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STABILITY OF THE EQUILIBRIUM HELICAL ORBITS IN FREE

ELECTRON LASERS 

Changbiao Wang* 

Center for Beam Physics, Accelerator and Fusion Research Division, Lawrence Berkeley 

Laboratory, University of California, Berkeley, CA 94720, USA 

We present a proof of the stability of the equilibrium helical orbits in a free-electron 

laser with a helical wiggler field and a combined axial guide magnetic field directed in the 

the conventional and reversed directions . 
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1. Background 

The stability problem of equilibrium orbits in free-electron lasers (FELs) has aroused 

extensive interest [1-6]. Because the euqations governing motion of an electron in a 

combined axial guide magnetic field and a helical wiggler field are nonlinear, and the 

general solutions are not easy to obtain analytically, Liapunov's first method in ordinary 

differential equation theory [7], often called linear perturbation analysis, has previously 

been used to study the stability. problem [1,5, 6]. The unstable orbits were established 

without initial energy perturbation taken into account. Due to breakdown of the first 

method, however, the "stable orbits" were affirmed without any proof and has caused 

some confusion in the FEL community [8]. In a recent FEL experiment with a reversed 

axial guide magnetic field [9], some unique phenomena were observed, which has 

rekindled concern in equilibrium orbits [10]. Therefore, strictly solving the stability 

problem has important significance both in theory and in practice. In this work, we present 

a proof of the stability of equilibrium helical orbits in a FEL with an ideal helical wiggler 

field and a uniform axial guide magnetic field in the conventional and reversed directions. 

2. Stability criterion 

We begin by reminding the reader of stability criterion. Liapunov's first method [7] 

states that the solutiony=O to the autonomous system (dldt)y=f(y) is unstable if there is at 

least one characteristic root with a positive real part of the linear, first, approximation of the 

system. It should be emphasized that this is a sufficient condition but not a necessary one. 

In other words, if there is no root which has a positive real part , we can not affirm that the 

solution is stable. In such a case, the solution may be unstable, stable, or asymptotically 

stable, depending upon high-order nonlinear terms. In short, the_first method breaks 

down. 
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Liapunov's second method [11] states that if there is a function, V(y), which satisfies 

V(O)=O and V(y:;tO)>O (positive definite), then y=O is unstable when (d/dt)V(y) is positive 

definite, stable when (d/dt)V(y) is negative semidefinite (:s;Q), (at this time V(y) is the 

Liapunov function), and asymptotically stable when (d/dt)V(y) is negative definite (=0 at 

y=O, and <0 at y:;tO). Here is an example for which the Liapunov's first method breaks 

down but the second method works. 

Suppose we have the nonlinear system of equations 

.dx:-y+ax3-y z• (1) 
dt 

dy -x+ay3-xz• (2) 
dt 

*-=az3+2xy• (3) 
dt 

with the null solution x=O, y=O, and z=O. The first approximation of the system is given 

by 

dx--y. 
dt 

(4) 

dy=x, 
dt 

(5) 

.dz.:o 
dt ' 

(6) 

with three characteristic roots: 0, +i, and -i. According to the first method, there is nothing 

we can say because no root has a positive real part. Then we turn to the second method. 

Taking V(x,y,z)=0.5(x2+y2+z2) as a· function .of the system, we find that 

(dldt)V(x,y.z)=a(x4+y4+z4), and V(x,y,z) is a Liapunov function when a:s;O. From this it 

follows that the null solution is unstable if a>O, stable if a=O, or asymptotically stable if 

a<O. The purpose of constructing the above example is to remind the reader of the fact that 

if there are two pure imaginary and one zero characteristic roots for a nonlinear system, 

which corresponds to the problem we will discuss below in FELs, we can not determine 

the stability of the null solution according to Liapunov's first method. 
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3. Nonlinear system of equations in the wiggler and axial guide fields 

By use of the· helical basis vectors et=xcos(kwz)+ysin(kwz), 

e2=-xsin(kwz)+ycos(kwz), and e3=z, the ideal helical wiggler field and combined axial 

guide magnetic field in FELs can be written as 

(7) 

where x, y, and z are the unit vectors in the x, y, and z-directions, kw is the wiggler wave 

number, Bw is the wiggler amplitude, and B0 is the constant guide field. In Eq. (7), +Bo 

corresponds to the positive guide field FEL and -Bo correspondes to the reversed guide 

field FEL. The nonlinear system of equations describing motion of an electron in the field 

is given by [1] 

(8) 

(9) 

(10) 

where f3t, /32. and /33 are, respectively, the velocity components normalized to the light 

speed c in free space on the helical basis vectors, r=(l-/31
2-.fh?-/332)-112 is the relativistic 

factor, .!2o±=±le IBof(mockw), and .!2w=le IBwf(nzockw) with e the electron charge and mo the 

electron rest mass. In Eqs. (8)-(10), X=dz/d-rwith -r==kwct. 

Suppose that (/3to.0./33o) is the helical orbit solution to Eqs.(8)-(10), where f3to and 

f33o are constants determined by initial conditions. By setting f3t =f3to+;, /32=,, and 

/33=/33o+7J, where (;,,,77) stands for the perturbation solution caused by perturbation of the 

initial conditions, the stability problem of the helical orbit of Eqs. (8)-(10) is turned into the 

one of the null solution of the following nonlinear system 
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g=(17 + ~)'· 

(=-(1J + ~)g + "ii.v( /33o _ roJ77 + Dw pfJ 1_ ro} 
~ aw: r roaot ~ r 

·Dw 1]=-,, 
r 

(11) 

(12) 

(13) 

where ~=/3Jo-Do±/r, aw:=/3Jo-Do±/ro, and r0=y(g,,,7J=0)=(1-f3to2-/33o2)- 112 is the 

relativistic factor of the electron moving on the helical orbit. In obtaining Eqs. (11)-(13), 

the helical-orbit relation aotf3IO+!lw/3Jolro=0 was used. 

4. Stability of the equilibrium helical orbits in FELs 

Just as we mentioned above, the stability problem of the helical orbits in FELs is 

equivalent to the one of the null solution of the system of Eqs. ( 11 )-( 13 ). Below we will 

use Liapunov's first and second methods to determine the stability. 

First we turn to Liapunov's first method. The first approximation of the system of 

Eqs. (11)-(13) is given by 

ir-=nw,. 
ro 

' (14) 

(15) 

(16) 

The first approximation has three characteristic roots: Gt=O, G2=+..JD±, and 0'3=-..JD±, 

where 

(17) 
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Here the signs ± correspond to the conventional and reversed guide field PELs 

respectively. Obviously, the helical orbit is unstable when D±>O. For the reversed guide 

field FEL, however, D. <0 because no.~O and ao.>O. The situation is the same as the 

example we took in Sec. 2. From this, we can see that Liapunove's first method can not be 

used to determine the stability for the reversed guide field FEL. 

For the conventional guide field FEL where no~o. from D +>0 and ao+>O we obtain a 

regime in which the helical orbit is unstable. The regime is described by 

no++ (no+dp > ro/33o >no+ >O. (18) 

The ustable regime only occurs when the axial guide field is non-zero. 

Now we turn to Liapunov's second method to further determine the stability. Let us 

examine the following function 

(19) 

where 

(20) 

(21) 

and 

H(g,,;'l)= 21172 + €417- .!2w g . . r (22) 

If we can show that V(g,,,1J) satisfies two conditions: (1) V(g,,,7J) is positive definite, 

and (2) V(g,,,1J) is negative semidefinite, then V(g,,,1J) is a Liapunov function. Further, 

we can affirm that the helical orbit is stable. 

Using Eqs. (11)-(13), we obtain V(g,,,1J)=0, i. e., negative semidefinite, so that 

V(g,,,1J) meets the second condition of Liapunov function. Obviously, from Eq. (19) we 

see that V(g,,,1J)~ for any value of g, ,, and 1J, and V(g,,,7])=0 when g=O, ,=0, and 

1J=O. The next thing we should do is to determine the condition under which the 
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equationV(g,,,7])=0 has no root except the one: g=O, ,=0, and 7]=0. To this end, we 

define 

.cJo± ro(~ 7]+aO±} 
DE±(g,,,1J)= roa - -2 

0± flw. 
(23) 

If V(g,,,7])=0, then F(g,,,7])=0, G(g,,,7])=0, and H(g,,,7])=0 must hold. From Eqs. 

(20)-(22), we obtain 

r- ro= o, 

1.772 + l411 - !2w g= 0 . 
2 r 

Substituting Eqs. (24) and (26) into Eq. (25) to eliminate g, we obtain 

,2= 1]2DE±(g,,,7]) . 

(24) 

(25) 

(26) 

(27) 

Eq. (27) is the necessary condition under which Eqs. (24)-(26) hold. Clearly, if 

DE±(g,,,7])<0, Eq. (27) holds only when g=O, ,=0, and 7]=0, that is, V(g,,,7])=0 does 

not have any other root. Thus we come to the conclusion: if DE±(g,,,7])<0, then V(g,,,7]) 

is positive definite and it is a Liapunov function for the nonlinear system of Eqs. (11)-(13). 

For the reversed guide field FEL where .Do-~0 and llQ_>O, we obtain a sufficient 

condition that DK(g,,,7])<0 holds in the neighbourhood (g2+(2+7]2)112<2f330 when 

J2o_=O, and in the one (~(4-7]2)1/~+oo when J2o_<O. Hence the equilibrium helical orbit 

is always stable. 

For the conventional guide field FEL where Do~O, we have to classify two cases by 

a 0+>0 and ao+<O. For a 0 +>0 (rof33o >Do+), we find a sufficient condition that 

DE+(g,,,1])<0 holds in the neighbourhood 

(28) 
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when D+<O given by Eq. (17). From ao+>O and D+<O, we get the stable low-guide field 

regime 

rof33o >no++ (no+.ci~ ~0. (29) 

For txo+<O (/b/33o <.Do+ and .00+>0, high-guide field regime), we also obtain a sufficient 

condintion that DE+(g,,,7])<0 holds in the neighbourhood (~·+{47]2)1i2<+oo. Hence, the 

equilibrium helical orbits are all stable in the low- and high-guide field regimes for the 

conventional guide field PEL. From Eq. (28), however, we fmd that the low-guide field 

regime has a smaller stable neighbourhood and the neighbourhood decreases with 

increasing axial guide field. That means that for a PEL near resonance in the low-guide 

field regime, large signal interaction may make electron helical orbits unstable and result in 

decreasing efficiency. 

5. Conclusions 

We have strictly studied the stability of equilibrium helical orbits in the conventional 

and reversed axial guide field PELs. For the reversed guide field PEL, helical orbits are 

always stable and the stable neighbourhood is infmite. For the conventional guide field 

PEL, the stable high-guide field regime also has a infinite stable neighbourhood, but the 

stable low-guide field regime has a smaller stable neighbourhood and the neighbourhood 

decreases with increase of the axial guide field. 
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