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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
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process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ABSOLUTE LIMIT ON ROTATION OF GRAVITATION
ALLY BOUND STARS 

NORMAN K. GLENDENNING 
Nuclear Science Division, Lawrence Berkeley Laboratory, University of 
California, Berkeley, CA 94720, U.S.A. 

ABSTRACT 
We seek an absolute limit on the rotational period for a neutron star 

as a function of its mass, based on the minimal constraints imposed by 
Einstein's theory of relativity, Le Chatelier's principle, causality and a 
low-density equation of state, uncertainties in which can be evaluated 
as to their effect on the result. This establishes a limiting curve in the 
mass-period plane below which no pulsar that is a neutron star can lie. 
For example, the minimum possible Kepler period, which is an absolute 
limit on rotation below which mass-shedding would occur, is 0.33 ms for 
aM = 1.442M0 neutron star (the mass of PSR1913+16). If the limit 
were found to be broken by any pulsar, it would signal that the confined 
hadronic phase of ordinary nucleons and nuclei is only metastable, an 
extraordinary conclusion. 

INTRODUCTION 

There are many reasons why fast pulsars are interesting. We stress only one, 
the possibility that an altogether different state of matter exists besides the 
confined phase of ordinary hadrons and nuclei,- a self-bound state that it is the 
absolute ground state of the strong interaction. Fast pulsars can be signals of 
such a state, as will be explained, and they are the natural place in which the 
most plausible candidate for it would be created. We therefore seek a limit on 
the minimum possible period of pulsars assuming that they are neutron stars, 
- stars that are bound by the gravitational interaction. If a pulsar with period 
below our limit, which is obtained with minimal and impeccable principles and 
constraints listed below, should be found, it cannot be a neutron star, but must 
be of an entirely different nature (Glendenning 1992). The only alternative to 
gravitationally bound stars are stars that are self-bound and absolutely stable. 
We shall show that if the equilibrium density at which they are self-bound is 
sufficiently high, they can have shorter periods than neutron stars. 

This is a different approach to the meaning of fast rotation than has other
wise been investigated. Other works have investigated how fast stars composed 
of matter obtained from particular models can rotate. Unfortunately the most 
that can be said if a pulsar is discovered that has a shorter period than the short
est for any of the models is that those theories of dense matter are not correct 
in their details. While this is interesting, and indeed probably disappointing for 
the theorists associated with the failed equations of state, nothing fundamental 
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FIGURE I Number of pulsars as a function of period, as of about 1991. 
Many new discoveries have been made, but none lie below the lowest shown 
here. There is an instrumental cutoff in sensitivity at around 1 ms., as 
explained in the text. 

has been learned. 
So that is the challenge, not merely to find the fastest pulsar, nor to rule 

out particular equations of state, both worthy accomplishments, but to discover, 
if our limit is broken, that matter of ordinary nucleons and nuclei is only a 
metastable phase, and that the true ground state is matter of a different nature, -
matter that is self-bound in bulk by the strong interaction rather than by gravity. 
That it must be self-bound and the absolute ground state follows because as 
the pressure falls toward the outer region of the star, the matter otherwise 
would come into equilibrium with ordinary neutron star matter, which would 
be gravitationally bound' to the star, and then it would have the same rotation 
limit that we establish for such stars! The most likely candidate ·is strange 
quark matter. It has so far eluded us to either prove or disprove that this state, 
postulated by Bodmer (1971) and independently by Witten (1984), is the true 
ground state, and that the whole universe as far as has been detected, occupies a 
metastable phase, however long-lived. (The present composition of the universe, 
hadronic matter as far as we can see in all luminous objects, does not shed any 
light on this fundamental question, because the ground state of the phase that 
the universe is in is Fe56 and there is very little of that, and for well understood 
reasons.) 

Our approach is very much akin to Ruffini's mass limit for neutron stars,
so important for the detection of black hole candidates of a few solar masses. 

The background against which we report this work is shown in Fig. I. The 
cutoff at PSR 1937 +21 ("" 1.6 ms) may only reflect the well known roll off of 
detection efficiency between 1 and 1.5 ms, due to the interstellar dispersion of 
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the frequencies in the radio signal, and the necessary compromises in frequency 
binning, sampling rate and computer time devoted to Fourier analysing the data 
as corrected by an unknown column height of dispersive plasma. It could happen 
that the coincidence of detector sensitivity at this time happens to fall at the 
shortest period that pulsars have. But it is tantalizing to press these limits in 
the hope of a fundamental discovery. 

MINIMAL CONSTRAINTS 

We adopt the following as the minimal principles and constraints on a gravita
tionally bound star: 

1. Einstein's general relativistic equations for stellar structure hold. 

2. The matter of the star satisfies dpjdp ~ 0 which is a necessary condi
tion that a body is stable both as a whole, and also with respect to the 
spontaneous expansion or contraction of elementary regions away from 
equilibrium (Le Chatelier's principle). 

3. Causal constraint for a perfect fluid; a sound signal cannot propagate faster 
than the speed of light, v(E) = .jdpjd£ ~ 1, which is the appropriate 
expression for sound signals also in general relativity (Curtis 1950). 

4. The high density equation of state, whatever it is, matches continuously in 
energy and pressure to the low-density one of Baym, Pethick and Suther
land (1971). 

The last constraint effects only the surface of the star, and as we have shown, 
leads to very little uncertainty in the shortest possible period (Glendenning 
1992). 

METHOD 

The maximum mass star, Mmax, in the sequence of gravitationally bound com
pact stars belonging to a given equation of state, has the minimum Kepler 
period since the mass is the largest and the radius is the smallest because of the 
gravitational attraction. Therefore we can incorporate the minimal constraints 
into a variational search over a very flexible parameterization of the equation of 
state that even includes the possibility of a constant pressure phase transition. 
We minimize J(M, P) = w1(M- Mmax? + w2P2 where WI, w2 are weights. 
We use a modified Levenberg-Marquardt method for finding the minimum of 
this non-linear function of its arguments. The function has its minimum when 
M = Mmax and P is the least possible Kepler period for that mass. From nu
merical solutions for relativistic rotating stars it has been found that the Kepler 
period of the maximum mass star of a given equation of state can be found to 
better than 10 % from the mass and radius of the non-rotating maximum mass 
star, which is a solution of the Oppenheimer-Volkoff equations. The empirical 
relation is given by a numerical factor times the classical relation that balances 
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gravity and centrifuge (Friedman, lpser & Parker 1989, Haensel & Zdunik 1989, 
Weber & Glendenning 1990), 

(1) 

We consider only uniform rotation because it extremizes the total energy for 
fixed angular momentum and baryon number (Hartle and Sharp 1967, Hegyi 
1977), and is the only kind of rotation available to dense stars with viscosity, a 
short time after their creation. · 

GENERAL RELATIVISTIC LIMIT ON ROTATION 

It may also be of interest to note a limit that can be derived from the least 
number of constraints. Assuming only that Einstein's equations of stellar struc
ture hold, then M/R < 4/9 for any static star (Weinberg 1972). Using the 
approximate relation for the Kepler angular velocity referred to above we obtain 

(
M) 312 273 M 

P ~ 10.1M R > SM = 0.167 M
0 

ms (any star), (2) 

which for PSR1913+16 is P > 0.24 ms. Since the limit on M/ R follows from 
the structure of Einstein's equations the above limit on period applies both to 
neutron stars as well as to hypothetical stars made of self-bound matter. The 
GR forbidden region is marked in Fig. II. 

RESULTS 

The results are summarized in Fig. II. We show the minimum Kepler periods 
for star sequences that are subject to the above constraints as a function of the 
corresponding maximum (limiting) mass star. Neutron stars cannot lie below 
the solid curve of this figure within the very small limits discussed in detail in 
Ref. (Glendenning 1992). We also show Kepler periods for the sequence whose 
maximum mass is 1.8M0 . In the preceding section we derived a region that is 
forbidden to all stars by the structure of general relativity, and it is also shown 
in the figure. For a neutron star with canonical mass of "' 1.44M0 , apparently 
preferred by the creation process, the lowest possible stable period of rotation 
cannot be less than"' 0.33 ms. Neutron stars cannot lie below the upper hatched 
region. No star can lie in the lower one. Between there is an intriguing region 
and we shall examine the nature of stars that can occupy it in the next section. 

DISCUSSION AND ALTERNATIVES 

The purpose of this paper, as stated earlier, is to provide a decisive means of dis
tinguishing pulsars that can be (but are not necessarily) gravitationally bound 
compact stars like neutron or hybrid stars (quark-core neutron stars), from those 
that cannot. The limit that we have obtained for the rotational period as a func
tion of star mass is necessarily lower than would be obeyed by real stars because 
there is no physical principle that requires the equation of state, whatever it is, 
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FIGURE II Minimum rotational period of neutron stars - solid curve. 
Calculated points are shown by dots. Periods of a sequence of stars whose 
maximum mass is 1.8M0 - dashed line. Region forbidden by structure of 
general relativity diagonal shaded region. 

to minimize the rotation period. Moreover, there are unstable pulsation modes 
of a rotating star associated with gravitational radiation-reaction (Lindblom & 
Detweiler 1977, Friedman & Schutz 1978, Friedman 1983). If a pulsar has a ro
tation period smaller than any of the periods for these critical modes, it will spin 
down by gravitational radiation until its period approaches that of the largest of 
the unstable modes, - all of which occur at larger period than the Kepler period 
{Lindblom 1986, Ipser & Lindblom 1989, Weber & Glendenning 1990, Weber, 
Glendenning and Weigel 1990, Ipser & Lindblom 1991). However, the· physics 
that enters the estimate of these instabilities is far less certain than that which 
determines the Kepler period, so we use this absolute lower bound of a rotating 
star. Therefore if a pulsar with rotation period and mass falling below our lim
iting curve is found, it actually lies even further below the limit established by 
nature for neutron stars. So our limit is a very conservative one. The periods of 
real neutron stars must lie above it! 

The only general category of stars that are not subject to the bound imposed 
by gravitational binding are stars that are self-bound by a short-range force, like, 
indeed most likely, the strong interaction, - stars that would be bound even if 
one could switch off gravity (which neutron stars are not, since at their densities, 
the nucleons reside in the repulsive range of their neighbors). Such a self-bound 
state must be absolutely stable to beat the limit on gravitationally bound stars, 
as already explained in the introduction. If self-bound at a sufficiently high 
equilibrium energy density, such stars could have smaller rotation periods than 
neutron stars. The connection of the limiting rotational period of such stars 
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and the equilibrium energy density, ie, of the hypothetical self-bound matter is 
trivial to establish (Glendenning 1989, 1990). Since the density (and pressure) 
decrease monotonically from the center to the edge of a star, and the edge occurs 
when p = 0, at which point the energy density is ie, it follows that the energy 
density in the interior, and the average in particular, satisfies, € ~ ie· The 
equality holds only when gravity is negligible, meaning that the mass is small. 
The average density also satisfies the identity, M = ~ R3 l. Using this relation 
in eq. (1) we have PK = 1.6(3n"/€)112 < 1.6(37r/ie)112 • Observing also the limit 
imposed on M / R by general relativity, eq. (2), we can write, 

1.21 Co) 112 > PK > 0.167 M , (self- bound star), (3) 
ie ms M0 

where io ~ 140 MeV /fm3 is the equilibrium energy density of normal nuclear 
matter. Obviously if ie is large enough, a few times nuclear density, the period 
of a self-bound star can lie in the region prohibited to neutron stars. Its energy 
profile is unlike those of neutron stars which fall smoothly to the outer edge 
of the crust. Instead a self-bound star has a sharp edge at which the energy 
density falls from the high equilibrium value of the bound matter to zero in a 
strong interaction length, - 1 fm. Such a star has a small radius for its mass 
as compared to a gravitationally bound star. This is what permits it to rotate 
rapidly without shedding matter at its equator. 

SUMMARY 

A neutron star cannot have a period for rotation that lies by more than a few 
percent below the solid curve of Fig. II. (A careful check of relaxing various of 
the "impeccable" assumptions enumerated above was made in Ref. (Glendenning 
1992).) For a 1.442M0 neutron star this means that the period must exceed 
P ~ 0.33 ms. This curve refers to the mass-shedding limit (Kepler period) and 
gravitational-wave instabilities will actually set a more stringent lower bound 
that lies above our curve. Therefore the most conservative bound for the region 
excluded to neutron stars is the one adopted here. If a pulsar is found with 
mass arid period that place it below our critical curve, it must be a different 
kind of object and it appears that the only alternative for breaking the limit on 
gravitationally bound stars is a state of matter that is self-bound in bulk at an 
energy density larger by a factor of five to ten than normal nuclear matter and 
that it is absolutely stable. This would mean that the phase we are in of ordinary 
nucleons and nuclei is only metastable, but very long-lived. The most plausible 
candidate to date, in our opinion, is strange-quark-matter. The barrier between 
normal matter and this state is well understood, and careful examination reveals 
that the universe would have evolved along the path it did, even if strange matter 
were the ground state, with almost imperceptible differences, the main one being 
the creation of cold strange matter on the time-scale of evolution of stars, namely 
at the birth of compact stars. 

What are the prospects? From the anthropocentric point of view it seems 
that the likelihood that we are in a metastable state is low. From the scientific 
point of view, it is very hard to make a case one way or the other. Many aspects 
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of the problem have been examined by many authors, and no conclusive theoreti
cal arguments are available. So finally it is an observational question; it may be a 
long shot, depending on which of the above points of view one takes, but it has a 
high payoff if the limit we have derived for gravitationally bound stars is broken! 

This work was supported by the Director, Office of Energy Research, Office 
of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. 
Department of Energy under Contract DE-AC03-76SF00098. 
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