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ABSTRACT 

Using techniques drawn from the statistical theory of branching 

processes, we approximate the critical resolved shear stress for the 

athermal planar glide of a dislocation, idealized as a flexible line of 

constant tension, through a random mixture of immobile point obstacles 

of distinct types. The approach simultaneously permits an estimate of 

the geometric properties of the particular obstacle configuration which 

determines the critical resolved shear stress. The estimates are shown 

to be in good agreement with empirical results obtained through direct 

computer simulation of glide through a random mixture of "strong" and 

"weak" points. A simple extension permits an estimate of the velocity 

of thermally activated glide through an array of mixed obstacle types at 

low temperature. 
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I. INTRODUCTION 

In a recent paper(!) we utilized techniques from the statistical 

theory of branching processes(Z) to approximate the critical resolved 

shear stress for the athermal glide of a dislocation, idealized as a 

flexible line of constant tension, through a random array of identical, 

immobile obstacles which act as point barriers to glide. The approach 

simultaneously yielded a good approximation to the geometric properties 

of the particular dislocation configuration which determines the critical 

resolved shear stress for given obstacle strength. In the present paper 
' 

we show how the approach may be generalized to treat glide through an 

array of obstacles having a distribution of properties. 

The assumptions and basic equations used below are generalizations 

I 

of those introduced in Reference 3 and reviewed in Reference 1. The 

glide plane of the dislocation is taken to be a square containing a 

random (Poisson) distribution of point obstacles whose density is given 

by the mean area (a) per point or by the characteristic length i s 
1/2 = a • 

* The area of the array may be written in dimensionless form: A = A/a,=·:n 

where n is the expected number of obstacles contained. To allow a 

distribution of obstacle properties, the obstacles are assumed to be 

a 
randomly selected from a population containing p distinct types with x 

(a • 1, ••• , p) the fraction of obstacles of type a. 

The dislocation is modeled as a flexible, extensible string of 

constant line tension, r, with a Burgers' vector of magnitude bin the 

glide plane. The resolved shear stress (T) impelling glide is 

conveniently written in dimensionless form: 

* T • d. b/2f s 
(1.1) 
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·, 
If the dislocation encounters a configuration (i) of obstacles under 

* stress T it will take the form of a circular arc of dimensionless 

* * radius R (= 1/(2~ )) between adjacent obstacles. If the distance between 

* any two adjacent obstacles along (i) exceeds 2R or if the dislocation 

line anywhere intersects itself then configuration (i) is transparent to 

the dislocation and will be mechanically bypassed. If (i) is not 

transparent its mechanical stability is governed by a balance between the 

geometry of the_configuration and the distribution of obstacle types 

along it. 

At the kth obstacle on (i) the dislocation line forms the asymptotic 

angle ~~(0 ~ ~~ ~ ~). k The force, Fi, that the dislocation exerts on the 

kth obstacle on i is, in dimensionless form, 

S~ = F~/2r = cos(~~) (1.2) 

k whence.O_< Si ~ 1. Let the obstacle (k,i) be of type a and let the 

mechanical strength of an obstacle of type a be B , corresponding to the 
a 

maximum force an obstacle of type a can sustain without being cut or 

loca~y bypassed. Then the dislocation is locally stable at (k,i) if 

(1.3) 

*k Evaluating the quantity B i for each obstacle on (i), with a given the 

value appropriate to the obstacle at (k,i), the condition for the 

*k mechanical stability of i becomes B i < 1 for all k on i, hence 

(1.4) 

* *k where Bi is the maximum of the B i. 
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The non-transparent configurations in a given array of obstacles 

* k are uniquely fixed by the applied stress, T , as are the forces, Bi, 

exerted on them. ( 3) If •* is such that there is at least one cnnfigura

k tion in the array over which the forces B. satisfy the stability condi
~ 

tion (1.4) then the dislocation will be mechanically pinned and can 

glide only with the help of thermal activation. The critical resolved 

* * shear stress for athermal glide, • , is hence the minimum value of T 
c 

for which all configurations are mechanically~unstable. 

II. THE LIMITING CONFIGURATION IN AN ARRAY 

OF LIKE OBSTACLES· 

In Reference 1 we approximated the critical resolved shear stress 

* T for an arbitrarily large array of obstacles of like kind (8 = B ) by 
c a c 

identifying a "limiting configuration" which was necessarily at least as 

strong as the most stable configuration which might be encountered 

during glide. The derivation may be summarized as follows. 

1) A stable dislocation configuration can be viewed as a chain of 

stable segments connecting the left hand side of the array to the right 

hand side. We may hence attempt to construct a stable configuration by 

beginning from the left hand side with a single segment and searching 

for segments which continue the chain across the array. If the applied 

* stress is T and the obstacle strength is B then a segment may be 
c 

continued by connecting its right hand terminal point 'to any point found 

in the area shown in Figure 1, an area generated by rotating a circle 

of radius R* through an angle e (= 2 sin-:16 ) about the terminal point. 
c c 

The search area is parameterized by the coordinates (e, ~) shown.in 
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Figure 1. The lines of constant e are generated by the leading edge of 

the circle as it is rotated; the lines of constant ~ are generated by 

the trailing edge. The range of e is chosen to be 0 < e < e • The range 
- c 

of ~ is taken to be -~ < ~ < e • Points of the array are distributed 
- - c 

over this search area with density~: 1, hence the number of points in the 

* * differential (dimensionless) area dA is simply dA , where 

dA* = (R*> 2 sin(e - ~)ded~ 

.. (R*> 2 da(e ,~). (2 .1) 

Each point within the search area defines a possible segment continuing 

the chain. 

2) The procedure for constructing a stable chain across the array 

by stochastically searching successive areas like that shown in Figure 1 

bears a strong formal resemblance to the classical branching process in 

(2) 
probability theory. The theory of branching processes estimates the 

th size of the k generation of descent from a given initial event, 

assuming that the probability distribution for the number of descendants 

per parent event is known. A principal result of the theory is the 

extinction theorem, which states that if the expected number of descen-

dants {<n>) is less than one the line of descent will necessarily 

terminate after a finite number of generations. In the present problem 

* . * it follows that T and e ~ust be such that the search area A of Figure 
c 

1 is greater than one if it is to be possible to construct a stable 

chain across an array of arbitrarily large size. 

3) The stable configurations of the dislocation are, however, 

additionally constrained in that the dislocation line cannot intersect 
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itself. A nece~~ary (though not sufficient) condition(!) is that the 

expected value of the coordinate ~ of the points used to extend the 

chain must be zero. Since the average value of ~ over the sear~h area 

* (A , Figure 1) is less than zero (at least for e < ~) the condition . c 

<~> = 0 constrains the manner in which points may be selected from among 

* those contained in A ; points may only be used in subsets which have 

4) Given the considerations listed above, the points used to 

define the segments which extend a chain across the array are chosen 

according to a distribution function f(6,~), 0 ~ f ~ 1, which gives the 

fraction of the points found in da(e,~) in an· arbitrarily large sequence 

* of searches of areas like A which are used to form the segments of a 

stable chain. The function £(6,~) must satisfy at least the two 

constraints: 

and 

<n> = (R*>
2 jrf(e,~)da(e,~) > 1 

a 

<~> = (R*)
2 J ~f(e,~)da(e,~) = o 

a 

(2.2) 

(2. 3) 

For given values of <n> and the obstacle strength e it may be shown 
c 

* * (appendix to Ref. 1) that the radius R is minimized (< maximized) 

under the constraint (2.3) if we choose 

f(e,~) -- { 01 (2.4) 

where ~O is the solution of the equation 
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-, 

e 
<fp = /4>da(e ,4>) = Jc 4>da(4>) = 0 

ao -4> 0 

(2.5) 

with the integral taken over the area a0 shown in Figure 2. 

If we now set 

<n> "" 1 
(2.6) 

<4>> = 0 

* and choose f(6,4>) according to equation (2.4) we obtain a value of T , 

* T0 , which is necessarily larger than the stress nec~ssary to pass the 

most stable chain which might be constructed across an arbitrarily 

large array of obstacles of strength e • Hence 
c 

* T ca ) 
c c 

places an upper limit on the critical resolved shear stress. 

* * 

(2. 7) 

The value TO is an upper bound on Tc in two senses: first, by 

* derivation; it is greater than any T consistent with the inequality 

(2.2) and the constraint (2.3); second, it is the solution of an under-

constrained problem in the sense that the ~ondition <4>> = 0 is not 

sufficient to insure that the chain does not intersect itself (for 

example, <4>> = 0 over a configuration which approximates a figure eight) 

and in the further sense(l) that ~e have made an assumption of 

stochasticity which is not strictly true. It is, hence, not certain 

* that TO yields a good estimate for * T • c 
However, specific computer 
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' simulation of dislocation glide through arrays of moderate size 

4 (1) 6 (4) * (10 points and up to 10 points ) has shown that TO is close to 

* -3 't for obstacle strengths in the range 10 .,< e < 0. 7, a range which 
c c 

includes the obstacle strengths of physically realistic particles(S). 

* * Given that TO approximates Tc' the geometrical properties of the 

* particular obstacle configuration which determines T should be reason-
c 

ably approximated by the geometrical properties of the "limiting 

* configuration" which fixes T0 • The latter can. be computed from the 

expected distribution of points contained i~ the limiting search area of 

Figure 2. (l) A specific comparison between the theory and computer 

simulation results showed that the distribution of angles (forces) in 

the limiting configuration is almost precisely the same as the empirical 

distribution for the most stable configuration encountered in glide 

through an array of moderate size. Similarly, the mean segment lengths 

of the two configurations match closely. The limiting configuration is 

less successful in reproducing the distribution of segment lengths along 

the configurations obtained through computer simulation, though the 

finite size of the arrays employed in simulation makes this result 

difficult to interpret. 

III. THE LIMITING CONFIGURATION IN AN ARRAY 
OF OBSTACLES OF DIFFERENT STRENGTHS 

When the obstacles are not identical the procedure for generating 

the limiting configuration must be modified slightly. Let a stable 

chain be constructed left to right across an array which contains 

·randomly distributed obstacles of p distinct types, labelled a= l, ••• ,p, 
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a 
having fractions x and strengths B (or e ) as described in Section I. a a 

Consider the kth segment of the chain, which, in the language of the 

branching process, is a member of the kth generation of descent from the 

initial (or zeroth) segment. Let y~ be the probability that the kth 

a . 
segment terminates at an obstacle of type a; y is independent of k if 

k is large. 

. th 
If the k segment terminates at an a point then the obstacle 

th defining the (k + 1) segment must be chosen from among those located 

in the search area of an a-obstacle, an area like that shown in Figure 1 

with e • e • This area contains an expected number of points c a 

(3.1) 

of which an expected fraction x6 are of type S. Let faB(e,cjl) be the 

fraction of the obstacles of type B found in the differential area 

da{6,1j)) which are used to extend the chain from obstacles of type a. 

Then the expected number of descendents (stable segments) in the (k + l)th 

th generation per point in the k generation is 

(3.2) 

By the extinction theorem of branching processes <n> must be greater 

than one if the chain is to extend across an array of arbitrarily large 

size. The expected value of the coordinate cjl is 

which must vanish if the chain is not to intersect itself. The expected 
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th fraction of segments of the (k + 1) generation which terminate at 

obstacles of type a is 

a -1 * 2 B f Sa · a 
yk+l = <n> (R ) L; yk Je f (a ,cf>)x da(e ,cf>) 

6 a 
(3.4) 

When k is large, 

(3.5) 

The limiting configuration is obtained from equations (3.2)-(3.5) 

a by setting <n? = 1 and <cjl> = 0, and then choosing the fractions y and 

.functions fa8(e,cjl) so that R* is minimized (T* maximized) for a given 

a set of fractions x and strengths e • With <n> = 1 and <cjl> = 0, a 

equations (3.2)-(3.4) may be conveniently rewritten 

(2T*) • 1 f(9,cf>)da(e,cjl) 
s a 

o = ~ cf>f(e ,cf>)da(e ,cf>) 
a 

(3.6) 

(3. 7) 

(3. 8) 

where as is the search area of the obstacle of greatest strength 

(maximum e = e ) and where a s 

f(e ,cjl) .. E faS(e ,cf>)xf3yaha(e) ~E yaha(e) 

with 

a,S a 

o < e < e 
- - a 

e > e a 

(3.9) 

(3.10) 
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It follows directly from the theorem given in the Appendix to Reference 

1 that the integral on the right hand side of equation (3.6) is 

maximized under the constraint (3.7) if f(6,~) is assigned the value 

(3.11) 

. where ~O is the solution to the equation 

(3.12) 

Equation (3.8) then yields the identity 

a a 
y =X (3.13)" 

and equations (3.6) and (3. 7) may be written in the more compact form 

(3.14) 

(3.15) 

* where TO is the strength of the limiting configuration (an upper limit 

* a a · a on Tc), a0 is the sub-area of a over which -~0 ~ ~ ~ ea, and<~> is 

a the average value of ~ over a
0

• 

The sequential solution of equations (3.15) and (3.14) determines 

* * T0 , which estimates the critical resolved shear stress, Tc' for glide 

through an arbitrarily large array of randomly distributed obstacles 

a having strengths e (a= l, ••• ,p) and fractions x. The properties of 
a 



-11-

.. 
the particular donfiguration which determines •* may also be approximated 

c 

by the properties of the limiting configuration. Three properties are 

of particular interest: the fraction, ca, of obstacles of type a in the 

configuration, .the distribution of angles (e) or, equivalently, of 

forces (B) along it, and the mean value of the separation between 

adjacent obstacles. 

The fraction ca is easily computed. th The k generation of descent 

from an initial segment contains an expected fraction xa of segments 

*2 a Which terminate at obstacles of type a. An expected fraction R a
0 

of 

these are continued by stable setments to points found within the optimal 

. th 
search area, and hence become "parents" of the (k + 1) generation. 

Since successive generations of the limiting configuration are 

stochastically independent, obstacles of type a will appear in the 

limiting configuration in precisely the fraction in which they are 

th expected as "parents" of the (k + 1) generation. Hence 

(3.16) 

The computation of the distribution of forces in the limiting 

configuration is also straight-forward, given the discussion in Reference 

1. The fraction of obstacles of type a along the chain is given by 

equation (3.16). It follows from equations (3.7)-(3.9) of Reference 1 

that, if normalization is properly accounted for, the distribution of 

forces on obstacles of type a is specified by the density function 

(3.17) 
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* ·where ~S;T ) is the density function given by equation (3.9) of Reference 

p(S;T*) = 2R*2 {Cl-B~)-l/2 [1-(l-2S2)cos~0 J 

+ 213 sin ~0 J 

The density of forces in the limiting configuration is hence 

~a a 
P (B) = ~ c p (6) * a a = p (S ;T ) I;x h (S) 

a a 

(3.18) 

(3.19) 

a where h (S) is a weighting function equal to one if B < S and to zero 
- a 

otherwise. 

A similar argument yields the equation for the mean spacing between 

adjacent obstacles along the limiting configuration: 

~a * a <1> =~X <i(T )> (3.20) 
a 

* a where the function <i(T )> is the form appropriate to (a), of the 

function given by equation (3.14) of Reference 1: 

* a <R.(T )> = 2 * 3J 1 2 ( 3) (2R ) tos (6 a/2) [1 - 3 cos ( 6/2)] 

{
6 +~o~[ 1 /~1} 

cos\ a 2 /1.- 3 cos\~J . (3. 21) 
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IV. COMPARISON WITH COMPUTER SIMULATION RESULTS 

To test the accuracy of the equations developed in the previous 

sec~ion we performed computer simulation experiments on glide through 

arrays containing obstacles of two distinct kinds. Given the character

istics of the simulation code employed, (6) which was writt~n to simulate 

thermally activated glide at constant stress, we used an indirect 

procedure to obtain numerical data for comparison with the theory. 

s Specifically, we chose the strengths a and 8 ' and fractions, X and s ·w 
w s x (• 1-x ), of the strong and weak obstacles, and then computed the 

* limiting stress •o from equations (3.14) and (3.15). We then set the 

* * stress T ·= •o and simulated glide through an array of 1200 obstacles, a 

s random fraction x of which were taken to be strong. If the dislocation 

is allowed to move through the array along a path found by passing each 

non-transparent configuration i at the obstacle at which 8·~ (equation 

* ' (1.3)) has its maximal value (8i) then the dislocation will necessarily 

encounter the most stable configuration within the array (this path is 

the analogue of the "minimal angle" path (3) through an array of like 

obstacles). The theory developed here approximates the strength of this 

* configuration, in an array of large size, as 81 = 1.0. The computer 

* ' simulation yields an empirical value of 81 for a particular array. 

In the present program we tested three combinations of obstacle 

s strengths at each of three choices of the fraction x , giving the total 

of nine cases listed in Table I. For each case we simulated glide 

through ten arrays of 1200 points. Given the finite size of these arrays, 

* there is some scatter in the e1 values found and a statistical bias 

* toward a1 <-1.0 which becomes more pronounced as the array size or the 
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applied stress is decreased. Nontheless the theory appears to give a 

* good estimate of the critical resolved shear stress T (as measured by 
c 

h * . ) . w t e agreement s1 'V 1. 0 , the fraction c of weak obstacles in the 

configuration which determines * T ' c 

spacing along this configuration. 

and the mean value of the interobstacle 

To test the accuracy of the force distribution predicted by equation 

(3.17) we oetermined an ~mpirical force distribution for case 7 by 

compiling the forces (B) along the most stable configurations in each 

of twenty-five arrays of 1200 points. The resulting normalized histo-

gram is compared to th~ theoretical prediction in Figure 3. The fit 

seems good. It should be noted that the fit requires simultaneous 

estimates of the strength of the most stable configuration, the fraction 

of weak obstacles along it, and the distribution of f~ces given those 

parameters. 

V. EXTENSION TO THERMALLY AC!IVATED GLIDE 

The approach developed in Section III may also be used to estimate 

the velocity of thermally activated glide at low temperature. As was 

discussed in Reference 3, when the temperature is sufficiently low the 

expected time required for the dislocation to transit the array, and 

henc~ the velocity of glide, is essentially determined by the expected 

time for the dislocation to activate past the most stable configuration 

it encounters. This activation time is itself determined by the 

expected time for activation at the point along the most stable configu-

ration which offers the minimum activation barrier. Defining the 

dimensionless time 
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* t = 'Jt (5.1) 

where 'J is the frequency with which the dislocation attempts thermal 

activation at an obstacle (assumed constant) and the dimensionless 

velocity 

* 1/2 * <v > = n <a > (5.2) 

* where n is the number of points in the array and <a > is the dimension-

less area swept out per unit t*, it follows(3) that as T approaches zero 

(5. 3) 

where l1G
1 

·is the·minimum of the activation barriers associated with the 

obstacles in the most stable configuration. Computer simulation studies(]) 

have shown that equation (5.3) gives a-' reasonable approximation to the 

glide velocity over a wide range of temperature. 

. (8 3) 
The activation barrier dG at an obstacle depends ' on the dislo-

cation configuration at the obstacle (hence on 8, or, equivalently on e) 

and on the nature of the dislocation-obstacle interaction. If the 

dislocation~obstacle interaction is reasonably simple then the activa-

tion energy may be written as a function (dG{8)) of the force on the 

obstacle. Inverting this function gives 

(5.4) 

or, equivalently, 

(s. 5Y 
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0 
determining the force, S, or angle, e, associated with a particular 

value of the activation energy for a particular type (a) of obstacle. 

When conditions are such that equations (5.3) and (5.4) are obeyed 

the equations presented in Section III may be used to estimate the 

velocity of glide as a function of stress and temperature. We require 

* the function llG1('r ), the minimum activation energy in the most stable 

* configuration encountered in glide at stress • • 

a Consider an array which contains a fraction x of obstacles of 

type a (a= ·l, ••• ,n). Assume that equation (5.5) is obeyed for each 

* ·obstacle. Then the stress (• ) at which the most stable configuration 

encountered poses an activation barrier llG1 is the maximum stress at 

which there exists a configuration satisfying 

(5 .6) 

* for all a. The stress • (llG1) may be approximated by employing the 

values ea(llG1) in place of ea in equations (3.14) and (3.15). Inverting 

* - * * this function gives llG1(•) and consequently <v (• ,T)> over the range 

of conditions for which equation (5.3) holds • 

.. 
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Table I. A comparison of the predicted values of 13~ (= 1.0), cw, and 
<R.> with the mean of the values found through computer simula
tion for the most stable configuration in each of ten arrays 
of 1200 points under each of the nine conditions shown. 

w * * w w Case Bs 13w X. "Co <13 > c <c > R. <R.> exp theory exp theory exp 

-· 
1 0.5 0.2 0.5 0.240 1.006 0.13 0.13 1.30 1.28 

2 0.5 0.05 0.5 0.231 0.998 0.020 0.021 1.44 1.46 

3 0.2 0.05 0.5 0.057 0.919 0.064 0 .• 071 2.25 2.08 

4 0.5 0.2 0.17 0.299 0.997 0.030 0.041 1.11 1.05 

5 0.5 0.05 0.17 0.297 1.002 0.0042 0.0048 1.13 1.12 

6 0.2 0.05 0.17 0.073 0.948 0.014 0.015 1.84 1. 73 

7 0.5 0.2 0.83 0.157 0.969 0.40 0.44 1.65 1.59 

8 0.5 0.05 0.83 0.135 1.007 0.088, 0.145 2.31 2.26 

9 0.2 0.05 0.83 0.035 0.890 0.24 0.23 3.21 3.01 
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·XBL748-6938 

Figure 1. The valid search area for extending a chain of stable dislo-

cation segments given in obstacle strength e . . · c 
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Figure 2. The optimal search area, a0 , for extending a chain of stable 

dislocation segments given an obstacle strength e . 
c 

I 
N 
0 
I 



-21-

6.~----~------~~--------------------,-------, 

o~------------~----------------------~~----
0 . 0.2 

~w 
0.5 
Rs 

XBL 7410-7475 

Figure 3. The theoretical distribution of forces (S) in the limiting 

configuration for case number 7 (Table I) compared to an 

empirical histogram obtained through computer simulation as 

described in the text. 
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