simulation. The simulation code employed is a modifica­

tion(9) of that described in Reference 4. Its procedure is essentially 

as follows. 
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Using a pseudo-random number generator the code first fills the 

3 area of a square of size n (10 in this case) with a random distribution _, 

of points of density one. The array is assumed periodic across all 

boundaries. The code then introduces a dislocation across the lower 

boundary of the array and allows it to move forward until it contacts 

points of the array. The dislocation-bows out between adjacent points 

in a circle of continuously changing radius. The bow-out is terminated 

by one of three limits. First, the dislocation segment may bow out to 

* the equilibrium radius R without contacting any third obstacle or 

violating the conditions of mechanical equilibrium (1jJ > 1jJ ) at either of 
c 

the adjacent obstacles. In this case the dislocation segment is recog-

nized to be mechanically stable. Second, the dislocation may bow to the 

extent that it violates the condition 1jJ > 1jJ at one. of the adjacent 
c 

obstacles. In this case the dislocation is allowed to pass the obstacle, 

a new segment is defined by the obstacles adjacent to the bypassed 

obstacle and the bow-out process begun anew. Third, the dislocation 

may contact a third obstacle during bow-out. In this case the segment 

is divided, and the stability of the new segments tested by allowing 

them to bow out in turn. This process of bowing the dislocation between 

obstacles, defining new segments when obstacles are contacted, and 

passing obstacles when 1jJ falls below 1jJ is continued until a dislocation 
c 

configuration is found in which all obstacles are connected by segments 

* which have the equilibrium radius R and the angles at all obstacles 

are greater than the critical angle 1jJ • The dislocation is finally 
c 

tested for self-intersections, which, given the method of construction, 

must occur at some point other than at an obstacle. If there are 
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self-intersections, the dislocation is joined at the point of inter-

section, and a new search is begun. If there are no intersections, the 

configuration is recognized to be mechanically stable. 

k Given a stable configuration, the code computes the angles ~i along 

it, and uses the assigned value of the thermal parameter, a, to compute 

the mean residence time according to equation (6). It then calls a 

random number and chooses an activation site according to the proba-, 

bility assignment given in equation (8). The chosen point is passed, and 

the code then initiates a new search to establish the next stable con-

figuration. In this way a statistically chosen glide path is generated 

and a transit time is computed according to equation (9). By allowing 

several sequential passages the ergotic average of the transit time is 

* estimated (equation 10) and the glide velocity <v > found. 

In simulating deformation of a crystal in which several glice 

planes must be treated simultaneously over a range of stress and 

temperature it is tedious and expensive to carry out a full statistical 

* computation of <v >. In Reference 5 we identified approximate techniques 

which appeared particularly promising for use at low temperature. In 

Reference 4 these were specifically studied. The most promising was the 

minimal sequence approximation, which ignores the change in glide path 

with temperature and assumes that the glide path is reasonably approxi-

mated by the "minimum angle" path, x . This asstJJD.ption greatly simplifies 
0 

the computational effort necessary in simulating glide. Since the path 

x 1s fixed by stress (4) a single computer simulation exp-eriment at a 
0 

* given value of T yields sufficient information to determine the glide 

velocity for glide along x through a particular array at any value of . 0 

the temperature. 
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When the obstacle strength is large, as in the present case, the 

minimal sequence approximation yields a good estimate for the glide 

velocity over a large range of temperature. In Figure 3 we compare 

glidevelocity computed in the minimalsequence approximation to that 

obtained from stochastic treatment of thermal activation for the stress 

* 't = 0.4. As is apparent from the figure, "the approximation yields a 

reasonable result for values of the thermal parameter (a) as low as 10, 

which corresponds to the lowest realistic value of a for a deformable 

metal (Cd at its melting point). We hence employed the minimal sequence 

approximation to simplify the simulation of crystal deformation. 

IV. SIMULATION RESULTS 

Figure 4 illustrates the central results obtained from simulation 

of the deformation of an idealized crystal made up of ten parallel glide 

planes having area 103 , a uniform distribution of non-interacting dislo~ 

cations, and a Poisson distribution of obstacles havit1g strength ac = 0.6 

and an interaction function, S(x/d), of simple step form. The. figure 

* * shows the glide velocity (plotted as -ln v ) as a function of a(=l/T ) 

* for four values of the applied stress, 't • The light curves show the 

data for each of the individual glide planes making up the crystal 

(taken in the minimal sequence approximation); the heavy line gives the 

"'* resulting deformational velocity (v ) for the crystal as a whole. 

The glide velocities for the individual planes vary over a range 

which increases as the temperature is lowered or the stress is raised. 

The source of this scatter is straight-forward, as may be easily seen 

from the expression for the glide velocity in the low temperature 

limit: 
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* 1/2 <v > = n exp[-a(Sc- B1)] • 

When the reciprocal temperature a is large, the velocity is quite 

sensitive to small plane-to-plane variations in the value of e1 , the 

maximum force exerted on the most stable configuration encountered in 
• 

glide along the minimum angle path. We illustrated that variation in 

Reference 4. In a finite array the variation is significant, and tends 

* to increase with the stress T • As temperature is raised the properties 

of the most stable configuration become less dominant. In the high 

temperature limit the glide velocity is determined by an average over 

* * the forces. Unless T is so near T that there are only a few stable 
c 

configurations in the array this average tends to be independent of the 

* specific array, and the variation of <v > becomes very small. 

The consequences of the plane-to-plane variation in glide velocity 

are illustrated in Figure 5, where we show the appearence of a hypotheti-

cal tensile bar made of our model crystal and strained 20% in tension at 

* * each of two resolved shear stresses, T = 0.01 and T = 0.4, at tempera-

* -3 -2 -1 . * tures T = 10 , 10 , and 10 • At low stress (T = 0.01) the deforma-

* -3 tion is markedly inhomogeneous at the lowest temperature (T = 10 ), 

but rapidlybecomes homogeneous as temperature is raised. At high stress 

( ... * ) . . . * -1 • = 0.4 the deformation remains inhomogeneous even at T = 10 , which 

roughly corresponds to the highest dimensionless temperature attainable 

in a typical metal. 

The second salient qualitative feature of the data represented in 

Figure 4 concerns the possibility of representing the deformational 

velocity by an Arrhenius equation. * . ~· As T + 0 the velocity v is given 

precisely by an Arrhenius equation of the form 
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(15) 

where Blm is the largest of the s1 values for the S planes composing the 

crystal. * "'* However, as T is increased (a decreased) v deviates from 

equation (15) by an amount which .. represents a balance between the 

increasing contribution of glide on secondary planes and the increasing 

importance of secondary activation events in the primary glide plane. 

"'* As discussed in Reference 5, at intermediate temperature v tends to fall 

below the values predicted by the asymptotic relation (15), a result 

* reflected in the slight upward concavity of the curves at T = 0.01-0.25. 

However, as T* approaches T* this effect is reversed(4) and~* tends to 
c 

exceed the value predicted by equation (15); thus the slight downward 

* ' concavity of the curve for T = 0.4. Note, however, that the data shown 

"'* here span many orders of magnitude of v • Were we to confine the data 

to a range (5-10 orders of magnitude of y) which might be experimentally 

measurable, the data would be well fit by an Arrhenius equation at inter-

mediate temperature. 

* . At very high values of T (above the melting point of a plausible 

crystal in this specific example) a pronounced downward concavity is 

observed, as shown in the data exhibited in Figure 3. This phenomenon 

"'* reflects the rapid increase in v as the probable glide path of the 

dislocation changes from one dominated by the minimum angle path, x , to 
0 

the much easier glide paths which approach the random path, XR· The 

effect is a rapid thermal "softening" of the crystal, which has its 

source entirely in the thermal choice of glide path;. the properties and 

distribution of obstacles remains the same. 
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Figure 6 illustrates the variation of glide velocity with stress 

in tests conducted at constant temperature. In keeping with the conven-

tional representation, 

n 
'( (16) 

the data are plotted in logarithmic coordinates. The stress exponent n 

is then the slope of the curve. As is apparent from Figure 6 the data 

do not show a well-defined s.tress exponent. The parameter n is a 

* * function of both 'l' and T • However, again the ~ata span many orders of 

magnitude of strain rate; were the data confined to a plausible experi-

mental range a reasonably constant stress exponent would be obtained. 

* -3 At low temperature (T = 10 ) the value of n is large and increases 

* rapidly with stress, from a value of the order of 80 at 'l' = 0.01 to a 

* value above 300 at 'l' = 0.4. As temperature increases both the stress 

exponent and its stress variation diminish. * -2 At T = 10 the stress 

exponent is 'Vl0 at low stress, increasing to "'35 as stress approaches 

* * -1 'l' • At T = 10 the stress exponent is near 1.0 at low stress, 
c 

increasing to about lO·near * '( . 
c 

The variation of slip morphology with stress at constant tempera-

ture is illustrated in Figure 7, where we have shown idealized 

tensile bars after a strain of 20% at four values of stress ('t' * = 0.01 

* * 10-2 • The tendency of the slip to 'l' = 0.4) at T = to become more 

inhomogeneous as stress is raised is apparent in the figure. 

Finally, we consider the variation of the flow·stress (the value 

* "'* of 'l' necessary to sustain a constant strain rate, measured by v in this 

model) with the testing temperature. The result dep,ends on the precise 
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~· * · > value of v chosen; when T > 0 the flow stress is an increasing function 

~* of strain rate. Plots for two choices of v are shown in Figure 8. The 

* * flow stress decreases monotolically fromthe value T when T = 0. As 
c 

expected, the rate of decrease falls as the strain rate is raise~. 

Since in this simple example there is no athermal component to the flow 

* stress, the flow stress asymptotically approaches zero as T approaches 

~· infinity for all finite values of v • 

The change in slip morphology with temperature at constant strain 

~· rate (v ) is illustrated in Figure 9. The results qualitatively repro-

duce those reported in Reference 4. Deformation rapidly becomes 

* homogeneous as T is raised, since both the increase iri ,temperature and 

the decrease in flow stress favor homogeneous slip. 
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temperature curves for a crystal made up of these ten arrays under the assumption of a 

"uniform" distribution of dislocations over the planes (circles, heavy lines). 
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Fig. 5. Illustration of the deformation of a hypothetical crystal made 
up of ten glide planes whose properties are shown in Fig. 4. 
This figure shows the change in the appearance of the deformed 
crystal with temperature, assuming that the crystal contains a 
uniform distribution of dislocations of fixed density, and is 
given a total shear strain y = 20%. 
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Fig. 6. Illustration of the variation of glide velocity with stress in· 

* tests conducteo at constant temperature. In this figure tn<v > 

* * . -3 is plotted against log L at constant temperature (T = 10 , 

10-2 , 10-1). 
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Fig. 7. Variation of slip morphology with stress at constant tempera-

ture. Idealized tensile bars are shown after a strain of 20% 

* * -2 at four values of stress (< = 0.01, 0.1, 0.25, 0.4) at T = 10 • 
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Fig. 8. The variation of the flow stress with the testing temperature at 

"'* constant strain rates (~n<v > = -10, -20). 
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Fig. 9. Illustration of slip morphology with temperature at constant 

~* strain rate (tn<v > = -10). 
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P------------------LEGALNOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights . 
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