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ABSTRACT

In this paper we report tﬁe behavior of the piastic deformation of
an idealized cfystal made by staéking parallel siip planes. Each slip
plane is assumed to contain active sources of dislocatioﬁs leading to a
constant density of non-interacting_disloc;tions in the plane which
glidevthrough randomly distributed localized point obstacles, represent-
ing small precipitates. The dislocation is assumed to have a constant
line tensioh.and the dislocation-obstacle interactién is taken to have'
a simple step form.

Using results of:computer simulation of thermaily activated glide
through random arrays of point obstacles we mddeléd &eformation as a
function of temperature and applied stress, detefminiﬁg_the strain rate

and the morphological characteristics of slip.



vI. INTRODUCTION

The plastic deformation of a typical crystai is accomplished through
the motion of dislbcations. At moderate temperature the dominant form
of dislocatibn motion is planar glide, which is impelled by the local
value of the resolved shear stress and opposed by‘the resistance of the
microstructure. The dominant impediment to glide is often due to local
microstructural features/such as small precipitates, "forest" disloca-
tions, or 301ufe atoms which act as local barriers to dislocation motion.(l)
When these are spread diffusely through the lattice ﬁhey ﬁay often beb
régarded as point barriers in an approiimately ran&om distribution.

Under suitable idealizations the problem of fhermally activated
dislocation glide through a field of point barriers can be simulated on
a computer for &irect solution.(2-4) In previous:papefs(4_6) we have
discussed how statistical analysis and comﬁuter simulétion may be
combined to yield an essentially complete solution‘for,the velocity of
dislocation glide as a function of the applied streés, the temperature,
and the nature of the barriers. By adding an assuﬁption on the distri-
"bution of mobile dislocations, the results may be extended to model
deformation of a single crystal which is assumed to deform through
- simultaneous glide of non-interacting dislocations on adjacent slip
planes.

In Reference 4 we reported preliminary results Qf a simulation of
tﬁe deformation of a simple crystal at constant strain rate. The résults
were interesting in that the crystal not only showed the anticipated

trend 6f flow stress with temperature but also exhibited a characteristic

shift in the'mofphology of deformation with temperature: low temperature
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deformation concentrated od well-defined slip élanes which became lesé
pronouﬁced as ﬁhe temperature was raised.

-To continue exploration of this behavior we simulated the plastic
deformation of an ideal crystal made up of a stacking of slip.planes
containing randomly dispersed obstacles having roﬁghiy the properties
expected of small dispersion or precipitate partiéles.' Each slip.plaﬁe'
was assumed to contain active sources of dislocatioﬁs_leading to a
constant density of non—interacting dislocations in the p}ane. We.then
modeled deformation as a function of temperature énd'applied stress,
détermining the strain rate and the morphological qhafacteristics of
slip. The results are reported‘below. Wé first'féQiew the basic
equations governing thermally activated glide and descfibe the simqlation

procedure.

II. BASIC EQUATIONS

The assumptions and basic equations governing thermally activated
glide of a simpie dislocation through a field of randomly-distributed
point barriers were developed in detail in Reference 5. - They may be
summarized as féllows: .

Consider a Crystal plane which is the glide piahe of a dislocation.
Let it contain a random distribution of microstructqral barriers whiéh
are represented(7) as point obstacles to dislocation glide. The array
is described by the stateﬁent that its points are rahdomly distributed

and by a characteristic length

1/2 | 3 @
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where a is the mean area per point. A dislocatiqn in this plané is
modeled és.a'flexible, extensible string having a constant line tension,
I, 2nd a Burgers; vector of magnitude b, taken tq»lié in the plane. The
resolved shear stress, 1, impelling glide of thié dislocation may be

conveniently written in dimensionless form
N .
T = Tlsb/ZF (2)

Let the dislocation be pressed against a cdnfiguration of point
obstacles (dehotéd by i) by the applied stress T* (Figure 1). Between
| two adjacent obstacles the dislocation will takef;he form of avcircular
arc of dimensionless radius R*(=1/21*). If the“distance bétween any
two adjacent obstacles along (i) exceeds 2R* or if the dislocation line
anywheré intersects itself then the configuratio#v(i) is transparent to
the dislocation and will be by-passed mechanically. If (i) is not
transparent its mechanical stability is governed by the strength of the
dislocation-obstacle interaétion.

The obstacles are modeled as identical barriers to the dislocation
whose effective range of interaction (d) is small compared to their mean

separation (Es); They may hence be treated as point obstacles. At the

th

k™ obstacle on i the dislocation line forms the asymptotic angle

h

¢:(0 j_wi < m). The force, Fi, that the dislocation exerts on the Kkt

'obstacle may be written in dimensionless form

k

L= FE/ZF = cos(%wi) . | (3)

B

The dislocation-obstacle interaction is governed by a force-displacement

relation(7) B(x/d), the effective dimensionless point force on the



b

dislocation as it sweeps tﬁrough (or folds arOunAFS)) the obstaéle. The
maxipum, Bc’ of this function measures the mechanical strength of the

obstacle. A non—transparenf-line configuration 6f‘obstac1es constitutes
a mechanically‘stable barrier to the glide of a dis19cation'under stress
(T*) if Bi < Bc for all obstacles k on i, hence if.Bi < sc,'where Bi is
the maximum of the 8?. The smallest stress ¥ at ‘which Bi > Bc for all

N

configurations within the array (1.e., 61 > Bc wheféiBl 1is the minimum
of 81) is the critical resolved shear stress f:.‘:When rf < T: the
dislocation will encounter at least one stable configuration within the
array, and can glide only with the help of thermal Activation.

To phfaéé a particular case for the present'étudy we chose an
.obstacle strength Bc = 0.6, which theére;ical work by Bacon, Kocks, and
Scattergood(B) suggests will approximate the effective strength of an

"impenetrable" particle in the glide plane. 'The,force-displacement
- relation, B(x/d), for such a particle depends on details of the inter—v
action; for siﬁplicity we choose an interaction of simple step form:
B =8, when O < x/d < 1; B = 0 otherwise.

If configuration 1 is mechanically stable it mﬁst be passed by
thermal aczivation. We ignore the possibility of'thermally activated
bow-out between obstacles and require that activétion occur at a parti-

cular obstacle. The energetic barrier to thermal activation at the kth

obstacle on 1 is
* k _ _ ok .
(86" /KT = a(B_ -~ 8)) o @)

where o 1s the dimensionless reciprocal temperature

| a - 1/7% = 2ra/xr . | (5)
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The residence time of the dislocation in configuration i is the time

required for thermal activation past at least one obstacle point in i,

The expected value of the residence time is(s)
LIS | ! ' 8
<t =N (6)

* N
where t is dimensionless time vt, v is the mean frequency with which
the dislocation attempts an obstacle (assumed constant), and Ai is the

activation parameter

Ny

A =D eml-a(B, - 8] @
k=1 a -

" where the summation is taken over the Ni obstacles on i. The probability

that activation will occur first at obstacle k on i is
n(k,1) = A7L expl-a(8_ - 89)] o (8)
’ i c i o

in therﬁally activated glide the dislocation‘encounters a sequence
of obstacle configurations as it moves through thé.array (Figure 2).
These define the "glide path" (x) of the dislocatidn. To compute the
glide velééity,'we assume that the glide is contrélled by thermal
activation iﬁ the sense that the time required for glide between succes-—
sive stable configurations along x is negligible cogpared to the time
required for thermal activation past these configurations. If there are

'r stable configurations along a particular path x through the array then

the expected transit time of a dislocation along x 1is

* o
<t.>= 3 A » (9)
x {1 o
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Given that the dislocationomay take any one of many available glide.

paths through the array the expected transit time:is
* * ‘
<t > = 2: b <t > S (10)
X X X _ . v

where ux is-the probability that the path x is followed in a given trial.
The velocity of glide is defined in a statistical sense only, but has

the ergodic average
* * i
<y > = n1/2/<t > - o (11)

where <v*> is the dimensionless aréa swept out by the dislocation per
unit time'divided by its projected length, the edge 1eng£h of the array.
The determination of the velocity of glide Ehrppgh a random array
of point obsfacles is complicated since the avail#blé glide paths change
with the applied stress and the relative probabilities of these paths
change with temperature. The glide path becomesvprecisely defined only
in the limit of very low or very higﬁ temperature,(T*) or when the aéplied
stress (T*).is’very close to the critical value (fZ) for athefmai glide
through the arrgy. When T* is small or T* ~ T: thé‘dislocation tends to
follow the "minimum-angle" path (xo) obtained undéx'the constraint that
the dislocation pass each configuration i by activating past the point k
at which the angle w? takes on its minimum value (or equiva1ently, at
which BE takes on its maximum value, Bi)' In the limit T* + 0 the

~velocity is given by the Arrhenius equation

'<v*> = nll2 eXP[-G(Bc = 81)] S (12)
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where 81 is the minimum of the_Bi, i.e., the ﬁaximum force on the ﬁost
étable configuration encountered during glide. Iﬁ the limit T* + = the
glide path becomes a "random" path (xR) whose configurations ére obtained
through a random sequence of activation events. In this case the veloc-
ity is again.governed by an Arfheniué equation,’wifh pre-exponential and
activation energy given by suitable weighted averages over the.random
configurations.(s)"At intermediate temperature the'equations governing
glide are mdre complex, and éannot easily be set in Arrhenius form.
Given a satisfactory analysis for planes of randomly distributed
obstacles one may treat the plastic deformation.qf'ah idealized crystal
modeled aé a stacking of pianes of thé same type. The mbdei réquires
anAédditional assumption on the distribution of dislocations over the
glide élanes. The simplest assumption, which we shall make in the
following, is that each glide plane contains active sources of non-
interacting dislocations so that the expected ﬁumber of dislocations is
the same for all planes and all times during steady state deformation.

In earlier work(s) we termed this a "uniform" distribution of disloca-

tions.

Given a crysta1 made up of S parallel glide planes containing a
uniform distribution of dislocations the steady state strain rate may

be written in-the dimensionless form
.* d‘* ..
¥ o= b2V | 13)

where p is the expected number of dislocations intersecting a dimension-
less area perpendicular to the glide planes and % is the average of the

expected glide velocity for the individual'planes in the crystal:



S _ . :
%k 1l * .
v =3 2§=1: <vp> B (14)

with <v:> the expected value for the glide velocity of the lth plane.

If the individual glide planes contain a finite number of obstacles,
then there>may be appreciable scatter in the expéctéd glide velocity
from one plané to another. This will be reflectéd in an inhomogeneity of
the crystal deformation, which will tend to concentrate on those planes
over which glide is easiest (<v*> is largest). As we shall show below,
this plane—to;plane variation in glide velocityvbegomes less pronounced
as the temperature (T*) is increased or as the stress (T*) is decreased.

Hence crystal deformation becomes more uniform as stress is lowered at

constant temperature or as temperature is raised at constant stress.

III, SIMULATION PROCEDURES

Ip the work reported here we studied the behavior of a crystal made
up of ten parallel glide planes each of which contained an expected
number (103):of obstacles in a Poisson distributiéﬁ. The strength of the
obstacles wéé'fixed at 0.6 and the force-displacement relation was
assumed to"have'the simple step form described above. The obstacles
hence roughly represent small precipitate or dispersion particles in the
glide plane.’ Their'number, 103, was chosen to f;cilitate computation; a
physically more realistic number would be in the range of 106.

The dislocations were assumed uniformly distributed over the glide
planes. Hence the dislocation density (p) in equation (13) could be

treated as an arbitrary constant and the steady state strain rate ¥

’ : Ak o *
measured by .the velocity v as a function of temperature (T ) and stress



-9—

(1*). For completeness, 6ur simulation studies éovered the whole rﬁnge
ofrTf. In fact, the meiting temperature of all real materials fall at
T* < 10-1. Hence T* N 10---l gives an upper limit to physically reasonable
wvalues of.the dimensionless temperature. |

To determine %* we found the expected'glide‘velocity <v*> for each
6f the ten planes as a function of temperature and‘stress, and summed
according to equation (14). The glide velocities were found through
direct computer simulation. Thg simulation code émﬁloyed is a modifica~
tion(g) of that described in Reference 4. Its procedure is essentially
as follows.,

Using a pseudo-random number generator the code first fiils the

3 in this case) with a random distribution

area of a square of size n (10
of points of density one. The array is assumed_périodic across all
boundaries.. The code then introduces a dislocatioﬁ'across the lower
boundary of the array and allows it to move forward until it contacts
points of the array. The dislocation bows out bétﬁeen adjacent points

in a circie of continupusly changing radius. Tﬁg bow—out is terminated
by one of three limits. First, the dislocation segmeﬁt may bow out to
the equiliﬁfiumlradius R* without éontacting any third obstacle or
violating. the condi;ions of‘mechanical eduilibrium W > wc) at either of
the'adjacent obétacles. Iﬁ this case the dislocétion segment is recog-
nized to be mechanically.stable. Second; the dislocation may bow to the
extent that it violates the condition y > Yo at'oﬁe of the adjacent
obstacles. In this case the dislocation is alldwéd to pass the obstacle,.
a new éegment is defined by the obst#cles adjacent to the byﬁaSSed

obstacle and‘the bow-out ﬁrocess begun anew. Third, the dislocation
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may contac£ a third obstacTe during bow-out. in_this case the segment
is divided, and the stability of the new segmenfé tested by allowing
them-to bow out in turn. This process of bowing tﬁe dislocation between
obstacles, defining new segments when obstacles are contacted, and
passing‘obstacles when ¢ falls below wc is continuéd until a dislocation
configuratiop is found in which all obstacles a;é'ébnnected by segments
which have the equilibrium radius R* and the angles at all obstacles

are greater than the critical angle wc. The diélocation is finally
tested for self-intersections, which, given the method of construction,
m;st occur ét-some point other than at an obstacle.f-If there are .
self-intersections, the dislocation is joined at the ?oint of inter-
section, ahd a new search is begun. If there are no intersections, the
configuration is recognized fo be mechanically stéblé.

Given a stable configuration, the code éomputes_the angles ¢§ along
it, and uses the assigned value of the thermal péfameter, o, to compute
the mean'residénce time aécording to-equation (6). vIt then calls a
random ﬁumber and chobses.an activation site accb?diﬁg to the proba-
bility assignment-givéﬁ in equation (8). The chqsen point is passed, aﬁd
the code tﬁén initiates a new search to_estéblish'the next stable cbn—
figuration. In this way a statistically chosen glide path is generated
and a transif time is computed according to equation (9). By allowing
several seqﬁéntial passages the ergodic éverége of.the transit tiﬁé is
estimated (equation 10) and tﬁe glide velocity <v¥> found.

In simulating deformation of a crystal in which several glide
planes must beItreated_simultaneously over a rangeibf'stress and

temperature it is tedious and expensive to carry qutia full statistical
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computation‘df;<v*>. In Reference 5 we identified approximate techniques
which apbeared particularly promising for use at low ‘temperature. In
Reference 4 these were specifically stu&ied. The most‘promising was the
minimal sequence approximation, which ignores the change in glide path
with temperétufe and assumes that the glide path is reasonably appréxi—
mated by the "minimum angle'" path, Xge This assumption éreatly siﬁplifies
_the computational effort necessary in simulating glide. Since the path
Xq is fixed by stress(4) a single computer simulation experiment at a
given value of't* yields sufficient information to determine the glide

‘ velocity for glide along Xy through a particular arfay at any value of
the temperature.

When thé.qbstacle strengtﬁ is large, as in the pfesent case, the
minimal sequence approximation yields:a good estimé#e for the glide
velocity over a_wide range of temperature. In Figﬁre 3 we compare the
glidé velocity computed in the minimal sequence apprégimation to that
obtained from stochastic treatment of thermal activation for the stress
T* ='0,4. As is apparent from the figure, the approximation yields a
reasonable resﬁlt for Qalues of the thermal parametér (a) as low as 10,
which corf;Sponds to the lowest realistic value of .a for a deformable |

. metal (Cd at its melting point). We hence employedfthe minimal sequence

approximation to simplify the simulation of crystal deformation.

1v. SIﬁULAIION RESULTS
Figure 4 illustrates the central results obtained from simulation
of the deformation of an idealized crystal made up of.ten parallel glide
planes having-areaV103,-a uniform distribution of non—interacting dislo-

cations, and a Poisson distribution of obstacles having strength B¢'= 0.6
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and an i;teraction functibn, B(x/d), of simple step'form. The figu;e
shows thé glide velocity (plotted as -2&n v*) as a func;ion of a(= 1/T*)
for four values of the applied stress, T*. The iight curves show the
data for eaqh of the individual glide planes making up the crystal
(taken in the.minimal sequence approximation)§ the heavy line gives the
reSultihg defofmaﬁional velocity (%*) for the crystaljés a whole.

The glide velocities for the individual planes vary over a range
which increases as the temperature 1s lowered or ;he stress 1s raised.
The sourcevof this scattef is straight—forwafd, anﬁ ﬁay be easily seen
from the expression for t£e glide velocity in the low,teméerature
limit: |

I'I.l/

*
<v > = 2exp[-a(Bc - Bl)] .

When the reciprocal temperature a is large the velocity is quite
sensitive to small plane-to-plane variations in the value of Bl’ the
maximum force exerted on the most stable configuratibn encountered in
o glidg'along the minimum angle path, We illustrated that variation in
Reference‘ér' In a finite array the variation is significant, and tends
to increase‘witﬁ the stress T*. As temperature is raised the properties
of the most stable configuration become less dominant, In the high
temperature limit the glide velocity is Aétermined_ﬁy an average ovgr
the forces. Unless T* is so near T: that there are only:a few stable
configurations in the array this average tends tq'be.independent of the
specific array, and the variation of <v*> bec0mes.very sﬁall.

The plane;to-plane'variation in glide velocitynis enhanced by the

small array size used in this simulation, 103 as opposed to a physicaily
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realistié number of perhaps 106. Wére the array'siée’increased the
variatioﬁ would become less pronounced. Specific'simulations of very
large arrays(g) have, however, shown that the plane—to;plané variation
remains significant when the anber of obstaclessié increased to.106 or
more.

The consequences of the plane-to-plane variation in glide velocity
are illustrated in Figure 5, wheré we show the appearence of a
hypothetical tensile bar made of our model_cryst#iﬂand strained 207% in

tension at each of two resolved shear stresses, T = 0.0l and T = 0.4,

* -3 -2 -1
at temperatures T = 10 7, 10 ~, and 10

. At iow stress (T* = 0,01)
the deformation.is markedly inhomogenéous at the lowest temperature
(T* = 10_3), buf rapidly becomes homogeneous as témpéfature is raised.
At high_gtreés (T* = 0.4) the deforhation remains.inﬁomogeneous even at
T* = 10-1, whiéh foughly corresponds to the highest dimensionless tem-
perature attainable in a typical metal.

The sécond éalient qualitative feature of the-déta represented in
Figure 4 concerns the possibility of reﬁresenting_thé deformational |
velocity by an Arrheniu; gquation. At low.temperégu;es the velbcity %*

is given precisely by an Arrhenius equation of the fbrm

e n1/2 - )
v = ( S )EXP[-OL(Bc - Blm)f] . (15)

where Blm is the largest of the Bl values for the.S'plénes composing the
crystal. Howevér, as T* is increased (d decreaéed) 3* deviates from
equation (15) by an amount which represents a balanée between the
increasing contribﬁtion of glide on secondary planeé and the increasiﬁg

importance of secondary activation events in the pfimary glide plane,
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As discussed in Reference 5, at intermediate temperature v tends to fall

below the values predicted by the asymptotic relation (15), a result

' *
reflected in the slight upward concavity of the curves at T = 0.01-0.25,
. @ ,

However, as T# approaches T: this effect is reversed and 3* tends to
exceed the value predicted by equation (15); thus the slight downward
concavity of the curve for T* = 0.4, Note, however,vfhat the data shown
here span many orders of magnitude of %*. Were we.fq confine the data
to a range (5—10 orders of magnitude of ¥) whichlmight be experimentally
measurable, fhe‘data would be well fit by an Arrheniﬁs equation ét inter-
. mediate temperature. _

At very high values of T* (above the melting point of a plausible
crystal in this specific example) a pronounced downward concavity is
observed, as shown in the data exhibited in Figure 3. This phenomenon
reflects the rapid increase in ;* as the probable glide péth of the
dislocation changes from one dominated by the minimum angle path, X9 to
the much easier glide paths which approach the random path, Xge The
effect is a rapid thermal "softening" of‘the crystal, ﬁhiCh has iﬁs ‘
source_entireiy in the thermal choice of glide path; ﬁhe pfoperties and
distribution of.obstacles remains the same.

Figure 6 illustrates the variation of glide vélocity with stress

in tests conducted at constant temperature. In keeping with the conven-

tional representation,
=" | o (16)

the data are plotted in logarithmic coordinates. The stress exponent n

is then the sldpe of the curve. As is apparent from Figure 6 the data

!
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do not show a well-defined’stress exponent. The parameter n is a

‘ * *
function of both t and T . However, again the data span many orders
of magnitude of strain rate; were the data confined to a plausible

N

experimental.range a reasonably constant stress exponent would be
obtained."

At low temperature (T* = 10—3) the value of n is large and increases
rapidly with stress, from a value of the order of‘80 at T* = 0,01 to a
value ébovev300 at T* = 0.4. As temperatufe increases bqth the stress
exponent and its.stress variation diminish, At T* = 10'-2 the stress
e#ponent is NLO at low stress, incréasing to N35 as stress approaches
T:. At Tf.= lb-l the stress éxponent is near 1.0 at low stress,
increasing to about 10 near T::

The variation of slip morphology with stress at constant tempera-
ture is illustrated in Figure 7, where we haQe shown idealized tensile
bars after a étrain of 207 at four values of stres§5(1* = 0.01 to
r* = 0.4) at T* ='10_2. The tendency of the slip'to become more
inhomogeneous as stress isbraised is apparent in the figure.

Finally, we consider the variation of the flosttress (the value
of T* nece;sary'to sustain a constant strain rate, méasured by 3* in
this model) with the testing temperature. The result depends on_thé
precise value of %* chosen; when T* > 0 the flowvstfeSS is an incrgasihg
function of sfrain rate, Plots for two choices of %*_are shown in
Figure_S. Tﬁe flow stress decreases monotonically from the vaiue r:
when T*'='0. As expected, the.rate of decrease fails as the strain

rate is raised. Since in this simple example there is no athermal

component to the flow stress, and since the maximum value of the
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activatibn barrier at an obstacle is finite, the flow stress becomes
zero at é finite value of T* which depends on stréin rate and.increases -
as %* is raised. By extrapolation in Figure 8; r* vanishes for
T* > 3.5 % 10"2 when 2n<%*> = -20, and for T* §’7.2 x 10_3 when
fn<v > = -10.
Tbe change in slip morphology witﬁ temperature ét constant strain
rate (3*5 is illustrated in Figure 9. The results qualitativély repro-
duce those reported in Reference 4, Deformation rapidly beéomes

% : '
homogeneous as T 1is raised, since both the increase in temperature and

the decrease in flow stress favor homogeneous slip.
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FIGURE CAPTIONS
Configuration of a dislocation pressed against an array of
obstacles by a stress T.
Sequenée of four possible configurations aé a dislocation glides
into a random array of point obstacles.x The activation side is
indicated by the symbol ).
Comﬁérison of the results using minimal sequence approximation
(dashedvline) and statistically chosen paﬁh; The data bars
indicated results of four independent trails.
Compérison of the velocity-temperature rélations for ten arrays
of.lO3 obstacles having Bc = 0.6 at each.of four strésses {light
lines). Also included are the velocityfteﬁpérature curves for
a crystal made up of these ten arrays undefvthe assumptioh éf a
"uniform" distribution of dislocations over the planes (circles,
heavy lines).
Illustration of the deformation of a hypothetical crystal made
up of ten glide planes whose propertieélare shown in Fig; 4,
This figure shows the change in the appearance of the déformed
c‘r.';'sta'.l with temperature, assuming that the crystal‘\contains a
uniform distribution of dislocations of'figed density, and is
givén a total shear strain y = 20%.
illustration of the variation of glide véngity with stress in

*
tests conducted at constant temperature. In this figure fn<v >

' * * -
is plotted against log T at constant temperature (T = 10 3,

1072, 107,
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Fig. 7. Variation of slip.morphology with stress a; constant tempera-
ture, Idealized tensile bars are shownvafter a strain of 20%
at four values of stress (1= = 0.01, 0.1;_0.25, 0.4) at T = 10”
Fig. 8. The variation of the‘'flow stress with ﬁhe.testing temperature at
constant strain rates (2n<3*> = =10, —205.' |
Fig. 9. illﬁstration of slip morphology with temperature at constant

. Ak
strain rate (n<v > = =10).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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