
LBNL-410,25
UC-405
Preprint

ORLANDO LAWRENCE
NATIONAL LABORATORY

ERNEST
BERKELEY

A Survey of MPI Implementations

William Saphir

Computing Sciences Directorate

November 1997
To appear in
NHSE (National High Perfonnance
Computation and Communication
Software Exchange) Review
URL: http://nhse.cs.rice.edu/NHSEreview/.

:-·~ ·:~:·.*~~i~)~~:~;..:;.r;•,-. . . . -·· .. ·~ ': ~:·:.:.~.·~~~# ,1
• • • ,'" ::.: ~:;~;;~~~:,~~;~~·~-;i.!;,~,~;,~f/it:Ji~~;·:-~~:~;;i;:·:;:;.;~:;_~~ ~-:~?/~<j ... :

...... ' ~ ..-~-- .. ~·.. ,, .

n
0

~
.....

r­
CD z
r-
1'

.$::1.
~
N
01

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

A Survey of MPI Implementations

William Saphir

Computing Sciences Directorate
Ernest Orlando Lawrence Berkeley National Laboratory

University of California ·
Berkeley, California 94 720

November 1997

LBNL-41025
UC-405

This work was supported by the Director, Office of Computational and Technology Research, Division of
Mathematical, Information, and Computational Sciences, of the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098.

A Survey of MPI Implementations

William Saphir
Lawrence Berkeley National Laboratory

University of California
Berkeley, CA 94720

November 6, 1997

Abstract

The Message Passing Interface (MPI) standard has enabled the creation
of portable and efficient programs for distributed memory parallel computers.
Since the first version of the standard was completed in 1994, a large num­
ber of MPI implementations have become available. These include several
portable implementations as well as optimized implementations from every
major parallel computer manufacturer. The ubiquity and high quality of MPI
implementations has been a key to the success of MPI. This review describes
and evaluates a number of these implementations.

1 Introduction and History

The early days of parallel computing1 were characterized by experimentation,
proof-of-concept demonstrations, and a willingness tore-implement programs from
scratch for every new computer that came along. This is a fine way to learn how to
do parallel computation, but a lousy way to build the infrastructure necessary for
growth and stability and for making parallel computing interesting to anyone but
academics. Such infrastructure requires standardization.

During 1993 and 1994, a group of representatives of the computer industry,
government labs and academia met to develop a standard interface for the "mes­
sage passing" model of parallel programming. This organization, known as the
Message Passing Interface (MPI) Forum, finished its work in June, 1994, produc-

' ing an industry standard known as MPI [1]. Since this initial (1.0) standard, the

1 In this article, parallel computing always refers to scientific computing on distributed memory
multiprocessors.

1

MPI Forum has produced versions 1.1 (June, 1995) and 1.2 (July, 1997), which
correct errors and minor omissions, and version 2.0 (July, 1997), which adds sub­
stantial new functionality to MPI-1.2 [2]. At the time of this writing, there are not
yet any full MPI 2.0 implementations. In the rest of this document, MPI refers to
MPI 1.1 unless otherwise noted.

An MPI program consists of a set of processes and a logical communication
medium connecting those processes. These processes may be the same program
(SPMD - Single Program Multiple Data) or different programs (MPMD - Multiple
Programs Multiple Data). The MPI memory model is logically distributed: an MPI
process cannot directly access memory in another MPI process, and interprocess
communication requires calling MPI routines in both processes. 2 MPI defines a
library of subroutines through which MPI processes communicate - this library
is the core of MPI and implicitly defines the programming model.

The most important routines in the MPI library are the so-called "point-to­
point" communication routines, which allow processes to exchange data coopera­
tively - one process sends data to another process, which receives the data. This
cooperative form of communication is called "message passing."

The MPI standard is a specification, not a piece of software. What is specified is
the application interface, not the implementation of that interface. In order to allow
implementors to implement MPI efficiently, the MPI standard does not specify
protocols, or require that implementations be able to intemperate. Moreover, so
that MPI can make sense in a wide range of environments, the standard does not
specify how processes are created or destroyed, and does not even specify precisely
what a process is.

The most important 'considerations in the design of MPI were:

• Portability. An MPI application should require only recompilation to use
a different MPI implementation. Furthermore, it should be possible to im­
plement MPI on any MIMD (Multiple Instruction, Multiple Data) parallel
computer. MPI should support (though not require) execution in heteroge­
neous environments.

• Efficiency. It should be possible to implement MPI efficiently. In particular,
good MPI implementations should pefform as well as proprietary "native"

2In the MPI model, processes may be implemented within the same virtual address space, but all
data is private to a process, and data in other processes can be accessed only through MPI subroutines.
MPI does not forbid coexistence with other models, though interaction with these other models
is not defined by MPI. MPI-2, which includes so-called one-sided communication, still presents
a distributed memory modeL MPI-2 also more clearly defines how a multithreaded MPI process
behaves.

2

message passing libraries.

• Robustness. MPI should provide all important functionality in "~ommon
practice," and then some. MPI provides significant support for the develop­
ment of parallel libraries.

This review discusses several representative implementations of the MPI stan­
dard. These include MPICH, LAM and CHIMP, which are freely available multi­
platform implementations, as well as optimized implementations supplied and sup­
ported by SGI/Cray, IBM, HP, Digital, Sun and NEC. While an attempt has been
made to report on the most visible implementations, a few less well-known ones
may have been left out, as well as implementations for hardware that is no longer
available.

The primary conclusion is that MPI implementations are almost all of high
quality, both robust and efficient. While there are minor problems here and there,
the application developer considering using MPI can be confident that there is a
well-supported MPI implementation on almost every commercially important par­
allel computer. Performance of MPI implementations is usually close to what the
hardware can provide, though this review does not discuss performance, as dis­
cussed in Section 3.

While this is the main story, there are a few side stories, having to do with
behavior the MPI standard does not specify, such as the integration of MPI ap­
plications into a parallel environment, tools for tracing and debugging, handling
of standard input and output, documentation, buffering strategies, etc. These side
stories are as much the subject of this review as are the MPI implementations them­
selves. The goal of this review is to orient the potential MPI user in the world of
MPI and to describe interesting features of MPI implementations, rather than to
compare and rank them, which would be an unproductive exercise. 3

2 Relation of MPI to PVM and HPF

In the context of software standards for parallel computing, two other names are
bound to pop up -Parallel Virtual Machine (PVM) and High Performance Fortran
(HPF). Both of these have close ties to MPI. While this review is about MPI, it is
intended as an orientation for new users, and to this end, it is appropriate to see
how MPI fits in the larger context.

3 A disclaimer: One person's "feature" is another's "bug,", and the opinions in this review are
subjective. Furthermore, MPI is an area of active development, with new versions released often.
The information in this article is believed to be current as of its writing.

3

PVM is a package of software that provides message passing functionality as
well as infrastructure for building a virtual parallel computer out of a network of
workstations [3]. It is often thought of as a competitor to MPI, but it is really
a different beast. PVM is a research project of the University of Tennessee at
Knoxville and Oak Ridge National Laboratory. While quite popular for writing
message passing programs, PVM is a vehicle for performing research in parallel
computing rather than a parallel computing standard. Its weaknesses with respect
to MPI are also its strengths: it is not bound by an absolute requirement for back­
ward compatibility; its design is not constrained to be efficient on every imaginable
MIMD parallel architecture; there is no rigorous specification of PVM behavior. In
some sense the tradeoff is between efficiency and portability in MPI, and flexibility
and adaptability in PVM.

Successful features of PVM are finding their way into MPI, though MPI is
unlikely to provide any support for fault tolerance or a virtual distributed operating
system in the near future. Moreover, since PVM is defined by a full implementation
rather than a specification, possibilities for interoperability in PVM are higher than
in MPI.

HPF is an industry standard for the data parallel model of parallel computation.
HPF was standardized a year earlier than MPI, and the successful HPF standard­
ization process was copied by the MPI Forum. Despite the conceptual appeal and
simplicity of HPF, MPI is much more widely used than HPF, for several reasons.
These include:

• HPF is much more difficult to implement, and to implement efficiently. MPI,
on the other hand, has benefited greatly from the large number of good im­
plementations, including an implementation that was available at about the
same time the standard was released.

• MPI is a more general model, and can be used to implement almost any par­
allel computation, while HPF is applicable only to certain types of problems.

• Obtaining high performance in an HPF program can be more difficult than
would be expected from the superficial simplicity of the HPF model. It is an
open question whether this is a fundamental obstacle or can be addressed by
more mature compilers.

3 Review Criteria

This review looks at several different aspects of MPI implementations. Some of
the important ones are:

4

Compliance. One of the main reasons for having a standard is that a code written
using one MPI implementation should be able to use another implementation with­
out any source code changes. There are several test suites that can automatically
find problems in an MPI implementation. These include a test suite from IBM [4],
a test suite from Intel [5], and test codes distributed with MPICH [6], which is
described in Section 4.

In the implementations surveyed for this study, there are few problems with
MPI compliance. The problems are relatively minor and often have their origins in
the behavior of earlier versions of MPICH, from which many implementations are
derived. The two most common problems are:

1. Several implementations do not provide an MPLCancel that meets the
MPI specification. This function can be quite difficult to implement for any­
thing other than unmatched receives. Indeed, a significant fraction of the
MPI community believes that it was a mistake for MPI to require that this
function apply to sends as well, and that applications requiring the ability to
cancel sends are quite rare. In the opinion of this reviewer, therefore, not
fully implementing MPLCancel is a small problem.

2. Several implementations do not correctly implement MPI constants in For­
tran. In particular, MPI 1.1 requires that they be usable in initialization ex­
pressions. For example, the following code should work.

include 'mpif.h'
integer mytype
parameter (mytype=MPI_REAL)

In some implementations, however, many MPI "constants" are actually the
names of variables in common blocks and aren't initialized until MPLini t
has been called. Note that this behavior was compliant with version 1.0 of
MPI, and that MPI 1.1 invalidated some formerly compliant implementa­
tions (though all compliant MPI applications remained compliant). How­
ever, MPI 1.1 has been been out for more than two years, and new vendor
implementations continue to contain this bug.

Unspecified Behavior. MPI does not specify behavior of some aspects of MPI
implementations. These include

• Buffering. MPI does not specify how much buffering must be provided by
an implementation.

5

• Standard 110. MPI does not require that standard language 1/0 facilities be
provided.

• Process startup and management. MPI does not specify how processes
are started up or shut down. In particular, the state of a program before
MPLini t and after MPLFinalize is not specified.

It is where MPI does not specify behavior that implementations differ. Applications
that do not make assumptions about these features are portable. Portability issues
are discussed in more detail in Section 7.

Integration with the environment. One of the most important aspects of the
usability of an MPI implementation is how well MPI applications are integrated
into the environment. Some of the important issues are:

• Is the operating system or some other system software aware ~f a parallel
application as a distinct entity, rather than as a collection of unrelated serial
processes?

• Does the implementation provide flexibility in handling standard input and
output, such as optional broadcasting of stdin and per-process labeling of
stdout. Is standard output available, without excessive buffering, from all
processes?

• Is process management robust? Is a terminal interrupt propagated to all pro­
cesses in an MPI application? Can a parallel application leave unkilled "or­
phaned" processes that must be detected and killed off manually?

In answering these questions, it is often difficult to separate the MPI implemen­
tation from the parallel environment. This review tries to keep the focus on MPI
itself.

Performance. It is difficult to separate the performance of an MPI implemen­
tation from the performance of the underlying hardware. Since this report is not
about hardware (see [7] for information about hardware) performance is only a
secondary issue. Also, it is not easy to give a complete picture of performance.
For instance, latency and bandwidth numbers give only a small part of the overall
picture. Therefore this review does not discuss absolute performance numbers.

6

Tools. Parallel applications are inherently more difficult to develop and tune then
serial applications. This difficulty is compounded by a lack of tools for developing
parallel programs. The most important development tools are a parallel debugger
and performance analysis tools, including tools for message trace visualization.
A parallel debugger should not require a separate window for each process, and
should understand and be able to display MPI message queues.

Tools are separate from the MPI implementation itself, and are treated only
superficially in this report.

4 MPICH

Without question, the most important MPI implementation is MPICH4, a freely
available portable implementation of MPI developed at Argonne National Labora­
tory and Mississippi State University [6]. MPICH has played an important role in
the development of MPI.

MPICH is the parent of a large number of commercial implementations of MPI.
These include vendor-supported implementations from Digital, Sun, HP, SGI/Cray,
NEC and Fujitsu. In some cases (e.g., SGI and HP) the implementation has evolved
far from its roots; in others (e.g., Digital and Sun) the implementation is young and
still close to MPICH. Only two of the major vendor-supported implementations
are not directly derived from MPICH: the Cray T3D/E implementation (which de­
rives from the CHIMP implementation) and the ffiM SP implementation (for which
MPICH still provided substantial inspiration). The HP implementation also has a
second parent in LAM. MPICH is also the basis for most experimental and research
versions of MPI.

The first version of MPICH was written during the MPI standardization pro­
cess. The experiences of the MPICH authors provided important feedback to the
MPI Forum, including a proof-by-example that it was not necessary to define a sub­
set of MPI in order to make the implementation of MPI less burdensome. MPICH
was released at approximately the same time as the original MPI 1.0 standard.

The portability of MPICH stems from its two-layer design. The bulk of MPICH
code is device independent and is implemented on top of an Abstract Device In­
terface (ADI). The ADI interface hides most hardware-specific details, allowing
MPICH to be easily ported to new architectures. The ADI design allows for effi­
cient layering, and the device-independent top layer takes care of the majority of
MPI syntax and semantics.

4 MPICH is pronounced "em-pee-eye-see-aitch" not "empitch"

7

With release 1.1 of MPICH (current as of this writing) the ADI layer was
changed. The new interface, known as ADI-2, is not yet proven on a large number
of architectures, though it was designed using lessons learned from ADI-1. ADI-
2 should add new opportunities for performance. For example, a set of optional
datatype functions expose MPI datatypes to the implementor, allowing him or her
to take advantage of special hardware or use optimized techniques for transferring
noncontiguous datatypes.

Each implementation of the ADI layer is called a "device," and each MPICH
device effectively defines a new implementation. The following sections describe
the devices that are distributed with MPICH.

4.1 General comments on all devices

Goodies. MPICH comes with a large amount of supporting material, including a
number of examples and test programs, utilities for compiling and running MPI
programs, a program that automatically generates profiling wrappers and Unix
manual pages. There is also a library called MPE (MultiProcessing Environment)
that contains routines for producing event logs, simple run-time visualization, and
timing. Finally there are performance visualization tools called "upshot" and "nup­
shot" that display data from trace files (which can be produced by MPE).

Building MPICH. MPICH is easy to configure and build. A complex "config­
ure" script recognizes almost all common systems. The only drawback to this is
that many parts of MPICH wind up with hard-coded path names (relative to the
MPICH installation directory) and it can be painful to extract pieces of the MPICH
distribution to use elsewhere.

Debugging. Since MPICH is portable, it has no built-in debugging support. For
some devices, it is possible to start the root process under a debugger, or to start the.
entire application under a parallel debugger. The best debugging option for MPICH
is the Totalview debugger [8], a commercial product from Dolphin Interconnect
Solutions that is one of the best parallel debuggers available. Total view has a good
GUI with an intuitive "dive" feature and a coherent approach to debugging parallel
programs. It is integrated withMPICH (the ch_p4, ch_shmem, and ch_lfshmem

devices), understands MPI communicators and MPI message queues and "cap­
tures" MPI processes as they start. Totalview runs on IBM RS6000, Sun and Dig­
ital platforms. By the end of 1997 it is expected to run on SGI R10000 platforms
as well.

8

Problems. MPICH does not implement MPLCancel according to the MPI spec­
ification (it can't always cancel sends). As described above, this "bug" has been
repeated in many MPICH-derived implementations but is not too important. An
earlier version of MPICH used Fortran common blocks to implement some Fortran
MPI constants. This is fixed (with a lot of work) in the current MPICH release
(1.1), but remains in many MPICH-derived implementations. While MPICH is
generally carefully written, there are many MPICH routines that are not imple­
mented as efficiently as they could be. Sometimes these are fixed in MPICH­
derived implementations, but often not. An example is the MPLAlltoall rou­
tine, which is implemented in a way that is likely to cause hot spots in any network.

4.2 The ch_p4 device

This is the "network of workstations" implementation of MPICH. P4 (Portable
Programs for Parallel Processors) is an older message passing library that was used
to implement the MPICH ADI[9]. The "ch" in "ch_p4" stands for "channel."
The ADI is in fact implemented in terms of a simpler "channel" interface, and the
channel interface is implemented in terms of P4. The layering is not strict.

The ch_p4 device is characterized by the following.

• P4 runs on Sun/SunOS, Sun/Solaris, Solaris86, Cray, HP, Dec 5000, Dec
Alpha, Next, ffiM RS6000, Linux86, FreeBSD, ffiM3090, SGI (5, 6), and
others.

• The device uses process-to-process sockets, for processes not on the same
host, or shared memory (using the "-comm=shared" configuration flag), for
processes on the same host.

• The user provides a list of programs and machines to start them on in a P4
"procgroup" file. P4 starts remote processes using rsh (or optionally, using
a "secure server" that provides faster startup). 110 and signal propagation
are handled by rsh. P4 processes start a "listener" subprocess that helps to
establish process-to-process connections if there aren't enough TCP connec­
tions to fully connect the MPI application.

• An interesting feature of the ch_p4 device is that the user starts up a single
process, and that process starts the other MPI processes inside MPLini t.

To do this, ch_p4 relies on the argc and argv arguments to MPLini t.

• The ch_p4 device handles heterogeneous MPI applications -applications
with processes running on more than one architecture. Data representation

9

conversion, if needed, is automatically performed.

While the ch_p4 device provides a way to run MPICH on networks of work­
stations, it is not very friendly to users.

• The procgroup file is difficult to work with and the documentation is not easy
to find. Fortunately the complexity is often hidden behind local utilities or
an "mpirun" command.

• There is no concept of a "virtual machine." Unlike PVM, the network of
workstations used by an application is defined by where the application is
running, not by an infrastructure that exists before and persists afterwards.
Consequently, there are no ·"ps" or "kill" equivalents that understand parallel
jobs, and no automatic way to examine the state of remote nodes or per­
form load balancing. The lack of such infrastructure also contributes to the
signal propagation and I/0 problems described below. In some cases, the
lack of machine state is a bonus, particularly when MPI programs are started
automatically by a batch system.

• Because signal propagation is managed through rsh, it is very easy to end
up with "orphaned" processes that don't realize the rest of an application has
gone away. These orphaned processes often interfere with the running of
subsequent parallel jobs and are difficult to find.

• Because standard I/0 relies on rsh, output from remote nodes is often heav­
ily buffered, and doesn't appear on the screen until well after it is written.
This can make debugging with print f very difficult.

4.3 The ch_shmern and ch_l f shmern devices

The ch_shrnem and ch_l f shrnem devices allow communication through shared
memory on a number of SMP platforms. ch_l f shrnem uses so-called lock-free
queues to reduce synchronization overhead and is therefore preferred. Both devices
run on most SMP platforms including Sun, SGI, HP and Digital platforms.

Usability of applications using these shared memory devices is high, because
process management is handled by normal operating system mechanisms. E.g.
process startup is trivial, ps shows every process in a parallel job (though still
doesn't have the concept of a parallel process), signals are propagated (usually)
and I/0 is buffered to the same extent as normal language I/0.

However, these devices are restricted to communication within an SMP, aren't
thread-safe, and aren't themselves multithreaded. All of these are potentially de­
sirable in SMP clusters.

10

4.4 The ch_nexus Device

The ch_nexus device uses Nexus for its underlying communication layer and for
process management. Nexus is discussed elsewhere [10]. This device is still in a
preliminary state, and has so far only been tested in a Solaris environment.

The most interesting use of ch_nexus is that Nexus provides multimethod
communication, which can use optimized communication where possible. ch_nexus
thus provides an interoperability mechanism to allow MPI to run efficiently on
clusters of heterogeneous systems.

4.5 MPP devices: ch_cenju3, ch...mpl, ch_nx, nx, t3d

The MPP5 devices all implement MPI on top of native communication. For the
devices whose names start with with ch_, the device uses the simpler channel in­
terface, minimizing the amount of platform-dependent code. For the other devices,
the ADI is implemented directly on the native communication library.

For all MPP devices, MPICH uses the native mechanism for starting and man­
aging processes, for handling I/0, etc.

The performance of these MPICH implementations is in most cases very close
to that of the underlying communication layer.

5 Other Freely Available Implementations

5.1 LAM- Local Area Multicomputer

The Lf\M implementation ofMPI is a freely available and portable implementation
developed at the Ohio Supercomputer Center [11]. LAM and MPICH are the two
most important free options for running MPI on a network of workstations. LAM
existed before MPI and was adopted to implement the MPI_ interface. LAM runs
on many platforms, including RS6000, Irix 5, Irix 6, Linux86, HPUX, OSF/1 and
Solaris.

LAM provides an infrastructure to turn a network of workstations (possibly
heterogeneous) into a virtual parallel computer. A user-level daemon running on
each node provides process management, including signal handling and I/0 man­
agement. LAM also provides extensive monitoring capabilities to support tuning
and debugging. The xmpi tool that comes with LAM (and has since been adopted

5 "MPP" used to stand for "Massively Parallel Processor and then "Moderately Parallel Proces­
sor," but these days just means a highly integrated and tightly coupled distributed memory parallel
computer, sold as a single machine.

11

by the HP and SGI implementations as well) provides visualization of message
traces and allows inspection of message queues.

By default, full message monitoring is enabled, and communication goes through
the daemons. It is also possible to enable direct client-to-client communication us­
ing TCP sockets or shared memory.

LAM also provides so-called Guaranteed Envelope Resources (GER), which
is a promise about how much pending communication LAM can support. Such a
guarantee is missing from the MPI specification, and there is debate over whether
it is needed or not. In theory, a compliant MPI implementation could have so
few internal resources (e.g. buffers for message envelopes) that reasonable MPI
programs would fail. Fortunately, there are few MPI implementations which fail
due to resource exhaustion for average codes, and most have tunable parameters
to allow them to deal with unusual codes. Through GER, LAM makes explicit
quantitative guarantees on resource availability.

LAM is compliant with MPI 1.1 and also implements dynamic process man­
agement routines from MPI-2.

Usability. LAM is a good solution for networks of workstations, but has a num­
ber of usability problems. With some small changes, it has the possibility to be­
come the "PVM" of the MPI world because of its ability to tum a network of
workstations into a parallel computer. From the user's point of view, it does not go
quite far enough in a few key areas. For instance, the "virtual machine" abstraction
is incomplete: there is no easy way to find out what hosts are part of the virtual
machine; the equivalent tops requires a specification of node numbers; starting up
a daemon when there is already one running kills the old one, rather than noticing
that one is already running. LAM also hurts itself by using strange names - such
as wipe instead of something like lamhalt, putting include files in share/h
instead of include, insisting on using the word "schema" whenever possible;
commands that should be able to figure out the current machine state (e.g. wipe)
require a schema when they should be able to figure out the information them­
selves.

Tools. LAM is considered one of the best environments for development because
of its extensive monitoring capabilities. The xrnpi tool, which is distributed with
LAM, allows visualization of message traces and examination of message queues
in deadlocked programs. LAM also provides better I/0 handling and fewer oppor­
tunities for orphaned processes than MPICH on networks of workstations.

12

5.2 CHIMP - Common High-level Interface to Message Passing

The CHIMP project is based at the Edinburgh Parallel Computing Centre [12].
Like LAM, CHIMP started off as an independent portable message passing infras­
tructure and was later adapted to implement MPI. CHIMP is best known as the
basis for the vendor-supplied optimized versions of MPI for the Cray T3D and
T3E. Chimp is portable, running on many platforms including Solaris, Irix, AIX,
OSF/1, and Meiko. To the best of this reviewer's knowledge, CHIMP is not in
active development and is not w_idely used, at least in the U.S.

5.3 Other implementations

A number of implementations are based on MPICH but are not included with the
standard MPICH release. Some of these are listed here.

NT- Students at Mississippi State University have developed an MPICH ADI im­
plementation for Microsoft NT clusters. It is a demonstration implementation,
rather than a high performance implementation.
See http: I /www. ere .rnsstate. edu/rnpi/rnpiNT. htrnl for more information.

Win32 A researcher in Portugal has implemented the MPICH ADI device for
Microsoft Windows.
See http: 1 /alentejo. dei. uc .pt/ fafe/w32rnpi/ for more information.

Active Messages A student at the University of California at Berkeley has im­
plemented the MPICH ADI (ADI-2) on top of Generic Active Messages (GAM)
and Active Messages II (AM2).
See http: I /now. cs. berkeley. edu/Fastcornrn/MPI/ for more information.

Fast Messages Students at the University of lllinois at Urbana Champaign have
implemented the MPICH ADI on top of Fast Messages, which runs on PCs running
NT or Linux with Myrinet or Winsock 32.
See http: //www-csag. cs. uiuc. edu/proj ects/cornrn/rnpi-frn. htrnl for more in­
formation.

Multithreaded (MT) Device A researcher in Germany has implemented the
MPICH ADI so that MPI "processes" are in fact threads on a multiprocessor ma­
chine. Communication between these processes can be done with a single copy.

13

The MT device runs on Linux with the Nthreads library and on Solaris with the
Nthreads and Solaris threads libraries. To handle the problem of non-private global
variables, there is support for private global variables through a preprocessor or a
modified gee compiler. This approach is quite similar to what was done for the
Cray PVP implementation described in Section 6.5.1.
Seehttp://noah.informatik.tu-chernnitz.de/members/radke/mtdevice/mtdevice.html
for more information.

TransMPI TransMPI is an implementation of MPI for transputers (MPI 1.0, C
bindings only). It is of interest because it is a full implementation of MPI, unre­
lated to MPICH, LAM or CHIMP, to which most other implementations trace their
origins. For more information, contact thomasd@netcom.com.

6 Vendor Implementations

6.1 mM

IBM has been a consistently strong supporter of MPI. IBM's implementation of
MPI for its SP systems was one of the first vendor-supported MPI implementa­
tions. MPI has replaced IBM's proprietary library MPL as the preferred message
passing library on SP systems. The first optimized version of MPI available for SP
systems, MPI-F, was a research prototype based on MPICH. The currently avail­
able implementation of MPI (hereafter referred to as IBM MPI) is rewritten from
scratch [13].

IBM MPI runs on IBM SP systems and AIX workstation clusters in one of two
modes. In User Space (US) mode, an MPI application has direct access to the SP
high performance switch (if one exists). This provides the best performance, with
the restriction that only one process may access the switch on each node. In IP
mode, MPI processes communicate using IP - over the high performance switch
if it exists, or over any other network if not. Latency (minimum message transfer
time) in US mode is an order of magnitude lower than in IP mode.

IBM MPI is integrated with IBM's Parallel Environment (PE) and Parallel Op­
erating Environment (POE), which are layered software packages that provide the
"glue" allowing an SP (or cluster) to function as a single machine. Assuming PE
and POE are installed correctly (no small feat) MPI works as an integrated piece
of software: compilers mpcc and mpxl f compile C and Fortran MPI programs;
poe launches parallel MPI programs; 110 is handled in a reasonable way; signals
are propagated from the poe launcher to MPI processes; the debuggers pdbx and

14

pedb understand parallel programs.

Usability. MPI is well-integrated with the PE/POE infrastructure. This infras­
tructure provides, among other things:

• Parallel job startup, including optional automatic space sharing of parallel
applications.

• Signal propagation to all processes in a parallel application.

• Flexible handling of standard I/0: standard output may be labeled by pro­
cessor number and/or ordered by processor number; standard input may be
broadcast to all processes or sent to a single process.

• An integrated batch queuing system called Loadleveler.

Unfortunately there remain a number of usability problems related to PE/POE.
Though not problems with the MPI implementation itself, these interfere with the
usability of MPI. For example:

• Numerous user-settable options for poe do not have reasonable defaults.

• Signal propagation is not entirely foolproof, so that orphaned processes are
not uncommon

• Parallel jobs are still second-class citizens. For example, there is no good
way to see what parallel jobs are running on the system. The standard utility,
jm_status, produces verbose output that is not easily parsed by humans.

• Despite improvement since earlier releases, the batch system Loadleveler
requires substantial local customization and tools to be useful.

Tools. Two debuggers are available from ffiM: pdbx is a command-line debug­
ger built on dbx and pedb is a parallel debugger with an X interface. Both de­
buggers have reasonable though not outstanding interfaces. Neither understands
message queues, so that finding out why a program is deadlocked can be difficult,
for instance. A third debugger, Totalview, is available from Dolphin Interconnect
Solutions[8]. This is probably the best MPI debugger available in ffiM systems,
but currently it understands only MPICH, not mM MPI.

Message trace collection and visualization is integrated with ffiM MPI. With
a command line option or by setting an environment variable, MPI programs can
automatically collect message trace information that can be displayed with a tool
called vt.

15

6.2 HP

HP provides an implementation of MPI that runs on all current HP hardware, in­
cluding the S-class and X-class Exemplar systems [14]. HP MPI was derived from
MPICH, but also was significantly influenced by LAM.

HP MPI uses whatever communication medium it has access to: TCPIIP be­
tween hosts, shared memory within a host, and a hardware data mover for long
messages on Exemplar systems. HP MPI is interoperable among all supported HP
systems. HP MPI is well tuned on the high-end systems, with both very low latency
and high bandwidth on Exemplar servers. It has also been optimized to use shared
memory to implement collective operations where possible, rather than layering on
top of point-to-point routines. HP MPI is compliant with MPI 1.2.

Usability HP MPI is not a part of a comprehensive parallel environment that
manages parallel programs. This is not too bad on an Exemplar server, where there
is a single system image, but can make is more difficult to run on a network of
workstations.

HP provides several scripts for use with MPI. These include compiler scripts
mpicc/CC and mpi f77 I f9 0, a program for listing currently running parallel
jobs (mpij ob), and a program for killing parallel jobs (mpiclean). Together,
these provide a bit of an illusion of a parallel environment, but not quite as much as
is needed. In particular, state is stored in the file system, rather than in daemons that
can detect inconsistent state and react to it. There is no special handling of standard
I/0 for parallel jobs. HP MPI is also not integrated with a batch environment.

Tools HP,MPI ships with xmpi, the trace visualization tool originally developed
as part of LAM. xmpi is well-integrated with HP MPI. An additional flag to the
mpirun command causes MPI programs to automatically generate trace files that
can be displayed by xmpi. Furthermore, xmpi can run an MPI application inter­
actively. For more information about xmpi see Section 5.1.

HP MPI is integrated with the debugger cxdb. The cxdb interface isn't great,
but it's adequate for simple tasks. Unfortunately it isn't able to show message
queues.

6.3 Sun

The Sun implementation of MPI is quite recent. Version 2 is in beta release as of
this writing and should be generally available soon. Version 1 was a repackaged
MPICH.

16

Sun MPI is derived from MPICH. For version 2, it has been integrated with
a new Sun HPC environment and optimized for SCI, though it can run over any
network using TCP. The Sun HPC environment is layered software that includes
parallel job management. Users can launch (tmrun), examine (tmps) or kill
(tmki 11) parallel jobs. There is considerable flexibility in specifying where jobs
are started, how standard input and output should be handled (approximately the
same as the functionality in IDM MPI, plus a bit more), etc.

Because of the early status of this implementation, it is difficult to assess its
strengths and weaknesses. There are two potentially exciting developments in the
Sun implementation. The first of these is the Prism debugger. This debugger, orig­
inally developed by Thinking Machines Corporation, won nearly universal praise
for its excellent user interface, and for its built-in performance and visualization
features. In its new incarnation, Prism can debug HPF applications as well as MPI
applications. The second exciting feature is the MPI-2 I/0 library. This reviewer
was not able to test this MPI-2 functionality, or the parallel file system associated
with it, but it appears that much of the work has been done. Providing this func­
tionality put Sun, which has historically lagged other vendors in MPI support, in a
leading position with respect to MPI development.

On the other hand, robustness of the HPC package has not yet been demon­
strated. A quick test of the beta version of the software revealed bugs: for instance,
breakpoints sometimes weren't displayed correctly by Prism, and the software be­
came confused about what parallel jobs were running. It does not appear that the
process management software will be able to do a good job of process placement,
and there is no good batch queuing system. There is no special scheduling of paral­
lel jobs, such as gang scheduling or a mechanism to dedicate p_rocessors to a single
application. Load Sharing Facility (LSF), which ships with Sun HPC software,
is not integrated with Sun process management tools and has not yet shown itself
to be effective at managing parallel jobs in any case. Also, since Sun MPI is de­
rived from an earlier version of MPICH, the implementation is not compliant with
respect to MPLCance1 and Fortran constants, as described above.

6.4 Digital

Digital is another newcomer to the MPI world, having recently released a ver­
sion for clusters of Alpha SMP servers connected by Digital's proprietary Memory
Channel interconnect [15]. Digital MPI is quite close to the original MPICH, with
special optimizations for communication over local shared memory and over the
memory channel.

Digital's implementation of the MPICH ADI uses a lower level communica-

17

tion layer, UMP (Universal Message Passing), that provides low-level communi­
cation functionality over the Memory Channel and over shared memory. For long
messages, UMP uses a background thread to allow overlap of communication and
computation.

While Digital MPI is well-optimized for its hardware, there is not yet a robust
cluster environment in which to embed it. For instance, there are no tools for the
management of parallel jobs, 1/0 is no better than MPICH, jobs are not automati­
cally distributed over an Alpha cluster. There is no special scheduling of parallel
jobs, such as gang scheduling or a mechanism to dedicate processors to a single ap­
plication. The best debugging option on such a cluster is currently to use MPICH
with Totalview. Digital MPI also inherits the two standard bugs from an earlier
version of MPICH -lack of support for MPLCancel and incorrect treatment of
Fortran constants. On the other hand, this is a brand-new implementation, and the
situation is likely to improve.

6.5 SGI

Now that Silicon Graphics, Inc (SGI) has bought Cray Research Inc. (CRI), SGI
has three separate MPI implementations for its three types of machines - parallel
vector (e.g. J90/C90ff90), Irix (including Origin 2000), and T3E. These imple­
mentations all have different roots and are therefore treated as separate implemen­
tations here. SGI is in the process of merging at least two of the implementations,
In each case, MPI is part of a package called MPT (Message Passing Toolkit) that
also includes SGI/Cray's shmem library and PVM.

6.5.1 SGIIPVP

PVP MPI (not a standard name) is derived from MPICH. It supp()rtS MPI appli­
cations within a single PVP (Parallel Vector Processor, such as the Cray J90, C90
and T90), using shared memory for communication, or spanning several PVPs (us­
ing TCP for communication). Because of the rarity of PVP clusters and the much
slower speed of TCP communication, the rest of this discussion is about the shared
memory version.

Shared memory PVP MPI is implemented in an interesting way, demonstrating
the flexibility of the MPI process model. MPI processes are in fact threads within
a single process. Through the use of special compiler options, all user-declared
variables are local to a thread, so that separate threads do not directly "see" each
other's data. Since all "processes" share the same address space, message transfers
can be done with a single copy from source to destination (instead of using an in-

18

termediate buffer) and synchronization can be done using fast thread mechanisms.
Applications using this process model are restricted to the SPMD model, where
each MPI process is the same executable.

PVP MPI is fairly well-integrated into the environment when run on a single
host, as far as process control goes - an MPI application looks just like any mul­
tithreaded application. Special scheduling (e.g. gang scheduling) is possible, but
not well supported (and not at all supported on multiple nodes). Multiple host jobs
(using TCP) suffer from all of the problems of MPICH with the ch_p4 device.
However, even for the shared memory version there are no special options for han­
dling 1/0, de buggers that understand MPI jobs, etc. Furthermore, PVP MPI suffers
from the usual bugs associated with earlier versions of MPICH, including lack of
MPLCancel and the problem with MPI-defined constants in Fortran.

6.5.2 SGiff3E

T3E MPI is derived from the T3D implementation developed at the Edinburgh
Parallel Computing Centre. The T3D version was in tum derived from the Chimp
implementation. Though the T3D version allegedly suffered from performance and
robustness problems, these seem to have been fixed in the T3E implementation.

T3E MPI is robust, and well-integrated with the environment. Parallel jobs are
understood by the operating system as distinct entities and are managed directly by
the operating system, rather than by layered software. Many standard tools (e.g.
ps, accounting) understand parallel applications. T3E MPI is generally quite easy
to use.

On the performance front, an interesting feature is that MPI is able to take
advantage of special hardware on the T3E for sending strided arrays. This is dis­
cussed in more detail in Section 7 .4. On the other hand, the T3E copies non-aligned
data slowly, so make sure to use buffers that are 8-byte aligned- this is automatic
for the usual case of sending double precision data.

There are a few minor but longstanding problems. For instance, tools to show
what parallel applications are running are primitive; there is no flexibility in how
standard 110 is handled.

On the tools front, the Totalview debugger is available for debugging parallel
programs. This is not the debugger from Dolphin Interconnect Solutions, but is
a Cray product with a common ancestor. Cray Totalview has fallen behind its
counterpart in ease of use and functionality, but is still useful. In particular, Cray
Totalview cannot display message queues. There are no tools to extract or view
message traces.

19

6.5.3 SGI/Irix

SGI recently released version 3.0 of its "Array" software for clustering. This pack­
age includes an implementation of MPI that runs on all current SGI MIPS-based
systems. SGI MPI is originally derived from MPICH, but has evolved consider­
ably. It has also incorporated xmpi from LAM.

SGI MPI is optimized for shared memory inside SMP servers and for a special
HIPPI "bypass" that provides low-latency communication over HIPPI and striping
over multiple HIPPI connections for large messages. It also uses TCP if HIPPI
isn't available or the bypass is disabled. SGI MPI is interoperable among different
SGI systems as long as all parts of an MPI application are compiled for 32-bit or
64-bit mode.

In most cases, MPI applications are run inside a single Origin 2000 system.
SGI's array services software provides infrastructure to allow running on a cluster
of systems. Applications running on this cluster are identified by an array session
handle (ash). There are array equivalents for ps and kill that allow array ses­
sions to be treated as a single unit. Array software is required even when running
on a single node. Array software must be installed and maintained by a system
administrator.

SGI MPI is compliant with MPI 1.2.

Usability SGI MPI is most usable on a single host, such as a large Origin 2000,
and is slightly less usable in clusters. Because of the array services software, MPI
applications are managed as a single unit, even when spread across multiple nodes.
Starting an application on a single host is easy, but the syntax for starting on mul­
tiple hosts is somewhat painful, and isn't managed directly by the array services
software.

Standard I/0 is fine when using a single host but is currently not handled well
when using multiple hosts. Output from processes on remote nodes is lost and there
is no optional labeling of output lines by process number. These will be addressed
in a forthcoming release.

Tools SGI MPI ships with xmp i, the trace visualization tool originally tool orig­
inally developed as part of LAM. xmpi can be used to start MPI programs and
collect trace information. There is no mechanism to generate trace information or
examine trace files without xmp i.

There is no debugger that understands MPI applications.

20

6.6 NEC SX-4

NEC MPI is another new implementation. NEC has experimented with several
very different implementations. The one described here is just becoming available
on the SX-4 as of this writing and should be standard on the SX-4 in the near
future [16].

NEC MPI is a recent descendant of MPICH, starting from the ch_l f shmem
device, which was originally implemented for the SX-4. NEC MPI has been highly
optimized for both a single-node SX-4, where MPI uses shared memory for com­
munication, and a multi-node SX-4, where communication between nodes is done
through the Internode Crossbar Switch (IXS).

NEC MPI is integrated with the V AMPIR and V AMPIRtrace tools from Pallas,
which allows users to visualization message trace information to optimize pro­
grams [17].

Other features of the NEC implementation are at this time limited to what is
available in MPICH. Because of its recent release, I have not had an opportunity to
assess its usability.

6.7 Others

This section briefly mentions several other MPI implementations that are available.

Mercury Race Hughes Aircraft Co. has implemented MPI for Mercury RACE
systems [18]. RACE MPI is derived from MPICH. There are a few interesting
features of this implementation that are worth noting.

• On SHARC systems, where a "byte" (defined by ANSI C to be the size of
a char) is 32 bits, not 8 bits, this implementation exposed a portability
problem for MPI codes.

• The MPICH library has been modified to conserve as much space as pos­
sible. Only needed routines are linked, argument checking and strings are
omitted.

• Several collective operations have been optimized to use shared memory.

Hitachi Hitachi provides an implementation of MPI based on MPICH for its
SR2201 series computers. This implementation uses the SR2201 's remote DMA
facility. See: http://www. hitachi. co. jp/Prod/cornp/hpc/eng /srl. htrnl.

21

NEC Cenju-3 NEC provides an MPICH device for its Cenju-3 computers. See:
http://www.ccrl-nece.technopark.gmd.de/ mpich/mpich_cenju3.html.

Alpha Data Alpha Data provides an implementation of MPI for its AD66 sys­
tems. This implementation was developed jointly with the the Edinburgh Parallel
Computing Centre and is presumably related to CHIMP.
See http: I /www. alphadata. co. uk/softhome .htm.

Fujitsu MPI for the Fujitsu VPP machines has recently been developed by Pal­
las (http: 1 /www .pallas. de), for Fujitsu. This implementation is reported to be
in final testing, but no further information is available. MPI for the Fujitsu APlOOO
is available from Australian National University [19].
See http: 1 /cap. anu. edu. au/cap/projects/mpi/mpi .html for more informa­
tion.

PVMPI PVMPI is a research project based at Oak Ridge National Laboratory
and the University of Tennessee at Knoxville whose goal is to allow MPI imple­
mentations from different vendors to interoperate[20]. It is advertised that the ap­
plication programmer uses MPI for communication between all processes, plus a
few PVMPI routines for establishing communication between MPI implementa­
tions- PVMPI was designed before MPI-2 was finalized. Internally, PVMPI uses
PVM for communication between processes tied to the different implementations,
and native MPI (through the MPI profiling interface) for communication among
processes associated with a single MPI implementation. As of this writing, the soft­
ware is not yet available, and it is not clear how many MPI details can be relied on.
Based on available information, it seems that PVMPI will be a good s~arting point
for a full meta-MPI implementation, and a good way for applications that need
interoperability now and cannot wait for such an implementation, but that PVMPI
will not provide full MPI interoperability, and will be missing many MPI features.
For more information, see http: 1 /www. net lib. org /mpi /pvmpi /pvmpi. html.

7 Portability Issues

While the MPI standard enables portable parallel programs, it does not guarantee
portable programs, in the following senses:

• MPI applications may take advantage of implementation details of one MPI
implementation that are different in another implementation.

22

• MPI applications may correctly use MPI features that perform poorly in
some MPI implementations.

This section discusses a number of potential pitfalls.

7.1 Buffering

One of the most common mistakes made by MPI users is to assume that an MPI
implementation provides some amount of message buffering. To buffer a mes­
sage is to make a temporary copy of a message between its source and destination
buffers. This allows MPLSend to return control to the caller before a correspond­
ing MPLRecv has been called. In this way, it is possible for two processes to
exchange data by first calling MPLSend and then calling MPLRecv.

MPI does not require any message buffering, and portable applications must
not rely on it. To avoid deadlock conditions, applications should use the non­
blocking routines MPLisend and/or MPLirecv. It is common for programs
ported from PVM or applications that use message "portability" packages to make
assumptions about buffering.

The implementations described in this review vary greatly in the amount of
buffering they provide, and some allow the user.to control the amount of buffering
through environment variables. For instance, the T3E implementation currently
buffers messages of arbitrary size, by default, while The SGI implementation may
buffer as few as 64 bytes, depending on environment variables.

The amount of buffering is deliberately left open by the MPI standard so that
implementors can make platform-specific optimizations. Reasons to provide a
large amount of buffering include reducing application synchronization and im­
proving small message performance. Reasons not to provide a large amount of
buffering include improving large message performance, reducing memory man­
agement complexity and overhead and reducing MPI internal memory use.

7.2 Non-standard Send Modes

MPI provides four send modes: standard, ready, synchronous and buffered. In
almost all cases, standard mode is the right one to use for a portable application.
For certain implementations, ready or synchronous mode perform better than stan­
dard mode for some message sizes, but the difference is small and the range of
message sizes varies for different implementations and different release numbers.
Furthermore, these modes often have unexpectedly poor behavior - for instance,
ready mode is slower than standard mode for small messages in several implemen­
tations. Buffered mode is also tempting to use, especially for users porting codes

23

from systems that provide a lot of buffering. But it is quite often the wrong thing.
It is usually unnecessary (non-blocking communication can be used instead); it is
usually slow; it can be difficult to use correctly.

7.3 Standard 110

MPI does not require that standard I/0 work as expected from MPI applications.
For instance, data written to s t dou t in a C program may be heavily buffered or
may be lost entirely. Implementations that use rsh for starting remote processes
and handling remote standard I/0 typically have problems with buffering, so that
output may not appear until long after it is written. At least one implementation
(SGI) currently does not handle output from remote nodes, though that will be
changed in the next release. Many implementations do not provide line buffering,
so that output from several processors can become intermixed and garbled.

An MPI application can inquire about regular I/0 facilities by looking at the
MPLIO attribute. Technically, this allows one to write portable programs that use
standard I/0, but it is painful to use and not helpful if the answer is "no."

Because of the importance of standard output for MPI usability (especially for
debugging), it is the opinion of this reviewer that when standard output is normally
available (i.e., for serial programs) high quality MPI implementations should pro­
vide standard output, without line garbling, and with little delay between when the
output is written and when it appears on the terminal. Furthermore, it is not unrea­
sonable for applications to rely on this ability, though they should not expect high
performance.

Input is a different issue. When a parallel application reads from standard input,
to which process should the input go? Some implementations direct standard input
to process 0 in MPLCOMM_WORLD. This is what users often expect, though not
all implementations allow it to work. Some implementations provide the optional
ability to broadcast the input to all processes, with the requirement that all pro­
cesses read the same data. When possible, applications should avoid reading from
standard input, choosing instead to open files. When reading from a file is neces­
sary, the most portable option is to read it only on process 0 ofMPLCOMM_WORLD,
but do not expect this to always work.

7.4 Performance Considerations with User-Defined Datatypes

One of the most interesting features of MPI is the ability for applications to define
MPI datatypes. MPI datatypes can describe almost any C or Fortran data object

24

except C structures with pointers (there is no easy way to automatically "follow"
the pointer).

User-defined datatypes are part of MPI for two basic reasons: they allow auto­
matic data conversion in heterogeneous environments and they allow certain per­
formance optimizations. The PVM Pack/Unpack approach allows automatic con­
version in heterogeneous environments while the MPI approach additionally al­
lows optimizations such as using special hardware or a coprocessor to perform
scatter/gather, or pipelining scatter/gather with message transfer.

Unfortunately, while this is a nice idea in principle, most implementations do
not implement these optimizations and using certain MPI datatypes can dramati­
cally slow down communication performance. The two important cases are:

• Most implementations implement sending and receiving of non-contiguous
data very inefficiently.

• Some implementations do not correctly detect that a nonuniform but con­
tiguous datatype is in fact contiguous in memory.

In both these cases, the implementation resorts to very slow copying of the send/receive
buffer into/out of an internal MPI buffer, resulting in greatly reduced bandwidth -
as much as two orders of magnitude slower than for simple messages. In these
cases, it is often more efficient for the user to explicitly pack and unpack the data
to and from user-managed buffers (sending as an array ofMPLBYTE or some other
simple datatype) than to let MPI do it automatically.

This is not the "MPI way" of doing things and may not always be the most
efficient. For the foreseeable future, compiled user code will usually be able to
pack data faster than an MPI library (but not specialized hardware). The wildcard is
multithreaded MPI implementations where a thread running on another processor
can pack data overlapped with computation.

One exception to the above rule is sending strided arrays on the T3E, where
specialized hardware can send strided arrays faster than an MPI program can pack
them. However, the hardware kicks in only if you use MPLTYPKVECTOR, not an
contiguous array of building blocks that contain data followed by "holes."

I therefore reluctantly suggest that MPI applications implement two different
methods for sending non-contiguous data. One should use the "MPI way" with
non-contiguous datatypes, the other should pack into a user-managed buffer, and
the choice should be made at compile time or runtime. Unfortunately this is not an
elegant solution, but it is the best available at this time.

25

7.5 Thread-safe MPI

One of the promises of the MPI standard is that it is possible to implement MPI
so that it is thread-safe. This does not mean that MPI is automatically thread-safe,
but that an implementor can make it thread-safe. Despite this potential, there have
been until recently no thread-safe commercial implementations of MPI. Both Sun
and IBM plan to release thread-safe versions of MPI in the late 1997 time frame.

In both implementations, users will specify at link time which version (regular
or thread-safe) of the library to use. Applications using the thread-safe version
will be able to call MPI routines concurrently from separate threads. A blocked
MPI call in one thread will not obstruct MPI operations in other threads. However,
in the Sun implementation, the user must make sure there are enough lightweight
processes (LWPs). It is not clear how the user should determine the correct number,
and it is arguable whether this is the right behavior. In the end, whether these
implementations are effective (i.e., solve user problems) will be determined by
details of thread scheduling and MPI polling policies.

In the IBM MPI implementation, an MPI process that is single-threaded from
the user's point of view will use multiple threads under the covers, allowing greater
concurrency (e.g. overlap of communication and computation). These new features
will be useful for multithreaded applications or applications running on SMPs.
Single-threaded applications on uniprocessors will usually get better performance
from the single-threaded MPI.

In the Sun implementation, the implementation itself is not multithreaded. All
single-threaded programs will run more efficiently with the non-threadsafe MPI.

In both implementations, the behavior of the multithreaded MPI is consistent
with behavior specified in the MPI-2 standard, though extra MPI-2 calls to enable
run-time requests are not provided.

8 MPI-2

The MPI-2 standard was finalized in July, 1997 [2]. MPI-2 provides substan­
tial new functionality, including support for dynamic process management, one­
sided communication, cooperative 1/0, extended collective operations and numer­
ous other features. Most vendors have said they will implement part or all of MPI-
2, but have given no time frames.

The MPI-2 specification for thread-safe MPI has been mostly implemented by
Sun and IBM as described in Section 7.5. These implementations do not provide
the extra MPI-2 calls to enable run-time requests.

26

MPI-2 I/0 is the first major piece ofMPI-2 that is likely to be widely available.
There are at least two research projects, ROMIO and PMPIO, that are implement­
ing portable versions ofMPI-2 I/0 [21, 22]. Of these, the ROMIO implementation
is the first out of the gate, with enough ofMPI-2 I/0 implemented for applications
to start using it. ROMIO works with MPICH, SGI MPI and HP MPI, and can
use a Unix filesystem, NFS filesystem, or illM's PIOFS. PMPIO has been around
longer, but implements an older version of the I/0 specification. PMPIO is also
tied to MPICH, though it runs on top of several different filesystems. There does
not appear to have been much recent activity in PMPIO development.

Sun is the first vendor to demonstrate an implementation of MPI-2 I/0. This
reviewer has not yet used it, but a beta version scheduled for release later this year
appears to be mostly complete. It uses a "parallel file system" called PFS that is
currently accessible only through MPI-2 I/0. The usability and performance of this
implementation remain to be demonstrated.

Both SGI MPI and HP MPI implement MPI-2 routines necessary for layering
MPI-2 I/0 as a third-party library. This is how ROMIO is able to interact with
these implementations.

The LAM implementation provides MPI-2 dynamic process management, As
of this writing the function names are not the final versions (e.g. MPLSPAWN

instead of MPLCOMM_SPAWN), but this is a small problem.
The prospects for dynamic process management in other implementations and

one-sided communication in any other implementation are less clear. These are
much more difficult to implement, and are impossible to layer on top of existing
implementations.

9 Conclusions

While the discussions of in the last several sections have hopefully illuminated
and clarified the landscape of MPI implementations, the overall picture had been
a bit unbalanced, because of the natural tendency to focus on what doesn't work,
rather than what does. The primary message you should carry away is still that
there are many MPI implementations out there, that they are well-supported by
vendors, and that despite the occasional bug or missing feature, they work quite
well. For instance, while I have mentioned that several implementations are not
MPI 1.1 compliant with respect to the definition of certain Fortran constants, the
overwhelming majority of the MPI standard has been correctly implemented by all
implementations.

The area in which there remains the most room for improvement is integration

27

of MPI applications into a robust environment in which parallel applications are
first-class citizens, understood directly and handled appropriately by the operating
system, debuggers, analysis tools, and user interface.

Also high on the MPI wish list is a freely available, robust and highly usable
MPI for networks of workstations (NOWs). While MPICH (through P4) and LAM
fill some of this need, they have some usability problems as discussed above. What
is needed is something with the process and virtual machine management of PVM,
but with the MPI message passing API. This type of software is needed both at the
user level (so that userscan put together personal NOWs) and at the system level
(so that administrators can build highly integrated MPP-like systems).

10 Acknowledgements

I would like to acknowledge the following people and organizations who have
have provided information about MPI implementations or access to MPI imple­
mentations: The National Center for Supercomputing Applications (John Townes)
provided access to SGI and HP machines, NASA Ames Research Center (Mary
Hultquist) provided access to an SGI machine, Lawrence Livermore National Lab­
oratory (John May and Greg Tomaschke) provided access to a Digital Alpha clus­
ter, Argonne National Laboratory (Rusty Lusk) provided access to an illM SP, Sun
Microsystems (Steve Walter) provided access to a beta version of Sun MPI, Rolf
Rabenseifner of the University of Stuttgart and Rolf Hempel of NEC provided
information about the NEC implementation, Lloyd Llewins of Hughes Aircraft
Company provided information about the Mercury RACE implementation, Raja
Daoud of HP provided information about the HP and LAM implementations, and
Eric Salo of SGI provided information about the SGI implementation.

This work was supported by the Director, Office of Computational and Tech­
nology Research, Division of Mathematical, Information, and Computational Sci­
ences of the U.S. Department of Energy under contract number DE-AC03-76SF00098.

References

[1] Message Passing Interface Forum. MPI: A Message Passing Interface Stan­
dard. International Journal of Supercomputer Applications, 8, 1994. Special
issue on MPI.

28

[2] Message Passing Interface Forum.
http: 1 /www .mpi-forum. org. All official documents of the MPI Forum are
available here.

[3] AI Geist, Adam Begeulin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. PVM: Parallel Virtual Machine. A Users' Guide and
Tutorial for Networked Parallel Computing. MIT Press, 1994. See also
http://www.epm.ornl.gov/pvm/.

[4] ffiM Corporation. Message Passing Interface Test Case Suite.
ftp://info.mcs.anl.gov/pub/mpi/mpi-test/ibmtsuite.tar.

[5] Intel Corporation. MPI Vl.l Validation Suite.
http://www.ssd.intel.com/mpi.html.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the mpi message passing interface standard. Parallel Com­
puting, 22(6):789-828, September 1996. See:
http://www.mcs.anl.gov/mpich/.

[7] Aad J. Vander Steen and Jack J. Dongarra. Overview of recent supercomput­
ers. NHSE Review, 1, 1996.
http://nhse.cs.rice.edu/NHSEreview/96-l.html.

[8] Dophin Interconnect Solutions. Totalview Multiprocess Debugger.
http://www.dolphinics.com/tw.

[9] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4
parallel programming system. Parallel Computing, 20:547-564, April1994.

[10] Ian Foster, Carl Kesselman, and Steve .Tuecke. The nexus task-parallel run­
time system. In Proceedings of the First International Workshop on Parallel
Processing, 1994. See also
http://www.mcs.anl.gov/nexus;and
http://www.mcs.anl.gov/mpi-nexus/index.html.

[11] Ohio Supercomputer Center. MPI Primer/Developing with LAM.
http://www.osc.edu/lam.html.

[12] R. Alasdair, A. Bruce, James. G. Mills, and A. Gordon Smith. CHIMPIMPI
User Guide.

29

[13] IDM. IBM Parallel Environment for A/X: MPI Programming and Subroutine
Reference Version 2, Release 2, Document Number GC23-3894-0I, Novem­
ber 1996.
http://www.rs6000.ibrn.com/resource/aixJesource/

sp_books/pe/index.htrnl.

[14] Hewlett Packard. HP MPI User's Guide, HP Part No. B601 1-90001., Novem­
ber 1996.
http://www.hp.com/wsg/ssa/rnpi/rnpihorne.htrnl.

[15] Digital Equipment Corporation. Digital MPI User Guide, February 1997.
http://www.digital.com/hpc/software/drnpi.htrnl.

[16] R. Hempel, H. Ritzdorf, and F. Zimmermann. Implementation of mpi on
nee's sx-4 multi-node architecture. In Proceedings of the Euro PVM-MPI
Workshop, 1997.
http://www.ccrl-nece.technopark.grnd.de/ rnpich/rnpich_nec.htrnl.

[17] Pallas. Vampir and vampirtrace.
http://www.pallas.de.

[18] Lloyd J. Lewins. Mpi for the mercury race processor. For more information,
mail to llewins@ccgate.hac.com.

[19] David Sitsky. Implementing mpi using interrupts and remote copying on the
ap1000/ap1000+. In Proceedings of the Fourth Parallel Computing Work­
shop, London, England, October 1995.
http://cap.anu.edu.au/cap/projects/rnpi/rnpi.htrnl.

[20] J. Dongarra G. Fagg and A. Geist. Heterogeneous mpi application interop­
eration and process management under pvmpi. Technical Report CS~97-??? ,
University of Tennessee Computer Science Department, June 1997.

[21] R. Thakur, W. Gropp, and E. Lusk. ~Abstract-Device Interface for Im­
plementing Portable Parallel-I/O Interfaces. In Proceedings of The 6th Sym­
posium on the Frontiers of Massively Parallel Computation, pages' 180-187,
October 1996.

[22] Sam Fineberg, Bill Nitzberg, Ian Stockdale, and Parkson Wong. Pmpio - a
portable mpi-io library.
http://parallel.nas.nasa.gov/MPI-IO/prnpio/prnpio.htrnl.

30

J3;;J~I+.-nt ~ lba:i\1•J¥11~1!1#< ®#II;;JWI¥1143\1 ~ ~

@)9¥< ~ ~' @l"'d3"1Y31"'/o ~ ~

