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ABSTRACT 

A perturbed hard-sphere-chain (PHSC) equation of state for real copolymer 

mixtures is based on a modified form of Chiew's equation of state for athermal mixtures 

of heteronuclear hard-sphere chains. The PHSC equation of state includes a van-der

Waals perturbation whose parameters are related to the intermolecular potential as 

suggested by Song and Mason. In the present model, sequence distribution in a polymer 

is introduced only into the hard:-sphere-chain reference state; attractive forces are 

averaged, independent of sequence distribution. Theoretical coexistence curves and 

miscibility maps were computed for binary random copolymer mixtures containing two 

or three kinds of segments. The PHSC equation of state can predict simultaneous 

occurrence of a lower critical solution temperature and an upper critical solution 

temperature in the temperature-composition phase diagram of high-molecular-weight 

copolymer blends. Theoretical and experimental coexistence curv~ and miscibility maps 

show good agreement for systems containing two kinds of segments. 

(Keywords: copolymer blend; equation-of-state; lower critical solution temperature; 

phase equilibria;) 

Correspondence concerning this paper should be addressed to J.M. Prausnitz. 



INTRODUCTION 

Equation-of-state theories are useful for describing the phase equilibria of 

solutions and .blends containing copolymers. A brief review of equations of state for 

copolymer systems is given by Wohlfarth 1. Equations of state based on free-volume or 

lattice-fluid models have an advantage over classical incompressible lattice theories such 

as the Flory-Huggins theory and Guggenheim's quasichemical approximation2 because 

they can :predict a lower critical solution temperature (LCST) at elevated temperature as 

well as an upper critical solution temperature (UCST). LCST behavior is a common 

phenomenon in polymer blends including those that copolymers. In addition, an equation 

of state is also able to describe the effect of pressure on phase behavior. 

An equation of state applicable to polymer systems is the perturbed hind-sphere

chain (PHSC) equation recently developed by Song et ai.3-6. These authors3 first 

presented a hard-sphere-chain (HSC) equation of state for athermal homonuclear and 

heteronuclear HSC mixtur~ by generalizing Chiew's equation of state for mixtures of 

hard-sphere chains 7 through the Carnahan-Starling radial distribution function for hard

sphere mixtures at contact Compared to Chiew's original equation of state, the new 

equation of state for athermal systems was expressed more succinctly. For real polymer 

fluids, Song et a[.4,5 introduced a van der Waals perturbation and the Song-Mason 

method to relate equation-of-state parameters to the intermolecular potential. The Song

Mason method calculates the effective van der Waals covolume, b, (i.e., second virial 

coefficient of hard spheres) arid the attractive energy parameter, a, in tenns of the well 

depth of the pair potential, e, and the distance of separation at minimum potential energy, 

cr. In this method, the temperature dependences of parameters a and b are given by two 

known universal functions of a reduced temperature. 

For a homopolymer, the PHSC equation of state requires three parameters: 

number of effective hard spheres per molecule, r; segmental diameter, o; and non-bonded 

segment pair-interaction energy, e. These parameters were regressed from available 
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volumetric and vapor-pressure data for a variety of normal fluids and several 

homopolymers; they are tabulated in Reference 3. For a homopolymer, one of the 

regressed characteristic quantities is riM, where M is the molecular weight of polymer. 

For mixtures, no mixing rules are required for the hard-chain-of-spheres 

contribution. For the perturbation te~ a standard one-fluid theory was used5,6. For 

several binary mixtures including homopolymer solutions and 

homopolymer/homopolymer blends6, calculated liquid-liquid coexistence curves are in 

good agreement with experiment. 

In this paper we present an extension of the PHSC equation of state for copolymer 

mixtures. Theoretical coexistence curves and miscibility maps are computed for binary 

random copolymer mixtures containing two and three kinds of segments. These mixtures 

are denoted as (AxB1_x)rA:AyB1_y)r
2 

and (AxB1_x)r.~CyB1_y)r2 where r; is the number of 

hard spheres per molecule of component i; and X andY are segment number fractions fQr 

segments A, Band C, in components 1 and 2, respectively. 

Theoretical coexistence curves and miscibility maps are compared with 

experiment for mixtures of type (AxB1_x)rt{AyB1_y}
2 

containing poly(styrene-co-

butadiene), poly(butyl methacrylate-co-methyl methacrylate), and poly(styrene-co-methyl 

methacrylate) random copolymers. 

THEORY 

Equation of State for Pure Copolymers. Using the modified Chiew equation of state as 

the reference state3, the PHSC equation of state for pure heteronuclear polymer 

molecules consisting of r effective hard spheres is 

(1) 
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where p is the pressure, p==NIV (N is the number of molecules and Vis the volume) is the 

number density, kB is the Boltzmann constant, T is the absolute temperature, and 

subscripts k ' and I ' denote the k '-th and I' -th segments, respectively, of hard-sphere 

chains. In Eq. (1) ak'l' is a parameter which reflects the strength of attractive forces 

between two hard spheres; bk'l' represents the second virial coefficient of hard spheres; 

and gk'l' is the pair radial distribution function of hard spheres when k'-th and 1'-th 

segments are at contact. These parameters and the pair distribution function are 

temperature dependent, as shown later. Eq. (1) is for hard-sphere chains consisting of an 

arbitrary number of chemically different segments. The segments in the chain need not 

have the same size. 

We consider copolymers consisting of two types of segments a and {3: 

(2) 

where X is the number fraction of segment of type a. In a polymer chain. the number of 

segments of type a per molecule is given by r a and that of type f3 is given by r ~= 

ra=rX (3) 

r~=1{1-X) . (4) 

In the following equations, the type of segment-segment interaction is specified 

by subscripts k and I; these subscripts appear in parameters and pair distribution 

functions. For copolymers Eq. (1) reduces to 
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(5) 

where nkl (k,l=a,J3) is the number of k-1 sequences (ie., bonding pairs) per molecule in 
' 

hard-sphere chains. 

Parameters akl and bkl and the radial distribution function, gkl, are given by 

2 

g - g - 1 + .l ~kl + 1 ~kl kl- lk --
1-1] 2 (1-TJl 2 (1-TJt 

(6) 

(7) 

(8) 

(9) 

(10) 

where k and I (k,l=a,J3) specify the type of segments and 1J is the packing fraction given 

by 

(11) 

and 
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(12) 

In Eqs. (6), (7), and (8), CTt (k,l=a,J3) and CT~ are the separation distances between 

similar and dissimilar segments, respectively, at the minimum potential energies 

ek (k,l=a,J3) and e~, respectively, in the segment-segment pair potential. Eq. (9) assumes 

additivity of effective hard-sphere diameters of unlike segments. Eqs. (10) and (12) are 

the results of a generalization of the radial distribution function at contact from the 

Carnahan-Starling equation to copolymer systems; derivation of these equations are given 

in Reference 3. 

In Eqs. (6), (7), and (8), Fa and Fb are known universal functions in terms of 

reduced temperature defmed as4 

(13) 

where s(r) is a scaling parameter. The universal functions are obtained from volumetric 

and vapor-pressure data for argon and for methane as indicated previously4. They are 

Fa{~}= 0.7170 + 1.9003exp{-0.5152~} (14) 

(15) 

The scaling parameter s(r) in the reduced temperature, Eq. (13), arises from the 

scaling of Fa and Fb from single-sphere systems to systems containing polymer 

molecules. This parameter was originally introduced for homonuclear hard-sphere chains 

(i.e., homopolymers)4 consisting of r tangent spheres. Although copolymers can be made 

of hard spheres of different sizes and interaction energies, s(r) for copolymers is assumed 
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to be a unique function of the total number of hard spheres per molecule. The function 

s(r) is given in Reference 4. 

The effect of sequence distribution is not incorporated into the perturbation tenn 

in Eqs. (1) and (5). In principle, the effect of sequence distribution can be introduced by 

expanding the perturbation term by the fraction of particular sequences (e.g., dyads and 

triads) in place of segment fractionS. Such a method, however, requires additional 

interaction energy parameters. 

Finally, in this paper we use the following combining rules to obtain parameters 

ua~ and e~ in Eq. (7): 

(16) 

(17) 

where K'~ is an adjustable intersegmental parameter whenever a¢:/3. 

Equation of State for Copolymer Mixtures. Eq. (1) is readily extended to mixtures of 

heteronuclear polymer molecules. The PHSC equation of state for mixtures of 

heteronuclear polymer molecules is 

(18) 

where m is the number of components and xi is the mole fraction of component i. The 

number of effective hard spheres per molecule of component i is designated by r;. In Eq. 

(18), subscripts k' and I' denote the k '-th and I '-th segments, respectively, of hard-
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sphere chains. The physical significances of parameters aij.k'l' and hij,lc'l' and pair 

distribution function gij.k'l' for mixtures are the same as those for pure fluids. 

We consider f'rrst binary mixtures of copolymers consisting of two types of 

segments a and /J: 

(19) 

The number of segments of type a, r1,a, and that of p, r1.~, of component 1 are given by 

r 1X and r1 (1-X), respectively. For binary mixtures of copolymers, Eq. (18) is 

2 -ti x,{lz;,aa(g;;,aa -1) + n;,~(g;;,~ -1) + n;,rxx(gii,fkx -1) + n;.~~(g;;.~~ -1 )] 

p 2 2 
--~ ~ x.r.[r·. r·afl··,,.. + r.ar.Ra .. R + r.Rr·afl··R,., + r.a.r.a.a··a.a. . ] (20) k T -!- -!- r7 1,a J, IJ,v.v. 1, 1.~ ,1,a~ ,~ 1· 'l·t~U- 1,.., 1,.., ,1,..,.., 

B 1=1 r-1 

where ni.kl (i=1,2; k,/=a,~) is the number of k-1 sequences per molecule in component i. 

In the following equations, indices k and I are used to specify the type of segment With a 

substitution of ~ppropriate segments into segments a and p, Eq. (20) is applicable to 

mixtures of type (AxB1_x}/{AyB1_y}
2
, (AxB1_x}

1
{CyB1_y}

2
, and (AxB1_x}/{CyD1_y}

2
• 

For example, for mixtures of type (AxB1_x}/{CyB1_y}
2 
we replace segments a and P of 

component 1 by segments A and B, respectively. Similarly, we replace segments a and p 

of component 2 by segments C and B, respectively. 

In this type of mixture, parameters aij.kl and bij,kl and the radial distribution 

function gij.kl are given by 
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2 3 (...., } a .. ££= -1u1..k e .. li' T· £ u,..,. 3 '· •K a ,,. 

a .. £1 = a .. lk = 2 tcu.~ £1 e .. £1 .../ F ~T- £ }F if.,) u.... Jl, 3 q,.. q,. ,,. 8\. J, 

!{ 1/3 1(3)
3 

b""£1=b .. lk = b.,_ +b·r '1,.. Jl, 8 ,,. J, 

2 

-- _1_ + 'l ~ij.ld + _1 ~ij,ld 
Cij,lcl = Cji,lk ..L 

1-TJ 2 (1-TJl 2 (1-TJ)3 

where 1J is the packing fraction given by 

and 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

In Eqs. (21) to (28), subscripts i and j (i,j=1,2) and k and I (k,l=a.~) specify the 

component and type of segment, respectively. The scaling parameter, s(r;), in Eq. (28) is 

assumed to be a unique function of the total number of hard spheres of component i per 

molecule. 
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We use combining rules similar to Eqs. (16) and (17) to define CJ;IJ· 11 and e .. L,. 
' IJ,~<•· 

respectively: 

CJ';j,kl = C1j;,llc = ~ G;; + C1j,l ) (29) 

e .. "'= e .. lie = J e .. F..1 {1-7C··/d) IJotW Jl, l,c-J, IJ, (30) 

where 1Cij.Jcl is an adjustable intersegmental parameter whenever /cF/ and 

CJ';;,kk = CJ';,Jc (31) 

(32) 

Critical Condition and Coexistence Curve. The critical points and coexistence curves 

of mixtures can be found from the Helmholtz energy of the mixture, A (T ,x ;•P 1 which 

should not be confused with segment type A. The Helmholtz energy of the mixture is 

calculated from Eq. (18); it is9 

whereAt is the Helmholtz energy of component i in the reference state and 

9 



w .. k'l' = 1..1P g .. k'I'dp lJ, p IJ, 
0 

(34) 

1p d 
Qii,k',k'+l = [gii,k',k'+l -Iff . 

0 p 
(35) 

The reference state is taken to be the pure ideal gas at unit pressure and at the temperature 

of the mixture containing the same number of molecules as the total number of molecules 

in the mixture. 

For binary mixtures, the critical conditions are given by 

(36) 

(37) 

where xis the mole fraction of component 1 or 2. 

The chemical potential per molecule of component i, f.L;, is found from Eq. (33): 

( aA~ Jl·= -
' aN; .pN?< 

(38) 

where N i is the number of molecules of component i. The expression for the chemical 

potential is given in Appendix I. For a fixed temperature, the coexistence curve is 

calculated by equating the pressure and chemical potentials of coexisting phases: 

10 



(39) 

(40) 

(41) 

where superscripts ' and " denote the coexisting phases. 

RESULTS AND DISCUSSION 

Theoretical Coexistence Curves and Miscibility Maps. We first consider random 

copolymer mixtures oftype(AxB1_x}/{AyB1_yh containing two kinds of segments. For 

these systems the characteristic parameters in Eqs. (29) to (32) are: 

e .. aR =e .. A,.= eAB, JC •• ~R = JC .• R,. = JCAB (ij=l,2) 
1), ,.. IJ•f"U' lj,u.p l),pu. 

(42) 

where 

(43) 

. . -
In addition, for random copolymers the number of k-1 sequences (i.e., bonding pairs) of 

component 1, nu1 (k,l=A;B) , may be calculated from a statistical average as · 

11 



Similar expressions for n2.1c1 are obtained by replacing X and subscript 1 by Y and 2, 

respectively, in the above equation. Here we consider only mixtures of random 

copolymers. 

Figure 1 shows theoretical coexistence curves for mixtures of random copolymers 

of type (AxB1_x)ri{AyB1_y}
2 

(r1 = r2 = 10000) with different copolymer compositions X 

and Y. Since the total number of hard spheres per molecule is the same for both 

components, the only difference between components 1 and 2 is the copolymer 

composition. In this system, the miscibility of the mixture is expected to be enhanced as 

the difference in the copolymer compositions, IX-YI, decreases. When X=Y, there is 

complete miscibility because, in that event, components 1 and 2 are identical. 

The PHSC equation of state can produce both a lower critical solution 

temperature (LCST) and an upper critical solution temperature (UCST) in the 

temperature-composition phase diagram of high-molecular-weight copolymer blends. 

Figure 1 shows that the miscible temperature range (i.e., temperatures between LCST and 

UCST) increases as the difference in copolymer compositions declines. 

Figure 2 shows theoretical coexistence cmves of mixtures of random copolymers 

of type (AxB1_x)r!{AyB1_y)r
2 

(r1 = r2 = 1~, X=0.8, Y=0.3) with different values of 

intersegmental parameter K"AB. Calculated coexistence curves·are very sensitive to K"AB. 

When the theory is applied to real systems, this parameter must be obtained by comparing 

the theoretical prediction with experiment 

Figure 3 shows miscibility maps· of mixtures of random copolymers of type 

(AxB1_x)r/(AyB1_y)r
2 
at four reduced temperatures, TA=IcBT/eA" If a pair of X and Yare in 

the miscible region, a pair of copolymers with these compositions form a single 

homogeneous phase in all proportions. The phase diagram of the system shown in Figure 

3 is similar to that shown in Figures 1 and 2, exhibiting both a LCST and an UCST. 

Therefore, the mixture of copolymers is completely miscible if the temperature of interest 

is between LCST and UCST. At temperatures in Figure 3a, immiscibility is caused by 

12 



LCST behavior and the miscible area decreases as the temperature rises; however, at 

temperatures in Figure 3b, immiscibility is caused by UCST behavior and the miscible 

area increases as the temperature rises. 

Next, we consider mixtures ofrando~ copolymers of type (AxB1_x}.A:CyB1_y~2 
containing three kinds of segments. The characteristic parameters for these systems are: 

ul,a = (j'A• Oi.~ =DB· (j2,a = Uc, Et,a = 6A• ei,~ = e12,~ = ea' ~a= Ec 

611,ap = 612,a~ = 6AB • 612,aa = 6Ac• 612,~ = ~~ = Bac 

K'u.~ = Ki2.a~ = KAB • K'12.aa = K'Ac • Ki2.~ = A22,~ = K"Bc (ij=l,2) (45) 

where 

(46), 

An important system of this type is the mixture A,/(CyB1_y)r
2 

which corresponds 

to copolymer-solvent solutions and to homopolymer/copolymer blends. In these systems 

the interesting question is how the miscibility of copolymer in solvents or homopolymers 

varies with the copolymer composition. Figure 4a shows coexistence curves of three 

binary systems of type A1!B500, A1!C500, and B2ofC20• The segment fraction of 

component 2 is defined as x2r 2l{x1 r 1 + x2r 2) where x; and r; are the mole fraction and the 

number of hard spheres per molecule of component i, respectively. The systems A 1/B 500 

and A tfC500 represent homopolymer-solvent solutions which exhibit both a LCST and an 

UCST. For simplicity, let these two systems be identical. The system B2ofC20 is a 

homopolymer blend which is essentially immiscible in the temperature range shown in 

Figure 4a. 

Copolymer solutions of type A1{CyB1_yboo also exhibit both a LCST and an 

UCST. Figure 4b shows the copolymer composition dependence of reduced LCST and 

13 



UCST, kBTc leA; parameters are the same as those used in Figure 4a. The miscible 

temperature range increases as the copolymer composition rises, i.e., the solubility of 

homopolymer B 500 is enhanced by making a copolymer with segments of type C which 

has unfavorable interaction with segments of type B. 

Similar results can be obtained for the homopolymer/copolymer blend of type 

A,A:CyB1_y}
2
• Figure Sa shows the coexistence curves of three binary systems of type 

AIOooofBtoooo• AtoooofCtoooo• and BtooofCIOoo· Systems AIOooofBtoooo and 

A10ooofC10000 represent homopolymer blends which exhibit both a LCST and an UCST. 

For simplicity, these two systems are assumed to be identical. The system B 10oofC 1000 is 

a homopolymer blend which is essentially immiscible. The homopolymer/copolymer 

blend of type A1oooof(CyB1_y)10000 also exhibits both a LCST and an UCST. Figure 5b 

shows the copolymer composition dependence of LCST and UCST. The miscible 

temperature range increases as the copolymer composition rises. 

The enhanced solubility of copolymer can be explained as follows. Since the 

parameters are chosen such that the interactions between segments B and C are 

unfavorable, the presence of segment C among segment B in copolymers gives 

interactions that are 'less favorable between the copolymers than those between 

homopolymers consisting of segment B only. Therefore, interactions between copolymer 

and solvent relative to those between copolymers become more favorable, resulting in 

increased solubility of copolymer in solvent A or homopolymer consisting of segments of 

type A. These results imply that a copolymer and a homopolymer can be miscible even 

though the corresponding three binary mixtures ofhomopolymers are immisciblelO. 

Figure 6a shows the miscibility map for mixtures of random copolymers of type 

(AxB1_x}A:CyB1_y}
2 

at three reduced temperatures, TA=kBT/eN The theoretical 

coexistence curves of two pairs of copolymers, X=O.l; Y=0.56 andX:0.4; Y=O.l, are also 

shown in Figure 6b. While for small values of Y the miscible area monotonically 

decreases, for large values of Y the miscible area f~st increases and then decreases as fA 
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rises from 1.0 to 1.4. This behavior occurs because immiscibility is caused by LCST 

behavior for small values of Y at fA above ·1.0. On the other hand, immiscibility is caused 

by UCST behavior for large values of Y at TA=l.O. If a pair of copolymers are immiscible 

due to UCST behavior, the mixture becomes miscible as the temperature starts to exceed 

the UCST of the mixture. As the temperature rises further, however, the mixture 

eventually becomes immiscible because of the presence of a LCST at elevated 

temperature. 

Comparison with experiment. In comparing the theory with experiment, theoretical 

calculations were performed at the zero pressure limit, an excellent approximation if the 

experimental data are at atmospheric pressure. The equation-of-state parameters for 

copolymer mixtures are obtained as follows. Consider component 1, a copolymer of type 

(AxB 1_x}
1
• We use the regressed par~eters eA' a A' and riM of homopolymer consistin,g 

of segment A reported in Reference 3 as the characteristic parameters of segment A in 

copolymers; hereM is the molecular weight These parameters were obtained from pure

component· pressure-volume-temperature data. When the copolymer composition in 

weight fraction and the number average molecular weight are known, simple 

stoichiometry gives co A' the total mass of segment A per mole of copolymer; a> A is ~en 

multiplied by riM of homopolymer consisting of segment A to obtain the number of 

effective hard spheres of type A, r l.A. A similar calculation is performed to obtain r l,B the 

number of effective hard spheres of type B. 
• When the miscibility map at constant chain volume, v 1 , is reported as a function 

of the volume fraction of segment A, ~l.A' we assume that these parameters are related to 

the equation-of-state parameters by 

(47) 

15 



Eq. ( 47) assumes that the measured chain volume is equal to the hard-core volume of 

hard-sphere chains. A similar equation for r l.B is obtained by replacing subscript A by B 

in Eq. (4:7). The total number of effective hard spheres per molecule, r1, is therefore given 

by r l.A + r l.B' The number fraction of segment A, X, is then computed as X=r1)/r1• 

In addition to the intersegmental parameter K"AB• for the mixture of type 

(AxB 1_x}.I{AyB 1_y~2 we introduce an additional adjustable intersegmental parameter 'AB 

such that 

(48) 

'AB therefore relaxes the additivity of effective hard-sphere diameters of unlike segments. 

When the experimental coexistel}ce curve is available, these parameters can be obtained 

from the critical point of homopolymer blends of type AT !B r • 
. . I 2 

Eq. ( 48) is different from the combining rule used in Reference 6. In the present 

paper we use Eq. (48) because, when the molecular-weight dependence of the critical 

temperature is compared with experiment, the combining rule given by Eq. ( 48) gives 

better agreement with experiment 

We fust compare theory with experiment for systems containing butadiene and 

styrene segments. Several experimental cloud-point curves of these systems are reported 

by Roe and Zifill and Park and Roe12. Tables I and ll give characterizations of the 

polymer samples used by these authors and the PHSC equation-of-state parameters of 

polystyrene and polybutadiene homopolymers. 

Intersegmental parameters, K"AB and 'AB· are obtained from the observed critical 

point of the (PBD-PSl) system12. The experimental critical point, however, is very 

difficult to determine. In this paper we obtain two sets of intersegmental parameters by 

assuming two different critical points. We show calculated results based on each set 

16 



Figure 7a shows a comparison of theoretical coexistence curves with experiment 

for (PBD-PSl) system12. Two sets of intersegmental parameters obtained from the 

critical point are given in Table m. Parameter sets 1 and 2 are obtained by assuming that 

the critical polystyrene weight fractions are 0.59 and 0.585, respectively. In both 

calculations the critical temperature is assumed to be 122•c. The theoretical curve with 

parameter set 2 is slightly wider than that with parameter set 2. The width of the 

· coexistence curve, however, is narrower than that from experiment Next, we predict the 

coexistence curves of other systems containing styrene and butadiene segments, including 

random copolymers, using the binary parameters obtained above. 

Figure 7b compares predicted coexistence curves with experiment for the systems 

(PBD-PS2) and (PBD-PS3)11. The critical temperatures predicted by the theory with 

. parameter set 1 agree well with experiment The. critical temperatures predicted by the 

theory with parameter set 2, however, are slightly lower than the experimental critical 

temperatures. 

Figures 8a and 8b compare predicted coexistence curves with experiment for the 

systems (PS4-R50/50) and (PS2-R25n5), respectivelyll. In ~ese systems one 

component is a random copolymer. In both systems the theoretical coexistence curves 

:with parameter set 2 gives slightly better agreement with experiment than those with 

parameter set 1. 

Figure 9 compares theoretical miscibility maps at two temperatures with 

experimental data by Braun et aL.l3 for a mixture .of type (AxB1_x~1~AyB1_y~2 
containing poly(butyl methacrylate-co-methyl methacrylate) random copolymers. Braun 

et al. carried out experiments at constant chain volume v: of 130 (nm)3• We assume that 

the chain volume is equal to the hard-core volume of hard-sphere chains, that is, 

(49) 
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where subscripts A and B denote the butyl methacrylate and methyl methacrylate 

segments, respectively. For a given volume fraction of segment A, 1/Jt,A• the number of 

segments A per molecule, r 1,A' is calculated by Eq. (47). Eq. (49) then gives the number 

of segments of type B per molecule, r l.B. 

The intersegmental parameters were obtained as follows. We first assume a 

reasonable value of 'AB (for example,AB=l.OOO), and then compute KAB assuming that at 

25oC the boundary between miscible and immiscible regions at f/J1,A=l.O lies at 

t/J2.A=0.74. The best fit was obtained with 'AB=l.OOI. Table m gives the values of 

intersegmental parameters. The theory predicts that the immiscibility in this system is 

caused by LCST behavior. Also shown in Figure 9 is the miscibility map at 180°C. The 

theoretical miscibility map was computed using parameters obtained at 25°C. Although 

the choice of 'AB is somewhat arbitrary, the agreement of predicted miscibility map with 

experiment at 180oC is good. 

Classical incompressible lattice theory such as the Flory-Huggins theory14 

predicts that for mixtures of type (AxB1_x)rtfAyB1_y)r
2 
a pair of cop.olymers is miscible if 

the copolymer composition difference IX-Yl is smaller than a critical value IX-Ylc which 

is independent of the copolymer compositions. The miscibility of the system shown in 

Figure 9 follows the prediction of Flory-Huggins theory. The temperature dependence of 

miscibility maps, however, cannot be explained by the Flory-Huggins theory which can 

predict an UCST only. The Flory-Huggins theory predicts that the miscible area increases 

as the temperature rises. Equation-of-state theory is necessary to explain the immiscibility 

caused by LCST behaviorl5-18. 

Figure 10 compares theoretical miscibility maps with experiment obtained by 

Braun et at.I3 for mixtures of type (AxB1_x}t'fAyB1_y),.
2 

containing poly(styrene-co-

butyl methacrylate) random copolymers. The average chain volume v; is reported to be 

230 {nmf. We first assume a value of 'AB and then solve for KAB assuming that at 25°C 

the boundary between miscible and immiscible regions at 1/Jt,A =1.0 lies at f/J2.A =0.70; here 

18 



subscripts A and B denote styrene and butyl methacrylate segments, respectively. The 

best fit was obtained with 'AB=l.002. Table ill gives intersegmental parameters. These 

parameters are used to predict the miscibility map at Iso·c. The theory predicts that 

immiscibility is caused by LCST behavior. The miscible area therefore decreases as the 

temperature rises. 

In the system shown in Figure 10, the critical composition difference IX-Yfc 

• strongly depends on the copolymer compositions. Although the theory can qualitatively 

describe the dependence of critical composition difference on copolymer compositions 
.<, 

and temperature, agreement with experiment is not as good as that for the system shown 

in Figure 9. Better agreement would be obtained by considering the dyad interactions as 

proposed by Braun et a[.l3. The effect of dyad interactions can be introduced into the 

equation of state by expanding the perturbation term by dyad fraction. In this model the 

interaction energy between segments A belonging to different AA dyads is assumed to be 

different from the interaction energy between segment A in an AA dyad and segment A of 

an AB dyad. The physical interpretation of this-assumption is that the presence of segment· 

B in AB dyads produces a screening effect on the interaction of segment A of AB dyads 

with segment A of AA dyads. 

CONCLUSIONS 

A perturbed hard-sphere-chain (PHSC) equation of state for copolymer systems is 

presented. PHSC uses the modified Chiew equation of state for athermal mixtures of 

heteronuclear hard-sphere chains by Song et al. and a van der Waals perturbation. The 

Song-Mason method relates equation-of-state parameters to the segment-segment 

intermolecular potential. The PHSC equation of state can explain immiscibility due to 

lower critical solution temperature behavior in binary polymer blends containing 

copolymers. Theoretical coexistence curves and miscibility maps are compared with 

experiment for binary systems containing two kinds of segments. Theoretical miscibility 
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maps are in good agreement with experiment for the system containing poly(butyl 

methacrylate-co-methyl methacrylate) random copolymers. The theory also gives semi

quantitative agreement with experiment for systems containing poly(styrene-co

butadiene) and poly( styrene-co-methyl methacrylate) random copolymers. 
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Appendix A. Chemical Potential 

Consider mixtures of heteronuclear hard-sphere chains. The chemical potential of 

component n, J.Ln, is given by 
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where J.l: is the chemical potential per molecnle of component i in the reference state, 

W Ua,k'l' and Qnn.k'.k'+l are given by Eqs. (34) and (35), respectively, and 

_ ~.L)~P (agij,k ,,, ~ x .. k'l' - a P IJ, . 2 11 
0 

(A.2) 

_ ~~ ~~p (ag ij,k 'I' r 1'ij,k7' - 2 p a; .. ,.,,, 
0 q,. 

(A.3) 

Hii.k'.k'+l 
tip agii,k'.k'+l 

=- dp. 
P 

0 
agii,k' ..t'+t 

(A.4) 

~e reference state is taken to be the pure ideal gas at unit pressure and at the temperature 

of the mixture containing the same number of molecules as the total number of molecules 

in the mixture. 

The chemical potentials are related to Gibbs energy, G, by 

m 

G = L N;J.l; (A.5) 
i=l 

where 

(A.6) 

where A is the Helmholtz energy given by Eq. (33). 
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TABLE L Characterization of Polymer Samples Used in References 11 and 12 

sample polymer type styrene content 
designation 

PBD polybutad.iene 

PSI polystyrene 

PS2 polystyrene 

PS3 polystyrene 

PS4. _polystyrene 
R50/50 poly(styrene-co-butadiene) 

random copol)T!ller 
R2sns poly( styrene-co-butadiene) 

random co_pol)'Iller 

Mn = number average molecular weight {g/mol) 

Mw = weight average m~lecular weight {g/mol) 

(wt%) 

0 

100 

100 

100 

100 
50 

25 

mol wt(Mn) 

2350 

1900 

2220 

3302 

5200 
24000 

27000 

TABLE n. PHSC Equation-of-State Parameters for Homopolymers3 

polymer r/M(moVg) u(A) e/kR (K) 

cis-1,4-polybutad.iene 0.01499 5.264 611.8 

__I!_ol~tyr_ene 0.01117 5.534 724.7 

poly(methyl methacrylate) 0.01432 4.850 655.9 

poly(butyl methacrylate) 0.01899 4.550 510.8 

M = molecular weight {g/mol) 

TABLE llL Intersegmental Parameters 

binary pair JCAR 'AR 

butadiene-styrene (p_arameter set 1) 0.00412 0.00026 

butadiene-styrene (parameter set 2) 0.00544 0.00117 

butyl methacrylate-methyl methaqylate --{).00158 -{).001 

styrene-butyl methacrylate 0.010'85 -{).002 
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Mw/Mn 

1.13 

1.06 

1.08 

1.06 

1.10-1.14 
1.00 

1.07 
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Figure Captions 

Figure 1. Theoretical coexistence curves for mixtures of random copolymers of type 
(AxB1_x)rJ'1:AyB1_y)r

2 
with different copolymer compositions: r1 = r2 = 10000, 

CJB(UA=1.1, Bp./EA=1.2, K"AB=0.00336,p=0. 

Figure 2. · Theoretical coexistence curves of mixtures of random copolymers of type 
(AxB1_x)rJ'{AyB1_y)r

2 
(r1 = r2 = 10000, X=0.8, Y=0.3) with different values of 

intersegmental parameters K"AB: UrJuA=1.2, ~/eA=1.4, p=O. 

Figure 3. Miscibility maps of mixtures of random copolymers of type 
(AxB1_x)r/{AyB1_y)r

2 
at four reduced temperatures: r1 = r2 = 10000, 

CJB/UA=1.1, ~/eA=1.2, K"AB=0.00335,p=O; (a) Immiscibility due to LCST 

behavior, (b) ImmisCibility due to UCST behavior. 

Figure 4. (a) Coexistence curves ofthree binary systems of type A1!B500, AtfC500, and 

B2ofC20: CJBIUA=UdUA=l.l, ~/eA=EdeA=l.2, K"AB=K"Ac=K"sc=O.Ol,p=O; (b). 

Copolymer composition dependence of reduced LCST and UCST of 
copolymer s.olutions oftypeAtf(CyB1_y)s00 • 

Figure 5. (a) Coexistence curves of three binary systems of type A10ooofB 10000, 

AtoooofCtOOOO• andBIOoofCIOoo: Ci.JUA=UdUA=I.I, EpjeA=ErfeA=l.2, 
K"AB=K"Ac=0·00332, K"Bc=0.0002, p=O; (b) Copolymer composition 

dependence of reduced LCST and UCST of homopolymer/copolymer blends 
of type AIOooc/(CyBI-Y}IOOOO. 

Figure 6. (a) Temperature dependence of the miscibility map· for mixtures of random 
copolymers of type (AxB1_x}J'1:CyB1_y)r

2
: OB/UA=l.l, UdUA=1.2, ep.tei=I.2, 

UdUA=I.4, K"AB=0.00332, K"Ac=0.0122, K"sc=0.00276,p=0. (b) Theoretical 

coexistence curves of copolymer mixtures corresponding to two pairs of 

copolymers denoted in Figure 6a. 
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Figure 7. Comparison of theoretical coexistence curves with experiment for 

polybutadiene/polystyrene mixtures: (a) (PBD-PS1) system, (b) (PBD-PS2) 

and (PBD-PS3) systems. The curves in (b) are predictions. 

Figure 8. Comparison of predicted coexistence curves with ex~ent for 

polystyrene/poly(styrene-co-butadiene) mixtures: (a) (PS4-R50/50) system, 

(b) (PS2-R2sns) system. 

Figure 9. Comparison of theoretical miscibility maps with experiment for a mixture of 
type (AxB 1_x}I{AyB 1_y)r

2 
containing poly(butyl methacrylate-co-methyl 

methacrylate) random copolymers. The theory predicts that immiscibility is 

caused by LCST behavior. Data are from Braun et a/.13: o miscible at 25 and 

180 ·c, ll miscible at 25 ·c but immiscible at 180 ·c. o immiscible at 25 and 

180 ·c. 

Figure 10. Comparison of theoretical miscibility maps with experiment for mixtures of 
type (A xB 1_x)r/{AyB1_ y ),.

2 
containing poly( styrene-co-butyl methacrylate) 

random copolymers. The theory predicts that immiscibility is caused by LCST 
behavior. Data are from Braun et at)3: o miscible at 25 and 180 •c, ll 
miscible at 25 ·c but immiscible at 180 ·c, · o immiscible at 25 and 180 ·c. 
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Figure 2 
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Figure 3 
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Figure 4 

a:< 
~ = ...::&': 

< 

..... --------··········· a .. --·· ······ .. -·· ·-... 
/ ' 

/ ' ~ ' .. . 
~ ' . ·. . . • • • • . . . . . . 0.8 , . 

0.6. 

0.4 

0.2 

- A/Bsoo• A,ICsoo 
••••• B2c/C2o 

' ' ' 

o.ouu~~~~~~.u~.u~~~u..u~uu~~~ 

0.0 0.2 0.4 0.6 0.8 1.0 

Segment fraction component 2 

0.8 

0.7 

~ 
~ 0.6 Miscible 
~ 

0.5 

0.4 .. 
···---... . .. -········ 

···········-·············· -

.. .. 
.. .. .. 

0.3UU~~~~~~LU~.U~UU~U.~~~~~~ 

0.0 0.2 0.4 0.6 0.8 1.0 

y 

29 



Figure S 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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