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A Lagrangian-Eulerian Finite Element Method with Adaptive Gridding 

for Advection-Dispersion Problems 

YUJI DIRil AND KENzi KARAsAKI 

Earth Sciences Division, Lawrence Berkeley Laboratory 

University of California, Berkeley, California 94720 

ABSTRACT 

In the present paper, a Lagrangian-Eulerian finite element method with adaptive 

gridding for solving advection-dispersion equations is described. The code creates new 
I 

grid points in the vicinity of sharp fronts at every time step in order to reduce numerical 

dispersion. The code yields quite accurate solutions for a wide range of mesh Peclet 

numbers and for mesh Courant numbers well in excess of 1. 

INrRODUCTION 

The advection-dispersion equation used for simulating subsurface transport of solutes 

has been solved by a number of numerical methods including Eulerian, Lagrangian and 

Lagrangian-Eulerian methods. In recent years, many attempts have been made to eliminate 

numerical oscillation and dispersion, which are especially troublesome for advection

dominated problems. The mixed Lagrangian-Eulerian methods have been gaining 

popularity for solving these problems. 

1 In the mixed Lagrangian-Eulerian methods, the advection-dispersion equation is 

decomposed into two parts, one controlled by pure advection and the other by dispersion . 

(Neuman, 1981,1984). The advected concentration profiles are calculated by Lagrangian 

approaches such as particle tracking methods, whereas the dispersed concentration profiles 

are numerically solved by conventional techniques such as the finite difference method or 

finite element method on fixed Eulerian grids. 

1 Now at Taisei Corporation, Technology Research Center, 344-1 Nasemachi, Totsukaku, Yokohama 245, 

Japan. 
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Neuman (1984) proposed an adaptive scheme for calculating the advected profile. In 

his paper, continuous forward particle tracking is used for nodes in the vicinity of sharp 

fronts and single-step reverse particle tracking is used for nodes away from sharp fronts. 

However, his method still suffers from some numerical dispersion due to the interpolation 

scheme used in the tracking methods. Furthermore, the accuracy of the results is highly 

dependent on the number of particles introduced in the model. 

The interpolation scheme of Neuman (1984) was improved by Cady and Neuman 

(1988). In their scheme, the fixed grid is covered by a cloud of front-tracking particles, the 

concentration at the grid is calculated from the concentrations of the cloud particles by 

triangulating these cloud particles according to the algorithm of Sloan and Houl~by (1984) 

and then the residual dispersion finite element equations are solved on this local grid using 

linear functions. They noted that their approach is based on a mesh refmement idea. 

Another mesh refinement approach with a Lagrangian-Eulerian method has been 

developed by Yeh (1990). His approach successfully reduces numerical dispersion by 

zooming the sharp-front elements in which the gradients of concentration are steep, and 

activating hidden fine-mesh nodes in the elements. 

Karasaki (1987,1988) developed a numerical code that employs a mixed Lagrangian

Eulerian scheme with adaptive gridding, which is called TRINET, for three-dimensional 

fracture networks of channels. This approach avoids numerical dispersion by creating new 

Eulerian grid points instead of interpolating the advected profile back to the fixed Eulerian 

grid. Another important feature of his approach is that he used tracking methods not for 

particles but for nodes. Therefore, the number of particle introduced in the model is not an 

issue. 

In the present paper, the scheme used in TRINET is extended and applied to a two

dimensional porous medium model, TRIPOR. In addition to the ability to handle a two

dimensional continuous medium, the main advantage of TRIPOR is its capability to create 

new nodes anywhere in a two-dimensional domain while TRINET creates new nodes only 

along existing channels. The present paper describes the numerical approach and some 

applications for one- and two-dimensional problems in order to demonstrate the capability 

of the method. Comparing results of the preliminary studies against analytical solutions 

suggests that the present method gives accurate results for a wide range of Peclet numbers 

and for Courant numbers well in excess of 1. 

.. 
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NUMERICAL APPROACH 

The flow field is first solved by a simple Galerkin finite element method in order to 

calculate the velocity profile for the entire domain. Since linear shape functions are 

currently used to calculate the flow field, the velocity is assumed to be uniform within a 

given element. The code then solves the solute transport problem expressed by the 

advection-dispersion equation written as 

de 
dt = V (D · V c - vc ) + q (1) 

where cis solute concentration, Dis dispersion coefficient, vis pore water velocity, q is a 

source term and V is the gradient operator. Since the equation is decomposed into two parts 

as mentioned earlier, advection and dispersion problems are calculated separately. The 

advection part is solved by tracking methods and the dispersion part is solved by a Galerkin 

finite element method with fixed Eulerian grids. Triangular elements are used for finite 

element discretization in TRIPOR. 

Tracking Methods for Advection 

The tracking methods used in this approach are done in the same manner as described 

in Neuman (1984) except that they are applied not to particles but to nodes. Therefore, no 

particles are introduced in the model. First, backward tracking is applied to obtain an 

advected concentration for all nodes (Figure 1 (a)). The advected concentration of node j at 

tiine t+At, c
1
1.+Lit, is given by that of the point x~. which is tracked backward along the 

. 1 
streamline from node j. 

x. =x.- v dt * ft+Lit 
1 1 t 

j= 1,2,- .. ,N (2) 

-t+Lit - ) * c j = c (xj' t+ At = c (xj , t ) (3) 

where xj is the location of nodej, c (xj*· t) is the concentration of xj* at timet, At is time 

step size and N is the number of nodes. 

If the tracked point, xj*· does not correspond to a fixed node, c tLit is calculated by a 

finite element interpolation scheme written as 

-t+Lit 3 * c
1
. = I. c (x , t )¢. (x

1
.) 

m=l m m 
(4) 
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where tP. (x ~') is the basis function evaluated at x ~ and x denotes the vertex of the 
m J * J m 

triangular element surrounding xj • 

Second, forward tracking is used for nodes where concentration gradient is greater than a 

user-defined tolerance, or for nodes defined by the user as moving nodes. The node j is 
I 

tracked forward along the streamline to the point x., and the concentration of the point at 
• A.- o t+Lit • • b th f d • • ) . tune t+LU, c j , ts gtven y at o no eJ at timet. 

j= 1 ,2,!-_ .. ,N (5) 

(6) 

, 
If the tracked point, x., does not correspond to a fixed node, a new node is created at 

J 
the point as shown in Figure l(b). In this manner, sharp fronts are kept at exact positions 

during the simulation. If the sharp front has passed through the area, the created nodes in 

the area are not necessary and are eliminated. 

Flow Direction Flow Direction 

(a) (b) 

Figure 1. Tracking methods in TRIPOR: (a) backward tracking method, 

(b) forward tracking method: Cross denotes the point tracked backward. 

Solid circle and dotted line denote the new node and element, respectively, 

created by forward tracking method. 



- 5-

Finite Element Method for Dispersion 

As a Galerkin finite element method is used for discretization in space, the dispersion 

part of equation (1) can be written in matrix form as 

[R] ~~} + [P] {c} = {F} (7) 

[R], [P] and {F} are given by 

N J e e R ij = I. . .e ¢ . ¢ . dve 
.e=l v 1 } 

(8) 

N f e e Pij = I, . .e. (V cp. )·D ·(V ¢.) dve 
e=l v ' J 

(9) 

M J e . F; = I. re c/). n ·[D ·(V c)] dre 
e=l 1

- ' 

(10) 

where ¢ ~ is the basis function of element e associated with node i, ve is the region of the 
' element, N is the set of elements connected to side i-j, re is the boundary of element e, M is 

the set of boundaries connected to node i and n is the unit vector normal to P and pointing 

outward. As a finite difference approximation is used for the time derivative, equation (7) 

can be written as 

(R;; +8P .. )c~+.1t=[R;; -(l-8)P··]c~+F
I:l.t '1 } l:l.t lJ } ' 

(11) 

where cJ+.1t and cJ are the concentrations of node j at time t+At and t, respectively and 8 is 

the weighting function for time and is 2/3 in this paper. 

The Complete Mixing Method in TRIN~T 

Here, we briefly describe the complete mixing method which is currently assumed at . 

intersections of channels in TRINET. All the fixed nodes are tracked backward for At along 

the possible channels as shown in Figure 2(a). The nodes in the vicinity of sharp fronts are 

also tracked forward for At along the possible channels as shown in Figure 2(b ). In these 

procedures, if the grid is tracked more than one channel, the concentration at intersections 

are calculated by the complete mixing method. In the method, the concentrations in 

downstream channels, Cd, are given by 
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(1~) 

where q is flux and subscripts u and d denote upstream and downstream of intersection, 

respectively. Therefore, the concentration of a fixed node is calculated from the 

concentrations of upstream points tracked backward by applying equation (12) to each 

intersection. In the forward tracking method, the concentrations of created points are 

calculated in the same manner. The complete mixing method is also used in TRIPOR if 

flow is converging into the same node from more than one position. 

Flow Direction Flow Direction 

t 

~ ........ ....•...... 
" ........... . . . . ~ . . 

' 
. . . 
• l . . • ~ 

! 

~-·~··· ~ ............ ........... ........ 
; 

J • 
• . . 
• 
t 

(a) (b) 

Figure 2. Tracking methods in TRINET: (a) backward tracking method, 

(b) forward tracking method: Open circle denotes the node being tracked. 

Cross denotes the point tracked backward. Solid circle denotes the new 

node created by forward tracking method. 
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APPLICATIONS 

In the following preliminary studies, 1RINET is used to model a porous medium by 

setting appropriate value of apertures for channels in a lattice configuration. 

One-Dimensional Problem 

The one-dimensional problem concerns the solution of the following advection

dispersion equation in a uniform velocity field. 

subject to 

ac _ D a2c _ v ac 
at- ax2 ax 

c(x, 0) = 0 

c(O, t) = 1 

c(x, t) -7 0 

O~x<oo 

t>O 

t > 0, X -7 oo 

The analytical solution is given by Carslaw and Jaeger (1946) and can be written as 

c(x t) =-er£ -- +-exp- erfc --1 ,x-vt) 1 (vx) (x+vt) 
' 2 ...j 4Dt 2 D ...j 4Dt 

(13) 

(14) 

First, we solve the problem using a fine grid system [L1x=0.01(0~1)]. Figure 3 and 

4 show the results of our methods at t=50 for case A (D=l0-5, v=10-2, At=5, Peclet 

number:Pe=vL1xiD=10, Courant number:Cr=vAt/Ax=5) and case B (D=10-6, v=l0-2, 

At=5, Pe=lOO, Cr=5), respectively. In both cases, no nodes are defined as moving nodes. 

As can be seen in these figures, the results of both TRINET and TRIPOR agree very well 

with the analytical solution for a wide range of Peclet numbers and for Courant numbers 

well in excess of 1. 

In order to demonstrate the capability of our methods, an irregular grid system is also 

used for solving this problem (case C). In this grid system, only the vicinity of the 

concentration boundary is discretized [Ax=0.01(~0.2), no discretization for 0.2<x<1], 

and the nodes for ~0.2 are defined as moving nodes. The parameters used here are the 

same as in case A except Pe and Cr. The results of 1RIPOR at t=50 are shown in Figure 5. 

Although no nodes are initially set for 0.2<x<l, the code yields quite accurate results by 

creating new nodes in the vicinity of the concentration front. This result suggests that 
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hardly any attention has to be paid to discretizing the domain away from the concentration 

boundary. 

1 

0.8 

0.6 
<:> 

~ 
0.4 

--Analytical 

0.2 X TRINET 

• TRIPOR 

0 
0 0.2 0.4 0.6 0.8 1 

X 

Figure 3. Results obtained with TRINET and TRIPOR, and 

analytical solution for one-dimensional problem at t=50 for 

case A (Pe=lO, Cr=5). 

1 

0.8 f--

0.6 f-

0.4 1-

0.2 f-

0 
0 

--Analytical 
x TRINET 

• TRIPOR 
I I 

0.2 0.4 

I T 
I( 

-

-

-

-

0.6 0.8 1 
X 

Figure 4. Results obtained with TRINET and TRIPOR, and 

analytical solution for one-dimensional problem at t=50 for 

case B (Pe=lOO, Cr=5). 
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1 

0.8 

0.6 
c 

~ u 
0.4 

--Analytical 
0.2 • TRIPOR 

0 
0 0.2 0.4 0.6 0.8 1 

X 

Figure 5. Results obtained with TRIPOR and analytical 

solution for one-dimensional problem at t=50 for case C 

[Ax=O.Ol (0<---XS0.2), no grid for 0.2<x<l]. 

Two-Dimensional Problem 

The two-dimensional problem concerns the solution of the advection-dispersion 

equation in a uniform velocity field, which is written as 

subject to the following initial and boundary conditions 

c (0, y, t) = 1 

c (0, y, t) = 0 

-a :S;y:S;a 

y< -a, y>a 

lim de lim ac = 0 
y-.±-ay = o, x-.-ax 

(15) 

where DL and DT are longitudinal and transverse dispersion coefficient, respectively, and a 

is half length of a line source. The direction of flow is along the x-axis. The analytical 

solution of this problem is given by Javandel et al. (1984) and can be written as 
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x ( vx) Jt { v2r x2 J c(x,y, t) = exp - ex -- -- r -312 

4-~ 2DL 0 4DL 4D 't' 
~mOL L 

· e + erf dr [ 1 a-y j ( a+y ]~ 
2~ 2-{V; 

(16) 

A schematic view of this problem is shown in Figure 6. The parameters used in this 

problem are DL=10·2 , Dr=2.5x10·3, v=O.l and a=0.5. Two cases using different grid 

systems are analyzed. The geometric parameters for case D are L1x=0.2, L1y=0.1, 

L1t=2(Pe=2,Cr=2) and those for case E are L1x=0.5, Ay=O.l, L1t=5(Pe=5,Cr=l). The 

concentration distribution obtained with TRIPOR for caseD, which is almost identical to 

that of the analytical solution, is shown in Figure 7. The concentration profiles obtained 

with TRINET and TRIPOR at different coordinates are shown in Figure 8. Although a 

smaller Peclet number (case D) yields better results, the results of all cases agree favorably 

well with the analytical solution. 

Because the domain is discretized along the flow direction, new nodes are created along 

elements in TRINET and along the sides of elements in TRIPOR. Therefore, not much 

. difference is seen between the results of the two codes. Further study is needed where the 

flow direction is variable in space to demonstrate the advantage of TRIPOR over TRINET 

for two-dimensional problems. 

y 

3.05t-------------

v 2aiii------+---x 
10.0 

-3.051--------------

Figure 6. A schematic view of the two-dimensional model. 
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c -

q -I 
c 
~~--------~--------~--------~--------~ I 

0.0 1.0 2.0 

X 

3.0 

Figure 7. Concentration distribution obtained with TRIPOR 

at t-=20 for case D. 
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2 

--Analytical (y=0.15) 
X TRINET, case D 
+ TRINET, case E 
• TRIPOR, case D 
~ TRIPOR, case E 

3 4 

X 

(a) 

--Analytical (y=0.75) 
X TRINET, caseD 

+ TRINET, case E 

• TRIPOR, caseD 
... TRIPOR, case E 

3 4 
x· 

(b) 

5 

5 

Figure 8. Concentration profiles obtained with TRINET and 

TRIPOR, and analytical solution for two-dimensional 

problem at t=20 for caseD and E: (a) y=O.l5, (b) y=0.75, • 

(c) x=l.O, (d) x=2.0. 
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--Analytical (x=l.O) 
X 1RINET, case D 
+ TRINET, case E 

• TRIPOR, caseD 
.& TRIPOR, case E 

1 1.5 
y 

(c) 

--Analytical (x=2.0) 
X TRINET, caseD 
+ TRINET, case E 
• TRIPOR, caseD 
,. TRIPOR, case E 

1 

y 

(d) 

1.5 

2 

2 

Figure 8. Concentration profiles obtained with TRINET and 

TRIPOR, and analytical solution for two-dimensional 

problem at t=20 for caseD and E (continued): (a) y=0.15, 

(b) y=0.75, (c) x=l.O, (d) x=2.0. 
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CONCLUSIONS 

Our preliminary studies suggest that our method is capable of accurately solving 

advection-dispersion problems for a wide range of Peclet numbers and for Courant 

numbers well in excess of 1. Since the codes create new nodes in the vicinity of the 

concentration fronts at each time step, hardly any attention has to be paid to the 

discretization of space away from the concentration boundary. 

The code, however, sometimes creates flat elements (high aspect ratio elements) when 

the tracked points are close to the sides of elements. These flat elements will affect the 

convergence of the matrices and the accuracy of the results will be decreased. Further 

studies are necessary in this respect. 
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