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ABSTRACT 

In this paper we report the behavior of the plastic deformation of 

an idealized crystal made by stacking parallel slip planes. Each slip 

plane is assumed to contain active sources of dislocations leading to a 

constant density of non-interacting dislocations in the plane which 

glide through randomly distributed localized· point obstacles, represent-

ing small precipitates. The dislocation is assumed to have a constant 

line tension and the dislocation-obstacle interaction is taken to have 

a simple step form. 

Using results of computer simulation of thermally activated glide 

through random arrays of point obstacles we modeled deformation as a 

function of temperature and applied stress, determining the strain rate 

and the morphological characteristics of slip. 
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~I. INTRODUCTION 

The plastic deformation of a typical crystal is accomplished through 

the motion of dislocations. At moderate temperature the dominant form 

of dislocation motion is planar glide, which is impelled by the local 

value of the resolved shear stress and opposed by the resistance of the 

microstructure. The dominant impediment to glide is often due to local 

microstructural features such as small precipitates, "forest" disloca

tions, or solute atoms which act as local barriers to dislocation motion. (l) 

vlhen these are spread diffusely through the lattice they may often be 

regarded as point barriers in an approximately random distribution. 

Under suitable idealizations the problem of thermally activated 

dislocation glide through a field of point barriers can be simulated on 

a computer for direct solution. (Z-4) In previous papers(4- 6) we have 

discussed how statistical analysis and computer simulation may be 

combined to yield an essentially complete solution for the velocity of 

dislo~ation glide as a function of the applied stress, the temperature, 

and the nature of the barriers. By adding an assumption on the distri-

bution of mobile dislocations, the results may be extended to model 

deformation of a single crystal which is assumed to deform through 

simultaneous glide of non-interacting dislocations on adjacent slip 

planes. 

In Reference 4 we reported preliminary results of a simulation of 

the deformation of a simple crystal at constant strain rate. The results 

were interesting in that the crystal not only showed the anticipated 

trend of flow stress with temperature but also exhibited a characteristic 

shift in the morphology of deformation with temperature: low temperature 
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deformation concentrated on well-defined slip planes which became less 

pronounced as the temperature was raised. 

To continue exploration of this behavior we simulated the plastic 

deformation of an ideal crystal made up of a stacking of slip planes 

containing randomly dispersed obstacles having roughly the properties 

expected of small dispersion or precipitate particles. Each slip plane 

was assumed to contain active sources of dislocations leading to a 

constant density of non-interacting dislocations in the plane. We then 

modeled deformation as a function of temperature and applied stress, 

determining the strain rate and the morphological characteristics of 

slip. The results are reported below. We first review the basic 

equations governing thermally activated glide and describe the simulation 

procedure. 

II. BASIC EQUATIONS 

The assumptions and basic equations governing thermally activated 

glide of a simple dislocation through a field of randomly-distributed 

point barriers were developed in detail in Reference 5. They may be 

summarized . .as follows: 

Consider a crystal plane which is the glide plane of a dislocation. 

Let it contain a random distribution of microstructural barriers which 

are represented(]) as point obstacles to dislocation glide. The array 

is described by the statement that its points are random1y distributed 

and by a characteristic length 

IJ. 1/2 
"' == a s 

(1) 
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where a is the mean area per point. A dislocation in this plane is 

modeled as a flexible, extensible string having a constant line tension, 

r, 2nd a Burgers' vector of magnitude b, taken to lie in the plane. The 

resolved shear stress, T, impelling glide of this dislocation may be 

conveniently written in dimensionless form 

* T 0: TJI. b/2f 
s 

(2) 

Let the dislocation be pressed against a configuration of point 

* obstacles (denoted by i) by the applied stress T (Figure 1). Between 

two adjacent obstacles the dislocation will take the form of a circular 

* * arc of dimensionless radius R (=1/2• ). If the distance between any· 

* two adjacent obstacles along (i) exceeds 2R or if the dislocation line 

anywhere intersects itself then the configuration (i) is transparent to 

the dislocation and will be by-passed mechanically. If (i) is not 

transparent its mechanical stability is governed by the strength of the 

dislocation-obstacle interaction. 

The obstacles are modeled as identical barriers to the dislocation 

whose effective range of interaction (d) is small compared to their mean 

separation (R. ). They may hence be treated as point obstacles. At the 
s 

kth obstacle on i the dislocation line forms the asymptotic angle 

~~(0 ~ ~~ ~ ~). The force, F~, that the dislocation exerts on the kth 

obstacle may be written in dimensionless form 

(3) 

The dislocation-obstacle interaction is governed by a force-displacement 

relation(7) B(x/d), the .effective dimensionless point force on the 
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dislocation as it sweeps t~rough (or folds around(S)) the obstacle. The 

maximum, a ' of this function measures the mechanical strength of the 
. c 

obstacle. A non-transparent line configuration of obstacles constitutes 

a mechanically stable barrier to the glide of a dislocation under stress 

<·r*) if a~< ac for all obstacles k on i, hence if ai < ac' where ai is 

the maximum o:f the a~. The smallest stress T* at which ai > ac for all 

configurations within the array (i.e., al > ac where al is the minimum 

* of ai) is the critical resolved shear stress Tc. * * When T < T the 
c 

dislocation will encounter at least one stable configuration within the 

array, and can glide only with the help of thermal activation. 

To phrase a particular case for the present study we chose an 

obstacle strength a = 0.6, which theoretical work by Bacon, Kocks, and 
c 

Scattergood(S) suggests will approximate the effective strength of an 

"impenetrable" particle in the glide plane. The force-displacement 

relation, a(x/d), for such a particle depends on details of the inter-

action; for simplicity we choose an interaction of simple step form: 

a = a when 0 ~ x/d ~ 1; a = 0 otherwise. 
c 

If configuration i is mechanically stable it must be passed by 

thermal activation. We ignore the possibility of thermally activated 

bow-out between obstacles and require that activation occur at a parti-

cular obstacle. 
. th 

The energetic barrier to thermal activation at the k 

obstacle on i is 

(4) 

where a is the dimensionless reciprocal temperature 

* a • 1/T = 2rd/kT (5) 
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The residence time of the ~islocation in configuration i is the time · 

required for thermal activation past at least one obstacle point in i. 

The expected value of the residence time is(S) 

(6) 

* where t is dimensionless time vt, v is the mean frequency with which 

the dislocation attempts an obstacle (assumed constant), and Ai is the 

activatioq parameter 

exp[-cx(S 
c 

(7) 

where the summation is taken over the Ni obstacles on i. The probability 

that activation will occur first at obstacle k on i is 

n(k,i) (8) 

In thermally activated glide the dislocation encounters a sequence 

of obstacle configurations as it moves through the array (Figure 2). 

These define the "glide path" (x) of the dislocation. To compute the 

glide velocity, we assume that the glide is controlled by thermal 

activation in the sense that the time required for glide between succes-

sive stable configurations along x is negligible compared to the time 

required for thermal activation past these configurations. If there are 

r stable configurations along a particular path x through the array then 

the expected transit time of a dislocation along x is 

* <t > = 
X 

n -1 
:E Ai 
i=l 

(9) 
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Given that the dislocation may take any one of many available glide 

paths through the array the expected transit time is 

* <t > = ~· 
X 

* lJ <t > 
X X 

(10) 

where ~ is the probability that the path x is followed in a given trial. 
X 

The velocity of glide is defined in a statistical sense only, but has 

the ergodic average 

* 

* <v > (11) 

where <v > is the dimensionless area swept out by the dislocation per 

unit time divided by its projected length, the edge length of the array. 

The determination of the velocity of glide through a random array 

of point obstacles is complicated since the ~vailable glide paths change 

with the applied stress and the relative probabilities of these paths 

change with temperature. The glide path becomes precisely defined only 

* in the limit of very low or very high temperature (T ) or when the applied 

* * stress (T ) is very close to the critical value (T .) for athermal glide 
c 

* * * through th~ array. When T is small or T "" T the dislocation tends to c 

follow the "minimmn-angle" path Cx ) obtained under the constraint that 
0 

the dislocation pass each configuration i by activating past the point k 

k at which the angle ~. takes on its minimt.nn value (or equivalently, at 
~ 

k * which 8i takes on its maximum value, 8i). In the limit T ~ 0 the 

velocity is given by the Arrhenius equation 

* <v > = n112 exp[-a(8 - 8 )] c 1 
(12) 
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where el is the minimum of the ei, i.e., the maximum force on the most 

* stable configuration encountered during glide. In the limit T ~ ~ the 

glidE' path becomes a "random" path (xR) whose configurations are obtained 

through a random sequence of activation events. In this case the veloc-

ity is again governed by an Arrhenius equation, with pre-exponential and 

activation energy given by suitable weighted averages over the random 

configurations. (5) At intermediate temperature the equations governing 

glide are more complex, and cannot easily be set in Arrhenius form. 

Given a satisfactory analysis for planes of randomly distributed 

obstacles one may treat the plastic deformation qf an idealized crystal 

modeled as a stacking of planes of the same type. The m6del requires 

an additional assumption on the distribution of dislocations over the 

glide planes. The simplest assumption, which we shall make in the 

following, is that each glide plane contains active sources of non-

interacting dislocations so that the expected number of dislocations is 

the same for all planes and all times during steady state deformation. 

In earlier work (5) we termed this a "tmiform" distribution of disloca-

tions. 

Given a crystal made up of S parallel glide planes containing a 

uniform distribution of dislocations the steady state strain rate may 

be written in the dimensionless form 

* "'* Y = (pb/R. )v s (13) 

where p is the expected number of dislocations intersecting a dimension

"'* less area perpendicular to the glide planes and v is the average of the 

expected glide velocity for the individual planes in the crystal: 



"'* 1 . s * v =- l:<v > 
s 1=1 1 

-s-

(14) 

* th with <v1> the expected value for the glide velocity of the 1 plane. 

If the individual glide planes contain a finite number of obstacles, 

then there may be appreciable scatter in the expected glide velocity 

from one plane to another. This will be reflected in an inhomogeneity of 

the crystal deformation, which will tend to concentrate on those planes 

* over which glide is easiest (<v > is largest). As we shall show below, 

this plane-to-plane variation in glide velocity becomes less pronounced 

* * as the temperature (T ) is increased or as the stress (T ) is decreased. 

Hence crystal deformation becomes more uniform as stress is lowered at 

constant temperature or as temperature is raised at .constant stress. 

III. SIMULATION PROCEDURES 

In the work reported here we studied the behavior of a crystal made 

up of ten parallel glide planes each of which contained an expected 

number (103) of obstacles in a Poisson distribution. The strength of the 

obstacles was fixed at 0.6 and the force-displacement relation was 

assumed to have the simple step form described above. The obstacles 

hence roughly represent small precipitate or dispersion particles in the 

glide plane. Their number, 103 , was chosen to facilitate computation; a 

physically more realistic number would be in the range of 106• 

The dislocations were assumed uniformly distributed over the glide 

planes. Hence the dislocation density (p) in equation (13) could be 

treated as an arbitrary constant and the steady state strain rate y* 

"'* * measured by.the velocity v as a function of temperature (T) and stress 
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* (T ). For completeness, our simulation studies covered the~whole range 

* of T • In fact, the melting temperature of all real materials fall at 

T* < 10-1• Hence T* "' 10_.1 gives an upper limit to physically reasonable 

values of the dimensionless temperature. 

"'* * To determine v we found the expected glide velocity <v > for each 

of the ten planes as a function of temperature and stress, and summed 

according to equation (14). The glide velocities were found through 

direct computer simulation. The simulation code employed is a modifica

tion(9) of that described in Reference 4. Its procedure is essentially 

as follows. 

Using a pseudo-random ~umber generator the code first fills the 

area of a square of size n (103 in this case) with a random distribution 

of points of density one. The array is assumed periodic across all 

boundaries. The code then introduces a dislocation across the lower 

boundary of the array and allows it to move forward until it contacts 

points of the array. The dislocation bows out between adjacent points 

in a circle of continuously changing radius. The bow-out is terminated 

by one of three limits. First, the dislocation segment may bow out to 

* the equilibrium radius R without contacting any third obstacle or 

violating the conditions of mechanical equilibrium (~ > ~ ) at either of 
c 

the adjacent obstacles. In this case the dislocation segment is recog-

nized to be mechanically stable. Second, the dislocation may bow to the 

extent that it violates the condition ~ > ~ at one of the adjacent 
c 

obstacles. In this case the dislocation is allowed to pass the obstacle, 

a new segment is defined by the obstacles adjacent to the bypassed 

obstacle and the bow-out process begun anew. Third, the dislocation 
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may contact a third obstacfe during bow-out. In this case the segment 

is divided, and the stability of the new segments tested by allowing 

them to bow out in turn. This process of bowing the dislocation between 

obstacles, defining new segments when obstacles are contacted, and 

passing obstacles when ~ falls below ~ is continued until a dislocation c . 

configuration is found in which all obstacles are connected by segments 

* which have the equilibrium radius R and the angles at all obstacles 

are greater than the critical angle ~c· The dislocation is finally 

tested for self-intersections, which, given the method of construction, 

must occur at some point other than at an obstacle •. If there are 

self-intersections, the dislocation is joined at the point of inter-

section, and a new search is begun. If there are no intersections, the 

configuration is recognized to be mechanically stable. 

k Given a stable configuration, the code computes the angles ~- along 
l. 

it, and uses the assigned value of the thermal parameter, a, to compute 

the mean residence time according to equation (6). It then calls a 

random number and chooses an activation site according to the proba-

bility assignment given in equation (8). The chosen point is passed, and 

the code then initiates a new search to establish the next stable con-

figuration. In this way a statistically chosen glide path is generated 

and a transit time is computed according to equation (9). By allowing 

several sequential passages the ergodic average of the transit time is 

* estimated (equation 10) and the glide velocity <v > found. 

In simulating deformati9n of a crystal in which several glide 

planes must be treated simultaneously over a range of stress and 

temperature it is tedious and expensive to carry out a full statistical 
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* computation of <v >. In Reference 5 we identified approximate techniques 

which appeared particularly promising for use at low temperature. In 

Reference 4 these were specifically studied. The most promising was the 

minimal sequence approximation, which ignores the change in glide path 

with temperature and assumes that the glide path is reasonably approxi-

mated by the "minimum angle" path, x
0

• This asstimption greatly simplifies 

the computational effort necessary in simulating glide. Since the path 

x is fixed by stress(4) a single computer simulation experiment at a 
0 

* given value of • yields sufficient information to determine the glide 

velocity for glide along x through a particular array at any value of 
0 

the temperature. 

When the obstacle strength is large, as in the present case, the 

minimal sequence approximation yields a good estimate for the glide 

velocity over a wide range of temperature. In Figure 3 we compare the 

glide velocity computed in the minimal sequence approximation to that 

obtained from stochastic treatment of thermal activation for the stress 

* T = 0.4. A~ is apparent from the figure, the approximation yields a 

reasonable result for values of the thermal parameter (a) as low as 10, 

which corresponds to the lowest realistic value of a for a deformable 

metal (Cd at its melting point). We hence employed the minimal sequence 

approximation to simplify the simulation of crystal deformation. 

IV. SIMULATION RESULTS 

Figure 4 illustrates the central results obtained from simulation 

of the deformation of an idealized crystal made up of ten parallel glide 

3 planes having area 10 , .a uniform distribution of non-interacting dislo-

cations, and a Poisson distribution of obstacles having strength e · = 0.6 c 
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and an interaction function, a(x/d), of simple step form. The figure 

* * shows the glide velocity (plotted as -in v ) as a function of a(= 1/T ) 

* for four values of the applied stress, -r • The light curves show the 

data for each of the individual glide planes making up the crystal 

(taken in the minimal sequence approximation); the heavy line gives the 

"'* resulting deformational velocity (v ) for the crystal as a whole. 

The glide velocities for the individual planes vary over a range 

which increases as the temperature is lowered or the stress is raised. 

The source of this scatter is straight-forward, and may be easily seen 

from the expression for the glide velocity in the low temperature 

limit: 

When the reciprocal temperature a is large the velocity is quite 

sensitive to small plane-to-plane variations in the value of a1 , the 

maximum force exerted on the most stable configuration encountered in 

glide along the minimum angle path. We illustrated that variation in 

Reference .~· In a finite array the variation is significant, and tends 

* to increase with the stress -r • As temperature is raised the properties 

of the most stable configuration become less dominant. In the high 

temperature limit the glide velocity is determined by an average over 

* * Unless -r is so near -r that there are only a few stable 
c 

the forces. 

configurations in the array this average tends to be independent of the 

* specific array, and the variation of <v > becomes very small. 

The plane-to-plane variation in glide velocityis enhanced by the 

small array size used in this simulation, 103 as opposed to a physically 
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realistic number of perhaps 106• Were the array size increased the 

variation would become less pronounced. Specific simulations of very 

lar~e arrays(9) have, however, shown that the plane-to~plane variation 

remains significant when the number of obstacles is increased to. 106 or 

more. 

The consequences of the plane-to-plane variation in glide velocity 

are illustrated in Figure 5, where we show the appearence of a 

hypothetical tensile bar made of our model crystal and strained 20% in 

* * tension at each of two resolved shear stresses, T = 0.01 and T = 0.4, 

* = 10-3 -2 -1 * at temperatures T 10 , and 10 • At low stress (T = 0.01) ' 
the deformation is markedly inhomogeneous at the lowest temperature 

* -3 (T = 10 ), but rapidly becomes homogeneous as temperature is raised. 

* At high ,stress (T = 0. 4) the deformation remains inhomogeneous even at 

* -1 T = 10 , which roughly corresponds to the highest dimensionless tem-

perature attainable in a typical metal. 

The second salient qualitative feature of the data represented in 

Figure 4 concerns the possibility of representing the deformational 

velocity by an Arrhenius equation. At low temperatures the velocity "'* v .. 
is given precisely by an Arrhenius equation of the form 

"'* 
1/2 . 

n 
- 81. )] (15) v ·= (-8-) exp [ -Cl (8 c m. 

where 8lm is the largest of the 81 values for the S planes composing the 

crystal. * "'* However, as T is increased (Cl decreased) v deviates from 

equation (15) by an amount which represents a balance between the 

increasing contribution of glide on secondary planes and the increasing 

importance of secondary activation events in the primary glide plane. 



"'* As discussed in Reference 5, at intermediate temperature v tends to fall 

below the values predicted by the asymptotic relation (15), a result 

* reflected in the slight upward concavity of the curves at T = 0.01-0.25. 

However, as •* approaches •* this effect is reversed(4) and~* tends to 
c 

exceed the value predicted by equation (15); thus the slight downward 

* concavity of the curve for T = 0.4. Note, however, that the data shown 

"'* here span many orders of magnitude of v • Were we to confine the data 

to a range (5-10 orders of magnitude of y) which might be experimentally 

measurable, the data would be well fit by an Arrhenius equation at inter-

mediate temperature. 

* At very high values of T (above the melting point of a plausible 

crystal in this specific example) a pronounced doWnward concavity is 

observed, as shown in the data exhibited in Figure 3. This phenomenon 

"'* reflects the rapid increase in v as the probable glide path of the 

dislocation changes from one dominated by the minimum angle path, x , to 
0 

the much easier glide paths which approach the raridom path, xR. The 

effect is a rapid thermal "softening" of the crystal, which has its 

source entirely in the thermal choice of glide path; the properties and 

distribution of obstacles remains the same. 

Figure 6 illustrates the variation of glide velocity with stress 

in tests conducted at constant temperature. In keeping with the conven-

tiona! representation, 

n y a: T (16) 

the data are plotted in logarithmic coordinates. The stress exponent n 

is then the slope of the curve. As is apparent from Figure 6 the data 
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do not show a well-defined~stress exponent. The parameter n is a 

* * function of both t and T • However, again the data span many orders 

of magnitude of strain rate; were the data confined to a plausible 

experimental .range a reasonably constant stress exponent would be 

obtained. 

* -3 At low temperature (T = 10 ) the value of n is large and increases 

* rapidly with stress, from a value of the order of 80 at t = 0.01 to a 

* value above 300 at t = 0.4. As temperature increases both the stress 

exponent and its stress variation diminish. * -2 At T = 10 the stress 

exponent is ~10 at low stress, increasing to ~35 as stress approaches 

* T • c 
* . -1 At T = 10 the stress exponent is near 1. 0 at low. stress, 

* increasing to about 10 near t • 
c 

The variation of slip morphology with stress at constant tempera-

ture is illustrated in Figure 7, where we have shown idealized tensile 

* bars after a strain of 20% at four values of stress (t = 0.01 to 

•* = 0.4) at T* = 10-2 • The tendency of the slip to become more 

inhomogeneous as stress is raised is apparent in the figure. 

Finally, we consider the ·variation of the flow stress (the value 

* ~* oft necessary'to sustain a constant strain rate, measured by v in 

this model) with the testing temperature. The result depends on the 

. ~* * precise value of v chosen; when T > 0 the flow stress is an increasing 

function of strain rate. ~* Plots for two choices of v are shown in 

Figure 8. 

* 
* The flow stress decreases monotonically from the value t . c 

when T = 0. As expected, the rate of decrease falls as the strain 

rate is raised. Since in this simple example there is no athermal 

component to the flow stress, and since the maximUm value of the 
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activation barrier at an obstacle is finite, the flow stress becomes 

* zero at a finite value of T which depends on strain rate and increases 

"'* * as v is raised. By extrapolation in Figure 8, T vanishes for 

* "' X 10-2 "'* * "' -3 T > 3.5 when in<v > = -20, and for T > 7.2 x 10 when 

* in<v > = -10. 

The change in slip morphology with temperature at constant strain 

"'* rate (v ) is illustrated in Figure 9. The results qualitatively repro-

duce those reported in Reference 4. Deformation rapidly becomes 

* homogeneous as T is raised, since both the increase in temperature and 

the decrease in flow stress favor homogeneous slip. 
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FIGURE CAPTIONS 

Fig. 1. Configuration of a dislocation pressed against an array of 

obstacles by a stress T. 

Fig. 2. Sequence of four possible configurations as a dislocation glides 

into a random array of point obstacles. The activation side is 

indicated by the symbol (~). 

Fig. 3. Comparison of the results using minimal sequence approximation 

(dashed line) and statistically chosen path. The data bars 

indicated results of four independent trails. 

Fig. 4. Comparison of the velocity-temperature relations for ten arrays 

3 of 10 obstacles having Be= 0.6 at each of four stresses (light 

lines). Also included are the velocity-temperature curves for 

a crystal made up of these ten arrays under the assumption of a 

"uniform" distribution of dislocations over the planes (circles, 

heavy lines). 

Fig. 5. Illustration of the deformation of a hypothetical crystal made 

up of ten glide planes whose properties are shown in Fig. 4. 

This figure shows the change in the appearance of the deformed 
...... 

crystal with temperature, assuming that the crystal,contains a 

uniform distribution of dislocations of fixed density, and is 

given a total shear strain y = 20%. 

Fig. 6. Illustration of the variation of glide velocity with stress in 

* tests conducted at constant temperature. In this figure ~n<v > 

is plotted against log •* at constant temperature (T* = 10-3 , 

10-2, 10-1). 
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Fig. 7. Variation of slip morphology with stress at constant tempera-

ture. Idealized tensile bars are shown after a strain of 20% 

* * -2 at four values of stress (T = 0.01, 0.1, 0.25, 0.4) at T = 10 • 

Fig. 8. The variation of the: flow stress with the testing temperature at 

"'* constant strain rates (in<v > = -10, -20). 

Fig. 9. Illustration of slip morphology with temperature at constant 

"'* strain rate (in<v > = -10). 



e 

0 

(k-l,i) 

e 

Figure 1 

tlkt --Randomly distributed 
obstacles 

e 

• I 
XBL 732- 5721 

I 
N. 
0 

I 



0 0 2 0 6 7 5 

·-21-

• • • • • • • • • • • • 4 •• • • • •• • 
• • • • • • • • 4 •• • •• • • • • • • • • • • • • .. • • • • • • • 

• • • • • • . • • • •• •• • • 
• • • • • • • • • • • • • •• • •• • 3 • • • • • • • .. • •• • • • • • • • • 

• 

• • • • • • • • • • • • •• • •• • • • • • • • • • • 
• • • • • 

• 

• • • • • 
• 

• 
• • 

• • • • • • 

XBL 73 2-5722 

Figure 2 
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Figure 6 
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---------LEGAL NOTICE---------...... 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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