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" ABSTRACT

A pénurbed hard-sphere-chaih (PHSC) equation of state for real copolymer
mixtures is based on a modified form of Chiew's equation of state for atherrhél mixtures
of heteronuclear hard-sphere chéir';S. The PHSC equation of state inclﬁdes a van-der-
Waals perturbation whose parameters are related to the intermolecular potential as
suggested by Song and Mason. In the present model, sequence distribution ina polymer
is introduced only into the hard-sphere-chain reference state; attractive forces are
averaged, independent of sequence distribution. Theoretical coexisience curves and
miscibility maps were computed for binary random copolymer mixtures containing two
or three kinds of segments. The PHSC equation of state can predict simultaneous
occurrence of a lower critical solution temperature and an upper critical solution
temperature in the temperature-composition phase diagram of high-moleéulai—weight
copolymer blends. Theoretical and experiniéhtal coexistence curves 'ahd miscibility maps

show good agreement for syStems containing two kinds of segments.

(Keywords: copolymer blend; equation-of-state; lower critical solution temperature;

phase equilibria;)

Correspondence concerning this paper should be addressed to J.M. Prausnitz.



INTRODUCTION

| Equation-of-state theories are useful for describing the phase equilibria of
solutions and blends containing copolymcrs_. A brief review of cquationé of state for
copolymer systems is given by Wohifarthl. Equations of state based on free-volume or
lattice-fluid models have an advantage over classical incoxﬁpressible lattice theories such
as the Flory-Huggins theory and Guggenheim's quasichemical approximationZ because
they cén predict a lower critical solution temperature (LCST) at elevated temperature as
well as an upper critical solution temperature (UCST). LCST behavior is a common
phenomenon in polymer blends inclﬁding those that copolymers. In addition, an equation
of state is also able to describe the effect of pressure on phase behavior.

An equation of state applicable to polymer systems is the perturbed hérd-spherc-
chain (PHSC) equation recently developed by Song et al.3-6, These authors3 first
presented a hard-sphere-chain (HSC) equation of state for athermal homonuclear and-
heteronuclear HSC mixtures by generalizing Chiew's equation of state for mixtures of
hard-sphere chains’ through the Carnahan-Starling radial distribution function for hard-
sphere mixtures at contact. Compared to Chiew's original equation of state, the new
equation of state for athermal systéms was expressed more succinctly. For real polymer
fluids, Song et al.4»> introduced a van der Waals perturbation and the Song-Mason
method to relate equation-of-state parameters to the intermolecular potential. The Song-
Mason method calculates the effective van der Waals covolume, b, (i.e., second virial
coefficient of hard spher_es) and the attractive energy parareter, 4, in terms of the well
depth of the pair potential, €, and the distance of separation at minimum potential energy,
0. In this method, the temperature dependences of parameters @ and b are given by two
known universal functions of a reduced temperature.

For a homopolymer, the PHSC equation of state requires three parameters:
number of effective hard spheres per molecule, r; segmental diameter, o} and non-bonded

segment pair-interaction energy, €. These parameters were regressed from available



volumetric and vapor-pressure data for a variety of normal fluids and several
homopolymers; they are tabulated in Reference 3. For a homopolymer, one of the
regressed characteristic quantities is /M, where M is the molecular weight of polymer.

~ For mixtures, no mixing rules are required for the hard-chain-of-spheres
contribution. For the perturbation term, a standard one-fluid theory was used>:5, For
several binary mixtures including homopolymer solutions and
homopolymer/homopolymer blendsS, calculated liquid-liquid coexistence curves are in
good agreement with experiment.

In this paper we present an extension of the PHSC equation of state for copolymer
mixtures. Theoretical coexistence curves and miscibility maps are computed for binary
random copolymer mixtures containing two and three kinds of segments. These mixtures
are denoted as (AxB,_x)/AyB;_y),, and (AxB;_x)ACyB;_y), Where ; is the number of
hard spheres per molecule of component i; and X and Y are segment number fractions for
segments A, B and C, in components 1 and 2, respectively.

Theoretical coexistence curves and miscibility maps are compared with
experiment for mixtures of type (AxBl-x l/(AYB,_Y),2 containing poly(styrene-co-
butadiene), poly(butyl methacrylate-co-methyl methacrylate), and poly(styrene-co-methyl

methacrylate) random copolymers.

THEORY .
Equation of State for Pure Copolymers. Using the modified Chiew equation of state as
the reference state3, the PHSC equation of state for pure heteronuclear polymer

molecules consisting of 7 effective hard spheres is

r-1

PkBT = 1+92 2 b 1% gkpll —.z [gk;'k,_'_l ]—EB— Z z-ak’l' (1)
=1 I'=1

k=] I'=1 k’=1




where p is the pressure, p=N/V (N is the number of molecules and V is the volume) is the
number density, ky is the Boltzmann constant, T is the absolute temperature, and

subscripts k * and !/’ denote the & ’-th and /’-th segments, respectively, of hard-spheré
chains. In Eq. (1) a,.,. is a parameter which reflects the strength of attractive forces

between two hard spheres; b, ., . represents the second virial coefficient of hard spheres;

and g, .. is the pair radial distribution function of hard spheres when k ’-th and [/’-th

segments are at contact. These parameters and the pair distribution function are
temperature dependent, as shown later. Eq. (1) is for hard-sphere chains consisting of an
arbitrary number of chemically different segments. The segments in the chain need not
have the same size. |

We consider copblymers consisting of two types of segments azand 5:

(i) . - @

where X is the number fraction of segment of type . In a pblymer chain, the number of
segments of type & per molecule is given by 7, and that of type B is given by Tg:

re=rX 3)

re={1-X) . - ' @

In the following equations, the type of segment-segment interaction is specified
by subscripts k and /; these subscripts appear in parameters and pair distribution

functions. For copolymers Eq. (1) reduces to



kaT = L+ pfralabogon + TalgPop8ap *+ T eDpatpa * 'ssp8m)
| ~(Pacl8on = 11+ roglE o = 1]+ Myl 8o~ 1]+ mggl8gp = 1])
k:T(’“’“““”a’ﬂ"aB*”a"ﬂa” %) )

where n,, (k,/=a.,B) is the number of k-/ sequences (i.e., bonding pairs) per molecule in
hard-sphere chains.

Parameters a,, and b, and the radial distribution function, g, are given by

a,=2n0,5F,(T;) - . ©
. op = gq = 57005V FTIF{Ty) @
b =§7;02Fb(m o ®
bos =By =§(bé”’+é;’f)3 | ©
Su=8y = 51:1 1 51:1 : | (10)

"” 2(1 2 (-’

where k and ! (k,/=a.,[3) specify the type of segments and 1) is the packing fraction given
by |

n= %(rab +rgby) | -oan



plb 13 ‘ , :
Su=u 4(*” ’) (o + rghg”) . | (12)

In Egs. (6), (7), and (8), o} (k,/=,B) and Oyg 2T€ the separation distances between

similar and dissimilar segments, respectively, at the minimum potential energies
& (k,!=a,B) and &, Tspectively, in the segment-segment pair potential. Eq. (9) assumes
‘additivity of effective hard-sphere diameters Qf unlike segments. Egs. (10) and ( 12) are
the results of a generalization of the radial distribution function at contact from the‘
Carnahan-Starling equation to copolymer systems; derivation of these equations are given
in Reference 3. | |

In Egs. (6), (7), and (8), F, and F are known universal functions in terms of

reduced temperature defined as4 -
~ T o
7 =t (13)

750

where s(r) is a Scaling'parameter. The universal functions are obtained from volumetric

and vapor-pressure data for argon and for methane as indicated previously4. They are

F(T})=0.7170 + 1.9003exp(-0.51527} ) (14)

1/4] '\ as

F(T,) = 0.5849exp(-0.4772T, ) + (1-0. 5849) I-cxpl-1. 06697
The scaling pafarheter s(r) in the réduc_ed temperature, Eq. '(13), arises from the
scaling of F, and F, from single-sphere systems to systems con'taining polymer
-molecules. This parameter was originally introduced for homonuclear hard-sphere chains
(i.e., homopolymers)4 consisting of r tangent spheres. Although copolymers can be made

of hard sphereé of different sizes and interaction energies, s(r) for copolymers is assumed



to be a unique function of the total number of hard spheres per molecule. The ﬁmction
s(r) is given in Reference 4.

The effect of sequence distribution is not incorporated into the perturbation term
in Egs. (1) and (5). In principle, the effect of sequence distribution can be introduced by
- expanding the perturbation term by the fraction of particular sequencés (e.g., dyads and
triads) in place of segment fraction8. Such a method, however, requires additional
interaction energy parameters. |

Fihally, in this paper we use the following combining rules to obtain parameters
Oup and €xp in Eq. (7):

Cup = %-(oa +0y) | ' (16)
&5 = VEuEy(1-K ) | 7

where Keg is an adjustable intersegmental parameter whenever ozf.

Equation of State for Copolymef Mixtures. Eq. (1) is readily extended to mixtures of
heteronuclear polymer molecules. The PHSC equation of state for mixtures of

heteronuclear polymer molecules is

,‘,"_ -1""9223‘2"[2 2 b v 8k ]
=1 J=1 k=1 I'=1
—gx,-z [Biikrgra—1]- kaZinxj[Z z aqk,,.:l (18)

k=1 =1 j=1 k’=1 I'=1

where m is the number of components and x; is the mole fraction of component i. The
number of effective hard spheres per molecule of component i is designated by r;. In Eq.

(18), subscripts k* and !’ denote the k *-th and /*-th segments, respectively, of hard-

6



sphere chains. The physical significances of parameters Ayigre and bij ¢+ and pair

for mixtures are the same as those for pure fluids.

distribution function 8k

We consider first binary mixtures of copolymers consisting of two types of

segments o and f:

(exBx) /(oxBiy), - | (19)

The number of segments of type @, r, o, and that of j, . of component 1 are given by

rX and r,(1-X), respectively. For binary mixtures of copolymers, Eq. (18) is

- _
pkpT 1+ PZ 2 xtxj[ ioljobjao8iion + Tialj0;0p8ap
PKg o sl j=1

z,Brivabij,Bagij,Ba + ri.ﬁrj.ﬂbc)'.ﬁﬁgif.ﬂﬁ]

- 2 x{n‘ ot gu o x,aB (giiaﬂ -1 ) + ni.ﬁ(l(gii.ﬁa -1 ) + ni:Bﬂ(gﬁ»pB -1 )]

=y 2;. Z;, XNl joBion + TiaTip%ap + TiglicBpa * Tiglig%ep ] (20
i=1 j=

where n; 4l (i=1,2; k,l=a,B) is the number of k-/ sequences per molecule in component i.

| In the following equations, indices k and / are used to specify the type of segment. With a
substitution of appropriate segments into segments « and f, Eq. (20) is applicable to
mixtures of type (AxBy_x}AyB) v}k, (AxB1x}{CyB1 vk, 20d (AxBy 3} ACyD; v},
For example, for mixtures of type (AxB 1_*), ACyB;_y), we replace segments & and 8 of
component 1 by segments A and B, respectively. Similarly, we replaée segments @ and

of component 2 by segments C and B, respectively.
In this type of mixture, parameters @ikl and bij,k ; and the radial distribution

function 8iinl are given by



3 -~
@40 = 2007, 64Fo(Tiy ) @1)

3 = =
@jp= 0= 5705 €5V F{T, JF{T) v 22)
3 ~
bie=by = ‘;"7‘61,1: F b(Ti,lc ) » (23)
3
. 13 173 ’
bju=bjy = %(bi,k +b;; (24)
: ¢
GGk =Tty gty @5)

2 2 (1

where 17 is the packing fraction vgiven by

2

n= % g X{riobia*tTighip ) (26)

and

b= %[?b—kb—r T, +r;.abi,’"3 ) | @)
ijkl i=1

T, = e:l;(]; 5 ‘. | (28)

In Eqgs. (21) to (28), subscripts i and j (i,j=1,2) and k and / (k,/=c.,B) specify the
component and type of segment, respectively. The scaling parameter, s(r;), in Eq. (28) is
assumed to be a unique function of the total number of hard spheres of component i per

molecule.



We use combining rules similar to Egs. (16) and (17) to define o, and kb

respectively:
Ot = Ojige = %(Gi,k +0,) | @
Eiu= i =AE4E, (1—"'ij,k1 ) , (30)

where x;; yu 15 an adjustable intersegmental paramcter whenever k#! and

u,lclc ,lc ‘ (3 1)

Critical Condition and Coexistence Curve. The critical points and coexistence curves
of mixtures can be found from the Helmholtz energy of the mixture, A(7.x;,p), which
should not be confused with segment type A. The Helmholtz energy of the mixture is
calculated from Eq. (18); it is? |

A 124 S g,
NkgT kaT f (pkBT 1}—+§x'm(x'pkBT)

2 Nk T "'PZ 2’%‘:2 Z bq,k'l'Wq.k'I'] Zx Z Qiikxos1

=1 j=1 k’=1 1’=1 =l ko=

T kT Z 2 "f‘:[ ) 2 %x'r] * 2 x;In{x;pkpT ) (33)

=1 j=1 k=1 I'=1 .

where A ,-° is the Helmholtz énergy of component i in the reference state and



P
Wij,k'l’ =;}‘[ gij,k'l' dp . (34)
0 | |

P
| dp
Qii.k',k'+l =f0 [gi‘-’k"k,_'_l_l p . (35)

The reference state is taken to be the pure ideal gas at unit pressure and at the temperature
of the mixture containing the same number of molecules as the total number of molecules
in the mixture. ‘ |

For binary mixtures, the critical conditions are given by
a4l (3 Y
ox T.p ap Tx ox T.p |

(ax )T (ap)r (ap) (apz
+30% \L-(axap)r( [ )r "( Hﬁa% =0 @7

where x is the mole fraction of component 1 or 2.

The chemical potential per molecule of component i, 1;, is found from Eq. (33):
_ (o4 L | o
' (33)
aN PNjwi
where N; is the number of molecules of component i. The expression for the chemical
potential is given in Appendix I. For a fixed temperature, the coexistence curve is

calculated by equating the pressure and chemical potentials of coexisting phases:

10



plrxp)=pTrx"s) | B (9)
wlra'p)=plrap?) | (40)
#;(Té o )=ulra"p’) - @)
where superscripts * and ” denote the coexisting phases.

RESULTS AND DISCUSSION

Theoretical Coexistence Curves and Miscibility Maps_. We first consider random

copolymer mixtures of type (AxB1_x)}AAyB1_y), containing two kinds of segments. For

these systems the characteristic parameters in Egs. (29) to (32) are:

Oia=0p» O;p=0p» =8y Ep=&

%iop = G = CAB » Kjap = Kypa = Fap (V=12) “2
where
Eap = VE E5(1-K,3) - _ ' “43)

. In addition, for random copolymers the number of k-I sequences (i.c., bondihg pai}s) of
component 1, n, ;, (k,/=A,B) , may be calculated from a statistical average as -

2 2

11



Similar expressions for 7, ,, are obtained by replacing X and subscript 1 by ¥ and 2,
respectively, in the above equation. Here .wc consider only mixtures of random
copolymers.

Figure 1 shows theoretical coexistence curves for mixtures of random copolymers
of type (AxB;_x}-NAyB;_y), (r; =, =10000) with different copolymer compositions X
and Y. Since the total number of hard spheres per moleéule is the same for both
components, the only difference between components 1 and 2 is the copolymer
composition. In this system, the miscibility of the mixture is expected to be enhanced as
the difference in the copolymer compositions, [X-YI, decreases. Wheh X=Y, there is
complete miscibility because, in that event, components 1 and 2 are identical.

The PHSC equation of state can produce both a lower critical solution
temperature (LCST) and an upper critical solution temperature (UCST) in the
téfnperature-composition phase diagram of high-molecular-weight copolymer blends.
Figure 1 shows that the miscible temperature range (i.e., temperatures between LCST and
UCST) increases as the difference in copolymer compositions declines.

| Figure 2 shows theoretical coexistence curves of mixtures of random copolymers

of type (AxB;_x}MAyB_y), (ry=r,=10000, X=0.8, ¥=0.3) with different values of

intersegmental parameter k,p. Calculated coexistence curves are very sensitive to K,p.

When the theory is applied to real systems, this parameter must be obtained by comparing
the theoretical prediction with experiment.

Figure 3 shows miscibility maps of mixtures of random copolymers of type
(AxB;_x)AAyB,_y), at four reduced temperatures, T \=kpT/e,. If a pair of X and Y are in
the miscible region, a pair of copolymers with these compositions form a single
homogeneous phase in all proportions. The phase diagram of the system shown in Figure
3 is similar to that shown in Figures 1 and 2, exhibiting both a LCST and an UCST.
Therefore, the mixture of copolymers is completely miscible if the temperamre of interest

is between LCST and UCST. At temperatures in Figuie 3a, immiscib.ilityA is caused by

12 | |



LCST behavior and the miscible area decreases as the temperature rises; however, at
temperatures in Figure 3b, irhmiscibility is caused by UCST behavior and the miscible

area increases as the temperature rises.
Next, we consider mixtures of random copolymers of type (AxBl-x)r{(CvBl-Y)r,

containing three kinds of segments. The characteristic parameters for these systems are:

O1,a= Oa: O;p= B> 020=0cs &,0=Ep» 8,‘.5‘:812,55:83’ Se=&

11,08 = €1208 = €aB » 12,00 = EAC" E12pa = Enrpa ™ EBC

K10 = Ki2.08 = ¥aB » K12.00 = Kac» Koo = Kppe=Kac (/=12 (45)
where
£an = VEaBa(1-Kap) Exc = VERE1-K5c) Epc = TEREC 1) - (46)

An important system of this type is the mixture A, {CyB,_y),, which corresponds
to copolymer-solvent solutions and to homopolymer/copolymer blends. In these systems
- the interesting question is how the rﬁiscibility of copolymer in solvents or homopolymers
varies with the copolymer composition. Figure 4a shows coexistence curves of three
binary systems of type A,/Bsgy Ay/Csop and Byy/Cog. The segmént fraction of
component 2 is defined as x,r,Ax,7, +vx2r2) where x; and r; are the mole fraction and the
number of hard spheres per molecule of component i, respectively. The systems A,/Bs,,
and A,/C 5, represent homopolymer-solvent solutions which exhibit both a LCST and an
UCST. For simplicity, let these two systems be identical. The system B,o/C,, is a
homopolymer blend which is essentially immiscible in the temperature range shown in
Figure 4a. .

Copolymer solutions of type A,/(CyB;_y)soo also exhibit both a LCST and an

UCST. Figure 4b shows the copolymer composition dependence of reduced LCST and

13



UCST, kgT,/e,; parameters are the same as those used in Figure 4a. The miscible
temperature range increases as the copolymer compo'sition rises, i.e., the solubility of
homopolymer B, is enhanced by making a copolymer with segmehts of type C which
has unfavorable interaction with segments of type B.

Similar results can be obtained for the homopolymer/copolymer blend of type
A, /[CyB,_y), Figure 5a shows the coexistence curves of three binary systems of type

A10000/B10000  A10000/Cro000 20d  B1oo/Croo- Systems Ajopo/Biopop and
A 10000/C 10000 TEPTesent homopolymer blends which exhibit both a LCST and an UCST.
For simplicity, these two systems are assumed to be identical. The system B400/C1000 iS
a homopolymer blehd which is cséentially immiscible. The homopolymer/copolymer
blend of type A ;4000/(CyB1-y)10000 210 exhibits both 2 LCST and an UCST. Figure 5b
shows the copolymer composition dependence of LCST and UCST. The miscible
temperature range increases as the copolymer composition rises.

The enhanced solubility of copolymer can be explained as follows. Since the
" parameters are chosen such that the interactions between segments B and C are
unfavorable, the presence of segment C among segment B in copolyrﬁers gives
interactions that are less favorable between the copolymers than those between
homopolymers consisting of segment B only. Therefore, interactions between copolymer
and solvent relative to those between copolymers become more favorable, resulting in
increased solubility of copolymer in solvent A or homopolymer consisting of segments of
type A. These results imply that a copolymer and a homopolymer can be miscible even
though the corresponding three binary mixtures of homopolymers are immiscible10.

Figure 6a shows the miscibility map for mixtures of random copolymers of type
(AxB1_x)}-ACyB,_y), at three reduced temperatures, T,=kzT/c,. The theoretical
coexistence curves of two pairs of copolymers, X=0.1; ¥=0.56 and X=0.4; Y=0.1, are also
shown in Figure 6b. While for small values of Y the miscible area monotonically

decreases, for large values of Y the miscible area first increases and then decreases as TA

14



rises from 1.0 to 1.4. This behavior occurs because immiscibility is caused by LCST
behavior for small values of Y at TA above 1.0. On the other hand, immiscibility is caused
by UCST behavior for large values of Y at T’ ',=1.0. If a pair of copolymers are immiscible
due to UCST behavior, the mixture becomes miscible as the tcmperétme starts to exceed
the UCST of | the mixture. As the temperature rises further, howe\}er, the mixture
eventually becomes immiscible because of the presence of a LCST at elevated

temperature.

Compaﬁson with experiment. In comparing the theory with experiment, theoretical
calculations were performed at the zero pressure limit, an excellent approximation if the
experimental data are at atmospheric pressure. The equatioh-offstate parameters for
copolymer mixtures are obtained as follows. Cdnside_r component 1, a copolymer of type
(AxBl—x)rr We use the regressed parametérs ‘eA, 0y, and r/M of homopolymer consistinig»,
of segment A reported in Reference 3 as the characteristic parameters of segment A in
. copolymers; here M is the molecular weight. These parameters were obtained from pure-
component pressure-volume-temperature data. When the copolymer composition in
weight fraction and the numbef average molecular weight are known, simple
stdichiometry gives @,, the total mass of segment A per mole of copolymer; @, is then
multiplied by /M of homopolymer consisting of segment A to obtain the number of

effective hard spheres of type A, r, - A similar calculation is performed to obtain ry g the

number of effective hard spheres of type B.
| When the miscibility map at constant chain volume, v; , is reported as a function

of the volume fraction of segment A, ¢, ,, we assume that these parameters are related to
the equation-of-state parameters by

SV | | @

ry 3
1/67mo] 5
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Eq. (47) assumes that the measured chain volume is equal to the hard-core volume of
hard-sphere chains. A similar equation fbr ry g is obtained by replacihg subscript A by B
in Eq. (47). The total number of effectivé hard spheres per molecule, ry, is therefore given
by rya+r;z- The number fraction of segment A, X, is then computed as X=r ,/r;.

In addition to the intersegmental paranietcr K,ps for the mixture of type

(AxB1_x)AAyB;_y), we introduce an additional adjustable intersegmental parameter {,p,

such that
13 (bilf +bf.lBB) o
b;an =——2—‘—(1—CAB) (ij=1,2) . (48)

g therefore relaxes the additivity of effective hard-sphere diameters of unlike segments.
When the experimental coexistence curve is available, these parameters can be obtained
from the critical point o‘f-—homopolymer blends of type 4, /B, . ‘

Eq. (48) is different from the combining rule used in Reference 6. In the present
paper we use Eq. (48) because, when the molecular-weight dependence of the critical
temperature is compared with experiment, the combining rule given by Eq. (48) gives
better agreement with experiment.

We first compare theory with experiment for systems containing butadiene and
styrene segments. Several experimental cloud-point curves of these systems are reported
by Roe and Zinl1 and Park and Roel2. Tables I and II give characterizations of ihc
polymer samples used by these authors and the PHSC equation-of-state parameters of

polystyrene and polybutadiene homopolymers.

Intersegmental parameters, K,y and {,5, are obtained from the observed critical
point of the (PBD-PS1) syStem12. The experimental critical point, however, is very
difficult to determine. In this paper we obtain two sets of intersegmental parameters by

assuming two different critical points. We show calculated results based on each set.

16



Figure 7a shows a comparison of theoretical coexistence curves with experiment
for (PBD-PS1) systeml2. Two sets of intersegmental parameters obtained from the
critical bomt are given m Table III. Parameter sets 1 and 2 are obtained by assuming that
the critical polystyrene weight fractions are 0.59 and 0.585, respectively. In both
| célculaﬁoné the critical temperature is assumed to be 122°C. ‘I'he theoretical curve with
parameter set 2 is slightly wider than that with parameter set 2. The width of the
 coexistence curve, however, is narrower than that from experiment. Next, we predict the
coexistence curves of other systems containing styrene and butadiene segments, including
random copolymers, using the binary parameters obtained above.

Figure 7b compares predicted coexistence curves with experiment for the systems -
(PBD-PS2) and (PBD-PS3)1.1. The critical temperatures predicted by the theory with
- parameter set 1 agree well with eﬁcperiment The, critical temperatures predicted by the
theory with parameter set 2, ho§vev'e_,r, are slightly lower than the experimental critical
temperatures. |

Figures 8a and 8b compare predict;d coexistence curves with experiment for the
systems -(PS4-R50/50) and (PS2-R25/75), naspectively1 1, In these systems one
component is a random copolymef. In both systems the theoretical coexistence curves
with parameter set 2 gives slightly better agreement with experiment than those with
parameter set 1. |

Figure 9 compares theoretical miscibility maps at two temperatures ivvith
experimental data by Braun e al.13 for a mixture of type (AxB1_x)MAyB1 v},
containing poly(butyl methacrylate-co-methyl methacrylate) randdm copolymers. Braun
et al. caried out experiments at constant Chain volume v; of 130 (mn)3. We assume that

the chain volume is equal to the hard-core volume of hardQSphere chains, that is,

3 3

Vi=Tag T (49)
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where subscripts A and B denote the butyl methacrylate and methyl methacrylate

segments, respectively. For a given volume fraction of segment A, ¢, ,, the number of
segments A per molecule, r A S calculated by Eq. (47). Eq. (49) then gives the number
of segments of type B per molecule, r; 5.

The intersegmental parameters were obtained as follows. We first assume a

reasonable value of {, (for example{,p=1.000), and then compute k, assuming that at

25°C the boundary between miscible and immiscible regions at ¢, ,=1.0 lies at

¢, =0.74. The best fit was obtained with {45=1.001. Table IIT gives the values of

intersegmental parameters. The theory predicts that the immiscibility in this system is
caused by LCST behavior. Also shown in Figure 9 is the miscibility map at 180°C. The
theoretical miscibility niap was computed using parameters obtained at 25°C. Although
the choice of {, is somewhat arbitrary, the agreement of predicted miscibility map with
experiment at 180°C is good. |

Classical incompressible lattice theory such as the Flory-Huggins theory14
predicts that for mixtures of type (AxB,_x)[AvB 1-Y), & pair of copolymers is miscible if
the copolymer composition difference [X-Y! is smaller than a critical value [X-Y|, which
is independent of the copolymer cbmpositions. The miscibility of the system shown in
Figure 9 follows the prediction of Flory-Huggins theory. The temperature dependence of
miscibility maps, however, cannot be explained by the Flory-Huggins theory which can
predict an UCST only. The Flory-Huggins theory predicts that the miscible area increases
as the temperature rises. Equation-of-state theory is necessary to explain the immiscibility
caused by LCST behavior13-18,

Figure 10 compares theoretical miscibility maps with experiment obtained by
Braun et al.13 for mixtures of type (AxB;_x}/AyB,_y), containing poly(styrene-co-
butyl methacrylate) random copolymers. The average chain volume v ; is reported to be

230 (nm)3. We first assume a value of {5 and then solve for &, assuming that at 25°C

the boundary between miscible and immiscible regions at ¢; ,=1.0 lies at ¢, ,=0.70; here
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subscripts A and B denote styrene and butyl methacrylétc segments, respectively., The
best fit was obtained with {,5=1.002. Table III gives intersegmental parameters. These
parameters are used to predict the miscibility map at 180°C. The theory predicts that
immiscibility is caused by LCST behavior. The miscible area therefore decreases as the
temperature rises.

In the system shown in Figure 10, the critical composition difference X-Yl
strongly depends on the copolymer compositions. Although the theory can qualitatively
describe the dependence of critical composition difference on copolymer compositions
and temperature, agreement with expe;iment is not as good as that for thé system shown
in Figure 9. Better agreement would be obtained by considering the dyad interactions as
proposed by Braun et al.13. The effect of dyad interactions can be introduced into the
equation of state by expanding the perturbation term by dyad fraction. In this model the
interaction energy between segments A belonging to different AA dyads is assumed to be
different from the interacﬁbﬁ -encrgy between segment A in an AA dyad and segment A of
an AB dyad. The physical interpretation of this-assumption is that the presence of segment-
B in AB dyads produces a screening effect on the interaction of segment A of AB dyads

with segment A of AA dyads.

CONCLUSIONS

A perturbed hard-sphere-chain (PHSC) equation of state for copolymer systems is
presented. PHSC uses the modified Chiew equation of state for athermal mixtures of
~ heteronuclear ha:rd-#phere chains by Song et al. and a van der Waals perturbation. The
Song-Mason method relates equation-of-state parameters to the segment-segment
intermolecular potential. The PHSC equation of state can explain immiscibility due to
lower critical solution temperature behavior in binary polymer blends containing
copolymérs. Theoretical coexistence curves and miscibility maps are compared with

experiment for binary systems containing two kinds of segments. Theoretical miscibility
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maps are in good agreement with experiment for the system containing poly(butyl
methacrylate-co-methyl methacrylate) random copolymers. The theory also gives semi- |
quantitative agreement with experiment for systems containing poly(styrene-co-

butadiene) and poly(styrene-co-methyl methacrylate) random copolymers.
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Appendix A. Chemical Potential
Consider mixtures of heteronuclear hard-sphere chains. The chemical potential of

component 2, 4, is given by N

By _ My v (9p )T ]__
kT kB fo [kBT\aN yn~ Lp Pkl )
k T pn L% Iz-l b, inkl’ chI :|
L & 28 Y Gy
"‘—22 XXy 2 2 ikl 2 X 2 Y b, Yirr

4 J=1 k=1 1'=1 = ik’
rp-1 r; " Ia b. ,b.
23 7 207 05 |
=X Qg™ z Z z | B *| 2 bge b )Hii,k',k'+l
‘=1 '=1 k=1 k=1 Bk Ok +1

i

2 {2 2 a; k'1]+ln(xnpkBT)+1 . (A.D

kgT i k=1 1’=1
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where u,‘,’ is the chemical potential per molecule of component i in the reference state,

WM 0 and QM k'keay A€ given by Egs. (34) and (35), respectively, and

L (p ) ( w't')w | (A2)
gkl

, | (A3)

J,kl (p ) (aéz,k'l )Dd

p
0., _
=1l &AM 4, (A4)

Hii.k',k'+1 = Y
o CCiiki ke

The reference state is taken to be the pure ideal gas at unit pressure and at the temperature
of the mixture containing the same number of molecules as the total number of molecules
in the mixture.

The chemical potentials are related to Gibbs energy, G, by

G =§.‘4Ni i . (A.5)

i=1

where

G ___A p_ : A.6
NiT ~ NkgT * phyT | (4.6)

where A is the Helmholtz energy given by Eq. (33).
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TABLE L Characterization of Polymer Samples Used in References 11 and 12

sample polymer type styrene content | mol wt (Mn) |  Mw/Mn
designation (Wt%)
PBD polybutadiene 0 2350 1.13
_PS1 polystyrene 100 1900 1.06
PS2 polystyrene 100 2220 1.08
PS3 polystyrene 100 3302 1.06
PS4 . polystyrene 100 5200 1.10-1.14
RS50/50 poly(styrene-co-butadiene) 50 24000 1.00
random copolymer . F
R25/75 poly(styrene-co-butadiene) 25 27000 1.07
random copolymer

Mn = number average molecular weight (g/mol)

Mw = weight average molecular weight (g/mol)

TABLE IL. PHSC Equation-of-State Parameters for Hombpolymers3

polymer r/M (mol/g) o(d) & kg (K)
cis-1,4-polybutadiene 0.01499 5.264 611.8
olystyrene 0.01117 5.534 724.7
poly(methyl methacrylate) 0.01432 4.850 655.9
ly(butyl methacrylate) 0.01899 4.550 510.8
M = molecular weight (g/mol)
TABLE IIL Intersegmental Parameters
binary pair KaR CaR
butadiene—styrene (parameter set 1) 0.00412 0.00026 -
butadiene—styrene (parameter set 2) 0.00544 0.00117
butyl methacrylate—methyl methacrylate -0.00158 -0.001
0.01085 -0.002

styrene-butyl methacrylate
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Figure Captions

Figure 1.

Figure 2. -

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Theoretical coexistence curves for mixtures of random copolymers of type
(AxB;_x)}-[AyB;_y), With different copolymer compositions: r; = r, = 10000,

oy/0,=1.1, g5/e,=1.2, K, z=0.00336, p=0.

Theoretical coexistence curves of mixtures of randofn copolymers of type -
(AxB1_xyAAyB1_y), (r; =, =10000, X=0.8, Y=0.3) with different values of

intersegmental parameters X, p: 03/0,=1.2, &/€,=1.4, p=0.

Miscibility maps of mixtures of random copolymers of type
(AxB1_x)-AyB;_y), at four reduced temperatures: r, = r, = 10000,

0,/0,=1.1, £5/6,=1.2, K,5=0.00335, p=0; (a) Immiscibility due to LCST
behavior, (b) Immiscibility due to UCST behavior., -

(a) Coexistence curves of three binary systems of type A;/Bqq, A1/Cs0r 2nd
B,/C,y: Op/03=0r/0p=1.1, Ep/E,=6/Ex=1.2, Kpp=K, -=Kpc=0.01, p=0; (b)
Copolymer composition dependence of reduced LCST and UCST of
copolymer solutions of type A,/(CyB;_y )soo-

(a) Coexistence curves of three binary systems of type A y000/B 10000°
A10000/C 10000- 214 B 1000/C 1000° Op/Oa=0c/Op=1.1, Ep/€x=E/E,=1.2,
Kap=Kx=0.00332, 15;,=0.0002, p=0; (b) Copolymer composition
dependence of rcduCed‘LCST and UCST of homopolymer/copolymer blends
of type A 0000/ (CyB1-v 10000 -

(a) Temperature dépendence of the miscibility map for mixtures of random
copolymers of type (AxB;_x} ACyB1_v), Op/0x=1.1, 6J0,=12, &3/e,=1.2,
0/0,=1.4, K,5=0.00332, x,=0.0122, x3,=0.00276, p=0. (b) Theoretical
coexistence curves of copolymer mixtures corresponding to two pairs of
copolymers denoted in Figure 6a.
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Figure 7.

Figure 8.

Figure 9.

- Figure 10.

Comparison of theoretical coexistence curves with experiment for
polybutadiene/polystyrene mixtures: (a) (PBD-PS1) system, (b) (PBD-PS2)
and (PBD-PS3) systems. The curves in (b) are predictions. .

Comparison of predicted coexistence curves with experiment for
polystyrene/poly(styrene-co-butadiene) mixtures: (a) (PS4-R50/50) system,
(b) (PS2-R25/75) system.

Comparison of theoretical miscibility maps with experiment for a mixture of
type (AxB;_x}AAyB _y), containing poly(butyl methacrylate-co-methyl
methacrylate) random copolymers. The theory predicts that immiscibility is
caused by LCST behavior. Data are from Braun et al.13: o miscible at 25 and
180 °C, A miscible at 25 °C but immiscible at 180 °C, © immiscible at 25 and
180 °C. '

Comparison of theoretical miscibility maps with experiment for mixtures of
type (AxB}_x)NAyB1_y)r, containing poly(styrene-co-butyl methacrylate)
random copolymers. The theory predicts that immiscibility is caused by LCST

behavior. Data are from Braun et al.13; o miscible at 25 and 180 °C A _
miscible at 25 °C but immiscible at 180 °C, © immiscible at 25 and 180 °C.
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Figure 2
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Figure 3
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Figure 4
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Figure §
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Figure 6 -
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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