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Abstract 

Given an upper triangular matrix A E Rnxn and a tolerance 7, we show that the 
problem of finding a similarity transformation G such that G-1 A G is block diagonal 
with the condition number of G being at most 7 is NP-hard. Let f ( n) be a polynomial 
in n. We also show that the problem of finding a similarity transformation G such 
that c-1 A G is block diagonal with the condition number of G being at most f(n) 
times larger than the smallest possible is NP-hard. 
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1 Introduction 

The numerical procedure of computing the Jordan canonical form of a square non­
symmetric matrix A can be very unstable, due to the fact that the Jordan canonical 
form can change drastically under even a very small perturbation [7, page 390). A 
more reliable procedure is to partition the eigenvalues into groups and block diago-

' nalize the matrix so that each block has the eigenvalues belonging to one group. Let 
G be the best conditioned non-singular matrix such that G-1 A G is a block diagonal 
matrix. It is known [4, 8, 12, 16) that the larger the condition number of G, the more 
sensitive to perturbations are at least some of these blocks. Algorithms have been 
proposed to efficiently find partitions whose similarity transformations are sufficiently 
well-conditioned (see [7, pages 386-389) and the references therein). However, other 
than the obvious but extremely slow brute force approach, no algorithm has been 
known to always predict the existence of such partitions, let alone find one. This is 
true even if we restrict the number of groups (i.e., the number of blocks in G-1 A G) 
to be two. 

The objective of this paper is to show that this problem is inherently hard by 
proving that the existence problem alone is NP-complete .. To understand what this 
means, we first briefly review some related concepts. A problem is called a decision 
problem if the solution is either "yes" or "no". There are two well-known classes of 
decision problems, P and NP. Roughly speaking, every problem in P can be solved in 
time proportional to a polynomial in the input size (polynomial time); while .a "yes" 
solution to every problem in NP can be verified in polynomial time. It is known that 
P ~ NP, and there is strong evidence that P =!= NP. An NP-complete problem is a 
problem in NP whose solution is as "hard" to find as any other problem in NP. An 
NP-hard problem is a problem w:hose solution is as "hard" to find as any NP-complete 
problem. There does not exist a polynomial time algorithm for any NP-complete or 
NP-hard problem unless P = NP. For an extensive treatment of this subject, the 
reader is referred to [6). 

To fix the notation, we take K(G) = IIGII2 IIG-1 112 to be the condition number of 
G. We assume that the input numbers are all integers. Since entries in A can be 
rational numbers, ~e require that there is an integer /3 in the input such that the 
(i,j) entry of A is of the form ai,i//3, where ai,j is an integer in the input. To simplify 
the problem, in the rest of this paper we assume that A is upper triangular1 ; and 
that the diagonal elements of A are distinct. We adopt the convention that a block 
diagonal matrix has at least two diagonal blocks. We will use poly(n) to denote a 
positive valued polynomial in n. 

1 It is relevent to mention that in finite precision computation, an arbitrary square matrix can 
in general be brought to upper triangular form (the Schur form) by using orthogonal or unitary 
transformations in cost cubic in the matrix size. See [7] for details. 
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Consider the following two decision problems: 

DICHOTOMY 

instance: An upper triangular matrix A E Rnxn with distinct diagonal elements, 
and a tolerance 7 2:: 1. 

• 
problem: Does there exist a non-singular matrix G such that G-1 A G is 2 x 2 

block-diagonal with K( G) :::; 7? 

and 

INVARIANT SUBSPACE 

instance: An upper triangular matrix A E Rnxn with distinct diagonal elements, 
and a tolerance 7 2:: 1. 

problem: Does there exist a non-singular matrix G such that G-1 A G is block­
diagonal and K( G) :::; 7? 

.DICHOTOMY is a slightly restricted version of INVARIANT SUBSPACE. It is 
introduced because it is easier to handle. We will show that DICHOTOMY, and hence 
INVARIANT SUBSPACE, is NP-complete. It follows that the problem of finding a 
matrix G such that G-1 A G is block-diagonal and K(G) :::; 7 is NP-complete. 

Let G opt be a matrix such that G~1t A G opt is block diagonal and K( G opt) is as 
small as possible. We will further show that the approximation problem of finding a 
matrix G such that G-1 A G is block-diagonal with K(G):::; f(n)·K(Gopt) is NP-hard, 
where f ( n) is a fixed polynomial in n. 

In this paper, we will exclusively consider real matrices, even though our results 
hold for complex matrices as well. Our results also generalize to regular matrix 
pencils. We only use 2-norm in this paper, but the results hold for any norm II · II 
such that 

llx(ll2) :::; llxll :::; P2(n) · llxll2 , 
P1 n 

where x ERn and p1(n) and p2(n) are positive-valued polynomials inn. 
It has been conjectured by Demmel [5) that INVARIANT SUBSPACE is NP­

complete. Our results confirm this conjecture. 
We emphasize that the fact that DICHOTOMY is NP-complete only implies that 

it is very unlikely that there is any general program that runs efficiently on all in-· 
stances of DICHOTOMY. It is still possible that there are algorithms that can solve 
most pratical cases of DICHOTOMY efficiently. 

The rest of this paper is organized as follows. Section 2 introduces some re­
sults in the literature and provides some necessary tools. Section 3 shows the NP­
completeness of DICHOTOMY and the NP-hardness of the corresponding approxi­
mation problem. 
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2 Theoretical background 

In this section we consider some properties of similarity transformations that 2 x 2 
. block-diagonalize A. For a matrix X, O"i(X) denotes its i-th largest singular value, 

and diag(X) denotes its main diagonal. The following lemma is classical. 

Lemma 1 (Golub and van Loan [7, pages 335-338]) Let A E Rnxn be an up­
per triangular matrix with distinct diagonal elements. Then there exists a non­
singular upper triangular matrix G such that 

c-t ·A· G = diag(A). (2.1) 

Remark 1: The diagonal elements of A are the eigenvalues of A and the columns of 
G are the corresponding eigenvectors. Since A has distinct eigenvalues, its eigenvector 
matrix G is unique up to scalings of its columns. Hence any non-singular matrix G 
satisfying (2.1) is upper triangular. We will always choose G such that each of its 
columns has norm roughly of the order between 1 and n. 

Lemma 2 (Demmel [4]) Let G satisfy (2.1). For a given 1 ~ k ~ n- 1, partition 

diag(A) = ( At A
2 

) and G = ( E i ) , 
where At E Rkxk; A2 E R(n-k)x(n-k); E E Rkxk; FE Rkx(n-k); and K E R(n-k)x(n-k). 

Define P = F · K-t E Rkx(n-k) and 

G _ ( I P ·(I+ pT · P)-! ) 
opt- (I +PT ·Ptt . 

Then G opt is one of the similarity transformations that 2 x 2 block diagonalize A 
with the upper left block containing the eigenvalues of At, and its condition number, 
,..;(Gopt) = IIPib+J1 + IIPII~, is the smallest among such similarity transformations. 

Remark 2: Let Z be a projection that projects Rn onto the space spanned by 
eigenvectors pertaining to eigenvalues in At, then we also have (see [4]) 

(2.2) 

Now we consider similarity transformations that 2 x 2 block diagonalize A with the 
upper left block having eigenvalues different from those of At. Let II be a permutation 
matrix and partition 

ITT. diag(A). II= ( At A2 ) . 

To block-diagonalize A such that the upper left block contains the eigenvalues in At, 
we first re-arrange the diagonal elements of A. 
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Lemma 3 (Golub and van Loan [7, page 335]} Let A E Rnxn be an upper tri­
angular matrix with distinct diagonal elements, and let II be a permutation matrix. 
Then there exists an orthogonal matrix Q such that 

diag(QT ·A· Q) =ITT· diag(A) ·II. (2.3) 

The orthogonal matrix Q can be efficiently computed [1, 2, 14, 15]. Let Q be the 
orthogonal matrix in Lemma"3. Then relation (2.1) is equivalent to 

According to Lemma 1 and Remark 1, this relation implies that G = QT · G ·II is 
upper triangular. We write this simple relation in a more informative way: 

G·IT=Q·G. (2.4) 

In other words, the orthogonal matrix Q in (2.3) and the upper triangular matrix G 
such that 

(;-l. (QT ·A· Q) · G = diag(QT ·A· Q) 

are simply the Q and R factors in the QR factorization of G · II. 
Relation (2.4) is QR factorization with column permutation. It is known that 

one can use QR factorization to reveal the ill-conditioning of G by choosing a special 
permutation matrix II [3, 9, 10, 11] 

Theorem 1 (Gu and Eisenstat [11]} Let G be a non-singular upper triangular 
matrix. Then for any given integer 1 ~ k ~ n- 1, there exists a permutation II 
such that in the QR factorization2 

A ( E p) G·II=Q·G=Q· f< , 

withEE Rkxk, FE Rkx(n-k), and f< E R(n_:_k}x(n-k), we have 

and 

where 1 ~ i ~ k and 1 ~ j ~ n- k. 

In particular, this theorem states that if O"k (G) is much larger than O"k+l (G), then 
the first k columns of G · II are linearly independent and the last n - k columns are 
close to being in the subspace spanned by the first k columns. 

2This factorization can be computed in cost proportional to n3 • See [11] for details. 
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In the following, we turn our attention to a G matrix of the form 

G-(E E·L) - K ' 

where E E Rkxk is relatively well-conditioned; L E Rkx(n-k) with IILII 2 bounded by 
a low degree polynomial in n; and K E R(n-k)x(n-k) with IIKI!2 very small. It is easy 
to check that under these conditions O'k (G) is indeed much larger than O'k+l (G). 

We first examine howE, Land K change when permuting the first k columns of 

G. Let r E Rkxk be a permutation matrix, let II= ( r In-k ) , and let E-r = W ·E 
be the QR factorization of E · r. Then 

G . II = ( E · r E · r lT · L ) 

( w )(E E·L) 
In-k K 

where L = rT · L. Thus the elements of L are invariant under permutations of the 
first k columns of G. 

We want to examine the smallest condition number for any similarity transforma­
tion that brings A to 2 x 2 block diagonal form with the upper left block having the 
first s eigenvalues of ITT· diag(A) ·II, for some 1 :::; s :::; k- 1. To this end, partition 

where En E Rsxs; E12 E Rsx(k-s); E22 E R(k-s)x(k-s); Ll E Rsx(n-k); and £2 E 
R(k-s)x(n-k). Then 

G·Il= ( W 
In-k ) (

En 

By Lemma 2, such smallest condition nuniber has the form IIPII 2 + Jl +liP!!~, where 
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It follows that 

To simplify this relation, we first observe that 

On the other hand, let Es be the columns of G that are permuted to become the first 
s columns of G ·II, and let Ls be the corresponding rows in L. Then 

Es = ( W ) ( En ) and Ls = L1 , 
In-k 0 

and hence 

A A _

1 II ( W ) ( En ) A -111 -1 liEn · L1 · K ll2 = In-k 0 L1 · K 
2 
= liEs· Ls · K ll2 . 

Plugging these relations into (2.5) we obtain· 

To appreciate this relation, we consider the special case where K = ('y) E R 1x1. 
In this case Lis a column vector. We have 

(2.6) 

Assume that I"YI « 1/r. To 2 x 2 block-diagonalize A, relation (2.6) suggests that 
it is necessary to find a subset S such that 

liEs· Lsll2 ~ r · 11'1 « 1 . 

Note that minimizing liEs · Lsll2 is 0-1 integer programming, which is in general 
NP-hard [6]. 

3 DICHOTOMY is NP-complete 

A standard process of devising an NP-completeness proof for a decision problem D 
consists the following four steps (see [6, page 45]): 

1. showing that D is in NP; 

2, selecting a known NP-complete D; 

3. constructing a reduction from fi to D; 
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4. proving that the reduction is a polynomial transformation. 

Now we explain the term polynomial transformation. The reduction from D to Dis 
an algorithm that solves D by calling the algorithm for solving D as a subroutine. 
Informally, the reduction is a polynomial transformation if the difference between its 
overall cost and the total cost on all the subroutine calls for solving Dis at most a 
polynomial in the input size. 

We first need to show that DICHOTOMY is in NP. Given a partition, we consider 
the projection Z that accordingly dichotomizes the spectrum of A. Z can be written 
as a sum of projections onto certain individual eigenspaces defined by the partition 
(see [12] for details) and hence is a rational function of entries of A. Note that 
a:ccording to equation (2.2), the solution to DICHOTOMY is 'yes' if and only if 

or, equivalently, 

IIZII2 ~ 
722: 1' 

which holds if and only if the matrix 

2 = ( r'2: 1 )' . I - zr z 

is semi-positive definite, where I is the identity matrix. In other words, the solution 
to DICHOTOMY is 'yes' if and only if all the principle submatrices of Z has non­
negative determinants. It is straightforward to show that checking whether all the 
determinants of the principle submatrices of Z are non-negative can be done in time 
polynomial inn and log2 b. Therefore DICHOTOMY is in NP. , 

Now we focus on the remaining three steps. We pick the known NP-complete 
problem to be SUBSET SUM. 

SUBSET SUM 

instance: Positive integers a1 , ... , am and b, with b > max19~m ai. 

problem: Does there exist a subset S ~ {1, ... , m} such that 

It is known [13] that SUBSET SUM is NP-complete. It is also known [6, page 223] that 
SUBSET SUM can be solved in time polynomial in bn, which can be exponentially 
larger than the input size O(nlog2 b). Note that SUBSET SUM is solvable in time 
polynomial in O(nlog2 b) if b is bounded by a polynomial inn [6, page 223]. 
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Our goal is to reduce SUBSET SUM to a special case of DICHOTOMY. Since 
this section involves the detailed reduction construction, it is not as insightful as the 

·previous one. 
Now we construct a simple class of matrices to which SUBSET SUM can be 

reduced. We consider the eigenvector matrix G E R(m+3)x(m+3) of the form 

. c-(E E·l) - 82 ' 

where l E Rm+2 is a column vector with JJlJh = poly(m); and 0 < l/8 < 7 < 1/82
• 

We further choose E E R(m+2)x(m+2) to be 

( 
1 eT ) 

E = 28 ·I ' 

where e = (1, ... , If E Rm+l. It can be easily verified that K(E) < 2(m + 3)/8. 
Partition l = (91 , 9T)T. Now G can be written as 

(3.7) 

We will specify the parameters 91 and 9 = (92, ••• ; 9m+2)T E Rm+1 later. The matrix· 
G is non-:zero only on its diagonal and its first row and last column. The matrix c-1 

has a similar form: 

( 

1 -eT /(28) -9d82 
) 

c-1 = I/(28) -9/82 
. 

1/82 

Now we construct the matrix A. Since G-1 -A·G is diagonal, A will be completely 
determined once we have chosen these diagonal elements (the eigenvalues of A). To 
simplify matters,- we want them to be distinct and evenly distributed. To make the 
reduction more interesting, we also want JJAJJ 2 to be of the order m. Due to these 
considerations, we choose the eigenvalues to be )'1 = 0, .A2 = -28, .Ai+2 = 28 · i for 
1 :::; i :::; m, and Am+3 = 8. We claim that A has the following form: 

( 
o ern o ) 

A= 28 · n -2(2 · ~- I)g , (3.8) 

where n = diag(w2, ... 'Wm+2) E R(m+l)x(m+l) is diagonal, with W2 = -1 and Wj = 
j- 2 for 3:::; j :::; m + 2; and the parameter 91 in equation (3.7) is taken to be 

m+2 
T "" -91 = e (2. n- !)9 = L,.. (2wj- l)9j . 

j=2 
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Now we verify that G is indeed an eigenvector matrix for A. In fact 

c-1AG = 

We note that the eigenvalues of A are 0(6) apart but have condition numbers3 

0(1/62
). 

Theorem 2 DICHOTOMY is NP-complete. 

Proof: We have shown that DICHOTOMY is in NP. Now we reduce SUBSET SUM 
to DICHOTOMY. Given positive integers ar, ... , am and b, with b > max1<i<m ai, 
we set 6 = 1/b2

, T = Lb2
·
5J, g2 = -1 and 9i+2 = ai/b for 1 ~ i ~ m. We ~~ume 

that b > 64(m + 3)2 • If b ~ 64(m + 3) 2, then SUBSET SUM can be solved in time 
polynomial in the input size. Our goal is to show that under this reduction, the 
solution to SUBSET SUM· is ''yes" if and only if the solution to DICHOTOMY is 
"yes", and hence solving SUBSET SUM is equivalent to solving DICHOTOMY. 

LetS be a non-empty subset of {1, ... , m+2}. Let Gs be a similarity transforma­
tion with the smallest condition number such that G:S1 ·A·Gs is 2 x 2 block diagonal; 
and let >.i be an eigenvalue in the upper left block if and only if i E S. Let Es be 
the matrix consisting of the corresponding columns of E, and let ls be the vector 
consisting of the corresponding components of l. By Lemma 2 and relation (2.6), we 

have K(Gs) = IIPII2 + vh + IIPII~, where 

liEs ·lslb < IIPII < 2(m + 3) liEs ·lslb 
62 - 2- 6 + 62 . 

Further, ~he special form of the matrix E implies that 

iES iES 

Combining these relations, we have 

2·j2:iES9il < (G)< 8(m+3) + 2·j2:iES9il 
62 -"' s - 6 62 . (3.9) 

3Let >. be an eigenvalue of A. Then there exist unit vectors x and y such that Ax = >.x and 
yT A= >.yT. The condition number of>. is defined to be 1/IYT xl (see [7, page 344]). 
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By construction, we see that b · LiES 9i is always an integer. Hence we have either 
I l:iES 9i I 2:: 1/ b or l:iES 9i = 0 · 

If I LiES 9il 2:: 1/b, then relation (3.9) implies that 

2 
~>:(Gs) > bb2 > T. 

\ 

On the other hand, if I LiES 9i I = 0, then relation (3.9) implies that 

8(m + 3) 
~>:(Gs) < 

8 
< T. 

Summarizing, we have shown that ~>:(Gs) < T if and only if I LiES 9il = 0. 
Since I LiES 9i I > 1 as long as 1 E S, it follows that I l:iES 9i I = 0 if and only if 

1 (j S, 2 E S, and 

L ai = b , where S = { i I i > 0 and i + 2 ·E S} . 
iES 

The solution to DICHOTOMY is "yes" if and only if there exists an index set 
S such that ~>:( G s) :::::; T; and the solution to SUBSET SUM is "yes" if and only if 
there exists an index set S such that l:iES ai = b. This shows that the solution to 
DICHOTOMY is the same as the solution to SUBSET SUM. Hence we have reduced 
SUBSET SUM to DICHOTOMY and thus DICHOTOMY is NP-complete. 1 

It now follows that finding the least conditioned similarity transformation G such 
that G-1 · A · G is block-diagonal is NP-hard. So we consider the following less 
ambitious problem. Let f(n) be a positive-valued polynomial inn. Given an upper 
triangular matrix A E Rnxn with distinct diagonal elements, Gopt.denotes the matrix 
with the smallest condition number that block-diagonalizes A. 

APPROXIMATION 

instance: An upper triangular matrix A E Rnxn with distinct diagonal elements. 

problem: Find a non-singular matrix G approx such that Ga~prox · A · G approx is 
block-diagonal with ~>:(Gapprox) :::::; f(n) · ~>:(G 0pt)· 

The following theorem says that APPROXIMATION is still very hard. 

Theorem 3 APPROXIMATION isNP-hard. 

Proof: We reduce SUBSET SUM to APPROXIMATION using the reduction in the 
proof of Theorem 2. Given positive integers ab ... , am and b, with b > max1<i<m ai, 
we set 8 = 1/b2

, T = lb2
•
5j, 92 = -1 and 9i+2 = adb for 1:::::; i:::::; m. We assu~e that 

b > 64 · j2(m) · (m + 3)2
• If b:::::; 64 · f 2(m) · (m + 3)2 , then SUBSET SUM can be 
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solved in time polynomial in the input size. We will show that under this reduction, 
the solution to SUBSET SUM is "yes" if and only if K( G approx) < b3 • 

Let S be a non-empty subset of {1, ... , m + 2}. Let Gs be a similarity transfor­
mation with the smallest condition number such that G$1 ·A· Gs is block diagonal; 
and let Ai be an eigenvalue in the upper left block if and only if i E S. Let Es be 
the matrix consisting of the corresponding columns of E, and let ls be the vector 
consisting of the corresponding components of l. Similar to the proof of Theorem 2, 
we have 

2 ·I ~~ES 9il ~ K(Gs) ~ 8(m
6
+ 3) + 2 ·I ~~ES 9d . (3.10) 

As before, b · L:iES 9i is always an integer. Hence we either have I I:iES 9il 2: 1/b 
or I:iES 9i = 0. 

If I I:iES 9il 2: 1/b, then relation (3.10) implies that 

2 
K(Gs) > M2 • 

Hence, in the case I I:iES gd 2: 1/b for all non-empty index sets S, we have 

. 1 3 
K( G approx) 2: K( G opt) > b62 = b · 

On the other hand, if I I:iES 9il = 0 for some non-empty index set S, then rela­
tion (3.10) implies that 

(G) 
8(m+3) 

K S < 
6 

, 

and hence 
8(m + 3) · f(m) 3 

K(Gapprox):::; K(Gopt) · f(m) < 
6 

:::; b · 

Summarizing, we have shown that K( Gapprox) < b3 if and only if there exists 
a non-empty index set S such that I I:iES 9il = 0. Similar to the arguments in the 
proof of Theorem 2, this implies that K(Gapprox) < b3 if and only if the solution to 
SUBSET SUM is "yes". Hence APPROXIMATION is NP-hard. 1 

By using the standard techniques for reducing the optimization problem to its 
corresponding decision problem (see [6, pages 110-117]), we can show that APPROX­
IMATION and the problem of finding the best conditioned similarity transforma­
tion G can be reduced to INVARIANT SUBSPACE by polynomial transformations. 
Hence these two problems are as "hard" as INVARIANT SUBSPACE and thus NP­
equivalent (see [6, pages 110-117]). 
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