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Abstract 

In this report we examine the possibility of using linear and nonlinear 
image estimation techniques to build a depth map of a three dimen
sional scene from a sequence of partially focused images. In partic
ular, the techniques proposed to solve the problem of construction 
of a depth map are: 1) linear methods based on regularization proce
dures and 2) non linear methods based on statistical modelling. In the 
first case, we have implemented a matrix-oriented method to recover 
the point spread function (PSF) of a sequence of partially defocused 
images. In the second case, the chosen method has been a proce
dure based on image estimation by means of the EM algorithm, a 
well known technique in image reconstruction in medical applications. 
This method has been generalized to deal with optically defocused 
image sequences. 
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1 Introduction 

Computer Vision [27] is already a well defined scientific discipline, with a 
clear objective: the construction of systems that perform certain (intelli
gent) tasks based on visual sensing and feedback. The first processing stage 
in computer vision, also called early vision, consists in transforming two 
dimensional images to instances of a model representing 3D surfaces and 
properties. Early vision includes problems such as the recovery of motion or 
optical flow, shape from shading, etc. In the past two decades, several algo
rithms and sensing techniques have been proposed to recover properties of 
the physical world from images, but existing recovering methods suffer from 
several limitations. These limitations arise from the inability of these meth
ods to deal with complex physical phenomena such as occlusions, shadows or 
interreflections. Physical based vision is an idea that has found widespread 
. acceptance to solve this problem. One style of physics based processing that 
has recently emerged is the "inverse optics" approach. In this report we pro
pose some methods to extract depth and shape information from a specific 
source: focal changes resulting from the limited depth of field inherent in 
most optical systems. There is a direct relationship between the amount of 
defocus or blurring in the image of an object point and the distance to the 
plane of exact focus from the object point . So, knowing this amount, it is 
straightforward to determine the distance between the object and the lens. 

Using focus information in visual tasks is a fact in biological vision. There 
is some physiological evidence which shows, that this depth cue could be used 
by the human visual system at least in two ways [24]: 

• The depth of field for the red green retinal cells is different from that 
of the blue retinal cells, because of one diopter of chromatic aberration 

. of the "lens". This provides two simultaneous views of the scene with 
dissimilar depth of field, albeit in different spectral bands. 

• The focal length of the human eye· is constantly varying in sinusoidal 
fashion at a frequency of about 2Hz. 

From the computational point of view, depth from focus has two im
portant features which makes it attractive as a depth cue with respect to 
classical techniques: 
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• It avoids the correspondence problem, which is the most difficult prob
lem in stereo-based methods. 

• It avoids the occlusion problem, which is the most difficult problem in 
motion-based methods. 

Moreover, this method can be used to mutually reinforce other classical 
methods, as has been shown by Krotkov in [7], where a stereo system coop
erates with a focus system. Our main objective when using this method can 
be defined as: 

"Given a scene with objects placed at an unknown distance 
from the camera, derive the distance to visible points of the 
scene objects using information related to the focus." 

Finally, and in order to build a practical system which uses this type of 
methods, some important points concerning this source of depth information 
must be stated: 

1. Camera. calibration and image formation model. 

(a). Point spread function (PSF) determination. Some PSF's are known 
in adv.ance, but some must be determined experimentally. 

(b) Perspective equation. In some cases we can assume a parallel pro-· 
jection, but in "real world" scenes, we must consider perspective 
projection. 

(c) Relationship between the camera control parameters (focal length, 
magnification, spectral band, shutter time, sensor gain and cam
era. position and orientation) and the parameters of the resulting 
Images. 

2. Focus processing. 

(a) How many images?. Actually, this number depends on the method 
to be used and on the required accuracy. 

(b) Which technique? Several techniques are available, based on dif
ferent models: Fourier-based techniques, estimation techniques, 
etc. 
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(c) "A priori" information. Which kind of information can we provide 
"a priori"? How does this affect the choice of method? 

3. Practical considerations. 

(a) AccuracY. There are applications where a high level of accuracy 
is not necessary (obstacle avoidance for robot navigation, for ex
ample) while in others is essential (3D VLSI circuit inspection, for 
example). 

(b) Robustness. "How noise and non desired effects ( intereflections, 
for example) affect the method? 

(c) Range of applicability. The applications for these methods range 
from microscopy to "real world" scenes. 

In [48] a possible model for using computer-controlled cameras and lenses 
is described, and similar problems to the ones discussed above are presented. 

2 Previous work. 

In order to recover depth information from focus blur information, two ap
proaches have been described in the literature: depth from focus and depth 
from defocus. The depth from focus technique uses a search for the sharpest 
focus position over a sequence of images taken at different lens focus set
tings or camera positions. The depth from defocus attempts to model the 
blurring process in a local image region as a function of depth. The goal 
is to determine surface depth by estimating the model parameters on the 
image. Pentland [25, 23, 24] and Grossman [20] both addressed the problem 
of recovering depth from blurred edges. Their work can be classified as depth 
from defocus. Also Subbarao has developed some methods of this type (18] 
[19]. Krotkov [7] and recent work of Subbarao [21] are examples of depth 
from focus. 

Pentland proposes two methods [23, 24]. The first is based on measuring 
the blur of edges which are step discontinuities in the focused image. His 
second method is based on comparing two images, one formed with a very 
small (pin-hole) aperture and the other one formed with a normal aperture. 
In both cases, the methods are based on inverse filtering. In [26] an extension 
of Pentland's work is presented. 
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In [16, 17) a matrix method based on deconvolving the defocus operator 
from the images is presented. This is done by characterizing the problem 
as a system of linear equations. The main characteristics of the method are 
the independence of defocus operator models and least constraints on the 
scene. They argue against inverse filtering-based techniques, and give some 
interesting reasons. 

The matrix-based approach to depth from defocus [17] 

Two images it(x, y)) and i2(x, y) of the same scene s(x, y) are acquired with two 
different defocus operators ht(x,y) and h2(x,y). A convolution ratio h3(x,y) is 
presented, where 

This convolution ratio is a unique indicator of depth. Three methods of recovering 
h3 (x, y) are presented in [17]. Assuming no noise, the first method solves for h3(x, y) 
by 

h [. ]-1 . 
3S = ltBT .12S 

where [hBT] is an N 2 X N 2 block Toeplitz matrix constructed from i 1(x, y) and h3s, 
i2s are row-stacked vectors created from h3(x,y) and i2(x,y). 
The second method uses regularization to deal with the noise, and the solution for 
h3(x, y) is 

where .X is a regularization parameter and C is a matrix minimizing the magnitude 
of the second term if h3s belongs to a parametrc family of patterns. This method 
requires that h1 ( x, y) and h2( x, y) be represented by parametric families. 
The third method is based in looking for a h3 (x, y) that minimizes 

N-kN-k 

L L [it(x,y)[®]h3(x,y)- i 2(x,y)]2 

x=O y=O 

where [®] is the restricted convolution. 
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Subbarao [19] proposes a method based on measuring the change in an 
image due to a very small change in one of the camera parameters, and in 
[18] a method for recovering depth from a measure on the blur of an edge. 

In [76] the problem of depth from focus is formulated as an image restora
tion problem. Linear restoration techniques (constrained optimization) are 
used to restore a depth map of the object. 

In [35] a depth from focus system is presented which is based on a focus 
criterion function which quantifies the notion of defocus. The position of 
sharpest focus is then given by the focus setting corresponding to the global 
maximum or minimum of the criterion function. 

Bove [61] has recently proposed a method to solve the two-image depth 
from defocus problem (in the same sense as Pentland) in terms of entropy 
loss in the defocused image. 

All these methods can be grouped in two broad classes: those based on 
. inverse filtering (in Fourier domain), and those based on matrix techniques. 

While the first class presents a high performace in terms of speed and storage, 
the second elMs is able to give more accurate results. We do not know of 
any reference proposing statistical modelling to solve this problem. 
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The inverse filtering approach to depth from defocus [24] 

The method proposed by Pentland is based on taking two images of a single view of 
a scene, with different lens aperture. We can consider a patch ft ( r, B) 1 centered at 
(xo,Yo) within the first image i 1(x,y): 

ft(r,B) = i1(xo + rcosB,yo + rsinB) 

and calculate its two dimensional Fourier transform .1"1(t, B). The same is done for 
a patch h ( r, B) at the corresponding point of the second image, yielding .1"2( t, B). 
Now we consider 

ft(r,B) _ fo(r,B)®G(r,ut) 
h(r,B)- fo(r,B)®G(r,u2) 

\ 

where G( r, u) is a gaussian approximation to the PSF. As is shown in [24), we can 
derive the following from the previous relation 

.1"1(-X) = G(.X,~) = e<..x2211"2(u~-um 

.1"2(-X) G(.X, $u2} 
(1) 

where .Fi(.X) = f~1r Fi(.X,B)dB. Thus, given .1"1 and .1"2 we can find o-1 and 0"2 as 
follows. Taking the natural log of (1) we obtain 

and we may formulate it as a linear regression equation in .X2• 

If u1 = 0 (a pinhole camera), then we have 21r2( u~- u~) = 21r2u~, and we can solve 
directly the depth from defocus problem. 
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3 · General formulation 

When an object is seen through an optical system, only its visible· surface can 
be imaged. This surface is defined as all the points of the object surface that 
are visible from the viewer position. In the simplest form, we can model the 
optical system as a pinhole camera, and then every object is imaged without 
any loss of sharpness in the image plane. A real optical system can only. 
image objects at a certain distance from the camera. To deal with this fact, 
it is necessary to model more accurately the optical system. We can assume 
also, that this later model doesn't change the imaging geometry. The range 
of distances within the objects that are imaged "sharply" is called depth of 

" focus. The depth of focus is illustrated in figure 3. 
The basic law governing image formation through a lens can be described 

by the lens formula used in geometrical optics: 

1/d + 1/e = 1/ f 

where d is the object distance, e is the distance between the lens and 
the focused image plane of the object, and f is the focal length of the lens 
(all measured along the optical axis). When the distance between the object 
point and the lens is d, the point is imaged as a point. In other cases the 
image of a point smears to a disc with radius t: at the original image plane .. 
The radius of this disc is directly related to the distance between the object 
point and the lens, and then it can be used to determine a "depth map" 2 of 
the imaged object .. 

Previously it has been seen that a point in 3D object space is not imaged 
onto a point in image space but onto a more or less extended area with 
varying intensities. Obiously, the function which describes the imaging of 
a point is an essential feature of the imaging system which is called the 
point spread function, abbreviated as PSF. We assume that the PSF is not 
position-dependent. Then the system is position invariant (sr 

If we know the PSF we can calculate how any arbitrary 3D object would 
be imaged by this system. The intensity of a point (x,y) at the image plane 
is computed by integrating the contributions from all the other points previ
ously transformed by their corresponding point spread functions: 

2Depth map: A depth map is a two dimensional function which gives the depth of an 
object point, d(x,y), -relative to the reference plane- as a function of the image coordinates. 
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g(x,y,z)-:- j h(x- x',y- y'~z- z')f(x',y',z')dx'dy'dz' 

We denote the point spread function h(x, y, z) and consider the overall 
image of any object to be a superposition of appropiately shifted and weighted 
versions of h(x, y, z). 

During the process of image formation, the 3D coordinates of the visible 
surface are mapped onto the 2D coordinates of its image. The "depth from 
focus/defocus" problem can be stated as recovering the 3D coordinates of 
the visible surface. 

3.1 Geometric Optics: a theory for defocus 

Geometric optics is useful as a first approximation of light collection and 
image formation ~y almost any kind of optical system [13], and is a good 
aproximation to explain the theory of defocusing [17]. From fig. 3, we can 
deduce the formula for the radius R of a blured circle: 

R= L6 
2e 

where L is the diameter of the lens or the aperture, e is the distance 
from the lens to a sharply focused image of a particular object, and 6 is the 
displacent of the image plane from sharp focus. 

To a first-order approximation, the brightness within the blur circle is 
uniform. The defocus operator, h(x, y ), where x and y are coordinates in the 
image plane, is defined as a pillbox of radius R 

h( . ")- { 1r12 if 
Z,) - Q if 

x2+ y2:::; R2 
x2 + y2 > R2 

Blurring due to defocus can be modelled as a convolution with this pillbox. 
Therefore, the amount of defocus or blurring depends solely on the distance 
to the surface of exact focus and the characteristics of the lens system 3

• 

The defocus operator h( x, y) can be changed by varying one or more camera 
parameters, i.e position of image plane ei, focal length for aperture L. 4 

3 We consider that we have a calibrated system and we know these characteristics 
4 In a microscope the image plane is constant and the object is displaced along the 

optical axis. 
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4 Linear Methods 

As we have seen, in the simplest case, when we have a uniformly defocused 
image the basic equation is: 

g(x, y) = 2: h(x, x', y, y')f(x', y') 
:r:'y' 

where f is the original image, h the point spread function and g the 
defocused image. 

First, we considered some direct methods to restore the defocused image 
in the case of a known PSF. Let the 2D array g(x, y) represent a discrete 
image with M rows and N columns. This data can be written in vector form 
through a lD mapping that is known as lexicographic ordering. In essence, 
the 2D array is converted to a M x N vector by concatenating its rows: 

f = [9(0,()),9(0,1),9(0,2)' ···9(0,N-1),9(l,O), ···9(M-l,N-dt 

If the image formation model is given by g(i,j) = :L h(i-m,j -n)f(m, n), 
by lexicographic ordering of f and g we have: 

g=Df (2) 

where D is the blurring matrix of size M N x M N. If the convolution is 
interpreted as a linear convolution (with zero boundaries) the matrix D has 
a block-Toeplitz structure. A (block-) Toeplitz matrix is often approximated 
by a (block-)circulant one because this two matrix types are structurally 
closely related, and operations involving (block-)circulant matrices can be 
efficiently performed in Fourier domain. 

The simplest approach to solve the restoration process is to use a filter 
whose response is the inverse of D: 

J' = n-19 

Unfortunately , there are several problems with this solution of (2): 

• The size of the system -typically each matrix dimension is in the order 
of thousands. 
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• Ill conditioning of the system. Typically D has a large condition num
ber, so that a small change in the projection data g may cause a large 
change in the solution f. 

• Ill-posedness. Typically, D may have a non-empty null space, so that 
some components of the image can not be recovered from the projection 
g without additional information. 

One practical method to solve this problem is seeking to minimize the 
difference between the projection into data space off' and the measurent g, 
i.e., minimizing the target function [6]: 

W(f') = lg- Dfl 

Taking partial derivatives with respect f', setting equal to zero and solv
ing for f' we obtain: 

which is called the least square inverse filter. 
Another interesting technique that can be used in this problem is the 

Singular Value Decomposition (SVD ). This technique permits a diagnosis 
of where the difficulty lies in trying to find a solution, and in some cases, 
overcomes those difficulties [2]. 

SVD methods are based on the following theorem of linear algebra: 

Theorem 1 Any M x N matrix A whose number of rows M is greater than 
or equal to its number of-columns N, can be witten as a product of an M x N 
column-ortogonal matrix U, and N x N diagonal matrix W, with positive or 
zero elements {the singular values), and the transpose of aN X N othogonal 
matrix V. , 

A=UWVt 

In our case, we can restrict its application to square matrices. Then, 
U, V, and W are all square matrices of the same size. Their inverses are also 
trivial to compute: U and V are ortogonal, so their inverses are equal to 
their transposes: W is diagonal, so its inverse is a diagonal whose elements 
are the reciprocals of the elements wi: 
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Given A-1 = V(dia9(ljw;)]Ut, if A is singular, we can select one partic
ular member of the set of solutions. We can choose the one with minimum 
length by computing: 

If 9 is not in the range of the singular matrix A, then 9 = D f has no 
solution, but the former equation can be used to "construct" a solution J', 
which is the minimum in the least squares sense. 

Finally, we consider another way of solving our problem: regularization 
(28, 30, 32] Tikhonov and Arsenio were the first to study the concept of 
regularization. The idea is to define a criterion to select an approximate 
solution from a set of feasible solutions. Tikhonov defined the regularized 
solution as the one which max~mizes a stabilizing functional 0 on the set 
of feasible solutions. Although a wide class of stabilizing functionals are 
available, usually a stabilizing functional of the following form is chosen to 
facilitate the mathematical analysis of the problem: 

0(!') = IICJ'II 

Here C is a real valued matrix of size N N x N N, known as the regular
ized operator. The computation of the regularized solution reduces to the 
minimization of this objective function: 

4>(!') = 119- Df'W + ai!Cf'W 
with respect to f'. Another related approach is to replace the minimiza

tion of 0(!') by the following bound: 

0(!') = IIC !'II ~ E 

Among the solutions satisfying this approach, a reasonable choice is the 
Tikhonov-Miller regularized solution, which leads to the following solution: 
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The main disavantage of these methods is their storage requirements. 
They need to manipulate and store squared matrices of N x N rows and N x N 
columns. Evidently, this is not possible using current workstations, and we 
must restrict ourselves to small images in order to test the effectiveness of 
these methops. 

A common approach to overcome the storage problem is to use recursive 
algorithms to compute a feasible solution. 

The first experiment we did was the estimation of the point spread func
tion of a defocused image. The problem was defined as: 

g=AJ 

where g is a defocused image in vector-form, A is the original (focused) 
image in block-circulant matrix form, and f is the point spread function 
(unknown) in vector form. 

We tried to estimate this function from simple synthetic images and from 
real images (defocused by convolution). 

From a computational point of view, the methods have been implemented 
in double precision on images of 32x32, and in some cases; of 64x64 or 
128x128. The conclusions reached from these experiments are: 

1. The errors induced in the image boundaries due to the block circulant 
approximation were quite visible. For this reason, we worked with 
block-Toeplitz matrices. 

2. In the case of synthetic images, linear methods work quite well, but 
they require huge amounts of storage and processing. 

3. In the case of synthetically defocused real images, the major problem 
arose from that fact that those methods do not obey a positivity con
straint. Then, some negative values were present in the estimated PSF. 

4.1 Recursive methods 

Some linear methods of image restoration can be written as recursive algo
rithms [56, 3]. All these methods are derived from the classical equation: 
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In most of these algorithms noise is ignored. The algorithms are expressed 
as recursive formulas using the following standard technique [3]. First the 
equations are written in the form 

fm = KF({Jm}) 

for some function F where K is a constant chosen so that conservation 
of energy is satisfied. Then the equation is transformed into a recurrence 
relation: 

The convergence properties of this formula will depend on how F is con
structed. 

Algorithms can be constructed from any of the following principles: 

1. Let Xm be the noise-free image Xm = 'Ek amk/k· Subtract Xm from 
both sides of the equation (ignoring the noise) and raise both sides to 
the power p, (any real number), giving 

(3) 

2. Divide both sides of the equation by Xm and then raise both sides to 
the power of p, giving: 

(4) 

3. Divide both sides by Xm and then subtract 1 from both sides and raise 
to the power p, giving, 

(5) 

. It must be pointed out that Xm is function of fm, and, it must be updated 
at each iteration. 

There are several ways of designing new algorithms from these expres
sions. The first one is found by adding ).m to both sides of equation (3) and 
scaling by K: · 
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which for p = 1 is the Van Gitter [1] recursive formula. 
Another algorithm, from equation ( 4) can be found by multiplying both 

sides by fm, giving the quasi inverse matrix formula: 

One important point about this formula is that it obeys positivity for op
tical objects. These techniques can be also applied to equations that consider 
the statistical model for the noise. In the case of Poisson noise: 

exp(-Xm) 
P( {gm}I{Jm}) = Il(Xm9m) 1 

m 9m· 

and in the case of Gaussian noise: 

The algorithms deduced from these formulas are, in the first case: 

(6) 

and in the second case: 

J!:-+1) = K J!:> [L amk( g(~) )2
] 

k xk 
(7) 

The performance of these algorithms is not well characterized, and its 
applicability to a specific problem depends on testing of their behaviour on 
controlled experiments. In our case, they all give usable restorations, but 
non-linear methods yield better answers when noise is present in the image. 
The main advantage over preceding linear methods is that the formulation of 
the equations permits an easy implementation (little storage requirements), 
and also permits interactive display of the results as it converges. 

We can find other iterative methods for solving this problem in the lit
erature. Among those, we could highlight the Landweber and Generalized 
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Land weber iterations, which has been used in image restoration. The Land we
ber iteration method was proposed in 1951 [66]. This iteration is: 

This iteration will converge to the minimum norm least-squares solution 
if IIAtAII2 < 2 and the iteration is initialized with J(o) = 0. 

The Landweber method was extended by Strand [67] to the Generalized 
Landweber iteration method, which uses: 

for the iteration. The matrix D, called the shaping matrix, is a linear 
operator that can be designed as a polynomial function of At A to emphasize 
some frequency components of the image and to accelerate the convergence 
of those components. In [91] an investigation into the behaviour of these 
algorithms is presented 5 ; · 

5 Statistical Methods 

The application of statistical models [8, 11, 39} to imaging problems has 
been a topic of much recent interest due to their generality for modelling 
and their capacity to incorporate .various constraints~ Among the imaging 
problems which has been solved using statistical models are the following: 
Single Photon Emission Computed Tomography (SPECT) [45], classification 
of satellite data [8], image restoration [40, 51, 78, 86], boundary detection 
[33], Positron Emission Tomography (PET) [38, 43,.44, 46, 50, 57, 88], surface 
reconstruction [53, 54, 87], microscopic image reconstruction [60, 62, 63, 64], 
stereo processing [84, 93], information fusion [10], image sequence analysis 
[92], etc. 

Though some of the linear methods presented in the previous section 
acknowledge the presence of noise in the image, none of them is based on 
statistical models. Statistical methods are those that consider specific proba
bility laws for the noise, and in some cases, for the observed data, to control 

5 Note that the Generalized Landweber iteration method is again similar to the Van 
Citter iteration. Differences between the algorithms are that the Generalized Landweber 
iteration involves matrices, and Dis restricted to be a linear operator. 
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the propagation of noise to the estimation. There are two different ways 
to solve statistical problems: the direct and the Bayesian approach. In the 
first case, we have a model describing how the unknown data are related to 
the observational data (the model comes from some underlying theory that 
the data are supposed to satisfy), and a model for the noise (i.e. Gaussian 
or Poisson). We asume that data are subject to measurement errors called 
noise in the context of electronic imaging. Thus, typical data never exactly 
fit the model that is being used. In the case of Bayesian modelling we also 
have a statistical model for the observed data, called prior knowledge in the 
context of Bayesian estimation. This knowledge can be used to restrict the 
space of possible solutions to the estimation problem, as well as to accelerate 
some algorithms. 

There are different ways of implementing these two appraches on imaging 
problems [31]. We have chosen two methods: the Maximum Likelihood Es
timation (MLE), and the Maximum a Posteriori approach (MAP). In both 
cases we have used the Estimation-Maximization (EM) algorithm (59] to com
pute the image estimates. The relevance of the EM algorithm for imaging 
problems was first noticed by Shepp and Vardi [57], who applied it to a sta
tistical model of PET. Since then, the EM algorithm has attracted a lot of 
research: its extension to Bayesian processing (38, 44, 89], its acceleration 
(68, 69, 70, 71], its smoothed versions (58], etc. 

5.1 Experiment description 

We have applied statistical methods to the problem of depth from focus. First 
of all we will describe the experiment and how the data are produced. This 
experiment simulates the acquisition of a sequence of images with an optical 
system with small depth of focus. We assume that the optical system is 
calibrated and that we know the exact form of the PSF's corresponding to 
each one of the possible states of the optical system. 

Given a scene in an space n, usually R3
, located in front of the optical 

system and formed by opaque objects, we can acquire different images of. 
the scene by changing the optical parameters. In the microscope case this 
means changing the distance between the scene and the lens (leaving the 
distance between the lens and the image plane constant). Also in this case, 
we assume that the projection of the scene on the image plane is represented 
by a paralell projection equation. 
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n, which is the observable space, emits photons according to a emission 
density function .A defined at all its points. As we are dealing with visual 
scenes, composed of 3D opaque objects, only some points of n will emit radi
ation: those corresponding to the surfaces of the objects. And among those 
points, the only observable radiation is that emited by the visible surface of 

· the scene. 

Definition 1 The visible surface of a visual scene is the surface (not nec
essary continous) formed by all the emiting points of the objects composing 
the scene which are visible from the observer point of view. 

Then, it is more useful to assume that n holds a surface s(x,y) - the 
visible surface from the observer position- which takes values .A(x,y,s(x,y)) 
corresponding to the radiometry of the physical object surface. 6 

\ 

Definition 2 A scene (.A, s) is a pair composed by a visible surface s( x, y) 
and an emision density function .A(x,y,s(x,y)) defined on the surface. 

When we reference points of the observable or the observed spaces, we 
can use two types of notation. The first one, written as Ai or Xi, will be used 
when expressions denote the value of the function in those spaces and the 
x, y and z coordinates can be considered homogeneous (that is, they have no 
special relevance in the expression). On the other hand, if one coordinate, 
usually z, is processed in a different way than ·the others, we will use the 
classical expression .A ( x, y, z). 

Another assumption we can make is that we are dealing with "real world" 
scenes, and then, we can consider a physically generic assumption about 
them: these surfaces are continuous almost everywhere, with the exception 
of the regions corresponding to the physical edges between objects. This fact 
will be important when discussing smoothness constraints on the solution of 
ill posed problems. 

The objective of the method (in fact, the only one physically achievable) 
is the recovery of s(x, y ). Given s(x, y ), .A and a given state of the optical 
system (we will call this situation the direct problem), the generation of the 
image of the scene X is almost trivial [15]. Each value .A(x, y, s(x, y)) is spread 

6 Using a suitable coordinate frame s(x, y) can be seen as a function representing the 
distance between the lens and the visible surface of imaged objects. 
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by a PSF depending on the value of s(x,y). The superposition of all these 
blurred points generates the observed image Xz(x,y), where z represents an 
image plane. 

On the other hand, the inverse problem of recovering s(x, y) (and even
tually A(x, y, s(x, y))) can be easily stated, but it is an ill posed problem. In 
the next sections we will propose a solution to this inverse problem. 

We have generated a sequence of images, from different scenes, following 
this physical model. Images are of size 128 x 128. All images have 256 grey 
levels. Each of the experiments involve blur. Blur is generated by convolving 
the 3 x 3 mask: 

~c 
1 n - 1 1 

9 1 1 

with itself. Two iterations yields the 7 x 7 mask: 

1 3 6 7 6 3 1 
3 9 18 21 18 9 3 

1 6 18 36 42 36 18 6 
- 7 21 42 49 42 21 7 
729 6 18 36 42 36 18 6 

3 9 18 21 18 9 3 
1 3 6 7 6 3 1 

and three iterations yields a 9 x 9 mask with an approximately Gaussian 
shape. 

5.2 Image Estimation: the MLE approach 

Assume an emission density function A defined in n. This emission is sensed 
by a CCD camera, equiped with an optical system characterized by its small 
depth of focus. Physical theory allows us to express the observed emission 
Y as independent random variables with Poisson distribution [78, 65]: 

Y; "'Poisson( Xi) 

where the J:>oisson means Xi can be expressed in terms of the emision 
density function: 
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This transformation can be written in matrix notation as X = H >., where 
X . (Xb ... , Xn) and >. = (>.11 >.2, ... , >.n) are vectors, and H is a matrix 
representing the 3D Point Spread Function (PSF), characteristic of the op
tical system. We wish to estimate the function >. from the observed YJ s and 
the known hij. 

A good choice for the estimation of ), is the one that maximizes the 
likelihood function p(Y I>.). The likelihood of the observations Y is maximized 
by any solution 5. of the equation H5. = Y. But there will not typically be 
any exact solution due to the noise. In this case we can propose a Maximum 
Likelihood Estimation (MLE) of >.. 
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EM Algorithm 

The Expectation-Maximization algorithm ((59]} finds maximum likelihood parame
ter estimators in problems where some variables were unobserved. This algorithm was 
first presented by Dempster in (59). It has been widely applied to image processing 
problems, mainly in image reconstruction and restoration. 
The algorithm estimates parameters iteratively, starting from some initial guest. Each 
iteration ·consists of an Expectation step (E-step), which finds the distribution of the 
unobserved variables from the current estimate of the parameters, and a Maximiza
tion step (M-step ), which reestimates the parameters to be those with maximum 
likelihood, under the asumption that the distribution found in the E-step is correct. 
It can be shown that each iteration improves the true likelihood, or leaves it un
changed, if a local maximum has already been reached. This is true for any GEM 
(Generalized EM) algorithm, in which only a partial maximization is performed in the 
M-step. 
The key idea of the algorithm is to find a problem formulation involving B, the 
observed incomplete data, C, the unobserved complete data (in a such way that 
there is a known many-to-one mapping from C to B), and A, the parameters to be 
estimated. 
Consider the estimation of A by maximizing the log-likelihood log(BIA) based on B. 
These data can be regarded as an incomplete version of C, which we we would like to 
have been able to observe. The algorithm gives a two step iteration for increasing the 
likelihood of the current estimate A k of A. The complete data have to be chosen in 
such a way that computing the M L estimate of A from the complete data is simpler 
than from the incomplete data. 

E-step : E{log(p(CIA))IB, Ak} 
M-step : Ak+l = arg{maxAE{log(p(CjA))IB, Ak}} 

Sufficient convergence conditions are that E{log(p(CIA))IB, A(k)} is continuous in 
both A and Ak. 
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The likelihood is: 

and its logarithm: 

p(YI.X) =II xp exp( -Xi)/Y;! 
j 

log(p(YI.X)) = ~ [Y;log(Xi)- xi] 
3 

(8) 

(9) 

This likelihood function has been shown to be concave in [57]: hence, a 
vector _xML, the maximumlikelihood estimate at which log(p(YI.X)) reaches 
its maximum, exists. However, a closed form formula for finding _xML as a 
maximizer of log(p(YI.X)) does not exist. 

Consider the estimation of 5. by maximizing the log-likelihood log(p(Y I .X)) 
based on Y. These (observed) data can be regarded as an incomplete version 
of e' a complete data that we would like to have been able to observe, and . 
such that there is a known many-to-one mapping from { toY. The EM 
algorithm gives a two step process for increasing the current estimate _x(n) 

of .X. In the first step, the E-step, the distribution of { given Y and _x(n) 

is estimated. In the second step, the M-step, the parameters _x(n+I) must 
be reestimated in such1 way to be those with maximum likelihood under the 
assumption that the distribution found in the E-step is correct. It can be 
shown that each iteration improves the true likelihood. That is, starting 
from a strictly positive initial estimate 7 this algorithm computes a sequence 
of estimates which converge to the MLE. 

In our case, the E-step and the M-step can be expressed in a single it
erative step [92]. Under the assumption that {{i} are independent Poisson 
variables, it has been shown [57] that: 

V:h .. l(n) 
(n) "'"' .I i 13 1\j E{log(p({I.X))IY,.X } = L...JL...J[-hii.xi + (n)log(hii.Xi)] 

i j Lk hikAn 

This is the E-step of the algorithm. TheM-step is performed by taking 
the first derivative of this equation with respect to Aj and equating to zero. 
The solution is: 

7Theoretically, the results at convergence are independent of the initial guess, but if 
the process is stopped before reaching the convergence, which is the common case, the 
resulting image depends on the starting point. See [43, 47) for a discussion on this point. 
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. ) .A(n) "Y-·h·· 
,A(n+l = i I: J IJ (10) 

1 
Ej hij j Ek .Aln) hkj 

which constitutes the single iterative step of the plain EM algorithm. 
Until now we have not discussed the point of how many image planes must 

be acquired in order to have a good behaviour of the algorithm. Each image 
plane will be composed by all the observed values Y(x, y, z) corresponding 
to the specific z of that plane. If we take only one plane, the problem will be 
underdetermined, and the ML estimation will converge to a solution which , 
can be wrong ( and it will converge very slowly). If we look at the iterative 
step of the EM algorithm, we can see that it is based on a quotient between 
the observed data }j and the projection of the estimated data: Ek ..Xln) hkj· 
In order to have a good estimation it is necessary to have as many observed 
data as estimated data That is, every point of the visible surface must be 
perfectly focused in almost one image plane. That is, we need as many 
images as depth levels we want estimate. If we have more than this, the 
problem is overdetermined, but it appears that this does not result in a 
perceptible improvement of the estimation. Nevertheless, it must be pointed 
out that the form of the algorithm does not change whatever the number of 
image planes is. 

The main avantages of a MLE approach are: 

• It is a sound optimization method that is based on the physics of the 
imaging system, and which acknowledges the presence of noise. 

• It results in a tractable and implementable method. 

In general, this additive Poisson model is treated as an artificial statistical 
model, i.e. it is merely used as a gimmick to generate an algorithm rather 
than because it is assumed to model any statistical variability in the data. 
An exception is in Emision Tom~graphy, where the Poisson model is regarded 
as a realistic aproximation for modelling the data. 

Vardi and Lee [92] .have recently proposed an alternative interpretation 
for the EM algorithm, which does not presupose Poisson statistics for the 
data. The formulation of the problem is based on the following problem: 
given a vector Y = {yj} and a matrix H = { hij} with non negative entries, 
the objective is to solve the set of equations: 
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/i ~ O,i= 1, ... ,M,j = 1, ... ,N. (11) 

for a vector -X = {-Xi}· This problem, known as linear inverse problem 
with positivity restriction (LININPOS) can be interpreted as an: statistical 
estimation problem from incomplete data based on infinitely large "samples", 
and that ML estimation and the EM algorithm provide a straighforward 
method of solution for such problems. 

Consider the Kullbach-Leibler information divergence between two prob
ability mass functions p = {p1 , •.. ,pN) > 0 and q = (q1, ... , qN) > 0: 

D( {yi}II{L Aihij} ), f ~ 0, E fi = 1 
i i 

If equation {11) has solution, it can be obtained as the argument that 
mmtrmzes: 

{12) 

It follows that the right-hand side of {12) is a solution of equation (11) 
whenever it exists. 

Also, the right-hand side of (12) can be interpreted as the MLE of the 
following incomplete data· problem: the complete (unobservable) data are 
independent and identically distributed pair of random variables with joint 
distribution: 

p{A = i,B = j} = ..Xihij,O,i = 1, ... ,M,j = 1, ... ,N. 

The incomplete (observed) data are the B's alone, and Yi is the observed 
proportion of B's with value j. The MLE based on the observed data is the . 
right-hand side of(12), and since this is a standard estimation problem for 
incomplete data we can apply the EM algorithm, giving the iteration {10). 

If the problem does not have a non-negative solution, then the algorithm 
finds the closest aproximation to it, in the Kullbach-Leibler sense. 

The algorithm (10) can be derived in at least one more way. As it has been 
shown previously, there are some techniques to derive iterative algorithms to 
solve non-linear equations. If we consider equation {6) with p = 1, the 
resulting formula is identical to {10). This fact shows that the EM algorithm 
can be generated in different ways to solve the same problem. 
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5.3 Image Estimation: the Bayesian Approach 

The Bayesian approach provides an elegant way of formulating imaging prob
lems in terms of probability theory, using the Bayef:l rule: 

(XIY) = p(Y!X)p(X) 
P p(Y) (13) 

Here X could be a specific visual scene and Y the image of a scene. The 
probabilities can be interpreted as : (i) p(XIY) the probability of a given 
scene given the image (also known as Posterior Probability), (ii) p(YIX) the 
probability of an image given the scene, (iii) p(X) the probability of looking 
at a given scene, and (iv) p(Y) the probability of an image. Its clear that 
p(YIX) represents the model of how an image is formed from the scene (a 
physical model), and p(X) the a priori probability of a given scene (p(Y), the 
probability of an image, is a normalization factor which can be determined 
from p(YIX) and p(X)). In general, p(X) will represent the constraints on 
the solution. 

The problem is usually formulated as finding the most probable scene X 
given some a priori knowledge about it p(X) (i.e. some general condition 
like smoothness), the image Yanda model of image formation p(YIX), that 
is, finding a scene which maximizes the posterior probability, which is called 
the MAP estimate. 

In this context, Bayesian inference can be seen as a natural consequence of 
the idea of using energy functionals to impose smoothness constraints in early 
vision problems. This idea has been very influential, and has been formalized 
by Poggio and Torre [30]. They noted the similarity of these methods to a 
branch of mathematics called regularization theory, and proposed a unified 
framework for vision algorithms. Regularization required that the solution to 
a problem depends smoothly on the data. The inability to deal with discon
tinuities had important practical advantages: the energy functions tended to 
be convex and not have local minima. Thus, they could be minimized by 
simple methods such as gradient descent. 

For example, in the one dimension case, if data dis specified on a regular 
lattice, the energy functional is discretized, and we choose the smoothness 
operator to be 8f f8x [10], the energy functional becomes: 

E(Ji) = l)fi- di} 2 +A L {fi+1 - fi} 2 

i i 
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This minimum can.be found by steepest descent techniques by iterating: 

where K is a constant. 
This energy-regularization approach can be incorporated directly in the 

Bayesian framework using the Gibbs distribution (see below): 

. e-f3E(f;) 

p(fi) = z 
In this way we can express constraints in a probabilistic framework. 
It is possible in some cases to find an extension of the EM algorithm to 

MAP (Maximum a Posteriori Probability) problems. Maximum likelihood 
(ML) and MAP approaches to parameter estimation are related by Bayes. 
rule: 

(AIY) = p(YIA)p(A) 
P p(Y) 

. (14) 

where p( A) and p(Y) are the "a priori" probability distributions of the 
parameters and the observed data. Of course, this approach requires the 
effort of specifying a prior model and computing and summarizing the joint 
distribution. 

In this case, assuming a normal distribution of the prior (which corre
sponds to a penalty function which is a weighted sum of the squared devia
tions of image components from their a priori mean values), the function to 
be maximized is [38]: 

a 
log(p(AIY)) = log(p(YIA))- 2(A- m)tR(A- m) 

where R is a diagonal matrix with elements ri. The expected value of 
log(p(AIY)) given A(n) is: 

Y;h··A(n) a 
""[-h··A · + ' '3 3 log(h··A ·)]--(A- m)tR(A- m) ~ ~ SJ J " h • d n) SJ J 2 

s J L..Jk skAk 

This is the E-step of the algorithm. The M-step is performed by setting 
to zero the first derivative of this equation with respect to Aj: 
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This system can be solved easily, yielding the new estimate Ai+l: 

A(n+l) = arimi- 1 + .j(arimi- 1)2 + 4ari~~n+l) 
' 2ari 

(15) 

that only involves an additional evaluation to the standard EM algorithm. 
This algorithm constitutes an extension of the EM algorithm to deal with 

normally distributed priors in the framework of Bayesian estimation. In the 
next section we will see other techniques to express the prior knowledge about 
the estimated data. 

5.3.1 Markov Random Fields and Bayesian processing 

A MRF (Markov Random Field} is a probability distribution defined over a 
discrete field where the probability of a particular variable Ui depends only 
on a small number of its neighbors, 

(16) 

We can use MRF's to model the correlated structure of dense fields or 
the smoothness inherent in visible surfaces and natural patterns. 

We can specify conditional probabilities for particular configurations. 
However, calculating p(u) such that all the marginal distributions are correct 
is a difficult problem, in general. There is a single way of specifying a proba
bility distribution whose conditional probabilities are Markovian [9]. We can 
use a Gibbs (or Boltzman) distribution of the form: 

(17) 

where Tp is the temperature of the model and Zp the partition function: 
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Zp = L exp( -Ep(u)/Tp) 
u 

The energy function Ep( u) can be written as: 

Ep(u) = L Ec(u) ' 
cEC 

where each clique energy Ec( u) depends only on a very few neighboring 
points. In this way one can give a probabilistic interpretation to problems 
involving minimization of energy functionals, which are a special case of the 
Bayesian formalism corresponding to MRF's. 

If we wish to generate a random sample from the distribution_ (16), we can 
use an algorithm called Gibbs sampler. This iterative algorithm successively 
updates each state variable Ui by randomly picking a value from · 

1 
p(uilu) = -exp(-Ep(uilu)fTp) 

Zi 

where Zi = Eu; exp( -Ep(uilu)/Tp)· This random updating is guaranteed 
to converge to a representative sample from the Gibbs distribution. To speed 
its convergence, simmulated annealing can be used. 

The MRF techniques have attracted much attention due to their capacity 
to incorporate various constraints [40, 41, 42, 44, 46]. Furthermore, MRF's 
fit naturally in a Bayesian formulation. Finally, it was pointed out in [14] 
that standard regularization techniques can be considered as special cases of 
the MRF approach. 

A coupled Markov random field model was introduced in [33] in which 
image restoration and edge detection are performed simultaneously. The 
basic idea was to include a line process that is indexed by the dual lattice 
and suspends the continuity constraint associated with the pixel pair {!, 1) 
when the line is "on", but preserves the constraint when the line is "off". In 
one dimension, this can be done by defining an energy functional: 

E(Fi, lj) = L {fi - di }2 + ,\ L {fi+l - fi} 2 (1 - li) + p, L li 
i i i 

Using the Gibbs distribution on E(Fi, 11) we obtain two coupled MRF's, 
fi and li. The goal is to find the most probable configuration of fi and li 

27 



given this distribution, or alternatively, to minimize E(Fi, lj) with respect 
fi and li simultaneosly. This minimization is not straightforward as usually 
E(Fi, lj) will have many local minima, and involves using a Monte Carlo 

. algorithm (33]. 

Gibbs Sampler 

This method was proposed in (33]. The optimization of a non convex energy func
tion can be carried out via simulated annealing procedure that uses the Metropolis 
algorithm. The intensity of a pixel in the current image estimate is altered, and the 
change of energy .6.E due to the alteration is calculated. A move that reduces en
ergy is accepted always, and a move that increases energy is accepted with probability 
exp( -.6.E /T), where T is the temperature of the system: 

1. Choose a new state Ui randomly from the set of allowable 
states. 

2. Compute .6.E. 

3. if .6.E ~ 0 , make the move. 
if .6.E > 0, generate a random number r E [0, 1], 

(a) if r ~ exp( -.6.E /T), make the move. 

(b) if r > exp(- .6.E /T), leave Ui unchanged. 

We can formulate an energy minimization problem to describe the shape 
from focus paradigm, in the same way as other computer vision problems 
have been stated (1 0]. In this case the expression to be minimized could be: 

E(A, o) - I: I I: h(x, y, z, x', y', z')[A(x', y', z')o(x', y', z')]- Y(x, y, z)l 
x,y,z x 1,y1 ,z1 

+p, I: [('2: o(x, y, z'))- 1] (18) 
x,y z' 
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where p, is a constant and o(x,y,z) is a binary function which represents 
the support of the visible surface. Obviously, this function has a minimum 
when o(x, y, z) represents the visible surface and ..X the intensity pattern on 
the surface. We have not implemented this version of the shape from focus 
problem because of the high nonlinearity of the expression. This optimization 
problem could be solved using nonlinear optimization techniques like the 
Gibbs sampler, but in this case the cost for each iteration of the algorithm 
(which includes a projection in the observable space of the estimated scene) 
is too high to be implemented. Nevertheless, it is a good example of MRF 
modelling for the shape from focus problem. 

6 Surface recovery 

As we are dealing with opaque objects, the recovery of ..X will give us the 
observed surface in a implicit way. ..X is defined in 3D space, and because of · 
the image formation process, for every possible ( x, y) there exists only one 
point ( x, y, z) with a positive value. This value corresponds to the radiance 
value of the surface on that point. If we iterate the algorithm until its 
convergence, and the noise due to the imaging system is relatively low, the 
solution ..X will represent a surface that can he recovered in a straightforward 
way by looking for all z where (x, y, z) is positive (in the case of black points 
~with null emission- the surface cannot he recovered). But as we have seen 
previously, some practical problems prevent it. To overcome these problems, 
we have adopted the Bayesian way -with some new strategies- which allows 
a slight improvement of the convergence rate and an iterative recovery of the 
surface. 

6.1 1st Case: Avalability of a prior image. 

Sometimes, in spite of the fact that we are using an optical system with 
limited depth of focus, we can acquire a perfectly focused image, free of 
out-of-focus effects. This image can he obtained using a small aperture {in 
the limit, a pinhole camera would produce always perfectly focused images). 
By acquiring images with a greater aperture and a neutral density filter to 
equalize the exposure, we can obtain a series of partially defocused images of 
the same scene, which are rich in depth information. These last images can 

29 



be regarded in the framework of image estimation as the" observed" degraded 
{by noise a.nd out-of-focus) images, a.nd the focused image as the prior grey 
level distribution of the "restored" image. In this case, the problem of depth 
perception is reduced to the estimation of the prior deformation during the 
restoration process. 

First of a.ll, it ma.y be useful to remember tha.t the algorithm may be seen 
as a. special type of gradient-ascent algorithm. In ea.ch step, the algorithm 
reaches a.n estimated solution which is nearer from the ML solution tha.n 
the previous ones. When using the Ba.yesia.n version of the algorithm, the 
estimated solutions will increase the posterior probability distribution. 

As we ha.ve seen, at the MAP solution 

a(Zn(p(.XIY))) = a(Zn(p(YI.X))) _ a(%(-X- m)tR(.X- m)) = 
0 

a.xi a.xi a.xi 

To build geometric flexibility into the prior, we can consid~r m to be a 
function of several parameters, m(d), which will represent the shape of the 
prior. Subsequently, the Bayesian solution tha.t maximizes the a posteriori 
probability must satify 

a(ln(p(.XIY))) = 
0 

d a(ln(p(.XIY))) = 
0 a~ a.n a~ 

The use of parametric constraints results in a. special case of the Bayesian 
formalism which is a.n alternative to the sta.nda.rd smoothness constraint. It 
assumes a parametrized form for the solution and determines the parameters 
to best match the da.ta. The choice of the parameterized form corresponds to 
the prior knowledge. These ideas ca.n be found in [77, 94]. It extends the idea. 
of smoothness constraints to a more general idea of constraint which includes 
other types of constraints like rigidity, Lambertian refiexion assumption, etc. 
Thus, through the choice of the parameters and the transformations governed 
by these parameters we can impose constraints to the problem which could 
be hardly stated in other wa.ys. If visible surfaces could be easily represented 
using parametric forms (like quadric surfaces), the gradient of ln(p(.XIY)) 
with respect the parameters could be computed from the dependence of m 
on d;: 

a(ln(p(.XIY))) = L a(%(-X- m)tR(.X- m)) ami 
a~ i ami a~ 
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where the sum is over all the points. But this approach is very restrictive 
when dealing with the representation of visible surfaces [9]. In this case, 
the most useful techniques to model visibles surfaces have been spline-based 
representations and MRF. Both of these approaches are examples of locally 
parameterized models of shape. 

In a first aproximation we have not considered any prior model for vis
ible surfaces. Surfaces are represented by a function s(x,y) with no shape ' 
constraints. We allow a warped prior restricted by only a constraint: the 
prior must be a surface and must "cover" all the observable space. In 
other words, for every ( x, y), the prior must be defined in one and only 
one ( x, y, z) E n. This fact significantly simplifies the estimation of the prior 
deformation, since it is reduced to seeking the z which makes the difference 
I.X(k)(x,y,z)- m(x,y)l smaller for every (x,y). The set of z coordinates 
determined in this way define the shape of the prior. 

We leave the use of more advanced methods to model the warping as 
an open problem to be solved in the future . It seems that linear models 
developed for surface reconstruction (based on generalized splines), and sta
tistical models can be incorpored in this framework as a way of expressing 
the prior knowledge about the surface. In general, this knowledge is reduced 
to considering smooth surfaces with discontinuities. 

Using this technique, it has been possible to recover visible surfaces from 
sequences of computer generated images representing different scenes ac
quired with an optical system. Besides the estimation of the visible surface, 
this approach results in the acceleration of the convergence of the plain EM 
algorithm. 

6.2 2ond Case: Non-avalability of a prior image. 

In some situations, where depth from focus estimation could be of great in
terest (i.e. when images are acquired with a microscope and depth differences 
in the scene are greater than the depth of focus of the optical system) it is 
not possible to have a focused image of the scene to be used as prior image. 
In these cases, we can introduce the grey level values of the prior as new 
parameters to be determined during the estimation step. Then, this step in
volves the determination of the following parameters: the "restored" scene, 
the prior values, and the deformation of the prior. 

While the estimation of the "restored" scene -given an estimation of the 
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prior values and a deformation- can be achieved with the same method that 
is used in the first case, the question of how to estimate the intensity values 
of the prior must be carefully discused. The deformation can be determined 
in the same way as in the previous case, but now the prior must also be deter
mined at each step. It must be noted that the prior image is not an objective 
of its own, and that we are mainly interested in the resulting deformation. 

Our method for estimating the prior has its origin in the observation of 
the behaviour of the EM algorithm. When we iterate the algorithm in order 
to estimate the scene which has produced the observation, we observed that 
while high frequencies are well estimated in the (x,y) planes for every z, 
the algorithm has some problems in. eliminating some low frequencies which 
have been produced in the first steps. Thus, the scene .X(x, y, z) appears as 
a dense space, that is, almost all the points have positive values. As we have 
discussed, the algorithm must converge to a solution where there is only one 
positive value for every (x,y), but in practice this convervenge is too slow. 
The reason for this slowness is that scenes presenting these problems are 
very close, from the statistical point of view, to the ML solution. On the 
other hand, these scenes are not close enough, given a classical norm between 
images, to the ML scene and they cannot be considered as good estimation 8 • 

The idea is to force the algorithm to a solution which embeds a surface using 
the Bayesian approach. 

From the fact that the estimated scene is, from the statistical point of 
view, close to the ML solution we can conclude that it produces an obser
vation which is very close to the observed image. At the same time, it is 
very different from a correct scene. In other words, the region of the pos
terior density function near the maximum is "flat" -which means that large 
variations in the "solution" produces "small" variations in the value of this 
function- and the scenes that correspond to this zone have a great variance. 
The only way we can overcome this problem is by using the Bayesian term, 
the prior, as a tool to navigate in the right direction. 

The prior values are determined in the following way: given an estimate 
_x(n), the prior values may be computed as J(n+l)(x, y) = Lz _x(n)(x, y, z). 
At each iteration step, the prior is computed by integrating the values of 

8This fact is characteristic of the problem we are dealing with, and has no correspon
dence with any similar problem when using the algorithm to restore or reconstruct two 
dimensional images or dense three dimensional volumes 
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the estimated solution for each z tube. In this way, we build a prior which 
supports the fact that the solution must be a surface in n. We have tested 
this algorithm with synthetic data, and we have observed no bad effects 
inthe reconstruction algorithm. Moreover, the prior estimated in this way 
converges in a few steps to the right one. 

The whole algorithm can be written as follows: 

1. Initialize A(o) and m(o) vith a constant value for all (x,y,z); 

2. k = 0; 

3. Until ve reach convergence { 

(a) Compute A(n+l) vith (15) vith mi = m~n); 

(b) J(n+l)(x, y) . Ez A(n+l)(x, y, z) 

(c) For every (x,y,z), determine the best z such that if 
m(n+l)(x, y, z) = I(x, y), then lm(x, y, z)(n+l) - A(n+l)(x, y, z)l 

is minimized. } 

4. The depth map is computed from m(n+l) by looking at every (x,y) 
vhich is the z such that m(n+l)(x, y, z) f. 0. 

' The surfaces estimated after 500 and 20000 iterations of the algorithm 
are shown in figure (6). The origin.al data was generated from a scene with a 
pyramid shape. As we can see, the algorithm converges to the exact solution. 

7 Conclusions and future research 
I 

The most important conclusions are the following: 

• Iterative linear methods are better options for image restoration than 
matrix-based methods because of their implementability. Non-linear 
iterative methods, however, perform better in the presence of noise in 
the image than linear methods. 

• Theoretically, it would appear that the MLE approach to the prob
lem of depth from focus permits the recovery of visible surfaces, but 
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when using the EM algorithm (or other iterative algorithms to find the 
ML estimate), practical considerations prevent the application of this 
method. 

• The Bayesian approach allows one to express visible surfaces (or their 
parametric forms) as a set of parameters to be estimated by the EM 
algorithm, resulting in an intensity-based method to recover depth from 
focus. 

• The use of parametric constraints results in a special case of Bayesian 
processing which in some cases provides better control over the es
timated parameters than standard smoothness constraints. This ap
proach is useful when visible surfaces are easily represented by para
metric forms like quadric surfaces. 

• Estimation of visible surfaces based on physical modelling requires si
multaneous estimation of the object surface and the intensity pattern 
on it. The characteristics of this pattern (texture, gradient, etc.) have 
realty influence on the convergence speed of the EM algorithm. Tex
tured objects, obviously, are better estimated than smooth-patterned 
objects. 

• EM algorithm reaches convergence in a few steps (200-300), but esti
mated parameters can not be taken as good estimations of the shape 
from focus problem. This apparent contradiction is caused by the spe
cial form of our problem : ML and MAP estimates, which are far from 
representing physical scenes (composed of opaque objects), are "pro
jected" on the "observable" space very close to real scenes. In spite of 
this fact, the intensity pattern on the surface can be "reconstructed" 
very accurately from these data, and can be used within the bayesian 
framework to obtain correct surface estimates. 

• In the general case we need to acquire as many image planes as depth
levels we want to estimate to get a "good" estimate. In the optimal 
case, we need a focused observation of each point of the visible surface. 
In the case of having a prior image perfectly focused in all its points, 
the algorithm can work with only one observation. 

34 



One possible way of extending this method is by combining it with an 
edge-based method to recover depth. These methods are faster than intensity
based methods, and give better estimates of depth for object edges. This 
combination has been implemented succesfully in depth from stereo [93) where 
the integration was performed by coupling the disparity estimates from an 
independent edge-based stereo algorithm to the energy functional of the 
Markov Random Field associated with an intensity-based stereo algorithm. 
In figure 7 a result from [95), using an edge-based focus method, is shown. 
The fusion of this information with .the estimation of our method could result 
in a better depth estimation. 

Another possible improvement is the use of different forms of a priori 
knowledge about the estimated surface. Some of these methods allow a very 
real modelling of visible surfaces, although in many cases they are computa
tionally expensive. The use of generalized splines models [10, 9, 37) or MRF 
models (33) could be a way of better regularizing the estimated surface as 
well as accelerating the convergence of the algorithm (in the sense of getting 
better surface estimates in fewer steps). 

Finally, some effort should be made in order to accelerate the algorithm, 
like the study of multigrid techniques (in order to accelerate the iterative re
construction by first using a coarse-grid iteration to provide an initial condi
tion for the more computationally demanding fine-grid iteration) [90, 73, 91) 
or fast convergence algorithms [71]. 
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Figure 1: Early vision modules 
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Figure 2: Light microscope focus series corresponding to different layers of 
an integrated circuit. Three-dimensional inspection of integrated circuits is 
an important point in the manufacturing process because of the relationship 
between the topography and the electric properties of the circuit. Depth 
from focus methods provide a non-invasive technique for the estimatation 
of the three-dimensional profile of the circuit using low-cost equipment. In 
this series we can clearly perceive how focus gives depth information to the 
observer. 45 
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Figure 3: Illustration of the depth of focus. 
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Object Lens Images 

Figure 4: Description of the imaging experiment . . Given an object located 
in front of the the optical system, we can acquire different images of it by 
changing the distance between the lens and the image plane. Tha image of 
a visible point of the object will correspond to different versions of the point 
spread function of the optical system 
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Figure 5: Synthetic image used in the experiment (stair). 
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Figure 6: Recovered surfaces after 500 and 20000 iterations of the algorithm. 
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Figure 7: Depth estimation using an edge-based method. 
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