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Abstract 

A recovery algorithm is given for the 2 x 2 x 2 problem in diffuse tomography. This three 
dimensional algorithm is computationally more complex and yields relatively more information 
than its two dimensional counterpart. 

1. Introduction 

2. Forward Problem 

3. Rewriting the Equations 

4. Solving the Equations 

5. Conclusion 

1 Introduction 

The word "tomography" refers to imaging an object by slices. X rays, for example, have high 
energy and travel straight through the body. Data analysis is linear and yields a scalar valued 
function. The oxymoron "diffuse tomography" refers to low energy imaging in which the paths of the 
radiant energy are not necessarily straight and are unknown. Data analysis in diffuse tomography 
is highly nonlinear and yields a vector valued function. Problems in diffuse tomography are highly 
nonlinear because low energy is used. Clinical applications such as neonatal imaging and annual 
mammograms are not amenable to high energy techniques which might overexpose the patient to 
harmful radiation. Experimentalists in the medical arena are presently working with near infrared 
radiation; mathematicians have done preliminary mathematical analysis of diffuse tomographic 
methods in [2, 3, 4, 5, 9]. An analytic algorithm for recovering Markov transition probabilities 
from boundary value data for the smallest nontrivial problem in three dimensions is outlined in 
this paper. We begin with a brief description of the model. 

*The author was supported in part by AFOSR under Contract FDF-49620-92-J-0067-11792, by the Applied 
Mathematical Sciences Subprogram of the Office of Energy Research, Department of Energy, Under Contract Number 
DE-AC03-76SF00098, by the National Aeronautics and Space Administration under Grant NAG3-1143, and by the 
National Science Foundation under Grant DMS89-02831. 
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Consider ann x n x n array of voxels in ~3 enclosing the object to be reconstructed. On each 
of the 6n2 outer faces there are two devices. One device shoots photons across the outside face 
into the neighboring voxel; the other device detects photons as they leave the system. For each 
of the 6n2 outside faces we collect 6n2 pieces of data. Within the array, photons travel in six 
directions: north, south, east, west, up, and down. They may change direction as long as they 
travel in one of the six preferred directions. They do not interact and may be absorbed within 
a voxel. Photons move according to a two step Markov process. The probabilities with which a 
photon moves to a neighboring voxel depend upon its previous, as well as present, location. In 
this two step formulation the state space consists of locations. We may redefine the state space so 
that photons move according to a one step Markov process. In the new state space a single state 
consists of the photon's location and direction of travel. 

There are three different types of these Markov states: incoming, outgoing, and hidden. The 
probabilities with which photons move from one state to another are referred to as transition 
probabilities. The transition matrix, M, is sparse and may be written as a block matrix with 
nontrivialsubblocks which we refer to as P;0 , P;h, Pho, and Phh· P;0 , for example, contains the 
probabilities with which photons in incoming states move directly to outgoing states. P;h contains 
the probabilities with which photons in incoming states move to hidden states. Pho and Phh are the 
transition matrices for photons starting in hidden states travelling to outgoing and hidden states, 
respectively. P;0 and Phh are always square matrices. All four of these submatrices of M are sparse 
block matrices. 

The data is written as a 6n2 x 6n2 data matrix, Q. Q;,i represents the probability that a photon 
which enters the system at source i exits the system at detector j. Q provides no time-of-flight 
information. The forward map we wish to invert is a function of the transition probabilities and 
equals Q. Given Q, we wish to recover the transition probabilities. For a given object the transition 
probabilities give a discretized "image" of the object. In traditional imaging, we recover a single 
parameter per voxel. From this information a visual picture of the object is made. In diffuse 
tomography, however, we want to recover many parameters per voxel. From this information we 
could make several "pictures" of the object. 

2 Forward Problem 

The one step Markov transition matrix, M; has a sparse block structure. Ordering the Markov 
states so that the incoming states precede the hidden states, which precede the outgoing states, 
gives M the following block structure: 

(1) 

Here M,,i equals the probability that a photon in state i moves directly to state j. P;0 , P,h, Phh, 
and Pho are one step transition matrices. They are sparse and their nonzero entries are transition 
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1, 2, 2,2,2 

2,2,1 

I 
1,1,1 2, 1,1 

Figure 1: Eight voxels, seven of which are labelled above. Voxel 1,2,1 is hidden from view. Some 
incoming and outgoing states are labeled as well. A photon which travels north into voxel 112 via 
incoming state i 5 and then turns upward traveling out of voxel 112 via outgoing state o6 does so 
with probability n112u. 

Figure 2: A 2 x 2 x 2 system is split apart so that we can see a few hidden states representing trave 
from the "leftmost" voxels, 111, 121, 112, and 122, to the "rightmost" voxels, 211, 221, 212, and 
222. 
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probabilities. For example, Pio[s,t] = the probability of a photon moving from incoming state s 
directly to outgoing state t; Pih[s,t] = the probability of a photon moving from incoming state s 
directly to hidden state t. The one step transition matrices for the 2 x 2 x 2 problem have very 
special block structures. In this case, Pho and P;0 have eight 3 x 3 blocks along their diagonals; Pih 
and Phh have identical zero structures with 3 x 3 off diagonal blocks. 

Notation : The probability that the photon will travel east into pixel 1, 1, 1 and continue east 
into pixel 2, 1,1 is written as e111e. The probability that it will turn right and travel out of the 
system is written as e111s and the probability with which it turns upwards and travel into pixel 
1, 1, 2 is written as ellln. 

Submatrices for other systems are not always square. For a n x n x n system, there are 6n2 

incoming and 6n2 outgoing states and 6n3
- 6n2 = 6n2 (n -1) hidden states. Hence for an x n x n 

problem, P;0 is 6n2 x 6n2
, Pih is 6n2 x 6n2 (n-1), Phh is 6n2(n-1) x 6n2 (n-1), and Pho is 6n2 (n-1) x 

6n2 • Ink dimensions ann x n x ... x n system is made up of n" k-dimensional cubes and has 2k large 
outer faces. Each of these large outer faces contaions n<"-1

) faces of individual cubes. Therefore this 
system has 2kn(k-1) incoming and 2kn(k-1 ) outgoing states, and 2kn"- 2kn{k-1 ) = 2kn<"- 1>(n- 1) 
hidden states. P;0 for this system is 2kn{k-l) x 2kn<"-1>, Pih is 2kn<"-1) x 2kn<"-1>(n- 1), Phh is 
2kn<"- 1>(n- 1) x 2kn<"- 1>(n- 1), and Pho is 2kn(k- 1l(n- 1) x 2kn<"-1). 

Fork EN, the i,j entry of the kth power of M is the probability that a photon starting in state 
i reaches state j after k Markov steps. If i is an incoming state and j is an outgoing state define 
Q~.i as the probability that a photon which entered the system in state i exits the system via state 
j during the first k transitions. Q~.i is the matrix in the upper right co~ner of Mk and is equal to 

k-2 

(2) Q" = P;o + Pih (~= Pf:h) Pho 
n=O 

Because we have no time-of-flight information the data we collect, Q, may be written as 

00 

(3) Q = P;o + Pih (~= Pf:h) Pho = Pio + Pih (I- Phh)-1 Pho 
n=O 

It is not difficult to show that the sum converges. We say that one solves the forward problem 
when one calculates Q from P;o, Phh, Pho' and Pih· Let f denote the forward map given by 3, so 
f ( Pio, Pih, Pho, Phh) = Q . For any three dimensional system, there are 36 transition probabilities 
per voxel since a photon may enter a given voxel via any one of six states and may exit the voxel 
via six different states. Therefore, 36n3 of the entries in Pio' Phh' Pho' and Pih are nonzero. The 
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domain of the forward map lies in the unit cube in JR36
n

3 
and satisfies the following conditions 

(4) 

eijke + eijkw + eijkn + eijks +eijku + eijkd :=:; 1 

uijke + uijkw + uijkn + uijks + uijku + uijkd :=:; 1 

dijke + dijkw + dijkn + dijks + dijku + dijkd :=:; 1 

wijke + wijkw + wijkn + wijks + wijku + wijkd :=:; 1 

nijke + nijkw + nijkn + nijks + nijku + nijkd :=:; 1 

sijke + sijkw + sijkn + sijks + sijku + sijkd :=:; 1 

for i,j, k = 1, 2, ... , n. There are similar restrictions upon the range. For an n x n x n system f 
maps these transition probabilities to the 6n2 x 6n2 matrix Q. Since Q is a transition matrix the 
image of the forward map lies in M atJR ( 6n 2 ) and for each Q E I m(f) the following conditions must 
hold: 

6n2 

(5) o :::; :L Q;,>. :::; 1 i = 1, 2, ... , 6n2 

>.=1 

If rank(Jac(f(x))) < 36n3 then we cannot hope to invert f at x. If rank(Jac(f)) = r at a 
generic point,then at most we can recover r pieces of information. At best, we can expres~ the 
transition probabilities in terms of the data and k independent parameters, where k = 36n3

- r. 
In [9] it is shown that any Q generated by the forward map for then x n x n problem contains 

may rank deficient submatrices and that the forward map is itself rank deficient. For the 2 x 2 x 2 
problem the rank of the forward map is generically 240. In the following sections we shall express 
the unknown transition probabilities in terms of a 36 * 23 

- 240 = 48 free parameters and the data. 

3 Rewriting the Equations 

Given Q we want to recover the one step transition matrices. This is a highly nonlinear problem 
and requires solving the system of nonlinear equations given in equation 3. Even in the simplest 
case, the 2 x 2 problem's counterpart to 3 is an 8 x 8 array of algebraic equations of degrees 7, 8, 
and 9. 

As for two dimensional problems, one may remove the nonlinearities from 3, (or "move" them 
to the changes of variables) by making several nonlinear changes of variables [6]. First define, 
(assuming that Pho is invertible), 

A = p-1 
ho 

(6) w = APhh 

X = ~oA 
y = P;oW- P;h 
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Assuming that A is invertible we can recover, Phh' P;0 , and P;h in terms of A if we know W, X, 
and Y. Under these substitutions, the matrix equation 3 may be rewritten: 

(7) Q(A - W) - (X - Y) = 8 

Recall that Q is the data, so 7 is linear in the unknown matrices, A, W, X, and Y. Furthermore, 
the new matrices have special block structures. Clearly, A has the same diagonal block structure 
as Pho· X is also block diagonal. Finally, W and Y have the same off diagonal block structure as 
Phh and Pih· The variables for each system/column of equations contains three each of the A;,;s, 
W;,;s, X;,;s, and Yi,;s. The W;,;s, X;,;s, and Yi.;s are functions of A;,;s which correspond to other 
columns. Although the variables differ from column to column (exactly 288 variables total-no 
repeats between columns), the columns are only artificially decoupled. 

To each column in 7 there corresponds a system of 24 linear equations in the variables which 
appear in the corresponding columns of A- W and X - Y. As far as their zero structures are 
concerned, the columns of A-Wand X- Y come in pairs. The roles of the A;,;s and W;,jS are 
reversed in the first and last columns of A- W as are the roles of the X;,jS and Yi,;s in the first 
and last columns of X - Y. Hence, one must solve the same matrix equation for the first and last 
columns of 7: See table 1. We shall consider column three of 7. The third columns of A-Wand 
X- Yare shown below: 

Al,3 Xl,3 

A2,a X2,3 

A3,3 X3,3 

(8) -W4,3 -Y4,3 

-Ws,3 -Ys,3 

-Wa,3 -Ya,3 

() () 

respectively, where () is a column vector of eighteen zeros. The 24 equations in column three can 
be written as a homogeneous matrix equation: 
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.... 

(9) 

Ql,l Q1,2 Q1,3 Q1,4 Ql,S Q -1 0 0 1,6 

Q2,1 Q2,2 Q2,3 Q2,4 Q2,5 Q 0 -1 0 2,6 

Qa,l Qa,2 Qa,a Qa,4 Qa,s Qa,6 0 0 -1 

0 

0 

0 

0 

·o 

0 

0 

0 

0 

Q4,1 Q4,2 Q4,3 Q4,4 Q4,5 Q4,6 0 0 

Qs,t Qs,2 Qs,a Qs,4 Qs,s Qs,6 0 0 

0 -1 0 0 

0 0 -1 0 

Q6,1 Q6,2 Q6,3 Qs,4 Qs,s 

Q7,1 Q7,2 Q7,3 Q7,4 Q7,5 

Qs,t Qs,2 Qs,a Qs,4 Qs,s 

Qg,l Q9,2 Q9,3 Q9,4 Q9,5 

Q~,6 

Q7,6 

Qs,s 

Q9,6 

0 0 

0 0 

0 0 

0 0 

QlO,l Q10,2 Ql0,3 Ql0,4 Ql0,5 Q10,6 0 0 

Qu,l Qu,2 Qu,a Qu,4 Qu,s Qu,s 0 0 

Ql2,1 Q12,2 Ql2,3 Ql2,4 Ql2,5 Q12,6 0 0 

Ql3,1 Q13,2 Ql3,3 Q13,4 Ql3,5 Q13,6 0 0 

Q14,1 Q14,2 Q14,3 Q14,4 Ql4,5 Ql4,6 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Ql5,1 Q15,2 Q15,3 Ql5,4 Ql5,5 Q15,6 0 0 0 

Q16,1 Q16,2 Ql6,3 Ql6,4 Q16,5 Q16,6 0. 0 0 

Q17,1 Q17,2 Ql7,3 Q17,4 Q17,5 Q17,6 0 0 0 

Qls,t Qts,2 Qls,a Qls,4 Qts,s Qts,s 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Q19,1 Q19,2 Q19,3 Q19,4 Ql9,5 Q19,6 0 0 0 0 0 0 

Q2o,l Q2o,2 Q2o,a Q2o,4 Q2o,s Q2o,6 0 0 0 0 0 0 

Q21,1 Q21,2 Q21,3 Q21,4 Q21,5 Q21,6 0 0 0 0 0 0 

Q22,1 Q22,2 Q22,3 Q22,4 Q22,5 Q22,6 0 0 0 0 0 0 

Q23,i Q23,2 Q23,3 Q23,4 Q23,5 Q23,6 0 0 0 0 0 0 

0 0 . 0 0 

A1,a 

A2,a 

Aa,a 

W4,a 

Ws,3 

Ws,a 

Xt,3 

X2,a 

Xa,3 

1'4,3 

Ys.a 
Ys,a 

We have twelve sets of homogeneous linear equations like 9 · corresponding to twelve 24 x 12 
matrices which satisfy the homogeneous equation Cx = 0. Since the trivial solution would not be 
interesting enough to write about one may safely assume that there must be other solutions. This 
is indeed the case since the lower left 18 x 6 sub matrix found in equation 9, represents travel into 
voxels 111 and 112 from the the other six voxels. As shown in [9] this submatrix is ofrank four or 
less. Since the first six equations in 9 are independent, we may solve 9 for at most 6 + 4 = 10 of 
the twelve unknowns in terms of the other two. 
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4 Solving the Equations 

Since the W1,;s, X 1,;s, and Yi,;s are already functions of A1,;s, it seems natural to solve for them 
in terms of the A1,;s. One can follow this procedure for all 24 columns, reducing the number of 
unknowns from 288 to 72. The analogous procedure in two dimensions exhausts the supply of 
independent equations. In three dimensions, however, we have enough information to solve for one 
third of the A 1,;s in terms of the remaining A;,;S as well. 

To solve 9 for the W;,;s, X;,;s, Yi.;s, and diag(A) in terms of the rest of the A;,;s, one need 
only solve: 

Q1,3 Q1,4 Ql,S Q1,6 -1 0 0 0 0 0 A3,3 

Q2,3 Q2,4 Q2,5 Q2,6 0 -1 0 0 0 0 W4,3 

Q3,3 Qa,4 Qa,s Q3;6 0 0 -1 0 0 0 Ws,3 

Q4,3 Q4,4 Q4,5 Q4,6 0 0 0 -1 0 0 W6,3 

Qs,a Qs,4 Qs,s Qs,6 0 0 0 0 -1 0 X1,3 

Q6,3 Q6,4 Q6,5 Q6,6 0 0 0 0 0 -1 X2,3 

Q13,3 Q13,4 Q13,5 Q13,6 0 0 0 0 0 0 X3,3 

Q14,3 Q14,4 Q14,5 Q14,6 0 0 0 0 0 0 Y4,3 

Q15,3 Q15,4 Qls,s Q15,6 0 0 0 0 0 0 Ys,3 

Q16,3 Q16,4 Q16,5 Q16,6 0 0 0 0 0 0 Y6,a 

-Ql,l -Q1,2 

-Q2,1 -Q2,2 

-Q3,1 -Q3,2 

-Q4,1 -Q4,2 

(10) 
-Qs,l -Qs,2 

[ A1,3] -
-Q6,1 -Q6,2 A2,3 

-Ql3,1 -Q13,2 

-Ql4,1 -Q14,2 

-QlS,l -Q15,2 

-Ql6,l -Ql6,2 

Notation : Denote the determinant of the submatrix of Q taken from rows [r1 , r 2 , ••• , rn] and 
columns [cl,c2, ... ,en] as dQ[ .. 1, .. 2, ... ,rn],[cl,c2, ... ,cn) 
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column pairs 

1,24 
2,11 
3,4 
5,20 
6,7 
8,17 
9,10 

12,13 
14,23 
15,16 
18,19 
21,22 

nonzero minors 

dQ . [13 ,14,15,16],[1,22,23,24] 

dQ[l3,14,15,16],[2,10,11,12] 

dQ[l3,14,15,16],[3,4,5,6] 

dQ[l3,14,15,16],[5,19,20,21] 

dQ[13,14,15,16],[6, 7 ,8,9] 

dQ[l,2,3,4],[8 ,16,17,18] 

dQ[1,2,3,4],[9,10,11,12] 

dQ[l,2,3,4],[12,13,14,15] 

dQ[l,2,3,4],[14,22,23,24] 

dQ[1,2,3,4],[15,16,17 ,18] 

dQ[l,2,3,4],[18,19,20,21] 

dQ[l,2,3,4],[21,22,23,24] 

dQ[13,14,15,16],[1,2,3,24] 

dQ[13,14,15,16],[1,2,3,11] 

dQ[13,14,15,16] ,[1,2 ,3,4] 

dQ[13,14,15,16] ,[4,5 ,6,20] 

dQ[13,14,15,16] ,[4,5 ,6, 7] 

dQ[1,2,3,4],[7,8,9,17] 

dQ[1,2,3,4],[7 ,8,9,10] 

dQ[1,2,3,4],[10,11,12,13] 

dQ[1,2,3,4],[13,14,15,23] 

dQ[1,2,3,4],[13,14,15,16] 

dQ[1,2,3,4],[16,17,18,19] 

dQ[1,2,3 ,4],[19,20,21,22] 

Table 1: The columns of 7 come in pairs. Each pair is shown in the left hand column. In order 
to solve a "column of equations" in 7 we require that a minor of Q is nonzero. These minors are 
displayed to the right of their corresponding column numbers. 

The determinant of the lefthand matrix in 10 is dQ[ta,14,t5,t6],[a,4,s,6]· 

Equation 10 has a unique solution if and only if the determinant of the matrix dQr13,14,15,16J,[3,4,5,6J =I= 
0. One finds the same sort of requirement for each of the other columns of 7. Although there are 
only twelve different (and underdetermined!) matrix equations in terms of the unknowns, we must 
solve 24 different linear systems of equations in order to solve for the W;,;s, X;,;s, Yi,;s and diag(A) 
in terms of the rest of the A;,;s. Table 1 shows which columns correspond to the same matriX 
equation and minors of the data we require to be nonzero. 

If the data satisfy these requirements then one can solve the 240 independent equations in 288 
variables linearly for the nonzero entries in W, X, and Y and diag(A) in terms of the 48 other 
variables in A = P;:;}. (Note that this choice of equations is not unique.) 

Because the solutions for the transition probabilities in terms of all 72 of the A;,;s are much 
simpler than their solutions in terms of only the off diagonal elements of A, we first solve in terms 
of all Of the entries of A. Sample solutions from each of the four one step transition submatrices 
shown below: 

Since Pho = A-t, the solutions for entries of Pho are especially simple: 

(11) 122 = dA[7,8J,[7,8J 
u w dA 

[7,8,9],[7,8,9] 

Solutions for variables from a transition submatrix are all of the same form. For example, all 
of the transition probabilities in Pho are equal to a 2 x 2 minor of A divided by a 3 x 3 minor of A. 
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One of Phh 's nonzero entries may be written as 

(12) 

s112n = ( As,7dA[4,5],(4,5]dQ (13,14,15],(4,5,8]+ 

A9,7dA[4,5],(4,5JdQI13,14,15],(4,s,9J + As,7dA[5,sJ,[4,sJdQI13,14,l~J,(s,s,sJ + 

A9,7dArs.sJ,(4,sJdQI13,14,ls],[s,6,9J + A7,7dA[4,6J,[4,s]dQI13,14,15J,[4,6,7J + 

A1, 7dA[5,sJ,[4,5JdQ!la,l4,15],[5,6, 11 + As,7dA[4,6J,(4,5JdQI13,a,15J;!4,6,sJ 1:" 

A9,7dA[4,6],[4,5]dQ(l3,14,15],[4,6,9] + A7,7dA[4,5),[4,5]dQ(l3,14,15),[4,5,7)) I 
( dA[4,5,6J ,(4,s ,sJdQ[13,14,15J ,[4,5,6)) 

The solutions for entries of Pho and Phh were quite simple (for MAPLE) to compute. The 
solutions for transition probabilities in P;0 and P;h were appeared to be extremely messy at first. 
By grouping terms in the solutions for entries of P;0 carefully it is possible to simplify them using 
matrix expansions of the forms 

(13) -dA(2,3J,[l,aJAa,2 + dA.[2,a],[2,aJAa,l + dA[2,a),[l,2JAa,a 

dA[l,2).[1,2JAa,a + dA[l,2],[2,a]Aa,l - dA[l,2J,[l,aJAa,2 

0 

dA11 ,2 ,aJ ,[1,2,aJ 

The resulting solutions are quite simple: 

(14) 

dl12u = -dA[4,5J,[s,6J ( dQ[s,13,14,1sJ,[1,2,a,4JA4,4 + dQ[6,13,14,lsJ,[1,2,a,6JAs,4 + 

dQ1s,l3,14,15J,[l,2,a,s1As,4) I dQ1la,u,lsJ,[l,2,aJdAr4,5,6J,[4,s,aJ -

dA[4,5],[4,6J ( dQ[6,13,14,15J,[6,19,20,21JAo,s + dQ[6,13,14,15),(4,19,20,21JA4,s+ 

dQ[6,13,14,15],[5,19,20,21]A5,5) I dQ[13,14,15],[19,20,21]dA[4,5,6),[4,5,6] + 

dA[4,sJ,[4,sJ ( dQ(6,13,14,15J,[6,7,a,9JAa,6 + dQ[6,13,14,lsJ,(s,7,s,9JAs,6+ 

dQ[6,13,14,15],(4,7 ,8,9JA4,6) I dQ[13,14,15],(7,8,9]dA[4,5,6],[4,5,6] 
_/ 

The identities giving the Grafimann-Pliicker embedding can be used to simplify the solutions for 
entries of P;h considerably. The method for simplifying these solutions is exactly the same as that 
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used in [6, 5]. One of the simplified solutions for a transition probability in P;h is shown below: 

d122d = -dQ[l3,14,15J,[4,5,aJdQ [1,2,3J,[l6,17,ls1dQ[l3,14,15J,[lo,ll,l2JdAr7,s,9J,[7,s,9J 

( dQ[7,t3,t4,15J,[7,s,9,t2JA12,to + dQ[7,13,14,15J,[7,s,9,1oJA1o,to+ 

(15) dQ[7,13,14,15J,[7,s,9,11JAn,1o) + 

dQ[13,14,15],[4,s,a]dQ[t,2,3],[16,17 ,1~] ( A10,10 ( dA[7,s],[7,s]dQ[13,14,15],[7 ,s,1o]+ 

dA[7,9J,[7,sJdQ[t3,14,15J,[7,9,1oJ + dArs,9J,[7,sJdQ[13,14,15],[s,9,1oJ) + 

A12,1o ( dA[7,9J,f7,sJdQ[13,14,15],[7,9,12J+ 

dA[s,9],[7 ,s]dQ[13,14,15],[8,9,12] + dA[1 ,s],[7 ,s]dQ[13,14,15],[7 ,8,12]) + 

Au,1o ( dA[7,s],[7,s]dQ[13,14,15],[7,s,n] + dA[8,9],[7,s]dQ[13,14,15],[8,9,n]+ 

dA[7,9J,[7,sJdQ[13,14,15J,[7,9,uJ)) ( dQ[7,13,14,15J,[7,1o,u,t2JA7,9+ 

A dQ 1 +AggdQ[ 1 J)-8,9 [7,13,14,15],[8,10,11,12 ' 7,13,14,15 ,[9,10,11,12 

dQ[t,2,3J,[1a,17,1sJdQ[13,14,t5J,[1o,u,12J ( A12,1o ( dA[7,9J,[s,9JdQpa,14,15),[7 ,9,12)+ 

dA[7,sJ,[s,9JdQ[13,14,tsJ,[7,s,t2J + dArs,9J,[s,9JdQ[t3,14,15J,[8,9,12J) + 

A1o,1o ( dA[7,8],[8,9]dQ[13,14,15),[7,s,Io] + dA[s,9),[8,9JdQ[13,14,15),[8,9,lO]+ 

dA[7,9J,[s,9JdQ[13,14,tsJ ,[7,9,1oJ) + 

Au,1o ( dA[8,9J,[8,9JdQ[13,14,15J,[8,9,n) + dA[7,9),[s,9JdQ[t3,14,15],[7 ,9,11) + 

dA[7,sJ,[s,9JdQf13,14,tsJ,[7,s,uJ)) ( A9,7dQ[7,13,14,1sJ,f4,s,a,9J+ 

A7,7dQf7,13,t4,1sJ,[4,s,a,7J + dQ[7,t3,14,1sJ,[4,s,a,sJAs,7) + 

dQ[13,14,15),[4,5,6)dQ[13,~4,15),[1o,n,12) ( A1o,1o ( dA[8,9),[7,9JdQ[l3,14,15],[s,9,1o]+ 

dA[7,9J,[7,9JdQ[t3,14,1sJ,[7,9,1oJ + dA[7,sJ,f7,9JdQ[13,14,1sJ,f7,s,1oJ) + 

Au,1o ( dA[7,s],[7,9JdQ[13,14,15J,[7,s,u] + dA[7,9J,[7,9JdQ[t3,14,tsJ,[7,9,u]+ 

dA[s,9],[7,9JdQ[13,14,15],[8,9,n]) + 

A12,1o ( dA[7,8J,[7,9JdQ[1a,14,tsJ,[7,s,t2J + dA[s,9),[7,9JdQ[13,14,ts],[8,9,t2J+ 

dA[7,9],[7,9JdQ[13,14,15],[7,9,12J)) ( As,sdQ[1,2,3,7],[s,16,17,18J+ 

A7,8dQ[1,2,3,7],[7,16,17,18] + dQ[1,2,3,7],[9,16,17,18]A9,8) I 
( dAr1 ,8,9},[7 ,8,9] dQ[13,14,1sJ,[7 ,8,9Jd Q[13,14,isJ ,[1o,11,12]d Q[ta,14,1s),[4,s,a) dQr1 ,2,a] ,[t6,17,t8J) 

These solutions,( 15, 16, parameter solution to the 2 x 2 problem where all of the transitions 
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probabilities can be expressed in terms of the A;,;s. In this 2 x 2 x 2 problem, however, we can 
solve for diag(A) in terms of the remaining A;,;s. One of the solutions for a diagonal entry of A is 
shown below: 

(16) 
dQ A +dQ A A _ [13,14,15,16],[4,5,6,21] 21,20 [13,14,15,16],[4,s,6,19J 19,2o 

20,20-- dQ 
[13,14,15,16],[ 4,5,6,20] 

Substituting solutions for diag(A) into the solutions for the transition probabilities leaves us with 
a 48 parameter family of solutions to the 2 x 2 x 2 problem. 

5 Conclusion 

We have seen that from a strictly mathematical perspective there is a 48 = 288/6 parameter 
family of solutions to the 2 x 2 x 2 problem. In two dimensions, there are 64 unknown transition 
probabilities and a 16 = 64/4 parameter family of solutions to the 2 x 2 problem. The extension 
of the two dimensional recovery algorithm to n x n systems gives a 8n(n + 1) parameter family 
of solutions for the 16n2 unknown transition probabilities. (For details, see the upcoming U. C. 
Berkeley. thesis, "Analytic Recovery of Transition Probabilities in Diffuse Tomography"). The 
analogous extension of the 2 x 2 x 2 problem will doubtless result in a m parameter family of 

I 

solutions to the n x n x n problem. The author's best guess is that m will be 0(24n3 ). 
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