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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Abstract 

The Message Passing Interface (MPI) standard has enabled the creation 
of portable and efficient programs for distributed memory parallel computers. 
Since the first version of the standard was completed in 1994, a large num­
ber of MPI implementations have become available. These include several 
portable implementations as well as optimized implementations from every 
major parallel computer manufacturer. The ubiquity and high quality of MPI 
implementations has been a key to the success of MPI. This review describes 
and evaluates a number of these implementations. 

1 Introduction and History 

The early days of parallel computing1 were characterized by experimentation, 
proof-of-concept demonstrations, and a willingness tore-implement programs from 
scratch for every new computer that came along. This is a fine way to learn how to 
do parallel computation, but a lousy way to build the infrastructure necessary for 
growth and stability and for making parallel computing interesting to anyone but 
academics. Such infrastructure requires standardization. 

During 1993 and 1994, a group of representatives of the computer industry, 
government labs and academia met to develop a standard interface for the "mes­
sage passing" model of parallel programming. This organization, known as the 
Message Passing Interface (MPI) Forum, finished its work in June, 1994, produc-

' ing an industry standard known as MPI [1]. Since this initial (1.0) standard, the 

1 In this article, parallel computing always refers to scientific computing on distributed memory 
multiprocessors. 
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MPI Forum has produced versions 1.1 (June, 1995) and 1.2 (July, 1997), which 
correct errors and minor omissions, and version 2.0 (July, 1997), which adds sub­
stantial new functionality to MPI-1.2 [2]. At the time of this writing, there are not 
yet any full MPI 2.0 implementations. In the rest of this document, MPI refers to 
MPI 1.1 unless otherwise noted. 

An MPI program consists of a set of processes and a logical communication 
medium connecting those processes. These processes may be the same program 
(SPMD - Single Program Multiple Data) or different programs (MPMD - Multiple 
Programs Multiple Data). The MPI memory model is logically distributed: an MPI 
process cannot directly access memory in another MPI process, and interprocess 
communication requires calling MPI routines in both processes. 2 MPI defines a 
library of subroutines through which MPI processes communicate - this library 
is the core of MPI and implicitly defines the programming model. 

The most important routines in the MPI library are the so-called "point-to­
point" communication routines, which allow processes to exchange data coopera­
tively - one process sends data to another process, which receives the data. This 
cooperative form of communication is called "message passing." 

The MPI standard is a specification, not a piece of software. What is specified is 
the application interface, not the implementation of that interface. In order to allow 
implementors to implement MPI efficiently, the MPI standard does not specify 
protocols, or require that implementations be able to intemperate. Moreover, so 
that MPI can make sense in a wide range of environments, the standard does not 
specify how processes are created or destroyed, and does not even specify precisely 
what a process is. 

The most important 'considerations in the design of MPI were: 

• Portability. An MPI application should require only recompilation to use 
a different MPI implementation. Furthermore, it should be possible to im­
plement MPI on any MIMD (Multiple Instruction, Multiple Data) parallel 
computer. MPI should support (though not require) execution in heteroge­
neous environments. 

• Efficiency. It should be possible to implement MPI efficiently. In particular, 
good MPI implementations should pefform as well as proprietary "native" 

2In the MPI model, processes may be implemented within the same virtual address space, but all 
data is private to a process, and data in other processes can be accessed only through MPI subroutines. 
MPI does not forbid coexistence with other models, though interaction with these other models 
is not defined by MPI. MPI-2, which includes so-called one-sided communication, still presents 
a distributed memory modeL MPI-2 also more clearly defines how a multithreaded MPI process 
behaves. 
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message passing libraries. 

• Robustness. MPI should provide all important functionality in "~ommon 
practice," and then some. MPI provides significant support for the develop­
ment of parallel libraries. 

This review discusses several representative implementations of the MPI stan­
dard. These include MPICH, LAM and CHIMP, which are freely available multi­
platform implementations, as well as optimized implementations supplied and sup­
ported by SGI/Cray, IBM, HP, Digital, Sun and NEC. While an attempt has been 
made to report on the most visible implementations, a few less well-known ones 
may have been left out, as well as implementations for hardware that is no longer 
available. 

The primary conclusion is that MPI implementations are almost all of high 
quality, both robust and efficient. While there are minor problems here and there, 
the application developer considering using MPI can be confident that there is a 
well-supported MPI implementation on almost every commercially important par­
allel computer. Performance of MPI implementations is usually close to what the 
hardware can provide, though this review does not discuss performance, as dis­
cussed in Section 3. 

While this is the main story, there are a few side stories, having to do with 
behavior the MPI standard does not specify, such as the integration of MPI ap­
plications into a parallel environment, tools for tracing and debugging, handling 
of standard input and output, documentation, buffering strategies, etc. These side 
stories are as much the subject of this review as are the MPI implementations them­
selves. The goal of this review is to orient the potential MPI user in the world of 
MPI and to describe interesting features of MPI implementations, rather than to 
compare and rank them, which would be an unproductive exercise. 3 

2 Relation of MPI to PVM and HPF 

In the context of software standards for parallel computing, two other names are 
bound to pop up -Parallel Virtual Machine (PVM) and High Performance Fortran 
(HPF). Both of these have close ties to MPI. While this review is about MPI, it is 
intended as an orientation for new users, and to this end, it is appropriate to see 
how MPI fits in the larger context. 

3 A disclaimer: One person's "feature" is another's "bug,", and the opinions in this review are 
subjective. Furthermore, MPI is an area of active development, with new versions released often. 
The information in this article is believed to be current as of its writing. 
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PVM is a package of software that provides message passing functionality as 
well as infrastructure for building a virtual parallel computer out of a network of 
workstations [3]. It is often thought of as a competitor to MPI, but it is really 
a different beast. PVM is a research project of the University of Tennessee at 
Knoxville and Oak Ridge National Laboratory. While quite popular for writing 
message passing programs, PVM is a vehicle for performing research in parallel 
computing rather than a parallel computing standard. Its weaknesses with respect 
to MPI are also its strengths: it is not bound by an absolute requirement for back­
ward compatibility; its design is not constrained to be efficient on every imaginable 
MIMD parallel architecture; there is no rigorous specification of PVM behavior. In 
some sense the tradeoff is between efficiency and portability in MPI, and flexibility 
and adaptability in PVM. 

Successful features of PVM are finding their way into MPI, though MPI is 
unlikely to provide any support for fault tolerance or a virtual distributed operating 
system in the near future. Moreover, since PVM is defined by a full implementation 
rather than a specification, possibilities for interoperability in PVM are higher than 
in MPI. 

HPF is an industry standard for the data parallel model of parallel computation. 
HPF was standardized a year earlier than MPI, and the successful HPF standard­
ization process was copied by the MPI Forum. Despite the conceptual appeal and 
simplicity of HPF, MPI is much more widely used than HPF, for several reasons. 
These include: 

• HPF is much more difficult to implement, and to implement efficiently. MPI, 
on the other hand, has benefited greatly from the large number of good im­
plementations, including an implementation that was available at about the 
same time the standard was released. 

• MPI is a more general model, and can be used to implement almost any par­
allel computation, while HPF is applicable only to certain types of problems. 

• Obtaining high performance in an HPF program can be more difficult than 
would be expected from the superficial simplicity of the HPF model. It is an 
open question whether this is a fundamental obstacle or can be addressed by 
more mature compilers. 

3 Review Criteria 

This review looks at several different aspects of MPI implementations. Some of 
the important ones are: 
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Compliance. One of the main reasons for having a standard is that a code written 
using one MPI implementation should be able to use another implementation with­
out any source code changes. There are several test suites that can automatically 
find problems in an MPI implementation. These include a test suite from IBM [4], 
a test suite from Intel [5], and test codes distributed with MPICH [6], which is 
described in Section 4. 

In the implementations surveyed for this study, there are few problems with 
MPI compliance. The problems are relatively minor and often have their origins in 
the behavior of earlier versions of MPICH, from which many implementations are 
derived. The two most common problems are: 

1. Several implementations do not provide an MPLCancel that meets the 
MPI specification. This function can be quite difficult to implement for any­
thing other than unmatched receives. Indeed, a significant fraction of the 
MPI community believes that it was a mistake for MPI to require that this 
function apply to sends as well, and that applications requiring the ability to 
cancel sends are quite rare. In the opinion of this reviewer, therefore, not 
fully implementing MPLCancel is a small problem. 

2. Several implementations do not correctly implement MPI constants in For­
tran. In particular, MPI 1.1 requires that they be usable in initialization ex­
pressions. For example, the following code should work. 

include 'mpif.h' 
integer mytype 
parameter (mytype=MPI_REAL) 

In some implementations, however, many MPI "constants" are actually the 
names of variables in common blocks and aren't initialized until MPLini t 
has been called. Note that this behavior was compliant with version 1.0 of 
MPI, and that MPI 1.1 invalidated some formerly compliant implementa­
tions (though all compliant MPI applications remained compliant). How­
ever, MPI 1.1 has been been out for more than two years, and new vendor 
implementations continue to contain this bug. 

Unspecified Behavior. MPI does not specify behavior of some aspects of MPI 
implementations. These include 

• Buffering. MPI does not specify how much buffering must be provided by 
an implementation. 
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• Standard 110. MPI does not require that standard language 1/0 facilities be 
provided. 

• Process startup and management. MPI does not specify how processes 
are started up or shut down. In particular, the state of a program before 
MPLini t and after MPLFinalize is not specified. 

It is where MPI does not specify behavior that implementations differ. Applications 
that do not make assumptions about these features are portable. Portability issues 
are discussed in more detail in Section 7. 

Integration with the environment. One of the most important aspects of the 
usability of an MPI implementation is how well MPI applications are integrated 
into the environment. Some of the important issues are: 

• Is the operating system or some other system software aware ~f a parallel 
application as a distinct entity, rather than as a collection of unrelated serial 
processes? 

• Does the implementation provide flexibility in handling standard input and 
output, such as optional broadcasting of stdin and per-process labeling of 
stdout. Is standard output available, without excessive buffering, from all 
processes? 

• Is process management robust? Is a terminal interrupt propagated to all pro­
cesses in an MPI application? Can a parallel application leave unkilled "or­
phaned" processes that must be detected and killed off manually? 

In answering these questions, it is often difficult to separate the MPI implemen­
tation from the parallel environment. This review tries to keep the focus on MPI 
itself. 

Performance. It is difficult to separate the performance of an MPI implemen­
tation from the performance of the underlying hardware. Since this report is not 
about hardware (see [7] for information about hardware) performance is only a 
secondary issue. Also, it is not easy to give a complete picture of performance. 
For instance, latency and bandwidth numbers give only a small part of the overall 
picture. Therefore this review does not discuss absolute performance numbers. 
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Tools. Parallel applications are inherently more difficult to develop and tune then 
serial applications. This difficulty is compounded by a lack of tools for developing 
parallel programs. The most important development tools are a parallel debugger 
and performance analysis tools, including tools for message trace visualization. 
A parallel debugger should not require a separate window for each process, and 
should understand and be able to display MPI message queues. 

Tools are separate from the MPI implementation itself, and are treated only 
superficially in this report. 

4 MPICH 

Without question, the most important MPI implementation is MPICH4, a freely 
available portable implementation of MPI developed at Argonne National Labora­
tory and Mississippi State University [6]. MPICH has played an important role in 
the development of MPI. 

MPICH is the parent of a large number of commercial implementations of MPI. 
These include vendor-supported implementations from Digital, Sun, HP, SGI/Cray, 
NEC and Fujitsu. In some cases (e.g., SGI and HP) the implementation has evolved 
far from its roots; in others (e.g., Digital and Sun) the implementation is young and 
still close to MPICH. Only two of the major vendor-supported implementations 
are not directly derived from MPICH: the Cray T3D/E implementation (which de­
rives from the CHIMP implementation) and the ffiM SP implementation (for which 
MPICH still provided substantial inspiration). The HP implementation also has a 
second parent in LAM. MPICH is also the basis for most experimental and research 
versions of MPI. 

The first version of MPICH was written during the MPI standardization pro­
cess. The experiences of the MPICH authors provided important feedback to the 
MPI Forum, including a proof-by-example that it was not necessary to define a sub­
set of MPI in order to make the implementation of MPI less burdensome. MPICH 
was released at approximately the same time as the original MPI 1.0 standard. 

The portability of MPICH stems from its two-layer design. The bulk of MPICH 
code is device independent and is implemented on top of an Abstract Device In­
terface (ADI). The ADI interface hides most hardware-specific details, allowing 
MPICH to be easily ported to new architectures. The ADI design allows for effi­
cient layering, and the device-independent top layer takes care of the majority of 
MPI syntax and semantics. 

4 MPICH is pronounced "em-pee-eye-see-aitch" not "empitch" 
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With release 1.1 of MPICH (current as of this writing) the ADI layer was 
changed. The new interface, known as ADI-2, is not yet proven on a large number 
of architectures, though it was designed using lessons learned from ADI-1. ADI-
2 should add new opportunities for performance. For example, a set of optional 
datatype functions expose MPI datatypes to the implementor, allowing him or her 
to take advantage of special hardware or use optimized techniques for transferring 
noncontiguous datatypes. 

Each implementation of the ADI layer is called a "device," and each MPICH 
device effectively defines a new implementation. The following sections describe 
the devices that are distributed with MPICH. 

4.1 General comments on all devices 

Goodies. MPICH comes with a large amount of supporting material, including a 
number of examples and test programs, utilities for compiling and running MPI 
programs, a program that automatically generates profiling wrappers and Unix 
manual pages. There is also a library called MPE (MultiProcessing Environment) 
that contains routines for producing event logs, simple run-time visualization, and 
timing. Finally there are performance visualization tools called "upshot" and "nup­
shot" that display data from trace files (which can be produced by MPE). 

Building MPICH. MPICH is easy to configure and build. A complex "config­
ure" script recognizes almost all common systems. The only drawback to this is 
that many parts of MPICH wind up with hard-coded path names (relative to the 
MPICH installation directory) and it can be painful to extract pieces of the MPICH 
distribution to use elsewhere. 

Debugging. Since MPICH is portable, it has no built-in debugging support. For 
some devices, it is possible to start the root process under a debugger, or to start the. 
entire application under a parallel debugger. The best debugging option for MPICH 
is the Totalview debugger [8], a commercial product from Dolphin Interconnect 
Solutions that is one of the best parallel debuggers available. Total view has a good 
GUI with an intuitive "dive" feature and a coherent approach to debugging parallel 
programs. It is integrated withMPICH (the ch_p4, ch_shmem, and ch_lfshmem 

devices), understands MPI communicators and MPI message queues and "cap­
tures" MPI processes as they start. Totalview runs on IBM RS6000, Sun and Dig­
ital platforms. By the end of 1997 it is expected to run on SGI R10000 platforms 
as well. 
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Problems. MPICH does not implement MPLCancel according to the MPI spec­
ification (it can't always cancel sends). As described above, this "bug" has been 
repeated in many MPICH-derived implementations but is not too important. An 
earlier version of MPICH used Fortran common blocks to implement some Fortran 
MPI constants. This is fixed (with a lot of work) in the current MPICH release 
(1.1), but remains in many MPICH-derived implementations. While MPICH is 
generally carefully written, there are many MPICH routines that are not imple­
mented as efficiently as they could be. Sometimes these are fixed in MPICH­
derived implementations, but often not. An example is the MPLAlltoall rou­
tine, which is implemented in a way that is likely to cause hot spots in any network. 

4.2 The ch_p4 device 

This is the "network of workstations" implementation of MPICH. P4 (Portable 
Programs for Parallel Processors) is an older message passing library that was used 
to implement the MPICH ADI[9]. The "ch" in "ch_p4" stands for "channel." 
The ADI is in fact implemented in terms of a simpler "channel" interface, and the 
channel interface is implemented in terms of P4. The layering is not strict. 

The ch_p4 device is characterized by the following. 

• P4 runs on Sun/SunOS, Sun/Solaris, Solaris86, Cray, HP, Dec 5000, Dec 
Alpha, Next, ffiM RS6000, Linux86, FreeBSD, ffiM3090, SGI (5, 6), and 
others. 

• The device uses process-to-process sockets, for processes not on the same 
host, or shared memory (using the "-comm=shared" configuration flag), for 
processes on the same host. 

• The user provides a list of programs and machines to start them on in a P4 
"procgroup" file. P4 starts remote processes using rsh (or optionally, using 
a "secure server" that provides faster startup). 110 and signal propagation 
are handled by rsh. P4 processes start a "listener" subprocess that helps to 
establish process-to-process connections if there aren't enough TCP connec­
tions to fully connect the MPI application. 

• An interesting feature of the ch_p4 device is that the user starts up a single 
process, and that process starts the other MPI processes inside MPLini t. 

To do this, ch_p4 relies on the argc and argv arguments to MPLini t. 

• The ch_p4 device handles heterogeneous MPI applications -applications 
with processes running on more than one architecture. Data representation 
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conversion, if needed, is automatically performed. 

While the ch_p4 device provides a way to run MPICH on networks of work­
stations, it is not very friendly to users. 

• The procgroup file is difficult to work with and the documentation is not easy 
to find. Fortunately the complexity is often hidden behind local utilities or 
an "mpirun" command. 

• There is no concept of a "virtual machine." Unlike PVM, the network of 
workstations used by an application is defined by where the application is 
running, not by an infrastructure that exists before and persists afterwards. 
Consequently, there are no ·"ps" or "kill" equivalents that understand parallel 
jobs, and no automatic way to examine the state of remote nodes or per­
form load balancing. The lack of such infrastructure also contributes to the 
signal propagation and I/0 problems described below. In some cases, the 
lack of machine state is a bonus, particularly when MPI programs are started 
automatically by a batch system. 

• Because signal propagation is managed through rsh, it is very easy to end 
up with "orphaned" processes that don't realize the rest of an application has 
gone away. These orphaned processes often interfere with the running of 
subsequent parallel jobs and are difficult to find. 

• Because standard I/0 relies on rsh, output from remote nodes is often heav­
ily buffered, and doesn't appear on the screen until well after it is written. 
This can make debugging with print f very difficult. 

4.3 The ch_shmern and ch_l f shmern devices 

The ch_shrnem and ch_l f shrnem devices allow communication through shared 
memory on a number of SMP platforms. ch_l f shrnem uses so-called lock-free 
queues to reduce synchronization overhead and is therefore preferred. Both devices 
run on most SMP platforms including Sun, SGI, HP and Digital platforms. 

Usability of applications using these shared memory devices is high, because 
process management is handled by normal operating system mechanisms. E.g. 
process startup is trivial, ps shows every process in a parallel job (though still 
doesn't have the concept of a parallel process), signals are propagated (usually) 
and I/0 is buffered to the same extent as normal language I/0. 

However, these devices are restricted to communication within an SMP, aren't 
thread-safe, and aren't themselves multithreaded. All of these are potentially de­
sirable in SMP clusters. 
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4.4 The ch_nexus Device 

The ch_nexus device uses Nexus for its underlying communication layer and for 
process management. Nexus is discussed elsewhere [10]. This device is still in a 
preliminary state, and has so far only been tested in a Solaris environment. 

The most interesting use of ch_nexus is that Nexus provides multimethod 
communication, which can use optimized communication where possible. ch_nexus 
thus provides an interoperability mechanism to allow MPI to run efficiently on 
clusters of heterogeneous systems. 

4.5 MPP devices: ch_cenju3, ch...mpl, ch_nx, nx, t3d 

The MPP5 devices all implement MPI on top of native communication. For the 
devices whose names start with with ch_, the device uses the simpler channel in­
terface, minimizing the amount of platform-dependent code. For the other devices, 
the ADI is implemented directly on the native communication library. 

For all MPP devices, MPICH uses the native mechanism for starting and man­
aging processes, for handling I/0, etc. 

The performance of these MPICH implementations is in most cases very close 
to that of the underlying communication layer. 

5 Other Freely Available Implementations 

5.1 LAM- Local Area Multicomputer 

The Lf\M implementation ofMPI is a freely available and portable implementation 
developed at the Ohio Supercomputer Center [11]. LAM and MPICH are the two 
most important free options for running MPI on a network of workstations. LAM 
existed before MPI and was adopted to implement the MPI_ interface. LAM runs 
on many platforms, including RS6000, Irix 5, Irix 6, Linux86, HPUX, OSF/1 and 
Solaris. 

LAM provides an infrastructure to turn a network of workstations (possibly 
heterogeneous) into a virtual parallel computer. A user-level daemon running on 
each node provides process management, including signal handling and I/0 man­
agement. LAM also provides extensive monitoring capabilities to support tuning 
and debugging. The xmpi tool that comes with LAM (and has since been adopted 

5 "MPP" used to stand for "Massively Parallel Processor and then "Moderately Parallel Proces­
sor," but these days just means a highly integrated and tightly coupled distributed memory parallel 
computer, sold as a single machine. 
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by the HP and SGI implementations as well) provides visualization of message 
traces and allows inspection of message queues. 

By default, full message monitoring is enabled, and communication goes through 
the daemons. It is also possible to enable direct client-to-client communication us­
ing TCP sockets or shared memory. 

LAM also provides so-called Guaranteed Envelope Resources (GER), which 
is a promise about how much pending communication LAM can support. Such a 
guarantee is missing from the MPI specification, and there is debate over whether 
it is needed or not. In theory, a compliant MPI implementation could have so 
few internal resources (e.g. buffers for message envelopes) that reasonable MPI 
programs would fail. Fortunately, there are few MPI implementations which fail 
due to resource exhaustion for average codes, and most have tunable parameters 
to allow them to deal with unusual codes. Through GER, LAM makes explicit 
quantitative guarantees on resource availability. 

LAM is compliant with MPI 1.1 and also implements dynamic process man­
agement routines from MPI-2. 

Usability. LAM is a good solution for networks of workstations, but has a num­
ber of usability problems. With some small changes, it has the possibility to be­
come the "PVM" of the MPI world because of its ability to tum a network of 
workstations into a parallel computer. From the user's point of view, it does not go 
quite far enough in a few key areas. For instance, the "virtual machine" abstraction 
is incomplete: there is no easy way to find out what hosts are part of the virtual 
machine; the equivalent tops requires a specification of node numbers; starting up 
a daemon when there is already one running kills the old one, rather than noticing 
that one is already running. LAM also hurts itself by using strange names - such 
as wipe instead of something like lamhalt, putting include files in share/h 
instead of include, insisting on using the word "schema" whenever possible; 
commands that should be able to figure out the current machine state (e.g. wipe) 
require a schema when they should be able to figure out the information them­
selves. 

Tools. LAM is considered one of the best environments for development because 
of its extensive monitoring capabilities. The xrnpi tool, which is distributed with 
LAM, allows visualization of message traces and examination of message queues 
in deadlocked programs. LAM also provides better I/0 handling and fewer oppor­
tunities for orphaned processes than MPICH on networks of workstations. 
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5.2 CHIMP - Common High-level Interface to Message Passing 

The CHIMP project is based at the Edinburgh Parallel Computing Centre [12]. 
Like LAM, CHIMP started off as an independent portable message passing infras­
tructure and was later adapted to implement MPI. CHIMP is best known as the 
basis for the vendor-supplied optimized versions of MPI for the Cray T3D and 
T3E. Chimp is portable, running on many platforms including Solaris, Irix, AIX, 
OSF/1, and Meiko. To the best of this reviewer's knowledge, CHIMP is not in 
active development and is not w_idely used, at least in the U.S. 

5.3 Other implementations 

A number of implementations are based on MPICH but are not included with the 
standard MPICH release. Some of these are listed here. 

NT- Students at Mississippi State University have developed an MPICH ADI im­
plementation for Microsoft NT clusters. It is a demonstration implementation, 
rather than a high performance implementation. 
See http: I /www. ere .rnsstate. edu/rnpi/rnpiNT. htrnl for more information. 

Win32 A researcher in Portugal has implemented the MPICH ADI device for 
Microsoft Windows. 
See http: 1 /alentejo. dei. uc .pt/ fafe/w32rnpi/ for more information. 

Active Messages A student at the University of California at Berkeley has im­
plemented the MPICH ADI (ADI-2) on top of Generic Active Messages (GAM) 
and Active Messages II (AM2). 
See http: I /now. cs. berkeley. edu/Fastcornrn/MPI/ for more information. 

Fast Messages Students at the University of lllinois at Urbana Champaign have 
implemented the MPICH ADI on top of Fast Messages, which runs on PCs running 
NT or Linux with Myrinet or Winsock 32. 
See http: //www-csag. cs. uiuc. edu/proj ects/cornrn/rnpi-frn. htrnl for more in­
formation. 

Multithreaded (MT) Device A researcher in Germany has implemented the 
MPICH ADI so that MPI "processes" are in fact threads on a multiprocessor ma­
chine. Communication between these processes can be done with a single copy. 
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The MT device runs on Linux with the Nthreads library and on Solaris with the 
Nthreads and Solaris threads libraries. To handle the problem of non-private global 
variables, there is support for private global variables through a preprocessor or a 
modified gee compiler. This approach is quite similar to what was done for the 
Cray PVP implementation described in Section 6.5.1. 
Seehttp://noah.informatik.tu-chernnitz.de/members/radke/mtdevice/mtdevice.html 
for more information. 

TransMPI TransMPI is an implementation of MPI for transputers (MPI 1.0, C 
bindings only). It is of interest because it is a full implementation of MPI, unre­
lated to MPICH, LAM or CHIMP, to which most other implementations trace their 
origins. For more information, contact thomasd@netcom.com. 

6 Vendor Implementations 

6.1 mM 

IBM has been a consistently strong supporter of MPI. IBM's implementation of 
MPI for its SP systems was one of the first vendor-supported MPI implementa­
tions. MPI has replaced IBM's proprietary library MPL as the preferred message 
passing library on SP systems. The first optimized version of MPI available for SP 
systems, MPI-F, was a research prototype based on MPICH. The currently avail­
able implementation of MPI (hereafter referred to as IBM MPI) is rewritten from 
scratch [13]. 

IBM MPI runs on IBM SP systems and AIX workstation clusters in one of two 
modes. In User Space (US) mode, an MPI application has direct access to the SP 
high performance switch (if one exists). This provides the best performance, with 
the restriction that only one process may access the switch on each node. In IP 
mode, MPI processes communicate using IP - over the high performance switch 
if it exists, or over any other network if not. Latency (minimum message transfer 
time) in US mode is an order of magnitude lower than in IP mode. 

IBM MPI is integrated with IBM's Parallel Environment (PE) and Parallel Op­
erating Environment (POE), which are layered software packages that provide the 
"glue" allowing an SP (or cluster) to function as a single machine. Assuming PE 
and POE are installed correctly (no small feat) MPI works as an integrated piece 
of software: compilers mpcc and mpxl f compile C and Fortran MPI programs; 
poe launches parallel MPI programs; 110 is handled in a reasonable way; signals 
are propagated from the poe launcher to MPI processes; the debuggers pdbx and 
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pedb understand parallel programs. 

Usability. MPI is well-integrated with the PE/POE infrastructure. This infras­
tructure provides, among other things: 

• Parallel job startup, including optional automatic space sharing of parallel 
applications. 

• Signal propagation to all processes in a parallel application. 

• Flexible handling of standard I/0: standard output may be labeled by pro­
cessor number and/or ordered by processor number; standard input may be 
broadcast to all processes or sent to a single process. 

• An integrated batch queuing system called Loadleveler. 

Unfortunately there remain a number of usability problems related to PE/POE. 
Though not problems with the MPI implementation itself, these interfere with the 
usability of MPI. For example: 

• Numerous user-settable options for poe do not have reasonable defaults. 

• Signal propagation is not entirely foolproof, so that orphaned processes are 
not uncommon 

• Parallel jobs are still second-class citizens. For example, there is no good 
way to see what parallel jobs are running on the system. The standard utility, 
jm_status, produces verbose output that is not easily parsed by humans. 

• Despite improvement since earlier releases, the batch system Loadleveler 
requires substantial local customization and tools to be useful. 

Tools. Two debuggers are available from ffiM: pdbx is a command-line debug­
ger built on dbx and pedb is a parallel debugger with an X interface. Both de­
buggers have reasonable though not outstanding interfaces. Neither understands 
message queues, so that finding out why a program is deadlocked can be difficult, 
for instance. A third debugger, Totalview, is available from Dolphin Interconnect 
Solutions[8]. This is probably the best MPI debugger available in ffiM systems, 
but currently it understands only MPICH, not mM MPI. 

Message trace collection and visualization is integrated with ffiM MPI. With 
a command line option or by setting an environment variable, MPI programs can 
automatically collect message trace information that can be displayed with a tool 
called vt. 
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6.2 HP 

HP provides an implementation of MPI that runs on all current HP hardware, in­
cluding the S-class and X-class Exemplar systems [14]. HP MPI was derived from 
MPICH, but also was significantly influenced by LAM. 

HP MPI uses whatever communication medium it has access to: TCPIIP be­
tween hosts, shared memory within a host, and a hardware data mover for long 
messages on Exemplar systems. HP MPI is interoperable among all supported HP 
systems. HP MPI is well tuned on the high-end systems, with both very low latency 
and high bandwidth on Exemplar servers. It has also been optimized to use shared 
memory to implement collective operations where possible, rather than layering on 
top of point-to-point routines. HP MPI is compliant with MPI 1.2. 

Usability HP MPI is not a part of a comprehensive parallel environment that 
manages parallel programs. This is not too bad on an Exemplar server, where there 
is a single system image, but can make is more difficult to run on a network of 
workstations. 

HP provides several scripts for use with MPI. These include compiler scripts 
mpicc/CC and mpi f77 I f9 0, a program for listing currently running parallel 
jobs (mpij ob), and a program for killing parallel jobs (mpiclean). Together, 
these provide a bit of an illusion of a parallel environment, but not quite as much as 
is needed. In particular, state is stored in the file system, rather than in daemons that 
can detect inconsistent state and react to it. There is no special handling of standard 
I/0 for parallel jobs. HP MPI is also not integrated with a batch environment. 

Tools HP,MPI ships with xmpi, the trace visualization tool originally developed 
as part of LAM. xmpi is well-integrated with HP MPI. An additional flag to the 
mpirun command causes MPI programs to automatically generate trace files that 
can be displayed by xmpi. Furthermore, xmpi can run an MPI application inter­
actively. For more information about xmpi see Section 5.1. 

HP MPI is integrated with the debugger cxdb. The cxdb interface isn't great, 
but it's adequate for simple tasks. Unfortunately it isn't able to show message 
queues. 

6.3 Sun 

The Sun implementation of MPI is quite recent. Version 2 is in beta release as of 
this writing and should be generally available soon. Version 1 was a repackaged 
MPICH. 
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Sun MPI is derived from MPICH. For version 2, it has been integrated with 
a new Sun HPC environment and optimized for SCI, though it can run over any 
network using TCP. The Sun HPC environment is layered software that includes 
parallel job management. Users can launch (tmrun), examine (tmps) or kill 
( tmki 11) parallel jobs. There is considerable flexibility in specifying where jobs 
are started, how standard input and output should be handled (approximately the 
same as the functionality in IDM MPI, plus a bit more), etc. 

Because of the early status of this implementation, it is difficult to assess its 
strengths and weaknesses. There are two potentially exciting developments in the 
Sun implementation. The first of these is the Prism debugger. This debugger, orig­
inally developed by Thinking Machines Corporation, won nearly universal praise 
for its excellent user interface, and for its built-in performance and visualization 
features. In its new incarnation, Prism can debug HPF applications as well as MPI 
applications. The second exciting feature is the MPI-2 I/0 library. This reviewer 
was not able to test this MPI-2 functionality, or the parallel file system associated 
with it, but it appears that much of the work has been done. Providing this func­
tionality put Sun, which has historically lagged other vendors in MPI support, in a 
leading position with respect to MPI development. 

On the other hand, robustness of the HPC package has not yet been demon­
strated. A quick test of the beta version of the software revealed bugs: for instance, 
breakpoints sometimes weren't displayed correctly by Prism, and the software be­
came confused about what parallel jobs were running. It does not appear that the 
process management software will be able to do a good job of process placement, 
and there is no good batch queuing system. There is no special scheduling of paral­
lel jobs, such as gang scheduling or a mechanism to dedicate p_rocessors to a single 
application. Load Sharing Facility (LSF), which ships with Sun HPC software, 
is not integrated with Sun process management tools and has not yet shown itself 
to be effective at managing parallel jobs in any case. Also, since Sun MPI is de­
rived from an earlier version of MPICH, the implementation is not compliant with 
respect to MPLCance1 and Fortran constants, as described above. 

6.4 Digital 

Digital is another newcomer to the MPI world, having recently released a ver­
sion for clusters of Alpha SMP servers connected by Digital's proprietary Memory 
Channel interconnect [15]. Digital MPI is quite close to the original MPICH, with 
special optimizations for communication over local shared memory and over the 
memory channel. 

Digital's implementation of the MPICH ADI uses a lower level communica-
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tion layer, UMP (Universal Message Passing), that provides low-level communi­
cation functionality over the Memory Channel and over shared memory. For long 
messages, UMP uses a background thread to allow overlap of communication and 
computation. 

While Digital MPI is well-optimized for its hardware, there is not yet a robust 
cluster environment in which to embed it. For instance, there are no tools for the 
management of parallel jobs, 1/0 is no better than MPICH, jobs are not automati­
cally distributed over an Alpha cluster. There is no special scheduling of parallel 
jobs, such as gang scheduling or a mechanism to dedicate processors to a single ap­
plication. The best debugging option on such a cluster is currently to use MPICH 
with Totalview. Digital MPI also inherits the two standard bugs from an earlier 
version of MPICH -lack of support for MPLCancel and incorrect treatment of 
Fortran constants. On the other hand, this is a brand-new implementation, and the 
situation is likely to improve. 

6.5 SGI 

Now that Silicon Graphics, Inc (SGI) has bought Cray Research Inc. (CRI), SGI 
has three separate MPI implementations for its three types of machines - parallel 
vector (e.g. J90/C90ff90), Irix (including Origin 2000), and T3E. These imple­
mentations all have different roots and are therefore treated as separate implemen­
tations here. SGI is in the process of merging at least two of the implementations, 
In each case, MPI is part of a package called MPT (Message Passing Toolkit) that 
also includes SGI/Cray's shmem library and PVM. 

6.5.1 SGIIPVP 

PVP MPI (not a standard name) is derived from MPICH. It supp()rtS MPI appli­
cations within a single PVP (Parallel Vector Processor, such as the Cray J90, C90 
and T90), using shared memory for communication, or spanning several PVPs (us­
ing TCP for communication). Because of the rarity of PVP clusters and the much 
slower speed of TCP communication, the rest of this discussion is about the shared 
memory version. 

Shared memory PVP MPI is implemented in an interesting way, demonstrating 
the flexibility of the MPI process model. MPI processes are in fact threads within 
a single process. Through the use of special compiler options, all user-declared 
variables are local to a thread, so that separate threads do not directly "see" each 
other's data. Since all "processes" share the same address space, message transfers 
can be done with a single copy from source to destination (instead of using an in-
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termediate buffer) and synchronization can be done using fast thread mechanisms. 
Applications using this process model are restricted to the SPMD model, where 
each MPI process is the same executable. 

PVP MPI is fairly well-integrated into the environment when run on a single 
host, as far as process control goes - an MPI application looks just like any mul­
tithreaded application. Special scheduling (e.g. gang scheduling) is possible, but 
not well supported (and not at all supported on multiple nodes). Multiple host jobs 
(using TCP) suffer from all of the problems of MPICH with the ch_p4 device. 
However, even for the shared memory version there are no special options for han­
dling 1/0, de buggers that understand MPI jobs, etc. Furthermore, PVP MPI suffers 
from the usual bugs associated with earlier versions of MPICH, including lack of 
MPLCancel and the problem with MPI-defined constants in Fortran. 

6.5.2 SGiff3E 

T3E MPI is derived from the T3D implementation developed at the Edinburgh 
Parallel Computing Centre. The T3D version was in tum derived from the Chimp 
implementation. Though the T3D version allegedly suffered from performance and 
robustness problems, these seem to have been fixed in the T3E implementation. 

T3E MPI is robust, and well-integrated with the environment. Parallel jobs are 
understood by the operating system as distinct entities and are managed directly by 
the operating system, rather than by layered software. Many standard tools (e.g. 
ps, accounting) understand parallel applications. T3E MPI is generally quite easy 
to use. 

On the performance front, an interesting feature is that MPI is able to take 
advantage of special hardware on the T3E for sending strided arrays. This is dis­
cussed in more detail in Section 7 .4. On the other hand, the T3E copies non-aligned 
data slowly, so make sure to use buffers that are 8-byte aligned- this is automatic 
for the usual case of sending double precision data. 

There are a few minor but longstanding problems. For instance, tools to show 
what parallel applications are running are primitive; there is no flexibility in how 
standard 110 is handled. 

On the tools front, the Totalview debugger is available for debugging parallel 
programs. This is not the debugger from Dolphin Interconnect Solutions, but is 
a Cray product with a common ancestor. Cray Totalview has fallen behind its 
counterpart in ease of use and functionality, but is still useful. In particular, Cray 
Totalview cannot display message queues. There are no tools to extract or view 
message traces. 
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6.5.3 SGI/Irix 

SGI recently released version 3.0 of its "Array" software for clustering. This pack­
age includes an implementation of MPI that runs on all current SGI MIPS-based 
systems. SGI MPI is originally derived from MPICH, but has evolved consider­
ably. It has also incorporated xmpi from LAM. 

SGI MPI is optimized for shared memory inside SMP servers and for a special 
HIPPI "bypass" that provides low-latency communication over HIPPI and striping 
over multiple HIPPI connections for large messages. It also uses TCP if HIPPI 
isn't available or the bypass is disabled. SGI MPI is interoperable among different 
SGI systems as long as all parts of an MPI application are compiled for 32-bit or 
64-bit mode. 

In most cases, MPI applications are run inside a single Origin 2000 system. 
SGI's array services software provides infrastructure to allow running on a cluster 
of systems. Applications running on this cluster are identified by an array session 
handle (ash). There are array equivalents for ps and kill that allow array ses­
sions to be treated as a single unit. Array software is required even when running 
on a single node. Array software must be installed and maintained by a system 
administrator. 

SGI MPI is compliant with MPI 1.2. 

Usability SGI MPI is most usable on a single host, such as a large Origin 2000, 
and is slightly less usable in clusters. Because of the array services software, MPI 
applications are managed as a single unit, even when spread across multiple nodes. 
Starting an application on a single host is easy, but the syntax for starting on mul­
tiple hosts is somewhat painful, and isn't managed directly by the array services 
software. 

Standard I/0 is fine when using a single host but is currently not handled well 
when using multiple hosts. Output from processes on remote nodes is lost and there 
is no optional labeling of output lines by process number. These will be addressed 
in a forthcoming release. 

Tools SGI MPI ships with xmp i, the trace visualization tool originally tool orig­
inally developed as part of LAM. xmpi can be used to start MPI programs and 
collect trace information. There is no mechanism to generate trace information or 
examine trace files without xmp i. 

There is no debugger that understands MPI applications. 
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6.6 NEC SX-4 

NEC MPI is another new implementation. NEC has experimented with several 
very different implementations. The one described here is just becoming available 
on the SX-4 as of this writing and should be standard on the SX-4 in the near 
future [16]. 

NEC MPI is a recent descendant of MPICH, starting from the ch_l f shmem 
device, which was originally implemented for the SX-4. NEC MPI has been highly 
optimized for both a single-node SX-4, where MPI uses shared memory for com­
munication, and a multi-node SX-4, where communication between nodes is done 
through the Internode Crossbar Switch (IXS). 

NEC MPI is integrated with the V AMPIR and V AMPIRtrace tools from Pallas, 
which allows users to visualization message trace information to optimize pro­
grams [17]. 

Other features of the NEC implementation are at this time limited to what is 
available in MPICH. Because of its recent release, I have not had an opportunity to 
assess its usability. 

6.7 Others 

This section briefly mentions several other MPI implementations that are available. 

Mercury Race Hughes Aircraft Co. has implemented MPI for Mercury RACE 
systems [18]. RACE MPI is derived from MPICH. There are a few interesting 
features of this implementation that are worth noting. 

• On SHARC systems, where a "byte" (defined by ANSI C to be the size of 
a char) is 32 bits, not 8 bits, this implementation exposed a portability 
problem for MPI codes. 

• The MPICH library has been modified to conserve as much space as pos­
sible. Only needed routines are linked, argument checking and strings are 
omitted. 

• Several collective operations have been optimized to use shared memory. 

Hitachi Hitachi provides an implementation of MPI based on MPICH for its 
SR2201 series computers. This implementation uses the SR2201 's remote DMA 
facility. See: http://www. hitachi. co. jp/Prod/cornp/hpc/eng /srl. htrnl. 
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NEC Cenju-3 NEC provides an MPICH device for its Cenju-3 computers. See: 
http://www.ccrl-nece.technopark.gmd.de/ mpich/mpich_cenju3.html. 

Alpha Data Alpha Data provides an implementation of MPI for its AD66 sys­
tems. This implementation was developed jointly with the the Edinburgh Parallel 
Computing Centre and is presumably related to CHIMP. 
See http: I /www. alphadata. co. uk/softhome .htm. 

Fujitsu MPI for the Fujitsu VPP machines has recently been developed by Pal­
las (http: 1 /www .pallas. de), for Fujitsu. This implementation is reported to be 
in final testing, but no further information is available. MPI for the Fujitsu APlOOO 
is available from Australian National University [19]. 
See http: 1 /cap. anu. edu. au/cap/projects/mpi/mpi .html for more informa­
tion. 

PVMPI PVMPI is a research project based at Oak Ridge National Laboratory 
and the University of Tennessee at Knoxville whose goal is to allow MPI imple­
mentations from different vendors to interoperate[20]. It is advertised that the ap­
plication programmer uses MPI for communication between all processes, plus a 
few PVMPI routines for establishing communication between MPI implementa­
tions- PVMPI was designed before MPI-2 was finalized. Internally, PVMPI uses 
PVM for communication between processes tied to the different implementations, 
and native MPI (through the MPI profiling interface) for communication among 
processes associated with a single MPI implementation. As of this writing, the soft­
ware is not yet available, and it is not clear how many MPI details can be relied on. 
Based on available information, it seems that PVMPI will be a good s~arting point 
for a full meta-MPI implementation, and a good way for applications that need 
interoperability now and cannot wait for such an implementation, but that PVMPI 
will not provide full MPI interoperability, and will be missing many MPI features. 
For more information, see http: 1 /www. net lib. org /mpi /pvmpi /pvmpi. html. 

7 Portability Issues 

While the MPI standard enables portable parallel programs, it does not guarantee 
portable programs, in the following senses: 

• MPI applications may take advantage of implementation details of one MPI 
implementation that are different in another implementation. 
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• MPI applications may correctly use MPI features that perform poorly in 
some MPI implementations. 

This section discusses a number of potential pitfalls. 

7.1 Buffering 

One of the most common mistakes made by MPI users is to assume that an MPI 
implementation provides some amount of message buffering. To buffer a mes­
sage is to make a temporary copy of a message between its source and destination 
buffers. This allows MPLSend to return control to the caller before a correspond­
ing MPLRecv has been called. In this way, it is possible for two processes to 
exchange data by first calling MPLSend and then calling MPLRecv. 

MPI does not require any message buffering, and portable applications must 
not rely on it. To avoid deadlock conditions, applications should use the non­
blocking routines MPLisend and/or MPLirecv. It is common for programs 
ported from PVM or applications that use message "portability" packages to make 
assumptions about buffering. 

The implementations described in this review vary greatly in the amount of 
buffering they provide, and some allow the user.to control the amount of buffering 
through environment variables. For instance, the T3E implementation currently 
buffers messages of arbitrary size, by default, while The SGI implementation may 
buffer as few as 64 bytes, depending on environment variables. 

The amount of buffering is deliberately left open by the MPI standard so that 
implementors can make platform-specific optimizations. Reasons to provide a 
large amount of buffering include reducing application synchronization and im­
proving small message performance. Reasons not to provide a large amount of 
buffering include improving large message performance, reducing memory man­
agement complexity and overhead and reducing MPI internal memory use. 

7.2 Non-standard Send Modes 

MPI provides four send modes: standard, ready, synchronous and buffered. In 
almost all cases, standard mode is the right one to use for a portable application. 
For certain implementations, ready or synchronous mode perform better than stan­
dard mode for some message sizes, but the difference is small and the range of 
message sizes varies for different implementations and different release numbers. 
Furthermore, these modes often have unexpectedly poor behavior - for instance, 
ready mode is slower than standard mode for small messages in several implemen­
tations. Buffered mode is also tempting to use, especially for users porting codes 
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from systems that provide a lot of buffering. But it is quite often the wrong thing. 
It is usually unnecessary (non-blocking communication can be used instead); it is 
usually slow; it can be difficult to use correctly. 

7.3 Standard 110 

MPI does not require that standard I/0 work as expected from MPI applications. 
For instance, data written to s t dou t in a C program may be heavily buffered or 
may be lost entirely. Implementations that use rsh for starting remote processes 
and handling remote standard I/0 typically have problems with buffering, so that 
output may not appear until long after it is written. At least one implementation 
(SGI) currently does not handle output from remote nodes, though that will be 
changed in the next release. Many implementations do not provide line buffering, 
so that output from several processors can become intermixed and garbled. 

An MPI application can inquire about regular I/0 facilities by looking at the 
MPLIO attribute. Technically, this allows one to write portable programs that use 
standard I/0, but it is painful to use and not helpful if the answer is "no." 

Because of the importance of standard output for MPI usability (especially for 
debugging), it is the opinion of this reviewer that when standard output is normally 
available (i.e., for serial programs) high quality MPI implementations should pro­
vide standard output, without line garbling, and with little delay between when the 
output is written and when it appears on the terminal. Furthermore, it is not unrea­
sonable for applications to rely on this ability, though they should not expect high 
performance. 

Input is a different issue. When a parallel application reads from standard input, 
to which process should the input go? Some implementations direct standard input 
to process 0 in MPLCOMM_WORLD. This is what users often expect, though not 
all implementations allow it to work. Some implementations provide the optional 
ability to broadcast the input to all processes, with the requirement that all pro­
cesses read the same data. When possible, applications should avoid reading from 
standard input, choosing instead to open files. When reading from a file is neces­
sary, the most portable option is to read it only on process 0 ofMPLCOMM_WORLD, 
but do not expect this to always work. 

7.4 Performance Considerations with User-Defined Datatypes 

One of the most interesting features of MPI is the ability for applications to define 
MPI datatypes. MPI datatypes can describe almost any C or Fortran data object 
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except C structures with pointers (there is no easy way to automatically "follow" 
the pointer). 

User-defined datatypes are part of MPI for two basic reasons: they allow auto­
matic data conversion in heterogeneous environments and they allow certain per­
formance optimizations. The PVM Pack/Unpack approach allows automatic con­
version in heterogeneous environments while the MPI approach additionally al­
lows optimizations such as using special hardware or a coprocessor to perform 
scatter/gather, or pipelining scatter/gather with message transfer. 

Unfortunately, while this is a nice idea in principle, most implementations do 
not implement these optimizations and using certain MPI datatypes can dramati­
cally slow down communication performance. The two important cases are: 

• Most implementations implement sending and receiving of non-contiguous 
data very inefficiently. 

• Some implementations do not correctly detect that a nonuniform but con­
tiguous datatype is in fact contiguous in memory. 

In both these cases, the implementation resorts to very slow copying of the send/receive 
buffer into/out of an internal MPI buffer, resulting in greatly reduced bandwidth -
as much as two orders of magnitude slower than for simple messages. In these 
cases, it is often more efficient for the user to explicitly pack and unpack the data 
to and from user-managed buffers (sending as an array ofMPLBYTE or some other 
simple datatype) than to let MPI do it automatically. 

This is not the "MPI way" of doing things and may not always be the most 
efficient. For the foreseeable future, compiled user code will usually be able to 
pack data faster than an MPI library (but not specialized hardware). The wildcard is 
multithreaded MPI implementations where a thread running on another processor 
can pack data overlapped with computation. 

One exception to the above rule is sending strided arrays on the T3E, where 
specialized hardware can send strided arrays faster than an MPI program can pack 
them. However, the hardware kicks in only if you use MPLTYPKVECTOR, not an 
contiguous array of building blocks that contain data followed by "holes." 

I therefore reluctantly suggest that MPI applications implement two different 
methods for sending non-contiguous data. One should use the "MPI way" with 
non-contiguous datatypes, the other should pack into a user-managed buffer, and 
the choice should be made at compile time or runtime. Unfortunately this is not an 
elegant solution, but it is the best available at this time. 
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7.5 Thread-safe MPI 

One of the promises of the MPI standard is that it is possible to implement MPI 
so that it is thread-safe. This does not mean that MPI is automatically thread-safe, 
but that an implementor can make it thread-safe. Despite this potential, there have 
been until recently no thread-safe commercial implementations of MPI. Both Sun 
and IBM plan to release thread-safe versions of MPI in the late 1997 time frame. 

In both implementations, users will specify at link time which version (regular 
or thread-safe) of the library to use. Applications using the thread-safe version 
will be able to call MPI routines concurrently from separate threads. A blocked 
MPI call in one thread will not obstruct MPI operations in other threads. However, 
in the Sun implementation, the user must make sure there are enough lightweight 
processes (LWPs). It is not clear how the user should determine the correct number, 
and it is arguable whether this is the right behavior. In the end, whether these 
implementations are effective (i.e., solve user problems) will be determined by 
details of thread scheduling and MPI polling policies. 

In the IBM MPI implementation, an MPI process that is single-threaded from 
the user's point of view will use multiple threads under the covers, allowing greater 
concurrency (e.g. overlap of communication and computation). These new features 
will be useful for multithreaded applications or applications running on SMPs. 
Single-threaded applications on uniprocessors will usually get better performance 
from the single-threaded MPI. 

In the Sun implementation, the implementation itself is not multithreaded. All 
single-threaded programs will run more efficiently with the non-threadsafe MPI. 

In both implementations, the behavior of the multithreaded MPI is consistent 
with behavior specified in the MPI-2 standard, though extra MPI-2 calls to enable 
run-time requests are not provided. 

8 MPI-2 

The MPI-2 standard was finalized in July, 1997 [2]. MPI-2 provides substan­
tial new functionality, including support for dynamic process management, one­
sided communication, cooperative 1/0, extended collective operations and numer­
ous other features. Most vendors have said they will implement part or all of MPI-
2, but have given no time frames. 

The MPI-2 specification for thread-safe MPI has been mostly implemented by 
Sun and IBM as described in Section 7.5. These implementations do not provide 
the extra MPI-2 calls to enable run-time requests. 
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MPI-2 I/0 is the first major piece ofMPI-2 that is likely to be widely available. 
There are at least two research projects, ROMIO and PMPIO, that are implement­
ing portable versions ofMPI-2 I/0 [21, 22]. Of these, the ROMIO implementation 
is the first out of the gate, with enough ofMPI-2 I/0 implemented for applications 
to start using it. ROMIO works with MPICH, SGI MPI and HP MPI, and can 
use a Unix filesystem, NFS filesystem, or illM's PIOFS. PMPIO has been around 
longer, but implements an older version of the I/0 specification. PMPIO is also 
tied to MPICH, though it runs on top of several different filesystems. There does 
not appear to have been much recent activity in PMPIO development. 

Sun is the first vendor to demonstrate an implementation of MPI-2 I/0. This 
reviewer has not yet used it, but a beta version scheduled for release later this year 
appears to be mostly complete. It uses a "parallel file system" called PFS that is 
currently accessible only through MPI-2 I/0. The usability and performance of this 
implementation remain to be demonstrated. 

Both SGI MPI and HP MPI implement MPI-2 routines necessary for layering 
MPI-2 I/0 as a third-party library. This is how ROMIO is able to interact with 
these implementations. 

The LAM implementation provides MPI-2 dynamic process management, As 
of this writing the function names are not the final versions (e.g. MPLSPAWN 

instead of MPLCOMM_SPAWN), but this is a small problem. 
The prospects for dynamic process management in other implementations and 

one-sided communication in any other implementation are less clear. These are 
much more difficult to implement, and are impossible to layer on top of existing 
implementations. 

9 Conclusions 

While the discussions of in the last several sections have hopefully illuminated 
and clarified the landscape of MPI implementations, the overall picture had been 
a bit unbalanced, because of the natural tendency to focus on what doesn't work, 
rather than what does. The primary message you should carry away is still that 
there are many MPI implementations out there, that they are well-supported by 
vendors, and that despite the occasional bug or missing feature, they work quite 
well. For instance, while I have mentioned that several implementations are not 
MPI 1.1 compliant with respect to the definition of certain Fortran constants, the 
overwhelming majority of the MPI standard has been correctly implemented by all 
implementations. 

The area in which there remains the most room for improvement is integration 
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of MPI applications into a robust environment in which parallel applications are 
first-class citizens, understood directly and handled appropriately by the operating 
system, debuggers, analysis tools, and user interface. 

Also high on the MPI wish list is a freely available, robust and highly usable 
MPI for networks of workstations (NOWs). While MPICH (through P4) and LAM 
fill some of this need, they have some usability problems as discussed above. What 
is needed is something with the process and virtual machine management of PVM, 
but with the MPI message passing API. This type of software is needed both at the 
user level (so that userscan put together personal NOWs) and at the system level 
(so that administrators can build highly integrated MPP-like systems). 
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