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I. INTRODUCTION

AThe recent'fashion of describing two body to two body hadronic
processes iﬁbterms of_brénch cuts (togefher with the usual Regge poles)
in the crossed channel coﬁplei angﬁlar momentum‘piane seems to hold
great promise for the aecommodation.of high—eﬁergy ecattering dafa. At
present Regge_cut models are much too flexible to have real predictive
power, but there is some reason te hope (see Chapter VI)-that under -
standing will be gained.through a study of the interplay between Regge
cut corrections and duality—breaking.schemes. In fhis thesis I will
discuss the formulation of a model amplitude for the Regge box graﬁh,
which repreeents the'physical'picture of beam parficle and target
particie interacting twice, and the use of sﬁch an amplitude in two
cases of‘experimental interest. Theffirst obtains when normal gquantum
numbers are eichanged in the t~channel but simple Regge pole descriptions
fail to feﬁresent the data adeQuately."[Normal quantum numbers afe those
wﬁich occﬁr in the simple querk model. For bosons these occur in the
SU(5) product 2(235; whereas for fermions they are contained in
3@ 3@ 3. All other quafﬂ:um numbers are ”exotic."] In such instances
it has become common practice to’invoke the virtues of the absorptive
peripheral model (Jackson, 1965) by considering amplitudes in which
elastic scattering either precedes or follows the quantum number

exchange. The second case i1s that in which both Reggeons represent

guantum number exchange, so the amplitude may represent the exchange

of exotic quantum numbers in the t-chénnel. In the latter circumstance
the box graph presents an alternative to the exchange of a single exotic

trajectory.



The regectlon of the idea of meromorphy in tne J plane and the
concomltant con31derat10n of Regge cuts are motlvated both by ‘theoretical
notions and by‘phenomenologlcal neces31ty All dynamlcal models of
scatterlng amplltudes extant requ1re the ex1stence of branch cuts in the.
angular momentum plane. None of these models 1s-sufficiently mature
to permif the calculation of the discontinuity'across'the cuf in
eintereStlngkcases; 5ut the exietencelandvlocation of the branch noints
can bevstatedvnith some.certainfy. The‘granhical eppfoech employed here
suffers frombthis ambiguity, bﬁt by appeal to the succesees of ﬁhe_‘
peripheral model with absorbtion it is possible to formulate a definite
.if'erbitrary modell'_Pnenomenologically, the factAthet Regge polee
don't.work has been widelj doéumented in the past yeer, eVen by
adherents to the aesthet1cs of meromorphy (Barger, 1969) I hasten to

add that the dlfflcultles w1th Regge poles are quantltatlve and in no

way mlnlmlze the remarkable fecundlty of the Regge pole hypothesis
(Regge, 1959, 1960, Chew -and Frautschl, 1961, 1962), which is exposited
by Barger and Cline (l969).v The case for Regge cuts has been reviewed
by Chiu (1969), Fox (1979), Jackson (1970), and Sonderegger (1969).
While it 1s 1mportant to remember that Regge cuts are not a phenomeno-
logical panacea (see Fox, 1990), it seems evident that complicated
Jj-plane structure is unavoidable.

The plan of the succeeding chapters is as follows. In Chapter
II, I list some of the terminology'and classicel;results of S-matrix
theory, to establish a frame.of reference for later discussions. The

history of the Amati-Fubini-Stanghellini branch cut takes up most of



Chapter III. Chapter IV contains a brief discuésion‘of a particular
Feynman diagram which produces a prototype Régge cut. Tt is there that

I make contact with the recent work.of Gribov on a Reggeon calculus. TI.

formulate a phenomenologicél amplitudé for'tWo-Reggeén exchange in

Chapter V. ~ In Chapter VI I discuss some aspects of the relevance of
Regge cuts to the questions df exchange degeneracy and the existence
of exotic trajectories. 'Chapter VII is a summary of the work.

Conventions and such are collected in the appendices.



”lI. SOME NECESSARY RESULTS FROM S-MATRIX THEORY'
I record here results from analytic S-matrix theory which will
be useful in the succeeding development A1l of this material is
classical, but it w1ll be valuable to have the concepts fresh in mind
later. The reader is referred to Eden, et al. (1966) and Collins and
Squires (1968) for more complete expos1t10ns.
To make this rather dull, technical chapter somewhat readable
I have relegated many definitions and conrentions to Appendix A.. The
intent of the present chapter is merely to remind the reader’of'terminol~
ogy to be used later;'therefore I ignore the complications of spin here.
l. The'Scattering Amplitude:‘ Analytic Structure |
‘In this thesis l am concerned almost exclusively with the four - -
line connected part of the S—matrix, i.e. the two body to two body
.scattering amplitude. The kinematical quantltles for two body scattering
are given in Chapter A.l;_ The S-matrix and scatteringvamplitude for a
generalvprocess are written down in Chapter A.jf Here T write the two-
to-two amplitude as .A(s,t,u) or, suppressing the redundant variable,
as A(s,t). |

‘In each channel there will occur the singularities required by

unitarity. Thus there arevsimple poles corresponding to bound states,_‘
and branch points corresponding to production thresholds (Eden, 1952).
Traditionally the branch cuts in the relevant energy plane are drawn
along the positive real axis as shown in Fig. II-1. (The minor compli-
cations of‘complex thresholds which occur for unstable particle scattering
are ignored here.) With this choice the physical s-channel amplitude

is the boundary value



A(s,t) = lim A(s+ie,t), , ‘ , (I1.1.1)
es0T

and is Hefmitian‘analytic. [That is; A and itsvHermitian conjugate
AT are boundary values of the same analytic function. See Eden, et al.
(1966), Séction h,6.]*

N 2. Dispersion Relatidns

Assume that the singularities shown in Fig. II-1 represent all

the singularities of A(s,t) on the physical sheet. Take /<:/ as the

contour of Fig. II-2, inSide of which A(s,t) is regular. We define

the discontinuity functions at fixed s,

(1/21)[A(s,t,) - A(s,t))1,

Dt(s,t)
(1I1.2.1)

Du(s,u)

(1/20)1aG,t(w,)) - AG,t(s)),

where t+ =1lim (% f ie), the discontinuity being taken across all cuts
- . e=0
in t (or in u) at fixed s. By Hermitian analyticity

Als,t7) = A'(s,t), | (11.2.2)
SO
D, (s,t) = (1/21)“Disct[A(s,t)], £ > td;
(11.2.5)
Du(s,g) = (1/21) Discu[A<%,t(uz>], u> ug.

Then, suppressing for brevity any bound state poles, we can apply Cauchy's

theorem and.obtain the result -

I denote complex conjugation by a star (*) and Hermitian conjugation

by a dagger ().



o A(s,t) = (1/2xi) at Als,t) | (II.a.ﬁ)

t' -t
e

Let us assume that A(s,t) -0 as [tl —. Then the contribution to

the_integral from the semicircles atAinfinity will vanish. This gives

A(s,t)

‘ - : : ® at' D, (s,t') ® au' D_(s,u')

- Pole terms + (1/x) t () [ —P—

= X - B _ u' - u
t U : :
0 0 (11.2.5)

This form, which is juét a speéiél kindvof Hilbert trénsfdrm, is a .
fixed-s dispersion'relation.

If instead of yanishing at infinity the amplitude is bounded by
an integral power (of t), we can ensure convergence by making a number
of subtractions. :

3.ﬂ The Mandelstém Representation

An'impdrtant extension of the single-variable dispersion relation
is the double dlsper31on relation conJectured by Mandelstam (1958), for
which a general proof, even in perturbation theory, is lacklng. To

proceed, we define theAdlscontlnulty in s of Dt' to be

ps£(s,t) = (l/2i)[D£(s+,t) - Dt(s_,t)], s > bl(t) >0

: - : (I1.3.1)
and '
Py (tsn) = (1/21)[D (u,,t) - D L), w > p,(t) >0

(11.3.2)

so that



o0 : o
v : : S as" p_,(s",u) du" p, (s,u")
v st ’ tur"? .
pt(s’t) = (;/ﬂ) ' ST - s -+ (1/x) : TR—

o) by(t) (11.5.3)

The boundery.functiOns' bl 5 ‘have been given in general by Kibble
’ 2 . - ' .

(1959). lLikewise we can write
ds" p_. (s",u) o at" Dtu(t”:u).

D) = (/0] —r e /) | — T (113

s =8

Substituting Eqs. (II.3.3) and (II.3.4) into (II.2.5) we get the

‘Mandelstam representatlon,'

_- (At o (s"t0)
_ "
A(s t) = Pole terms + f— ST s)(t’ - t)

1 [ [ e (s ) du" p '(t';u")
* ;5- ds. (" - s){u'-— u - t)(u" - u)

(11.3.5)

_Notice that the double spectral functions pjj are symmetrically defined.

Thus
pet(85t) - ( l/h)[A(s t ) +A(s_,t_) - A(s;,t;) - A(s_,t,)]
= (&) Discs'Dﬁ(s,t).]= 1(%3) bisct D (s,t). (11.3.6)

An underStahding of the roles of the three double speétral*functions

Pgt? psu, ptu is needed for the work of Chaptefs III and IV. Let us

therefore review the connectlon between 51gnature and double spectral

functions.
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4, signatured Amplitudes and the Mandelstam Representation*
In the z, = cos GS plane there lie right-hand singularities

of the scattering amplitude corresponding to t-channel singularities,

and left-hand singularities corresponding to u-channel singularities. v
These are 1llustrated schematically in Fig. II-3. It is more convenient
to work with amplitudes which possess only right-hand singularities.
Therefore I construct amplitudes of definite signature (in the s-channel)
as follows. Let
R L '

A(s,t) = A (s,t) + A7(s,t), , (I1.4.1)
where AR contains only right-hand singularities and - AL only left hand
ones. Thereupon we can write dispersion relations in Z for these
functions

| gy (s) ®  dz' D.(s,t') ]
AR(s t) = = + 2 t
s , - z.(s,t:) -2z (s,t) = z' - z (s,t)
» : - s i . s s
t-poles z (s,t.)"
S o)
’
gu.(s) . dz' D _(s,t')
AL(S 't)‘ = : 1 + .1; U
’ N zs(s,z—s-ui)'- zs(s;t) D ox z' - zs(s,t) v
zo(s,Z-s-uO) )
(11.4.2)

with t' = t(z',s).

Cf. Collins and Squires (1968), Chapter II.



Now define amplifudes ofvdefinite signature,

Ai-(s’t) ABG’t(S’ZSvD iy AL(S:.t_CS_)",'ZSD; | (II.&.5)

each of which has, by definition, only right-hand singularities.
Neglecting for simplicity any bound state poles we may write dispersion
relations for Ai,

® du"Du(s,u')

A%(s,t) = = +

(II.4.4)

In terms of the double dispersion repreéentation, this becomes

(s";t") £ o (s",t")
: s" St S
Af(s,t) = ’/ﬂ ’/f —— S)(tr = o)
(t',u") 2 (u",t')
+ —[ "[ ptu(u,, 1_1 u)(t?t_ 5 ) (TT.L.5)

Equation (II.L.5) may be rewritten more compactly as

[+o}

+
- D, (s,t") . :
Af(S,t) = -]-- at’ -—"E—'—_-—t_— ) ' (II.L(-.6)
' T6=Min[to,t(s,uo)]
with
+ ' 1 ds" ' 1" '
Dt-(S,t ) = ; T_"_T [pst(S, 7t') 1 Dsu(s st )]

du"

[CUEED) [ptu(t’,u”) + ptu(uV,tf)]. (TI.h.7)

Al

It will be convenient later to define also the s-discontinuity function
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k.
T

i- ) . dt' ) ‘ ' '- ) , .v
D ~(s,%) G [oge(sst") £ o (s,t7) 0. (I1:4.8)
. .
5. The Froissart-Gribov Projection
Putting back possible poles into (II.4.6) we have the dispersion

relation . ' .
ey 5, - B 3

A*(s,t) = :"gti/(Mf¥ -t) ¢ ZE: vgui/(Mhi - t)

t-poles . ~ u-poles

o0 Dti(s,t') | .
(11.5.1) .

g, (s)/[z(s,M, ®) - z_(s,1)]
1 1
t-poles

1

ﬁi+_ . 2{:- Wgu.(s)/[zs(s;z -:é - Mﬁ;é) - z(s,t)]

‘ u-pole

® Dti(s,t')f
| 4s ;
: z' - zs(s,t7
2 (s,Tg)

+ 1 (11.5.2)
T[ .

where

8ti(S) = gti/2p12p3u; fvgui(S) = 'gui/?piQPBM} (II.5.3)

and z' = ;S(s,t’). We now define a partial wave projectioh,

% o _
See Froissart (1961), Gribov (1961).
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rl . o
A(s; £) = (1/32ﬁ) dz_ PZ(ZS) A(s,t[s,zs]). (I1.5.4)
-1 ' ‘
Inserting (II.5.2) into (II.5.l4), we invert the order of integration and

' * i i !
use Neumann's formula [HTF 1, Section 3.6 (29)] -

1

-1

Qlz) = (-1/2) dz' P,(z')/(z' o) '(1175.5)

to pérform the z integral;‘

Aies ) = (1/160) ) (g, (s) Qylz e, 21

u

+ g, (s) Qy(z.[s, £ - s - M, °1))

o]

P 1162 [ a2 pE(s,6) Qz). (11.5.6)
zs(s,To)

Suppressing poles, we are able to write two expressidns for the

partial wave projection of signatured amplitudes,

at(s; 8) - (i/16n?)_ ar p,¥(s,t0) q,(z'),

| (11.5.7)
' zs(s,T '

o)

References to the Bateman Manuscript are cited as [Name Volume,
Sectibq»(Equation)] where name is HTF for Higher Transcendental

Functions or TIT for Tables'of_Integral Transforms. ‘Seé Erdelyi

(1953).
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and
1 N
A(s; £) = (l/52n)» - dz! PE(Z') A=(s,t'), (11.5.8)
' -1

for integer £. Now sz(s,t) is the t-discontinuity of Ai(s,t).

It therefore exists only for Z z'zs(s,To); On the other hand, the
discontinuity of Q(z) is

(;n/e),Pg(z), s1<z<1

Im{Qz(z)}, = , ‘ , (1I.5.9)
0, |z] >1, 2 integral. :

In conéequence we can combine (II.5.7) and (II.5.8) as

W(ss 8) = (a/zd) [ dz' Q,(z') A%(s,t'), (IT.5.10)

/K?iogfbé

where the contours/l>ajfcé- are shown in Fig. II-4. The partlal-wave
series for the signatured amplitudes, corresponding to the inverse of
(I1.5.10), is

Af(s,t) = 26x ) (20 +1) A%(s; £) By(z). (11.5.11)

£=0
Since Pz(z) is even or odd in z for integer £ according as £ is
even or odd it follows that
+ .
A'(s3 £), £ even

A(s; 2) = ( , ' (11.5.12)
' A (s; £), £ odd.



'ljf.

even

It is also useful to remark here that At(s;t) contains the (:odd

part of A(s,t);
6. Singularities in bs of the Partial Wave Amplitudes
Tt is evident from (11.5.10).that'.Af(s; £) has in the s
plane the same right-hahd.singuiarities as Ai(s,t) except that it will

not necessarily have all the.poles. There will be in addition a set

~ of left-hand singularities generated by the pinching of t- or u-channel

singularities with the branch points of Qz(Z) at z = tl. For any
singularity of A%(s,t) at t = t55 A¥(s; £) will have a branch point
at o ‘

.zs(s,ti) = +l. : : (11.6.1)

Por nonintegral. £ the left-hand singularities are rather more

cOmplicated,_for. Qz(z) has four branch points and is cut between

2z = (=, -l), as well as ~ z = (-1,1). Thus Eq. (II.5.10) remains valid

for nonintéger £ but'the'contqur//:/i must enclOSe the real z-axis,
for 1 > z‘> -w; The heW'contour is represented in Fig. II-5. The

generalization of (II.5.9) is given by HTF 1, Section 3.3 (11, 12):

. | (-n/z) Pg(z), -l <z <1
In(Q,(z)} = , = (11.6.2)

sin x4 Qg(-z), -0 <z < =l.

This provides us with two expressions for the partial wave projection,

namely

Af(s; L) = '(l/l6n2) dz' Dti(s,t') Qz(z'), (11.6.3)
.zs(s;To)
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as before, and

AZ(s; £) = (1/32&)

| - (sin %Z/léné) dz' Qz(Fz’) At(s,t'); (11.6.4)

-c0
The utiiity of these equﬁtlons caﬁ ‘be enhanced somewhat through ellmina-
tion of the extra cut‘for‘ z < -1. This may be done (see Collins and
Squires, i968<for‘the arithmetic) by wrltlng,dlspers1on relatlons not
for the full partlal wave amplltude A* (s, z) but for the 'reduced"

partlal wave amplltude
o . + b 2 ' - .
A%(s3 £) = A%(s5 £)/(py505),)" T (I1.6.5)
~ The results may be summarized as
N | zs(s TO)
~+ TR : '
m(A¥(s5 )1, = (3/320)
: : -1

s (1/16°) [z qu(a)1 F e Ioy (87,00 ) (o o0y, (11.6.6)
ptu;éo : : SR '

on the left-hand cutﬁ' For physical £ the“last term does not cdntribute.

On the right-hand cut,

nlRE(s; £)), . = (1/16<7) az' q,(z')
zs(s?TO)"

X Logy(srt') & ogy(s,t)]epg)™ (1.6.7)

az' P, (-z ) b, (s,87)(- 2y

2

<




Y
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This is a‘most useful result,‘for it states the connection between

signature;and'the double spectral functions. We shall find it useful

in Chapter IV.

7. Sommerfeld-Watson Transforms
Heretofore we ignored, for the sake of brevity, the subtractions
which might be necessary'to ensure convergence of
=]

A%(s; 2) = (1/16:°) a2’ D (s,t') Qy(z').  (II.5.7)
v zs(s,To) ‘

In reality, this equatioh is likély tofbe undefined as it'sténds for
many values of s. But if Dti(s;t’) is power-bounded, i.e.-

Dtt(s)t') /*\_—/ z'N(S);0(S) o

S>> o -
" N(s) “an integer; O<o(s)y<1
then we may subtract Eq. (II.5.2) N(s) times at the point z, =0,

whence

- z N(S) . o dz' D i(s’t')
K = B » )

(11.7.2)

ZS(S;TO) (%' - ZS)Z'

In (II.7.2), 1;:;-1(S’Zs) is a polynomial in z, of degree N-1, and

~‘the remaining integral converges. Now applying (II.5.4) we obtain:

See Sommerfeld (1949), Watson (1918), Collins and Squires (1968).
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1 .
A¥(s; 2) = (1/32q) az_ P ,(z_)
1
dz' D, 5 t) | |
7( ‘60 (s z ) +——— [ ° . : (IT.7.3)
(s, TO%Z' - z)z

1 .
As J[ dz Pz(z)zM’= 0O for M< 4, we put
-1 o

(zs/z')N = [1 + (zS - z')/z']N; expand in powers, and get

ai(s5 2) = @ed) | @ qu(a) DE(s,t1),  (IT.7.L)
‘ v ' zs(s,To) v

for £ > N(s). Since [HTF 1, .Section 3.9 (21)] Qﬂ(z) N'z‘(“l),
the integral in (II.7.4) will convefge. o

| Providing that the Mandelstam representation is power bounded,
the hlgher partlal-waves are glvea unlquely by the double spectral
functlons, whereas lower partial-waves may depend on arbltrary subtrac-
tion constants. To proceed to the Sommerfeld—Watsqn'transform, we
suppose that.the signatured partial-wave amplitude vAi(s; £) defined
in (iI.5.7) is an analytic function of E.'(in the physicist'e sense)
in the right half-plane.* The import of this assumption is that we can
cohtinue (II.7.4) below Re(£} = N(s) to interesting physical values
of £. Observe that because the only singularities in .z of ,Qz(z)

are simple poles at the negative integers [HTF 1, Section 3.3 (3)], the

*
Thus, by analytic we mean that only isolated singularities occur.

4
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amplitude At(s; L) is ﬁdlomorphic (free of any singularities) for
Re{£} > N(s). | |

vWe now replace the partiai-wave expansion (II.5.11) by a contour
integration in the ﬂfplane, |

as(2e + 1) A%(s3 #) Pz(-zé)

2i sin n4

s (I1.7.5)

R

which is illustrated in Fig. II-6. The contour includes the nonnegative
integers, but avoids any singularities‘of Ai(s; 2). The integrand has
a pole at each integer n, for which - sin nf - (-1)*(# - n)x. Since

Pn(-z) =_(-l)n:Pn(z) [HTF %QASéction 3.3 (lO)].the pole residues are
21 P_(z,) A%(s; n)(2n .+ 1). | » (11.7.6)

With this informationvit'is.éasy to verify (Cauchy's theorem) that

(II.7.5) is equivaleht to the partial-wave series

A*(s.,_t)- = 16x Z (2¢ +1) A_i"(s;' ﬂ)_Pz(zS). (11.5.11)

positive,
integral £

We now wish to continue in £, and we assert that Af(s; £) as
given by (II.7.4) is the unique anal&tic continuation.of the partial-
wave amplitude for integfal z} For the proof, we invoke Carlson's
theorem (Titchmarsh, 1939). tAlthouéh we did not remark upon it in
Sectioh II.5, the point of the froiSSart—Gribov projection was to build

a continuation which satisfies the conditions of Carlson's theofem.]
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- If £(z) is regular and of the form
0(e™"™'), x <=, for Re(z} >4, and f(z) =0

for an.infinite sequence.of inteéers. Z st,A+l,-~°, then f(z) =
We notice‘thaf |

Qﬁ(z) ~ o expl (2 + 1) Loglz + (a2 - 1)2)] (11.7.7)

l;@ - ) .
[HTF,%, Section 3.9 (i)J._ Thus if ‘the integral (II 7 h) converges, it
is the lowest values of 2z' in the range. of 1ntegrat10n which dominate
the high’partial—waves. fThat.is to say, the high pertial waves are
controlled_by the nearest singﬁlarities'(in t Q?' u). - If the_hearest_
singulerity is at zb,ethen'(subject to the eséumétion_that the amplitude
is powerfbounded) ,. o .
v o) 1 o
»-—Z[log{zo+(zo -1y ‘
A~ (s, Z)~——-—E> ¢(s e . , o (I1.7.8)
S oo o S

Qhefevr¢(s) is a function of s. The asymptotic form (11.7. 8) satlsfles
the requlrements of Carlson s theorem (whlch is applied to the
‘difference between the "true amplitude and the Froissart-Gribov
continuation), so our continuation in. £ vis unique. ‘

Next we distort the centour/(/ 1nt0/0 y openlng it up with
a sem1c1rcle at 1nf1n1ty and a llnevparallel to the 1mag1nary axis at
Re(£) = L. This is shown in Fig. II-7. So long as L > N(s), no
singﬁlarities will be encountered as this displacement'is,made.. Thus

‘/fv J/. Moreover, the contribution from the semicircle vanishes
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because of (I1.7.8) and- [P ( -z )/s1n nz|~——e> 0. We continue to

£— o

distort the contour by réducmng L. For L< N(s), we Shell encounter
s1ngular1t1es in the z plane These are swallowed by the contour and
we pick up thelr contributions as prescrlbed by Cauchy. The situation
is shown sehematlcally in Fig. II-8, for L = —%. The result of moving

the contour back to Re{£} = -1 is

_ -%-I-ioo +
’A*(s,t), =16x - ac(2e + 1) ﬂs—;-ﬂ Pg(—zs)

21 sin n4

S
—E-lw

o ZE:' 16n (%a (S) + %) By (s) ( )( z )/s1n 70 (s) .;
~ -poles . : y

; E{: %gﬂ. _ :d£(24 + l) Ai(s; z).Pﬂ(-zs)/sin nl. | (IT.7.9)

. cgts _ /‘;3":
The first'term, the‘backgreﬁﬁd infegfal; Vaniehes as 'zé — o, leaving a
sum of Regge poles and Regge euts.

In order to makevthe complex angulaf momentum analysis useful
for phjsics, one has to ensure that ﬁhe Regge poles endvRegge cuts
uncovered in the dietortion ef the contour dominate for'large energy
 over.the,contribution of the background integral. In (11.7.9), we

pushed the contour back to Re{¢} = -i. For large values of 3z,

_ ’ ' 1.1 _ v . :
P (2) 77 oo -2 , - ‘ (11.7.10)

x ' , T
See, e.g., Collins and Squires (1968), Section II.7-9.
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if o 1is not a negative integer [HTF 1, Seetion 5.2 (23)]. Therefore
the first term in (11. 7 9), the background 1ntegral, is least 1mportant
(as 2z =) for Re{z] -1; for example, Regge poles with A(s)>-%
will be more importaht. As' Re{£} 1is decreased from -1, the asymp- v
vtoticeformb(II.7.iO) of B, Seems to indicate that the background
integral will become asymptotically dominant over the singularities in
the rlght half £ plane |

The way out of this difficulty was found by Mandelstam (1962),
who demonstrated the dominance of the right-hand singularities as
z —», for .Re{z} < -1 iplthe_background contour. We follow the
summary of Collins and séuires (1968), >Secti0n IT.12. Rewrite the
partial-wave series_(II.5.ll)‘by adding end sﬁbtracting a piece:

o

A¥(s,t) = 16x. Z {(24 +1) A¥(s; 2) Pz(zs)
' £=0 ' '

e L P CH RSN R
16 Y (D) a¥(ss 2-d) @y 4(z,)- ©(11.7.11)
&

Now using [HTF 1, Seetion 3.3 (3)]

P,(z) , Qz) L9, (2)

- = = = e—

sin w4 1 cos nb = “cos nf (I1.7.12)

we obtain.
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L+iew

. _' o Q_,- (-z_)
A¥(s,t) = %% az(2¢ + 1) A%(s; 2) “:§6%’;ZE‘
' L-iw .-
2: f——l———(2z) A*(s, -£-3) Qé_%(-zs)
£=L"+5 . -
+“(Régge poleé) + (ﬁegge cuts), (I1.7.13)

where -L' is the smallest.half—integer‘greater than L. Since [HTF
1, Section 3.2 (41)]

) A L o (1.7ab)

z2— ® : :
the first and second termslin (I1.7.13) die as 'ZSL for L < -1, and
the dominance of the Reége singularities is assured.
- 8. Melliﬁ‘Transforms*

Mellin tranSforms provide another technique for calculating
high-energy behavior by picking out the rightmost singularity in the
y) blane. The Mellin transform F(a) of a function f(s) is defined

by

Fla) = . ds f(s) s_dfl.

0]

(11.8.1) A

The inverse transform is

See Bjorken and Wu (1963); Courant and Hilbert (1953); Eden, et al.

(1966), p. 151.



-00-

) ) O+ico ) .
£(s) = (1/2xi) | = & F(@) %, (11.8.2)
c-iw ) . . . : ) .
where F(a) is ahalytic'on the line Re{a} =, o. - These are simply

the Fourier integral formulae in the variables /4n s and -ia.

An 1mportant class of functlons f(s) '1s given by

Om s)®1 g1

f(s) (11.8.3)

for which the Mellin transforms are poleS'of order b if b is

integral,
Fla) = r(b)(a--.do)'b. R 0 (11.8.1)
For noninteger values of b, F(a) is'cut from o = -® to Q= Qy;

then the 1ntegratlon contour spec1f1ed by the parameter 0 must be

. chosen to av01d the cut

The'appllcatlon of Mellin trensforms is eimilar to.thet of
Somﬁerfeld-Watson tranSforms. For example, if' F(a) is regular in a
reglon, except for poles, then we may dlsplace the contour /(}/(o) to
the left and obtain a sequence of contrlbutlons from the poles encoun-
tered. As in the case of Sommerfeld-Watson transforms, the rlghtmost

singularity in o will dominate the behavior of f(s), as s S,
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FIGURE CAPTIONS

-Branch cuts in- the complex t-plane arlslng from thresholds

in the t channel (on the rlght) and in the u-channel (on the
left) for a f1xed value of Ce. Two poles are also shown.
The Cauchy contour of 1ntegratlon in the complex t-plane,
used in wr1t1ng a . dlsper31on relatlon.l

The schematic s1ngularity structure of Fig. II 1, mapped

'onto the zs-plane.

Integration contours in the complex zS—plane,,for the

Froissart-Gribov projection (II.5.10).

.Contours of‘integration in the zseplane for the Froissart-

Gribov projection when £ 1is complex.A

Infeération contour for the Sommerfeld-Watson transformation.
The opened cohtour with a'semicircle at infinity.

The contour‘pushed'back to - Re{l} =>—l/2. Two schematic

Regge poles and one schematic Regge cut are shown.
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. Fig. II-8.
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III. THE AMATI-FUBINI-STANGHELLINI BRANCH CUT

Hletorlcaily, the poss1ble existence and potentlal 1@portance
of Regge cuts Were first»acknowledged by Amati, Fubini; and Stanghellini
(1962a,b) [hereafter, AFS], in the context of the multiperiﬁheral model.
In this simplest case the cutsbare only illusery, and result from an o
unjustified truncation of the unitarity sum (Mandelstem, 1963%;
Polkinghorne; 1965). I shaliireviewvthe AFS calculation and discuss
the cancellatien of the'apparent.eut>by many-body_coetributions to fhe
unitarity equafion. Then I will specif& the conditions under which
Regge cutsbcan be generated, and noteveome éensequenees of the existence
of cuts in the Jj plane. | | |

- 1. éeneration of the AFS Cﬁt by Two-Body Unitarity

Amati, Fubini, and Stanghellini considered the effects of
s=-channel unitarity'upon their multiperipheral'model.v In the simplest .
case of a single 1teratlon in the s-channel, one con31ders the set of
graphs shown in Flg III -1, where each blob (or bubble) represents a
complete sum of Feynman graphs. That is, j;:j; is a full (off-mass-
shell) scattering amplitude. To study the two Reggeon cut we specialize
to the diagram of Fig. III-2 in which the blobs are repreSented‘as
Regge pole exchange amplitudes. Following_AFS, let us call T(s,t) a
Regge poIe amplitude and calI Al(s,t) the absorptive part of the once-

iterated amplitude. The Regge pole amplitude is given by

a(t)

T(s,t) = C(%) g(t)(s/so) (III.l.I)

where E(t) is the signature factor, <} + e_lﬂa(t?>/sin w(t). The

first iteration gives
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Al(s,t) = (8;[)'2 ern TO*(s,t') To(s,t"}, - (111.1.2)

where t' 1is the momentum transfer squared. through the flrst Reggeen,

2 is the c.m. solld angle between the initial and final states, and t"
ie the momentum tranefer squared through the secqnd Reggeon. As (III.1.2)
is a unitafity equation, the intermediate etates are on the mass shell.

This expreesion can be manipulated into the form

. 0 0
‘ -2 -1 ' | " * ' 1 ' "
Al(s,t) = 2(8x) “ s | at' dt" T, (s,t") To(s,t ) w(t,t',t"),
- (II1.1.3)
where
(a,b,c) ‘e[,a b2 - ¢® 4 2ab + 2ac + 2be]
sV, = ! ) - T .
i [-a2 - b2 - c2 + 2ab + 2ac + 2bc]?
With the amplitudes_(III.l;l) as input, this becomes
: . 70 0
Al(s;t) = 2(8ﬂ)'2_.- at’ dt" c(t') c(t") e(t') £(¢")
. . ,
7 . i i (+1Y_
X (bt ,t") (s/so)a(t )ra(t") L (III.1.4)

Thie displays explicitly all the s-dependence in A 17 and.we appear to
have produced asymptotlc behav1or correspondlng to a contlnuous super-
position of Regge poles or in other words a Regge cut with branch point
at

) = _Max{a(tf) + a(t”).- 1}. o (IT11.1.5)
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Indeed,‘by teking a Freissart-Gribov or Mellin projectien [for‘which
see Section II.5—81Iit-ésn be shown thatxa Regge cut occurs with branch
point at (III.1.5). For moié specifie results, see Rothe (1967).

In this, the'AFS appreximation, the s—channel intermediate
'states are taken to be on the mass shell and 1ndeed in the approximation
of two-body unltarlty, Eq. (III 1. L) is exact However it was soon
pointed out by Mandelstam (1963) and by Polkinghorne (1965) thet
truncation of the unltarlty sum with two-body intermediate states only
was unwarranted. Spec1f1cally, there are contrlbutlons to the unltarlty
sum from "higher order" 1ntermed1ate states which precisely cancel the
AFS cut on.the physieal.sheet in the s piane.

To dlscuss the cancellatlon we turn to the Fejnman integral
.technlque used by Rothe (1967) This route is rather clumsier for
computation than the Sudakov,varlable method but provides good insight.

H2;:tThevRothe Canceilation*
then Mandelstam demonstrated the absence of.the AFS cut in Fig.
III¥2, he'preposed that there should be an uncaneelled cutvin the douhle
ecross diegram shown in Fig. III-3. He further eonjectured that cuts
should exist only in those diagrams of the form of Fig. IITI-L4 in which
both blobs contain third double spectralzfunctlons with respect to the
t-channel % 0). This conJecture was verlfled for Feynman graphs

by Wilkin (1964), and emerges eas1ly in Rothe 5 method

* ’ . :
The calculation is nicely summarized by Landshoff (1969), and by

Risk (1970).
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Consider Fig. III-2 as a Feynman diagram. The amplitude is-

A(s,t) = ¢ [ d' LS —-
1 2 2 . 2 2 .
. -k -m + ie -k -m + ie
o) , . L
S ) . . 2 2. 2 ) : : ' .
\od : R(s,kl ku ) R(s k 3 koK) )y (111.2.1)

where R(S,-ti; -ng,fuhg) is the off m&ss shell amplitude associated

with thé‘exchangé’of a'Régge pole with tréjectory a(t.). Now make the

change of varlables d k ~J| | dk B whlch is accompanled by the
. n= l ' . ' ‘

Jacoblan
1

J- e(p)/p?

(111,2.2)

w)
]

=16 det |2k, *k. |.
' R

We assume that the limit’ s » o can be taken inside the Feynman ’

integral,'insert‘the asymptotic form of the Jacobian, and arrive at

A(St)% f j f j'd-kh Kki) 5))

1 2 2 2 2
K ———" 2 ; R(S’kl 2 N ) R(s k55 Xy sk, )]'
-k2 -m + i€ -kh -m + ie

(II1.2.3)

Consider the ak22 intégration."There is a pole from the,prdpagator
(—k22 - m2-+ ie)-l which appears below the integration cqntour, by
virtue of the tie prescription. There may also be branch points from "

the two vertex functions that depend on' k 2. DraWing upon expérience

2

in perturbation theory (for which see Eden, et al., 1966), we assume

two. properties for the vertex functions: .
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(1) They ha&e only a right-hand cut in —k22, which élso appeafs
below‘the integration contour. | .

(ii) They vanish for large values of fkggl.
Property (ii) permits us o close the contbur of integration with an
infinité semicircle in tﬁé upper half piane, and property (i)vresults in
the integral vanishing. This is shoﬁn pictorially in Fig. III-5. The
original contour of Fig; III-5(a) is deformed into the contour sketched
in Fig. III-5(b) which, enclosing no singularities, shows that fhe
integral vanishes. |

Alternétively Wevcould wrap thelcontour afound the right-hand
singularities as indicatedlin Fig. III-5(c). This mﬁst of course give
the same answer as Fig. III—5(b), which means that the pole contribution
(the on mass shell piéce) must be canceled byvthe integral along the
cut. Tﬁe'procedure of Amati,vFubini, and Stanghellini (1962a b) amounted
[Flg. III-5(d)] to plcklng up only the pole term from the propagator,
and ignoring the 51ngular1t1es of the vertex functlon
| 3. Diagrams with Cuts
Clearly if we wish tobwrite down a diagram with a Regge cut, we

must arrange to have both right-hand and left-hand.singularitiesvin-
—k22. The presence of leff—hand singularities pre&ents the distortion
of the contour which results in Fig. III-5(b) and therebyvinvaiidates
the proof that thé Regge cut vanishes. The simplest change is to replace
the left-hand side of Fig. III-2 by a cross (this sﬁbstitution is repre-
sented in Fig. III-6). After the replacement, the bubbles representing

the vertex functions have both left-hand and right-hand singularities in



-37-

-k22 (which-isvthe.toﬁal énéféy-sqﬁared flowing verfically through the
croés). 'We_ignofé'for the'ﬁomént variables internai té the cross, and
note that 5é§éu§e the cross has an. su 'déuble spectral function it has
both rlght-hand and left-hand cuts. in-: -k22v at Tixed t. Thus the
‘contour cannot be closed in either the upper or lower half plane, but
aé the cross tends to zero faster than l/k for large Ik | we can
make the deformation of Flg. III-5(c) to obtain an integral over - the |
vlmaglnary part of the cross graph |

Identlcal arguments apply to the ?kugi integration; Therefore
to obtain.a diagram with a'Régge_cut we musf make insertions having su

douﬁle épectral functiéns into boﬁh ends bf the graph. These insertions
will then haveAthird double spectral functions in thé‘t-channel sense.
Finally wg'see.ﬁhat the simplest graph with a Regge cut is the Mandelstam
graph shown as Fig. III-3. A summary of the calcﬁlation of this doﬁble
Cross graﬁh is given in.the next chapter.

Cuts in the j plane weaken the analyticity properties of the
scattering amplitude Which.can'be proved from the.unitarity equation.
In particﬁlér the ekistence of certain fixed-j poles is related to the
ex1stence of Regge cuts. Some aspects of the properties of the scattering

amplltude when Regge cuts are present are dlscu.sed by Collins and

Squires (1968),Sectlons V. L-6.
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FIGURE CAPTIONS

- The set of graphs representlng one’ 1teratlon of the

‘scatterlng amplltude in the s channel

A spe01al case of the s- channel 1terat10ns correspondlng to

_two-Reggeon exchange._ The Reggeons are represented by

wavy llnes..

The Mandelstam (double cross) dlagram

-A general dlagram for two Reggeon exchange.

Contours of the '-kég 1ntegrat10n 1n Eq (III.?FB).

(a) The orlglnal contour, which passes above the on mass

shell pole contrlbuted by the O~ functlon part- of the propa-

.gator, and above the rlght -hand cut in the vertex functlons.

(b) The contour closed 1n\the upper half plane. (c) The

' contour wrapped around the rlght—hand s1ngular1t1es. ()
'_The AFS approx1mat10n,‘1n whlch the cut contrlbutlon is

»neglected

Repla01ng the left-hand portlon -of Flg..III -2 by a cross.
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- Fig. IIT-1.
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IvV. THE DOUBLE CROSS DIAGRAM
In this chapter I shall. 1nvest1gate the asymptotlc behav1or of
~ the double cross diagram suggested by Mandelstam (1963) as a prototype
Regge cut dlagram. First I will sketch the calculatioﬁ by Gribév, based
on Sudakov's technlqué Next I examine a modlflcatlon of the Gribov
work, due to Polklnghorne, whléh removes.some of the arbltrarlness in
the technical_assumptions. After showing how Gribov's result is simpli-
fied for use in phenomenology, I state a number of objecﬁions to the
graphical procedure. ”
1. Sudakov Variables:. A>Simple Example
TheFSudakov variables (Sﬁdakdv, 1956) are particularly suited
for the calculation of asymptoti¢ values of Feynman graphs, for they
provide’a'clear separation between negligible and important iﬂvariants.

As an introductory illustration let us considér the simple two body to

two body graph of Fig. IV-1, which represents the lowest-order scattering

amplitude in a scalar ¢3 theory. Define lightlike four-vectors

pl = Pl - QPE’
| . (Iv.1.1)
PL = Py - PPy,
where
o = (1-s/pE)+(sHE) - 2M2/s)% ~ M‘g/s. (Tv.1.2)

Then (p:IL)_2 =0 1is négligible, whereas pi . pé ~ s -is not. Let ki

be the transverse part of gq; (in the 3-vector sense) in the c.m. frame:
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k., - p. = 0;: ki? >0 (spacélike)Q o (Iv.1.3)

The Sudakov variables ai,ﬁi,ki' are definedAimplicitlybby

Q= P, + By Py * koo S (Iv.1l.k)

Whatido they-mean?_»Eneﬁgy-mdmenpum consgrﬁatiqn .(ql +a, = pl'+ pg)

implies that

k. +k, = O . (v.is)

ap +ay - plpy +By) = B+ By -plog vap) = 10 (IV.1.6a)

or

Q
ot

Q

i

-1 E : ,
(1 - p) = Bl»f By (Iv.1.6b)

L e N2 ;
As a result we cap_wr;ﬁg Si5 ‘7(q1 + 92):_-35;
L — - . y 4 ., [ ‘ . V
81, = m2(y v ap)(By + B)Ry Py = S, (IV.1.7)

and the.mdmentum-transfer-squared as

! o !
o 2P1°Pp

o D
ty, = -(pp - qy)” = k- 5 [ 152 * p(alel a8,)
o o+ o)
-e agﬁl] , (1v.1.8)

(l +p)
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For forward scattering, the Sudakov Variahles.beeome

g O/_(l '-'.'02.):7

= By
‘ (IV.1.9)

o A 3 . .

Gy = By l/(l.' 07)-

Hav1ng studled the Sudakov variables in a very simple example, let us

move on to a descrlptlon of Grlbov s evaluatlon of Mandelstam S. graph
2..vThe Two Reggeon Branch Point

In this seCtion I sketch the evaluation, using the Sudakov

technlque, of a spec1flc dlagram whlch has a Regge cut, the double cross

. .diagram whlch is labeled for- klnematlcs in Flg IV-2. This calculation

haS‘beenAdone already by.Gribov-(l967) and by Winbow (1969), and I refer

" to’their work for details..-Momentum'conServation_yieldS"

. f-pl *fpé'-%u,pi +Lp“.- L ]
kl + k.2 = kB + k.)+
= \ (Iv.2.1)
K = kl -k, = k¥ k),
q v: pl = p5 = _p2 + le-’ J .

n

S _ 5 ’
and as usual s = -(pl + p2)2 and t —(pl - pB) . The graph is to
be- computed as a functlon of the asymptotlc forms of the bubble ampli-
tudes _f(kl,k,kg) ~and £ (pl -k, a -k, p, - k2) in the limit as
S —mw for'fixed_ t. In this limit it is supposed that each bubble

amplltude is a Regge pole exchange amplltude. Tt is further assumed

that the bubble amplltudes vanish 1f the momentum transfer (through the
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bubble) or any éf the external masées tends to infinity (Mandelstam,
1963; Rothe, 1967). This aséumption,oncé accepted, motivates some
otherwise ad hoc-assumptions abﬁut the significant region of intégration.
For simplicity, assume that all the particles (the solid lines
in Fig. IV-2) are scalar and have the same mass M. The Sudakov param-

etrization [compare Eq. (IV.1.1)] is

— t 1 :
k = ap, + Bpl + k_L
’ -—’ '
T L I L BT r - | (Iv.2.2)
— 4 [)
k2 - agpg + szl + kg-L .
/

o 1 ' - ‘ ' '
The volume element is dhk = ElsldadBdEFL: Consider the left-hand part

of the diagram (Fig. IV-3): it involves the denominators

4 E -k 2 <M +ie = o By s(l - 0)? - kli? - M ie;  (IV.2.3a)

1 1
dy = -(p; - kl)2 R ie = ais(i - @)(l + p)-l[Bl(l - 0)% - 1]
+ps(1+ )P - B (1 - 0PN - Ky P -0 ¢ ae,
- (IV.2.3b)
a5 (k) - k)7 - +ie = (o -a)(B - B)(2 - p)%s
- (| - J}E - M+ ie, - (1v.2.3¢) K
dy = -(p; - ¥ rk-q)2 =M +ie = [(1- bg)_i =By *B q°/s]

X L1 - o9t - o +a - a“/s1(1 - )%

'- (kll’- EL + %132 -+ de. (Iv.2.3d)
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Now let us assume that the amplitudes f(kl,k,kg) and

f!(pl - kl’ q - k, 18 -vk2) are large when thgir_energy variables

\

)2

w
1l

| -(kl + k,
v _ ) (1v.2.h)
2

“(pp + 2y -k - k)

no
I

are large, i.e. of order s, at the same time their momentum transfers
-k2; -(q - k)2 and masses [—k'a,~?k 2, -(k, - k)2, -(k, + k)g--‘]

: } 1 2 1 2
are of order unity '(so). If any of these last variables becomes large,
the amplitude becomés small--by assumption--and the corresponding region
is unimportant in the integral. This is the "finite mass hypothesis"
made explicit.> WithW‘(l969) gévé'ah elegant'summafy of the calculation,

which I shall follow here. The asymptotié form of the denominators

[dldgdBd&]fl is proportional to
50y ) (o - 0q)/s%. - (1v.2.5)

The factor S(al) arises from a pinch between d, and d,, whereas

the factor &(a - al) is caused by a pinch between dj

1

and dh'
Contributions of parts of the integration fegion of <, and Bl away
from the'pinches are of lower order in s. Thus. the prodf of (iV.2.5)
hinges upon the finite mass assumption, specifically 6n the finiteness
of klf and (kl_L-liL)g.

v Similarly one obtains from the right hand cross an asymptotic

contribution proportional to'

5(e,) (8, - 8)/s° o (1v.2.0)
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which arises from pinches which are compatible with those in the left

hand cross. Consequently, for very large s we find
@« =0 =18, _ D (IV.2.7)

a result that also may be seen in a more ﬁedestrian analysis of the
implicatioﬁs of the finite mass hypothesis.
Assume that the bubble amplitudes factor (as Regge_poie ampli-

tudes, to which we shall'immediately specialize, do) in the form. .

a2, 22 2 L 142
flek) = g (a5 - k)% 1) gyl (5, + 107K7)
Xoe(e k) (.2.8)
where the functions g; end g2  df external masses and momentum
transfers are Regge residues. A similar form is assumed for f'. We
write the function G as a Mellin transform,

| _ as | o
2 : ek 2 ) 1
G(k",2k ko) = - f g £y, Gp (KB 7o)

- (1v.2.9)
ae, ;
s ! 2, 1
= T by G ()(@88) T

where gz = [1 + exp(—inzl)]/sin né; 1is the signature factor, and =
1 . ' : .
is the signature. For Regge pole exchange the Mellin transform is

..G-zl(kg)v; ,= [21 "¢V(k2)]-l | - - | : ’(iV.E.lO)

with ¢(k2) the Regge trajectory.



-51-

Because of the condition (IV.2.7) the asymptotic form of the
Feynman integral factorizes and one obtains the result (Gribov, 1967;

Winbow, 1969)

43
[TI
g
Q
~

o | ak
i [ o AR
A(s,t) = 2;2,' Qni - 2ni gzl'ﬁzg (Qﬂ)g‘
_ 2 M7 21y iy *
N Sl )
x 4125 8 ¢ ( )] 2<(q..|. -L))]
| - (IV 2.11)
where
| - Do
N ‘_ ag 318131 - o
2,28, (Qn) * dldgdjaﬁ ’
N (1Iv.2.12)

and ‘A 1is the ¢5 'coupling constant. Evidently N is independent

zlzg -
of g, Furthermore (Grlbov, 1967; Wlnbow, 1969) N, , is real for
. 172
-q2 < O; so the 31gnature factors determine the imaginary part of A
by the factor
Re[éﬂl 522] = Y, (IV.2.13)

Finally, using the'Mellin projection
®
aj(q2)  = s s 971 Im A(s,qz),
“ S . So.
important cases of WhiCh are listed in (II1.8.3,4), one exposes the

branch p01nt in the J plane at
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qut

_ Max [¢l(k_L) +¢2<(k "q)g_) “1), 0 (1v.2al)
» [%l ] ) o S
the same location as We:found for the AFS cut in Eq. (III.1.5).

| 3. Polkihghorﬁe’s Modification

 The use of the finite mass hypothesis to pick eut the significant

region of integratioﬁ is soﬁeﬁh&t.distastefﬁl; because 1t makes the
calculation very qualitaﬁiﬁe. Thus the corrections to the asymptotic
form are difficult fo estihate. 'Poikinghorne (1970) has iﬁvented an
appealing alternative which is based on the use ef Veneziano (1968) -
amplitudes to represent the Reggeons. While the Beta funcfiens do not
have the rapid decrease with external mass requlred in the Grlbov theory,
the Feynman 1ntegrals may be evaluated by the method of statlonary phase.
The result is completely analogous to (IV.2.11).

| h.v Appiicatidﬁ:te:Physical Pfocesses

It is convenient to rewrite (IV.2.12) as

, dsl . )
N = == A (s, 5k, 5k,) o (Iv.ha
214, orl Tay8, T1771072
~00
where
: o £ Y/
R U 2
A, , (s k) = 1x sx® a0, a” ki (8,818 (1 - By)
) ) -
212,717 2 L (2x ) dld2d5 L

(Iv.k.2)

' 2
is the particle-Reggeon scattering amplitude and §1 = -(pl + kl) = QS.
We distort the contour of integration [shown in Fig. IV-k(a) for Eg.

(Iv.4.1)] to close on the right-hand cut of A (s.,k ,k,) in the
. ﬂlﬂg 1’71772 o
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s, DPlane. The final configuration, which appears in Fig. IV-L(b),
leads to
-

,-dsi In(A, , (s),k,k,)}, (Iv.h.3)
172
s4(0)

N ( sk ) = =
8,172

where s, (0) is thé right-hand branch pointf‘vGribov and Migdal (1968)
wroﬁe this forﬁ for N vapd gave:a piausibility arguménf that the
absorptive part of Azlég(sl’kl’kE) should satisfy‘a unitarity condition
analogous to the one for normal scattering amplitudes. The first few
terms of such a "unitarity" sum are depicted in Fig. IV-5.

Kaidaiov and Karnakov‘(l969a,b) retained ohly the first term in
the sum and assumed that the single particle intermediate states could
bé replaced by a sum of harrow resonances. In this approximation

[ef. (IV.2.11)] the,ampiitude for a —b. is given by

A(S,t)'v=' g:%E;I E: J{agfl_Al[nea](s’gj) Ag[b*n](s,gl_- a),
| | " (Iv.h.k)

{neal] . ' a . s
A = gaglgg(s/so) is the contribution of the pole « to

where
the amplitude for a —n, and n is the two-partiqle intermediate state
corresponding to the poles in N. This procedure is similar in spirit
to the one advocated by Heﬁyey and Risk,.as reported by Risk (1970).
Further restriction of fhe sum Zn to include only n = (a,b) reduces
(IV.4.L) to a statement of the absorption model (for which see, e.g.
Sopkovich, 1962; Jaekson, 1965a; Arnold, 1967; Cohen-Tannoudji, Morel,

and Navelet, 1967).
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5. Objections o the Graphical Approach

While much ﬁes'been learned--andviévto be learned--from the
graphicai approach it ié easy toureise significant objections to the
results deduced from Feynman diagrams. Even”accecting.the'utility of
graphs, one .is forced to admlt that it would be overly optlmistic to
expect that a few graphs contaln a credible theory of high energy
scattering. To be fair I»must remark that Grlbov's program is to
obtein Feynman rulee for Reggeon diagrams (a Reggeon calculus) which
would permit the evalcation of aroitrarily compiicafed gfaphs. A set
of Feynman rules was 1ndeed given by Gribov (1967) and checked by
Winbow (1969) in some more complicated cases. Even in this circumstance
the 1nterpretatlon of results remains amblguous; To poée a few uoanswered
queStions,'what is meant by the:inpﬁthegéeon? What is the effect of
t—chennel iterations (dorthey juef recormalize the Regge pole)?- It may
be that in the present embryonlc stage of the theory of Regge cuts we
should take a more operational p01nt of view and assign these gquestions
only secondary importance.

" But metaphysical objectioce aside, I am troubled by more practical
uncertainties. In the Gribov-Migdal-Kaidalov—Karnakov approach or in
the equivalent Henyey-Risk model ittis necessary to impute internal
structure to the chhannel‘intefmediate states. This is certainly
required in the diagrem picture because third double spectral functions
ﬁust be built in to both ehds of every graph. It seems to me defensible
to fabricate specific diagrams which have cuts and then to-abstract from

them a plausible form for the two Reggeon branch cut. Thus I should be

»
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willing to tolerate ideas gleaned from the study of 1nd1v1dual graphs
if the 1mputed structures seemed physically realistic.

Wlth this in mindvI wish to voice a neW‘obJectlon to the derira-
tions from Feynman graphs, which is rooted in phenonenology. .The-point
is)nct subtle and surely'has OCCurred to others, althcugh I have never
seen 1t stated explicitly Recall that the diagram which was in'the end
regarded as a useful approx1matlon to the general two Reggeon exchange
graph is the one shown in Flg. Iv- 6 where the s-channel intermediate
states consist of two physical partlcles, each on 1ts mass shell.
Recall, too, that cuts are second-order in the third. double spectral
function" (Matsuda, 1969), i.e. both halves of the box must contain
nonvanishing psu(s,u); if the diagram is’to produce a Regge cut in the
t channel.vas psubvis‘the secend double'spectral function in the s-
channel sense,'it is respcnsible for the signature of the s—channel
intermediate states. If the s-channel states are assumed to lie on
exchange.degenerate Regge trajectories;* signature is'unimpcrtant'and
the effects of psu are negligible. Thus if.exchange degeneracy is
exact; no t-channel Regge cut exists in the graph of Fig. IV-6. From a
purely theoretical pcint of view exchange degeneracy is a most attractive

hypothesis, and it appears to be approximately satisfied in the hadron

" spectrum. Furthermcre, only' one of the intermediate particles need be

unsignatured (i.e. have Py = 0) in order for the cut to be absent.

This argument, which is not based on details of the graphs, but only

The reader whO’is unfamiliar with the idea of exchange degeneracy

will find an elementary discussion in Section VI.1l.
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upon the known (or indeed; hoped for) proferties of fhe particles'which
~are identified as intermédiate states;'strongiy cﬁaliengeé the deriva;
tions of the ébsorption model from Feynman graphs! (see GriboV and
Migdal, 1968; Kaidalov and Karnakov, 1969; Risk, 1970.) Moféover,
this flaw seems more immediate énd daméging than thé deepef questibns to
which I alluded above. |

I close this diécussion'on a hopeful note. Many of thevsame
issues whiéh appearéd in this section haveAbeen debéted for several years
in the conteit of the Glauber theory for‘hadron-deuteron scattering.
(See the reﬁiew by Joachaih-and Quigg, 1970, for details and original
references.) In that field, as in this c1oseiy allied one, the effect
of graphical derivations has been rather to disprove the model;.than to
prove it. Thus the Giauber formﬁla éontains>é Regge cut where;s the
Feynmaﬁ graph ﬁith which the Glauber fofmuia has beén identified does
not. An instructive potential séattefing calculation (Harrington, 1969)
demonstrates that the Glduber formula corresponds to a sum of Feynman
graphs, some of ﬁhich contain higher than double scattering terms (in the
Feynman graph sense) and that a conspiracy between the various terms
yvields precisely the Glauber. formula, in the eikonal limit. The relevance
of potehtial scattering to relativistic problems is always questionable,
but Harrington's éxample mekes it clear thét‘proofs-(or disproofs!) of
the Glauber (or of the absorption) model based on a small number of
graphs are probably specious. It may be--this is the attitude I will
take for the remainder of this thesis--that absorptive models are
appropriate for hadron physics, quite apart from the detailed derivations

considered above.
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FIGURE CAPTIONS
Kinematical diagrém to elucidate the meaning of Sudakov

variables.

| Kinematics of the double cross diagram.

The left hand side of the double cross graph.

(a) The contour of integration in Eq. (IV.k.1). (b) The

contour wrapped around the right-hand Singularities, for

‘Bq. (IV.L4.3).

"Unitarity" sum for Im A (s;,k ,k.,). The lines bearing
5122 1’71’72

crosses represent particles on the mass shell.

The diagram evaluated as an apprbximation to the general

Reggeon box diégram. The lines béaring crosses represent

particles on the mass shell.
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XBL707-3494_

ig. IV-2.



© _60-

XBL707-3493

Fig. IV-3.
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. Fig. IV-5.
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A PHENOMENOLOGICAL MODEL OF REGGE CUTS

The de31rab111ty of hav1ng a plaus1ble model with which to
confront the hlgh-energy data argues against the pessimism of - the
previous chapter and demands a pragmatlc approach Thus I am led to
construct an amplltude for two Reggeon exchange by flat rather than
orderly derlvatlon. The result is not startling; it is in fact the
answer one expeéts‘fromvthe derivations describea before, if indeed the
derivations could rigorously Be>éoﬁcluded. The model amplitude contains
elements dictated by physical idéasvaﬁd motivéted principaily by the
relative'éucéess of the peripheral model'wifﬁ absorption. A novel
feature is the incorporation-in a.phenomenologically ﬁseful way of
s-u crossing. . v - . | |

I begin by reminding'theAreadér of the Sopkovich (1962) prescrip-
tion for absorptive corrections to single partiéle, of as now seems
more senéiblé, single ReggeOn'éxchangé.' This formula serves as avproto_
type for'the case in'which_twb’Reégeons;_of Which one and only one is a
Pomeranchuk trajectory; are exchahged.v Let RJ(s) be an s-channel
helicity partial-wave amplitude for the exchange Qf a Regge pole in the
feaction ab —aéd. Then according to the guess of Sopkovich the influence
of competing channels is included in the full s-channel partial?wave
helicity amplitude HJ(S) by means of the prescription

cd:ab(s)

ot Ll og. scd-L
¢ ab.ab]z Rcd-a:.b[SCdOCdJE’ . . (V.l-l)

= [s; T J

H

where SJ is the partial-wave S-matrix element for elastic scattering

of the initial or final particles. The elastic scattering amplitudes
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need not be diagonal in the heiicities.but I suppress any such dependence
for the moment to make the equations more succinét. The equatidn

(v.1.1) is based on the distorted-wave Born approximation, which has

been used by many.authors after Sopkovich (1962) with qualitatively |
similar.fesults. (A few of the,impoftant references are Gottfried and
Jackson, l96h; Durand and Chiu, 1964; Ross and Shaw, 196L; Jackson, !
1965; ‘Jackson,'et al.,'1965.) I take the liberty of feplacing the
geometric mean of the elastic S-matrices by. the arithmetic mean. Then
with |

Jj (v.1.2)

I obtain

cd:ab cd:ab
o (v.1.3)

H =. R

ab:ab cd:cd]}
J i

{1 + i[EJ + E;

which is represented graphicaily ih Fig. v-1. This recipe has enjoyed
wide écceptance up to fhe fresent day,‘usually with the additiénal
assumptioh Eéb:ab % ECd:Cd. | |

An obvious shortcoming of (Vv.1.3) is that it fails to satisfy
s-u crossing or what is knownvin Regge theory as line reversal. Thus
in general one obtains one result if he absorbs in the s-channel and
crosses to the u-channel, and another result if he absorbs in the u-
channel directly. If only the Pomeranchuk singularity contributed to
EJ, and if all elastic scattering amplitudes were equal, there would be
no difficulty in praétice. In prihciple, however, a contradiction exists

which should be eliminated before we proceed to the general two Reggeon

case. It is easy to see that s-u crossing is restored by adding the
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graﬁhs'of Fig;’Veédto thcee cf Fig. V-1. Croesed graphsﬁlack £he
1ntu1t1ve appeai of the box dlagrams that enter (v.1. 5), for they 1nvolve
the elastlc scatterlng of an 1n1t1al state partlcle w1th a final- state
partlcle. Such an occurrence is contrary to the strlct time orderlng
impiicit in the-Sopkov1ch plcture,.but apparently 1ntu1t10n must be
sacrificed for cros31ng. Ondfhe cﬁher hand time-ordering is3en
essentlally nonrelat1v1stlc concept which should not be expected to be
a rellable gulde for high-energy scatterlng. (The relevance of thlsv
point to Glauber theory is;explained.by Jdachain.and Quigg, 1970.)
'The'Reggecn graphs I here drawn in Figs. V-l 2‘are useful as
mnemonics but the reader will be aware, after the dlscuss1on of chapter
IV, that they are not to be regarded as Feynman graphs In order to
spe01fy-w1th care what 1s,meant by the crossed graphs it is useful to
define a iine reversal‘cperator EZf‘ which crosses a graph (and the
correspcnding helicity partial-wave.amplitude) from the s-channel to
the u-cnannel; The action of 5( on the single Reggeon_exchange graph

is illustrated in Fig. V-3(a). It amounts to .

cd:ab  _ad:cb : v
<L - Rifap] = Rrlao] | o o (V.1.h)
By the notation J[xy] I indicate that the partial-wave projection is
to be performed in the direct channel implied by the helicity amplitude
in question. It is of course thesebfull helicity amplitudes which have

. *
simple properties under s-u crossing.

- See Appendix C.
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The "similar action of :( on a two Reggeon graph is shown in
Fig. V-3(b).. As :112 = 1, the contribution of the crossed graph in

Fig. V-3(b) can be written as

chd tab (crossed graph) - ;ﬁ .'{Rad:cb Ecb:cb}
T J 3 |
_ [;f [Rcd ab] i cb cb 17. (V.1.5)

To eﬁmmérize, the action of Zx: is to (i) sumbfhe helicity partiai-wave
series,.(ii) iine;reVerse the full helicity amplitude, and (iii) reproject
the desired partial-wave in theiﬁew direct channel., In this context it

is importent to emphasize that the cut generated,by Reggeons with

This was deduced in Chapter Iv

signatures = - has s1gnature T

1272 172"
from the double cross dlagram, and we assume it to be true in general.

An ambiguity to be faced is whether to add the crossed graphs to the
usual box graphs, or te average the-two sets. I will argue below, after
discussing normallzatlon with more care, that the correct procedure is

to average them. With this rule, the (exp11c1tly s-u crossing

symmetric) absorbed amplitude will be

Hcd:ab _ Rcd:a.b(l+

ab:ab ' cd:cd]}
J J

i
51E; +E;

-;-i [{-'(Rgd:ab)[i(Egb:cb) . ;f(Eid:ad)]}. (V.1.6)

Then under the extreme assumptions that the elastic amplitudes are
helicity independent, diagonai;in the helicities, and independent of

the scattering particles, the absorbed amplitude simplifies to
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H Y %%(s) = Rjd?ab(s)[l+éi."EJ(~s)].' o (V.1.7)

This is precisely the'result given by the usual absorptive prescription
in the same simple circumstances. If is necessary to emphasize that
(V.1.7) refers to a trivial limit of Pomeranchuk-Regge pole cuts, and
‘not to an amplitude for polejpoie cuts, to which we'now tufn.

At this point I am able to construct, in analogy with the
absorptlve model the general model amplitude for ‘two Reggeon exchange

It is built of the graphs of Fig. V-k, and I write it as

(1 + 6 ) Hcd tab _ R;g:ab + R cd ab g (Ref ab cd ef.
cd:ef ef ab ef:ch ad of ad:ef _ef:cb- _
+ Ri; + i[R leJ R?_J 1}. - (v.1.8)

The factor (l +’812)"is inégrfed to aVoid dbuble countiﬁé if Reggeons
1 and 2 are fhe same. The>laﬁels a,b,***,f represent helicities as
well as particle identities.vahe amplitude (V.1.8) is implicit in the

hybrid model ﬁork of Chiu and Finkelstein (1969); which in turn is
related to the formulation of Arnold (1967). The normalization in

- (V.1.8) and in the equations leading to it has been schematic, to make
it possible for the reader to compare_figures and formulae with a
minimum of confusion. Having obtained the partial-wave amplitude (v.1.8)
in this schematic and hopefully understandable manner I now state the
result for the full s-channel helicity amplitude ﬁith normalization
which corresponds precisely td my conventional choices listed in

Sections A.1-3. The resulting amplitude is



cd:ab cd ab - cd ab i

1 J
1+ H = =
1+ 8p) s(l) FH(2) * oy (7+3)8,,7()
ef:ab cd:ef cd:ef _ef:ab
’ E: by Br2) T Rra) B2
' ef cb ad ef ad:ef ef Cb
. o (hm) B1(2) hm) 3(2) 3 (v.1.9)
Here_'Hs(i) ~is the contribution of the Regge pole "i" to the s-channel

helicity_amplitude, and ‘hJ(i) is its partial-wave projection which

is given by

v 1.
pod: ab B ‘ cd:ab J
J(l) (s) = | d(cos Gs) Hs(i) (s, cos 95) dMl (GS).
-1 : (A.3.16)
Notice that because the sum Ze p - Yuns over all possible two
. 2

body on-mass;shell intérmédidte states, this ﬁodel includes possible
"coherent.inelastic stateS"rin the Reggeized absorpfion model case that
one of the Reggeons is a Pomeranchﬁk trajectory. _(See Henyey, et al.,
1969.) Ibdo not wish to discuss the magnitude of these contributions

~ in any detail because the diffractive production data for reactions such
as PP JaN*ﬁ and np —aAlp seem to me inconclusive. I should be very
surprised, however if the total contribution of inelastic intermediate
states turned out'toibe more than 30% of the elastic scattering component
(in the amplitude). Thus I disagree with the Michigan group (Henyey,

et al., 1969), who believe the strehgth of the absorptive cuts to be
approximately twice fhe strength. implied by the elastic écattering-

~amplitudes alone.
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It is instructive to see that'the crossed Reggeon graphs are
already 1ncluded at least in pr1nc1ple, in the diagram versions of the

theory dlscussed in Chapter: IV. How thls comes about may be seen in.

Fig. V—5. The uncrossed Reggeon box graph is 1dentif1ed w1th a partlcu- , -

lar double cross graph whlch 1mputes a spec1fic 1nternal structure to
the vertices. Simllarly the crossed graph is 1dent1f1ed with a partic-
ular double cross graph with crossed Reggeons.» When the latter diagram
is untw1sted (by pulling on the constituent lines of the rlght hand
vertices) it becomes an ordlnary double cross graph but with the vertex
particles at the 1n1t1al and final vertices on the right-hand side

going to different Reggeons. 'Since in principle a;i the various
pos51b111t1es are put 1nto the Reggeon—particle vertices the general

set of diagrams would seem to contain the crossed graphs. Indeed if one
is willing to be tied to particular vertex structures it is poss1ble to
argue by returning to the integratlon contours of Fig IV h that it

is correct to average the crossed graphs with the uncrossed ones. Thus
the integral over the contour in Flg. IV—h(a) is equal to one-half the
integralvalong the contour in Fig. IV-L(b) around the right-hand
singularities plus one-half the integral around the left-hand singu-
larities (contour not shown). The proof is completed by 1dent1fy1ng the
right-hand singularities with vertex structures from the uncrossed
graphs,»and the left-hand singularities with vertex structures from the
crossed graphs. The argument can be made less model dependent: notice

that in untw1st1ng the Gribov graph in Flg. V- 5 we line- reversed one of

I owe this observation to Professor.Jackson.'

ATV



: 71-

the vertex fﬁﬁctions.v In Gribov‘and Migdal's nomeﬁciature,:a Reggeon-
particle scattering amplitude was line—reversed. For tﬁe narrow
resonehce 5cheme, this has the effect of replaciﬁg psu(s,t) by.
psu(u;t); sovthat‘by disbersing in the Reggeon-ﬁartiele subenergy one
picks ﬁp contributions from stateé on mass shell in the u-chennel.

A simpler principle‘(for‘fixing the norﬁalization) is thatlthe
absorptlon model rec1pe should be recovered when enough simplifying
assumptions are made. We saw this to be the case in Eq. (V.1. 7)

The creesed graph prescription is, therefore, a way of taking
into aCceunt the complexiﬁy of the vertex structures, in phenomenologi-
cel calcﬁlatione. It has.the attractive property of satisfying s-u
crossing.manifestiy, ﬁhiéh is cerfainly an.iﬁportent feature to preserve
in.abstracting a phenomenological model from a theoretical one. In the

31mp11fy1ng llmlt discussed in obtalnlng (V 1.7), the added complex1ty

~of my rec1pe (compared with the usual box graph model) makes no difference

in the final result. Does it ever make a d1fference9 More to the point,
does the new formulation reproduce any desirable result which would

have to be imposed by hand on the simpler model? The answer is that it
does make a difference, that is'niceiy illustrated in the reaction

K‘p'—aK+T_, which we shall study in detail in Chapter VI.

* * * ¥ ¥
* A priori, there are contributions from the K ~ K, K - K ,
and X ** Regge cuts. If for concision we restrict our attention

to Y0 intermediate states, the amplitude for the exchange of two
Reggeons can be represented by the graphs ih‘Fig; V-6. Upon untwisting:

the crossed graphs as described above, we find the resulting amplitude
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to be (1 + 1112) times. the contrlbutlon of the box graphs alone (times
the factor 1/2 whlch occurs because we ‘are averaglng boxes and

) ’ * -X-*'
crosses). Consequently the contrlbutlon of the K - K cut vanishes

and we are left with3on1y the even signature K* - K* and ;K** -‘K**
éuts. .This ié‘a‘correct:resuit, which in the cohventional box diagram
approach woﬁld have to bé imposed as a symmetry on the Vertex functions
(compare Aﬁpendix C) By building in crossing, we have taken care of
such discrete symmetries exp11c1tly

ThuS»the crossing—symmetriC'model is ékpected'to have two
practical, phenomenological advantages over the box gréph model. First,
some cancellations dué tb diScrete'symmetries are made explicit.
Second, by>averaging over narrow resonances in two'channels, we may

hope to obtain a better approximation to the actual Regge cut amplitude

than would be the case in either channel separately.
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FIGURE CAPTIONS
Fig. V—i. Reggeoﬁ exchangevgraphé-for the conventionai absorption model.
Fig. VFE. ‘The graphs which when'addéd to thoselof Fig. V-1 restore
| v'cfossiﬁg éyﬁmetry. | |
Fig. V-3. (a) Action'of‘the:line‘refersal operator L. on the single
| Reégeon exchdﬁgé diagfgm.which represents a hélicity partial-
wave amplitude. (b) Effect of the_liné reversal operator
on the two Reggeon cross diagram. If the wavy line represents
the Pomeranchuk (or specifically, elastic scattering), then
e =c¢ and f = b.
Fig. V-4. Graphical representétion of the model for two Reggeén exchange.
Fig. V-5. Identification of some Reggeon graphs considered in this
- chapter with some Gribov graphé; to elucidate the role of
the crossed Reggeon-graphé.
Fig. V-6. The set of gfaphs relevant for the reaction K p —>K+E-,

* **% ’
which proceeds by (K, K ) exchange.



_7h_

o

¢l  |d
C d
a b'

q

b

: t’

 XBL7O7-3478



_75..

a ‘b - a | b

XBL707-3476

. . Fig. V-2.



. _76_.

XBL707-3468

. Figo V-B. )



-

f=A *9Td ¢

164€-20278X




-78-

XBL707-347I



-79-

‘9-A *3Td

oy e




-80-

- VI. REGGE . CUTS AND EXCHANGE DEGENERACY

In this chépter izéénsider some applications of thé Regge cut
model formﬁlated above; Theée are very much in the nature of model
calculations which serve to answer sdme_éuestidns about the effects of
absorptive cuts on»high—energy amplitudes. Thus I shall fit no data,
but'try-to make sémiquantitative observations that will shed some light
on possiﬁle connectionsvbefWeen exchangevdegéneracy breaking and Regge
cuts. The modél éalculafiéhs formvpart of a larger ?rogram whicﬁ will
be repdrﬁed élsewhéfe (Fox and Quigg, 1976)41

"l. Regge Cuts and Duality

I mentioned in Chapter IVlé possiblé conflict between exact
exchangebdegeneracy and‘thérpopuiar'fqrmulations of Réggé cuts, namely
the réquirement that third dduble_spectrai fﬁﬂctions be nonzero if cuts
are to exist, whereas exchange degeneraéyvimpiiéé the absencé ofvthird
double spéctral funétions;v Accordingi& the simple.ﬁeggeon box diagram
interprefed as a Feyﬁman graph gives no Rggge qut'if the world is
exchange degeﬁerate. waever; I swept sﬁch difficulties under the rug
byAarguing in anaiogy with potential scattering off deuterons that
conclusions based on a small number of Fe&nman graphs couldIWell be
misleading.

Another obvious question to pose is whether Regge cuts in general
and specifically those generated by the absorptive prescription I employ
are compatible with finite enefgy.sum rules (FESR) or equivalently with

*
"global duality" (Dolen, Horn, and Schmid, 1967, 1968). Certainly with

* ) ’
For a synopsis of work' on FESR's, see Jackson (1970).
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data of iﬁfihite precision over a wide rangé of energies it might be
possible to distinguish poles from cuts on the basis of their different
energy dependences, but this is notoriously difficult. What can be
shown is that FESR's cannot>distinéuish between différent classes of
models, giyen the present stéte of the low-energy data. .An-explicit
dembnétration of this was givénffor.charged pion photoproduction by
Jackson and Quigg (1969) who~constructed a ﬁumber of models with evasive
n and A, exéhange and "conspiring" absoiptive cuﬁs to fit the high-
energy data and the sum rules.

On the O§erati6nal léﬁél, cuts may be duality-preserving or
duality—bréakinngith respect -to the prediction of ekchange degeneracy
(if it is iegitimate to iénore possiﬁle conflicts.beﬁween exchange
7 degeneracy and the existence of”cuts). indeed it‘has been proposed
(e.g. Michael,‘i969b; Loveléce, 1969) that exchange degeneracy might
be broken only by the effeéts of Regge cuts. This is one of the ideas
I wish to elucidate here. Already in Chapter IV I gave a rather formal
statement of what exchangé degeneracy means, to wit psu(s,t) = 0. An
explanation of the conﬁection between the absence of exchange forces and
exchange degeneracy may be found in Section Vv-3(b) of Jackson (1976),
or in Arnold (1965). |

Aé anuexample let us consider as the u-channel K+p —>KOA++, a
quark model exotic channel-in which no strong resonances have been
observed. I label the other channels as shown in Fig. VI-1, so the

s-channel contains resonances on -the p,A2 trajectories and the
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t-channel contains resonances on the z ,Z trajectories. As there

T

are no u- channel forces, we conclude that the p and A Reggeons are

2
exchange degenerate, that is they are descrlbed byla single trajectory
function 'a(t) and by one residue function for each pZ helicity state.
The example of p,A2' exchange degeneracy is classical; see Mathews
(1969) for a detailed phenomenological study v\Tests of exchange degen-
eracy for the traJectory fUnctions recently have been. made by Cline,
Matos, and Reeder (1969) and by Lai and Louie (1970) By relabeling
the channels we may repeat'the argument for the Z' Z trajectories and
prove them exchange degenerate. Th1s pair has been studied by Schmid
(1969) The fragmentary ev1dence from the resonance spectrum for p,A,
and Z Y degeneracy is collected in Flg. VI-2. The spectrum itself
only provides plaus1b111ty, more concrete ev1dence that the exchange
degeneracy is at least approxlmately satisfied is given in the references
cited. The conclus1on is that scattering in an exotlc channel is
governed by exchange degenerate trajectories in the crossed channels.

| The duality diagramsAOf Harari (1969) and Rosner (1969) are neat
mnemonics for the predictions of SU(3), exchange degeneracy, and
factorization. Each particle_is represented by its.quark constituents,
which‘rearrange themselves during the collision. If the initial quarks

can be connected to the final quarks so that no quark lines cross, the

duality diagram is said to be planar and the corresponding amplitude

There are four classes of baryon trajectories, distinguished by the
quantum numbers (1,P): o = (+,+); B = (+,-)5 v = (-,-);

& = (~,+).
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has a t-dependent phase. If not, the graph is nonplanar, and the
amplitude'must be purely real. Fpr‘illustration, consider the forward

charge—exehahge rea¢tion
k' -k p, | | | B (VI.1.1)

for which the s-t dualify diagram is drawn in Fig. VI-3(a). The
graph is nonplanar so the amplitﬁde for p,A2 exchange is predicted

to be real, The line- reversed reaction
Kp »Kn _ - : | (VI.1.2)

has a planar‘diagramAﬁhich is obtained simpiy by untwistiné,the graph
for reactien (VI.l.l).- Shown in fig. VI—}(B), it implies an amplitude
proportional to exp [;iﬁa(t)]. Whereas tﬁe_derivatiensvof duelify‘
graphs can enly be taken serioueiy for forﬁard. (0°) scattering; I will
assume fhaf their predictiods hold for all valges of t <‘O. For easy
_ reference I liet in Table VI41 therquark comﬁosition of some common
hadrens. |
2. Systematics of Exchange:Degeneracy'Breaking

In fact, exchange degeneracy is not an exact symmetry, or at
least does not appear to be in the intermediate energy regime
(5 Gev/e é Pyap S lO‘GeV/e) in which quasi-two body reactions have so
far received careful experimentai attention. As the references cited in
the previous section testify, it is approximately satisfied and therefore
a usefui phenomehologieal tool. bne could of course stop at this point
and accept exchange degeneracy as an approximate truth, but it is.

appealing to view exchange degeneracy instead as a broken Symmetry, i.e.
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a symmetry bfokgn in‘a particular (simple!) way. The_métiﬁation for
this viewpoint may be more visceral thén rafionali Yet I can cite a few
reasons why such an approéch may'be sensible; For example there is
considerable evidence that SU(3) predictions, whénlmodified by physical
mass kinematics (phase space correctioﬁs) are satisfied rather well.
Here is evidence for an exact symmetry, broken in a simple way. The
elegance of the Veneziano (1968) representation, to'which exact exchange
degeneracy is built in, éﬁggests a perturbative approach in.whiéh the
final amplitﬁde‘satisfieé ekghange degéneracy in an appréximate wéy. It
is teﬁpting (Lovelace, 1969) to suppose that the exchange degeneracy
breaking, which pfesumably is the outcome of unitarizatioh of the
Veneziano formula (Kikkawa, Saekita, and Viraéoro, 1969), might be
adequately described by the absorptive corrections,given by Regge cuts.
With unbridled optimism 6ne mighf thereby hope to elucidate the nature
of exchange degeneracy.breaking aﬁd the fole of Regge cuts ét one Swoop.
Such optimism is at.least partially sustained by the discovery of the |
systematics described below.
[My underStanding of the ideas discussed here has evolved in

the collaboration with G. C. Fox cited above, in the course of the past
year. However, as I hope to make clear through references, these
notions are not ours alone; mény of them have indeed been publiéﬁed
already by others.]

| A key observation is that for a pair of reactions related by
line reversal, the oﬁe with amplitudés predicted to be real by duality

diagrams seems in all cases to have a larger cross section than the one
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with émélitudéé proportional té eﬁp(—ifa); This behavior is predicted
by the scheme of SU(3) for Reggevpole residues plus exchange degeneracy--
broken by:the usevof physical trajéctoriés. The same scheme élso accounts
for the oﬁéerﬁed failures 6f exchange dégenerééy in pairs of reactions
for which, because of G-pafity reétéiétions,'oﬁe trajectory of the
possihly degenefate péif is‘exchaﬁged in each.df.the reactions. Thét
exotic (in the sense of‘duélity graphs) channels always have larger
inelastic ¢rbss secfions suggestﬁ that there is more absorétion'in the
nonexotic channels.* The greater absorption in turn suggests that
nonexotic channels have larger total cross sections, éé is observed.
Let us consider fhese regularities in more.detaii

For ndtational.convenience I will abbreviate exchange degéneracy
(equai*trajectories ahd.equal residues) as EXD. Equal trajectories but
unequal residués correépdﬁds to "wéak" exchange degéneracy, or WEXD.
Finally I_défine fesidﬁé exchaﬁge degenéracy,vREXD, to mean equal
residues but unequal trajectoriés.

vThe amplitudev AT for exchange of a trajectory with signature

This seems contradictory at first sight, for absorption is actually
the inelasticity caused by competingvreaction channels. It may be
that there exist more reaction channels with smaller individual

. ¢cross sections which communicate with the nonexotic channel.
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i

W o Lte + *"cot na+/2 - i
+ 2 sin ﬂa#' - 2
‘ | P - (vI.2.1)
-1 . n
W o e - i # tan n@_/2
- © 2 sin Q_ - 2
Thereby in the EXD limit
A, +A_ @ csc na(t) ' o (VI.2.2)
is purely real, whereas_
A -A e—lﬂa(t) ese woi(t) - o (vi.2.3)

+ .
has a erating phase. An amplitude which should on the basis of duality
diagrams be purely real will be called DDRe; the amplitude related by
line-reversal, which should have a rotating phase will be called DDFh.
Consider now the case of REXD, with @ =0; O =0+ 8. Then

A, +A_

v %[cot ﬁq/E + tan n(a + 8)/2]

(vr.2.h)

csC QX
1 - tan 70/2 tan xd/2

* v
is still purely real. This implies a cross section proportional to

* v : v
Obviously this cannot be exactly true over an infinite range of

energies, but in the intermediate energy regime it is accurate to

the extent that (s/so)6 ~ 1.

(i}
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2
csc nQ
(1 - tan na/2 tan n5/2)2

1

o
la, +4_|

(VI.2.5)

Il

[A, + A_|§XD/(1-— tan na/2 tan 78/2)%,

which is larger than the one predicted by EXD if tan n/2 tan n8/2 > 0.
For & . small and for all the trajectories which enter into near-forward
scattering, an equivalent condition is ad > 0.

The DDPh combination is only slightly more complicated:

>
1 - tan nt/2 tan x8/2

1 tan ﬂ§/2_sec2.nq/2

AL -A_ = -1+ cotna -

(VI.2.6)

'%’tan 18/2 sec‘2 0/2

1 - tan 7@/2 tan x8/2 °

= e cse o -

The implied cross section is decreased from the EXD value if cot n&
and tan n§/2 lhaverthe.éamé.sign, or increased if the sigﬁs are differ-
ent. Again I ignore the effect of (s/so)6 upon the imaginary part.

Iﬁ the peripheral region, «a > O for the vector and tensor
trajectories. Thus ifva véctor trajectory lies above its tensor
partner, ad > 0 and o(DDRe) > G(DDPh)i*. To be specific, let us
consider the charge-exchahge reactions (VI.l.1,2), which proceed by .
psA, exchange. It appearé (see for example Mathews, 1969) that

8 ~ 0.1 and Qy (0) ~ 0.45. The REXD scheme predicts, therefore,

* ' Lo
Here o0 may be taken to mean dc/dt; near the forward direction.
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+ O P =0 S
o(k n »Kp) >o(Kp -»Kn), . (Vi.2.7)

in apparent agreemént with the rathef low-energy data (piab < 5.5 GeV/c)
considéred by Cline, Matos, and Reeder (1969). The effect does not,
however, appear to persist experimentally at higher energies. Thus the
differential cross section for K n —aK p at 12 GeV/c recentiy reported
by Firestone, et al. (1970) is equal to the 12 3 GeV/c K p 58 cross
section of Astbury, et al. (1966)

" In propos1ng a REXD model Auvil, et al (1970) have noted that
in the cpmparison implied by Eqs. (VI.2.5,6) the difference between
crosS’seCtions should change sign at aA2 =0, 1i.e. near -t = 0.5.

In fact this is far from the case, at least at low energies, where the

ratio

£ &n k%)
T ) , - s (vi.2.8)
I (Kp »Kn) :

is maximal at around -t = 0.5. The remedy proposed by Auvil, et al.
is to include a pair of lower trajectories (p', Aé) which account for
the observed t-dependence. Such a complication just pushes the implica-

tions of the étraightforward REXD model to higher energies.

There is a minor error in this paper. In Table 1 a comparison
'_ - 1 .
should correctly be made of K p —anoA with R the cross section

for x p —>KOA.



-89-

Similar considératidns may be brought to bear on the hypercharge-
. .

: % %
exchange reactions mediated by X ,K K K %%

we again predict the DDRe cross sections tb'be systematically higher

exchange. - Assuming o x> O

than'fhe‘DDPh cross sections. The results of Birnbaum, et al. (1970)

indicate ‘that, up to 16 GeV/e,

%%(K_P - n"z+)
- &2, ' (vi.2.9)

d + +_+
a‘%(np-eKZ)'

’ *
in qualitative agreement with the REXD prediction.
Predictions based upon the REXD idea can also be made for
reactions that proceed by 1P- exchange, e.g. for x and B exchange.

For the latter example we expect on esthetic grounds that o < o < 0,

B

which would again imply that DDRe cross sections should be larger than

DDPh cross sections. A typical prediction is that

do
Poo at
do
Poo @&

(K - K oAty A .
> 1, (v1.2.10)

(K—n —>E*QA-)

in the peripheral region. In a world where Regge cuts may be important

it is of course very difficulﬁ to separate the contributions of individual
‘Reggé poles, even when one coﬁsiders particular moments of decay angular
distributions. Thus it may bé hard to perform tests like (VI.2.10) in
convincing fashioh, particulérly when thevlower-lying TP~ trajectories

are involved.

See also Kirz (1970).
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The three competing hypothesis of EXD WEXD, and REXD are all

quite splendid theoretical ideas which lead to distinct and definite,
if only qualitative predictions. Each has a s1mplic1ty or elegance that
makes its potential value for 1ncreas1ng our understanding enormous.
Thus it is essential to answer experimentally, and at high energies
(for the study_of quasi-two body inelasticvreactions, thisvmeans
10 GeV/c < 1 5.30 GeV/c) questions of the.following kinds:

(i) Are line reversal tests satisfied? An afflrmative answer -
conflrms WEXD‘ w1thout making any statement about the res1dues

(ii) Do v1olations of line reversal tests,.and thereby of WEXD,
occur systematically? If so, does the particular pattern-
o(DDRe) > o(DDPh) persist to higher energies? An affirmative answer
will lend support to REXD schemes and may suggest ways of refining them.

(111) Is EXD satisfied? 1In particular are DDRe amplitudes actually
real? Such tests (e.g. the absence of polarlzation in DDRe reactlons)
are especially’delicate{ and hard to assess quantitatively; it is
difficult to know hou to assign errors if an amplitude is "almost" real.
It is appropriate to inject here a bit of theoretical bias, which
diminishes the appeal of the REXD scheme. 1In the absence of a "higher"
symmetry imposed on hadron dynamics from without, it is hard to see how
REXD could be less badly broken than WEXD. Thus the trajectories, which‘
are determined dynamically by a large number of channels, are observed to
be approximately, but not e#actly, degenerate. It seems plausible that
for some processes the residues must be very badly broken from REXD.
Consequently unless there is a dynamical miracle, WEXD is pfobably eloser

to the truth than REXD.
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As we have no complete theory for high-energy c0111s1ons, it is
hard fo overestimate the 1mportance of sortlng out regularltles such as
those bearlng on EXD REXD, and WEXD. Some llsts of useful llne—reversal
tests may be found in the papers of Gilman (1969), QUlUg (1970),

Auvil, et al..(l970).5 Othef éuggestive hints of systematievbehavior are
to be found in ‘the reviewloy Roener (1970). There is no paucify of
simole ideas;ﬁwhat wevheed is 1arge:AMOﬁntsvof good data.

| 3. Regge Cuﬂs and fhe Breaking of Exchenge Deéeneracy

If'eXchénée degeﬁefacy‘is broken in some systematic manner, it
will be ueeful to understand how the breaking oceurs. For example in
tﬁe REXD:model‘deecribed iﬁ the preceding section the burden is placed
on the observed mass splittings of the hadrohs, which one may regard
either as God-given or as needing explanation on a deeper level.
Alternatively, it:may be appealing to suppose that Regge cut corrections,
applied to EXD ihﬁut Regge<poles,IMight prodﬁce scaﬁtering amplitﬁdes
which violate the pfedic£ions of EXb and'agree with the data. As T
stressed>above, eystematic experimental tests are.only beginnihg to
emerge, so it is difficult to know‘which direction to take. Apparently
pfesent Regge cut models are sﬁffidiently flexible that many reactions
must be studied simultaneously and in detail before success ceases to be
guaranﬁeed by aISurfeit»of paraﬁeters. What I am coﬂsiderihg here is
whether a'Simple péttern.exists,-fhat is inétantly explicable in terms
vof Regge cuts. |

To clarify.the possible effects of Regge cuts'dpon EXD input
poles, I have done the simpleet calculation,imeginable. Starting with

s-channel nonflip and flip amplitudes appropriate for DDRe and DDPh
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- reactions, I have computéd'the absorptive corrections corresponding to
an elastic scattering amplitude given by a fixed-pole Pomeranchuk (i.e.

a pdsitivg imaginary elastic amplitude). For simplicity I took

+i+ _. 1o (E-) at/g
s,elastic ~ -total-so’ ’
(VI.3.1)
TR 0,
s,elastic

. * s
and used the familiar Fourier-Bessel representation for Eq. (v.1.8),

which yields

0
i, _ aC - £ a(t+t )/2
H (s,t) = H Regge(s t) 5 dt I [a(tt )
+i+ ,
X Hs,Régge(S’t )
-+ R aC . a(t+t)/2 2D
H (s,t) = H Regge(s t) 5 qt e : Il[a(tt )4l

X H;jgegge(s,tf). (VI.3.2)

Here In is a modified Bessel function of the first kind, of order n;
= 8(GeV/<:)-2 is the slope of the forward diffraction péak, and (

is a dimensionless parameter, given in principle by

C = 04 iay/bma . (VI.3.3)

See, for example, Jackson (1970), Section IV.kL.
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For the 1nput Regge pole amplltudes I followed the’ rec1pe developed in

Appendix C, so that the DDRe amplltudes are

+ + . (Z(t)
s Regge(s t) = erQ - a(ti)(S/so) s
| S L . (VI.3.L)
1.
it - (- FR a(t)
Hs Regge(s t) = 2 t/so) F@- Ol(t))(s/so) )
The DDPh amplitudes are the same, times an extra factor of e-lna(t).

In the example I will discuss I chose a(t) =5+t b, sy = l(GeV/c)E,

and (s/so) = 10,

In Fig; VI- h I have plotted the results for the nonflip amplitude.

The absolute square of the input pole amplltude is the solid line; it is
the same for both the DDRe and the DDPh cases. The contribution of the
Regge cut (for C = l whlch corresponds roughly to total absorptlon of
the s-wave) in the DDRe case is plotted with long dashes. It is smaller
than the pole contrlbutlon at t =0, but is less peripheral. The
absolute square of the output ."pole minus’cut,” amplitude is plotted
with short dashes, for the DDRe case. vIt is more peripheral than the
input was, for the effect of the absorptive corrections is to subtract

out low partial waves. There is a zero in the amplitude caused by com-

plete destructive interference between pole and cut, at -t ~ 0.37 (Gev/c)

When the ‘input is the DDPh amplitude one expects (Michael, 19690) a
smaller cut for a given value of C, since the rotating phase of the
input pole enhances. the possibility of cancellatlons in the convolutlon

1ntegral - Also the destructlve 1nterference between pole and cut will

not be total, for the pole and cut will in general have different phases. .

Both these features are shown by the DDPh output Pole minus cut 2,
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which appears as a dotted line in Fig. vI-L. Tt lies above the DDRe
output, reflecting a smaller. cut subtraction; and has.only a shoulder at
-t = 0.35, rather than a zero. What is somewhat surprising is that the

ratio
I s, DDPh| /!Hs :DDRe ~. 1.5 (VI.3.5)

is so large. (Asvéxpected.it is _>1, whereas the‘REXD mnemonic
predicts <1.) |

The séme effects are seen in the calculation for the flip'émpli-
tude?Athe results of which areuplétted'in Fig.xVI-5. Again the DDRe.
output has a zero [at -t > 1. O(GeV/c) 1 but the DDPh outbut has oniy

a shallow dlp, agaln the ratlo

,DDPhl//Hs DDRe | 1.5 - (vI.3.6)

is rather large.  Some calculations siﬁilar to thesé were published
reéently ﬁy Meyers and Salin.(l970), which agreé Quélitaﬁively with my
conclusions.

As expected Regge cuts even when generéted by a fiat Pomerénchuk
invalidate the predictions of WEXD (although not in a manner consistent
with experiment). FWhile this theory is.wrong-—and\therefore unrealisfié—-
it may be worthwhile to'remark that it preserves the prediction of ho
polarization in.the.DDRe reaction (both flip and nonflip amplitudes
reﬁain purely real) but breaks the EXD prediction of no polarization in
the DDPh reacfion.' This is because the‘phases of the flip and nonflip

amplitudes are altered in different ways. In my examples, the flip-
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nenflip phase‘difference is small for -t < O.B(GeV/e)g in the DDPh
reaction and also forv 7+ and 1T~ exchange separately.

From the perspective of duality graphs,_the REXD predictions
have a‘hatural explanation:iﬁ:terms of absorptive cuts generated by
fﬁll'(not jﬁét Pomeranchﬁk) elasﬁic:amplitudes., In the computatien
reported abo#e'I assumed ﬁhat the elastic scattering amplitudes were
equal in the initial and.fihal stapés and were equal in the DDRe and
DDPhAehannels. Now in fact this is not so. The "exotic" cﬁannels which
give rise to nonplanar qﬁark graphs for inelastic precesses have smallef
total cross sections (thus sﬁaller forward elastic amplitudes) than the
channels to which they are related by line reversal. Thus the DDRe
amplitudes should be absorbed less than the DDPh amplitudes. If
elastie scattering amplipuaes are represented in terms of Regge poles
(or poles.and cuts) this means that the difference between DDRe and
DDPh cross sections should be explained by two-Reggeon cuts, iﬁ which
neither Reggeon-is a Pomeranchukatrajectory. Thus the REXD recipe might
serve to take account of the effects ef two-Reggeon cuts..:However
REXD, in the simple form stated above, treats flip and nonflip amplitudes
in the same way, so does not account for polarization, whereas two
Reégeqn cuts may well do so. .The importance of two Reggeon cufs, with
neithefl Reggeon a Pomeranchuk tfajectory, wae suggested by Michael
(1969b). Recent work along the same lines hae been reported by
O'bdhovan (1970). Some relevant model calculations are discussed below.

A final comment derived from the'quel calculation discussed
here bears on ﬁhe vaunted dip systematics of the Michigan strong cut

model (see Ross, et al., 1970). In Fig. VI-6 I have shown the values of
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t Vfbr which dips are generated‘in the flip andvnonflip amplitudes, as
functions of the strength of thevReggelcut. Althouéh my input poies,
in having conventlonal nonsense zeroes, differ from the 1nput of the
Mlchlgan model, the dlpS appear at the expected pOSltlonS for a cut of
Michigan strength (C = 1. 5) In the DDRe case the dips are qulte

dramatic, representlng excurs1ons through two or more decades in

+:+]2

|5

, even when the observed real part of the elastic amplitude is

tacked on by the substitution
¢ - C[1 - i(Real part/Imaginary part)]. ‘ (vi.3.7)

In coﬁtrast the structure invthe-DDPh case is‘a breaktor-a shallow dip.
Some care.is therefore required’ precisely to state the predlctlons of
the.Mlchlgan model in spec1flc reactlons The strong cut systematlcsv
may be every bit as fuzzy as those of the classical Regge pole model.
Obv1ously this remark applles equally to proponents and detractors of
the strong cut model. o

Krzywicki and Tran Thanh Van (1969) [see also Krzywicki, l970]
investigated the effects on polarization predictions of cuts generated
“by é nonflat Pomeranchuk trajectory. Their discussionvutilizes a very
simplified parametrization which cennot be taken seriously for quantita-

tive features (suoh as the magnitude of polarizations), but two natural

predictions of the model stand out. First, near the forward direction,

the polarization P, is of the same sign in the DDRe and DDPh reactions
related by line reversal. Second, P(DDRe) has a eonstant sign over a

substantial range in t, whereas P(DDPh)  changes sign at some small
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value of ‘—t. Despite fhese attractive.features, which appear té be
pfesent»ih fhé dafa; it is gniikély fhét this scheﬁexéan accommodate
all the.expeiimeﬁtél feafﬁres; The cut cofréctions to DDRe amplitudeé
wiil exceed ﬁhOSe to‘DDPhlaﬁplitudeé and théreby disagree with what is
observed. | |
h; ‘Reggeon-Reggeon Cuts and Line-Reversal Violations
The model calculation described in the preceding section

illustrated  the conclusion ﬁhat the recipe of exchange degenerate Regge
poles plus pole-Pomeranchuk cuts does nof account for the experimental

fact that o(DDRe) > c(DDPh),.at‘intermediate energies. It is therefore
.of obviqus.interest to assess the effects of two4ReggeQn cuts, when
neither Reggedn is the Pomeranchuk trajectory. To accompiish this, I

have calculated the non-quéranchuk contributions to thevreactions

DDPh: o —>n+ﬁ-,"_ ' . (Vi.hk.12)

DDRe: s n —-n n , : - (VI.k.1b)

i.e. the P' + p poles and the (P + )@ (P +p) cut. The
restriction to a spinless reaction is made for technical simpiicity,
to avoid becoming bogged.downlin details of flip to nonflip ratios,
ete. | |

For thevReggevpole amplitudes I.chose

-2gr1 - a(t))@(s))av(t) _e'i“a(_t), (VI.L.2a)

. + - + -
H [nn ->nx ]
s -

i

Hstﬂ-ﬂ‘- Qn-_jx_] ‘ ,-Bgl‘Cl - G(-’G))@(s.))o‘(tk),} - (Vz.h.?b)
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corresponding to amplitudes for P' and p exchange

@ - D@D - ),

To)
(VI.h.3)

B

'%T(} ) a(tZ)G?(SZ)a(t)<i;* e;ina(t)).

The trajectory functlon a(x) 0.48 + 0. 9x, ‘and the coupling constant

P')

= 163 were taken from the paper by Shapiro (1969). The prescription

(v.1.9) gives

By total (5+%)

= ) H )

[+ ¢}

R‘ RRRCRS L ‘9)“‘J<p) s [@up)) (o)1

o ) O (VILLLB)
where |

= ' d(coé QS) H(i>(s,cos GS)'d ‘J(O;). H(VI.M.5)

hJ(i)
‘ -1

In practice I ﬁruncated-the partial-wave expansion at J < 30, and

performed the partial-wave pfojection by 96-point Gaussian quadrature

on the CDC 6600. Numerousﬁcheeks=w€f€?ﬁéde to verify the orthonormality

J
00

routines . to reproduce various input functions. Each of the examples

of my 4 functions, and the ability of the projecting and resumming
dis@ussed'below required about 3 seconds of computer time.
Figure VI-7 shows the contributibns of the various components

in GVI.k.L4) for the parameters chosen, at s = lO,GeVg. Broken down

in this way, the pieces are the same--in magnitude--in the two reactions.
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The weakness of the p-p. cut is due’to the'vanishing'of the. o) .Regge
pele amplitude et —tIzV0°58; The'integrated cress section contributed
by the poles is Gez ~ 2mb,, & not unreaeonable value. 'in Fig. VI-8

I have plotted the contributiohs'of the cuts as they occur in the two
reactions of interest. The DDRe Cﬁt, for s n —x x 1is the result of
convolutlng the real amplitude (VI.k. 2b) with itself. As expected, it
is somewhat larger than the DDPh cut which is the convolutlon of the
rotating phase amplitude (VI.k.2a) with itself. In the DDRe case, the
cut contribution is a reai number times the explicit factor of i

that appears in (VI.4.L). Consequently the cut and pole contributions

add inc¢oherently, for the reaetion < % - x . Near the forward

direction, the effect of the. (P + p) QQ(P’ + p) cut is insignigicant
(in x x - ), as eridenced.by the near equality of the DDRe and
Input (= poles.only) eurVes in Fig. VI-8. |

The situation is completely different in the DDPh case. The
phase of the cﬁt piece atvanj value of % vis approximately twice the
pheée of (VI.h.éa) at t/4, plus /2 (from the explicit factor of i).
At 't =0, the input a,mpiitude (Vi.kb.2a) is « + i. Thus at t = 0, the

cut is roughly negative imaginary; it interferes destructively with the

pole amplitude, as stated by Michael (l969b) For my choice of the

coupling constant the cross section is diminished by about 20%, for
s = 10 GeVg, in the fdrward direction. The effect is larger at larger
values of -t, because the cut amplitude is less peripheral than the
pole amplitude. Amueingly, indeed encouragingly, the violations of
line reversal in KN charge exchange are bigger at moderate values of

-t than at t = O,
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To give a feeling for the energy dependence of the pole pole
cuts I have plotted the same quantltles at s =5 and 20 GeV in
Figs. VI -9, lO Alternatlvely, these can be interpreted as reflectlng
the sensitivity of the results to the coupllng constant g. These Very
51mp11f1ed calculatlons ShOW‘that the pole-pole cuts do contribute w1th
the rlght phases to make FO(DDRe) > G(DDPh), and may be substantial in
magnitude at low energies. (It is worth remarking that 1f the DDPh
input had been o« - i, the poles and cuts would have 1nterfered

constructively.) In addition, the cut.corrections become more important

at nonforward angles..‘Ratherhremarkably (attfirst sight).the cuts have

ban energy dependence Characterized by aéff(o) < 2a(0) - 1, at these low
energies. (See Figs. VI-8 9;10.) Thus the argument of Cline, et al

(1970) that the energy dependence of pole-pole cuts is too gentle to
account for the probable d1m1nut1on w1th 1ncreas1ng energy of the line
reversal v1olatlon in KNCEX is too nalve, and therefore mlsleadlng
0'Donovan (1970) p01nts out that his estimates of pole-pole cut corrections
to KNCEX fade away faster with increasing energy than acut<o) =20(0) - 1
would lead one to expect. . He ascribes this rapid energy variation to
complicated pole-cut interferences. This misses the point. As shown _

by Figs. VI-8,9,10 the cut pieces alone behave as aeff(o) < 20(0) - 1.

. This merely reflects the fact that the cut amplitude is not proportional
o @(s))acm;, but to. @(S))acut [ﬂn@(s)) = in/EJB. For small values

of «afs), the logarithm var1es rapidly, and the net energy dependence

will resemble that characterlzed by a power somewhat lower than At

(For a more. explicit demonstration, see Fig. 18 of Jackson, 1970.) Thus
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Fout
at small values

describing.the energy dependence of the cut as s
of sV ié dangerous"and may iead to wrong cbnclusions. The quéstion of
enérgy.dependence rééurs in the discussion of‘exotic exchanges, which
follows. | | |
5. Exotichuantum Number Exchange

- It hés been rééogniied for some time that two-Reggeon exchange
graphé proﬁide,a mechanism for the exchange of exotic quantum numbers,
without thgvnecessiﬁy of exotic tiajeétories (e.g. Chiu and Finkelstein,
1969). The formalism constructed in Chapter V needs only the existence
of reliable amplitudes:for.the individual rungs of the box diagramsvto
be quantitatively useful. Our work .in progress énA (K*,K**) exchange
soon wiil yield.amplitudes which éhould permit reliable statements to
be made about production angular distributioﬁs, absolute normalizations,

and so on. As an example of the kind of results which will be the

outcome of this program, I present here'a calcuiation of the near-forward

differential cross section for the reaction
- +_-
Kp - K=, , _ _ (vi.5.1)

assumed to proceed (as discussed‘invSecfion V.2) by double k' or by
double K** exchange. Although such calculations have been talked
about before (Chiu and Finkelétein, 1969; Rivers, 1968), thié seems to
be the first one actually carried through. I hasten to add that for the
reaction (VI.5.1) the dominant mechanism is éssumed to be baryon

(y=0, I-= O,l) exchaﬁge. The present calculation is thus an attempt

to estimate the magnitude and shape of the contribution at small t
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generated by two successive nonexotic mesonic exchanges; and not an
attempt to fit the ebserVed croes‘section over the whole angular range.
For simplicity, aﬁd to facilitate the discussion of qualitative
features, we take the amplitudes fpf the allowed associated production
reactions K_p -9ﬂOYO from an EXD Regge pole fit to the available high-
energy data. The amplitudes fer nOYO K= are obtained by 8U(3)
rotations. We heglect intermediate states in which 1 replaces no,

for laek of useful data on K—p - nYO, although these states in

principle contribute. We then have

H;\, Ms,t) = Z G 2){hJ(K*)I( s) hJ(K*)III( s)
J;ll

* hJ(K )II(S) hJ(K*)IV( s) + hJ(K**)I(S) hJ(K**)III( s)

F hJ(K**)II(S) hJ(K**)I\r(s‘)}dx w(r ) o (.Vé['5'2.)
where the;individual reactiene are denoted by
I: Kp - nOA
-Ii: K-p. - %OZO
1rr:

IVv:

To parametrize theisingle meson exchange allowed reactions we

make the usual decomposition into invariant amplitudes
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Y A ) N )

where (qg) is the c.m. four momentum of the incoming (outgoing)

9

"meson. The s-channel helicity amplitudes are then

| (m, + m,)

T o (B (s)7 - 225 n.1) cos 6_/2, (VI.5.1)
et ~ 1 '(ml +‘m2) :
H' = {an, + Bn_(s)® - ———— n,]Jsin 0 /2, (VI.5.5)

where m, (me) is the mass of the incoming (outgoing) baryon, and we
define

P1 P> ) ,(VI.5.6)

IERREE: (El + ml)(E2 + m2)

Ny = [B) +m]°[E, + m,

in which p and E. are respectivelyuthe:baryon moméntum and energy in

the center of mass system. We define the quantities TK e which are
related to the t-channel helicity amplitudes by factors that remove the

kinematical singularities:

,T+:+ _ a'l(m, + m2)2 - t]%, - (VI.5.7)
- vB-t/[(my + m2)2_— t]]%, | - - (VI.5.8).

with v = (s - w)/2, A’ = A + xB, and

o+ ) [ (- - D]

X = v + -> . (v1.5.9)
(my + m2)2 -t 2(ml +m,) J .
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For each reaction, the amplitudes TX " are characterized by

- four parameters. Thus

. T oh e | a(t) _ ' :
T - 'ég(}++e§%£gjg?ﬁtiz%t) (:5gj) c* & (V1.5.10)

is the contribution of the Regge pole with signature T. We require the

* *x .
K and K to be EXD, and fix the slope of the trajectory o' = 0.9
v v 5

GeV™2 and the scale factor"vo = 1 GeV

the intércept a(O),'thevvertek exponential a,'and fwo éoupling

. There remain as parameters

constants C+ and C~. As the intercept nmust be the same for all.

reactions we have a total of seven free parameters to fit the reactions

o \
vnN» -, KAv
N - K
KN —;'nA >
KN - =%

_ /
when the constraints bf’féctprizétidn dﬁd isoépiﬁ‘éénservatiOn afe
imposedf The fits to aésociafed productionvwill be diécussed in detail
elsewhere:(see Fo# and Quigg, 1970). It suffices, forvpresent ﬁurposés,
to know that the.EXD.fit yields a fair o&erall fit (x2 = 891/220
differential cross section péints; xg = 234/48 polarization data which
are irrelevént for the fit_since P=0 in the model). The data
considered are summarized in Table VI-2; for details and references,
consult our paper. The bestvfit parameters are given in Table VI-3,
together with the coupling constdnts for ﬂOYO —>K+E_ obtained from -

them by SU(3) rotations. We chose the vertex exponentials for Y=
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eqﬁal to the one‘fof 52, wﬁiéh was much better determined than the one
for DpDA. |

The>diffeféntialcross sections computéa (from EXD poles alone)
from £hese parameters at 5 GeV/e aré plotted in Fig. VI-11. [The
reaction. K-p'—an-2+ is plotted rathef than K p —anozo which cross
section nearly coincides’with.the one'f§r nOA —9K+E_.j Details, éuch
as fhe.forward‘dip for ﬁoﬁo ;ak+E_, éhould not bé taken too seriously,
as thé cdublingsvfor Kp —;nOA are quite unceftain.. ﬁowever the
magnitude of thé cross sections is.ﬁrobablyvreliably estimafed by our
simple model. The épin’céntentfof:the cross-séctions,‘expressed through

the useful parameter

2 -2 . ;
A = T - | | | (VI.5.11)
= T2 +1-,2 . e
o le’f‘ + JHS 1<

is conveyed by Fig. VI?iE. Aé one would guéSs from the previous figure,
all the reactions but nOZO —9K+E- are dominated by nonflip amplitudes
for small values of ~-t. Since wé are assuming EXD, Fig. VI-12 applies
separately to the K*k and K** contfibutioné,‘as weli.'.Each cross

* and K** components, which

section is an incoherent sum of the K
are shbwn in Figs. VI-13 and VI-lh,»respectively. The presence of the
nonsense, wrong-signatufe zero in the K* contribution suggests—-»
compare the o®r cut computed in Section h-—that.double K* exchange
will be ﬁnimportant compared Wifh double K** exchange{v We will see
below that'this'ié.indeed the case.

In Fig. VI-15 I have disblayed the resulfs of the calculation

of Kp »K'=  with the pole-pole cut. The thick, solid line marked
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"AlL1l" is the full cross section implied by (VI 5. 2) The contribution
from graphs w1th a ZO 1ntermed1ate state (2) '1s negligible. This
suppress1on is a_consequence of the forward dip in nOZO - K = . The
graphs with AO .interMédiate stofe> (A) cohtribute nearly the.entire
cross sectlon. Similariy, the. K** - K*% graphs (K%*) are respons1ble
for most of the cross sectlon, and . the K* - K* éraphs (K ) are of little
'1mportance. To summarigze the content,of Fig. VI-15, we may remark that |
for the model based on (vi.s.2) K -'K**v'eXChange‘in the‘two;stsp
process K p 3% K™= is the dominant.mechahismAfor é_peripheral
(small t) peak in K p K=z ;._The K** dominance is an expected,
qualitative feature, whereas thé unimporfance of the ZO Aintermediats
state is model-depehdent. The A parémetér for K p —>K+E-, biotted

in Fig; VI-16, shows fhot the‘cslculated cross section is dominated by
the nonflip ampiitude.' | |

" - The calculated near- forward cross section for Py b._ 2 5, and 5
GeV/c is shown 1n Flg VI 17 The Cross sectlon is quite small:

do/dt (t = 0) = 605, 166, 32 nb/GeV at plab,= 2, 3,5 GeV/c. Thesel.
are rather less than the value of Eub/GeV2 at 3.5 GeV/c estimated by
Rivers (1968) or the estimate of 2.6 pb/GeVg at 3.L GeV/c deduced in
a rescattering guark'model by Dean (1968). "Measured production'éngular'
.distributions for the incident momentum range 1.2 to 3.5 GéV/c are
collected in Fig.'VI-lB. The prominent feature of these distributions
is a backward peak suggestive of baryon exchange. At the lower momenta

(particularly at‘l;8_GeV/c) there is some evidence for forward peaking

as well, but this is probably a result of s-channel resonance formation. .
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At the hlgher momenta there.le no h1nt of a (forward) perlpheral peak.
The "hlgh-energy" data of Flg VI- 18g,h i are shown in Flgs VI-19,20,21
respectively. {Some of the data ev1dently were rev1sed after the compila-
tion of Lyons (1966), from whlch Fig. VI- 18 wa.s taken, was made. ] The
cross sectlons in the forward b1ns are tabulated in Table VI-k. The
apparent absence of perlpheral peaks agrees w1th our predlctlon of

rather small forward cross sectlons, but the number of events in the
forward'blns is greater than we expect. Poss1bly the tail of the barycn
exchange production angular distribution can account for these events.

We may aiéo compare thé total peripheral cross section predicted by

the model with the observed peripheral u-channel cross sections. From

the curves shown in Fig. VI-17 we find o ~ 180, b, 7 nb. at

cut

Piap = 2, 35 5 GeV/c, whereas the experimental'cross‘sections are
175 + 16 ub°  at 1.70 GeV/c, 58 + 6 pyb at 2.64 Gev/c (Dauber, et al.,
1969); and- 21 + 3.5 ub at 3.0 GeV/c (Badier, et al., 1966).

It has been hoped (Michael, 1969a) that exotic trajectory
exchange might be identified by some characteristic energy dependence,

such as

do -10
dtCC S »

which is easily distinguished from the behaVior.expected of Regge cuts,

do 82[0‘1(0)W2(O)'”‘2

Iz o : s

See also Fig. 2 of Dauber, et al. (1969), in which their statistically

superior results are summarized.
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near t = 0, if ”a(O) ccrresponds’to an established, high—lyiné
trajectory; In the preceding Secticn.I noticed that the logarithmic
energy dependence of the Regge cut can confound suchAsimple estimates.
In j-plane language, the cutvdisccntinuity is lerge below the branch

.point, thus o

< . i i :
effective acut The p?esent calculatlop gives acother

illustration of this effect. Determining aeff(t = 0) from the 2, 3,
and 5 GeV/c predictions, we obtain aeff(t = 0) ~ -0.55, whereas

a (t=0)= ~O.31. Itvis:Worth remarking that for baryon (A,5)

cut

exchange, Qeff ~ =1 and'hence.the poleepole cut!ccntribution may
eventually dominate.‘ However the energy at which it domicates will be
extremely large, because'of.the factor of 105. in magnitude that must
be overcome.

Let me further caution that such'energy'dependence arguments

are not rigorous;'for'Reggeon“box graphs can in fact generate contribu-

tions that vanlsh rapldly with increasing s. A specific example was

given by Wilkin (l96h) who showed that a dlagram with Py (s;t) =0
. (_w)mg( °°) -1 _
has an amplltude which goes as s 4, for t =0. Ina
ladder model for Regge poles, Of-») = -1, so that
do . 8 | ' (VI.5.12)

at 5 s

which is uncomfortably close to s-lo. It would indeedvbe disgusting if

nonleading contributions from two-Reggeon exchange diagrams played an
important role in any reaction. On the other hand this (admittedly
far-fetched) example weakens any arguments ic favor of exotics based on
anomalously low*effective Regge pole intercepts. There are no doubt

assorted weird objects lurking in the left-half Jj plane. Thus we shall
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haﬁe eﬁidencé fér exétics eithef wheﬁ'an e%otic'resonance is égtablished
or'ﬁhenvéuantitative twé-Reggeon;exchange calculations féil;»

| The‘pfesenﬁbcaléulatﬁon; whichvgivés an unbbservably small
cross"sectioﬁ; is-somewhat academic.(as befits a thesislj; but it isr
sufficientlyisimple that it»can be exﬁlained_conciéely.( It was intended
to illustrate an approach t§ Regge cut calculations, and to demonstrate
some featﬁréévof my ‘s~-u crossing symmetri¢ pfescription. Other, more
experimentally intereéting reactions come to mind.  Many of these are
more complicated calcutations, in terms.qf the number of Regge poles

and diagraﬁs involved, than the’simple examplg treated here, but are
still of fini?e difficulty. I intend to consider some of these more

interesting examples in the near future.
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Table VI-1. Quark compositions of some hadrons.
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Table VI-2. Associated production data.

do/dt points

37

Reactiqn’ ‘l ’Minimum Plabh Polarivzatidn points
P - %A ' 295 GeV/c 7 9
wp — KT | 5. | | ‘514 30
T P —>KO(A + zd) .6 , , 72 -
KN — xA 37 2 43z 9
KN - a3 by 0
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Table VI-3. Parameters for K*(890) -exchange.

‘Reaction a(Gev?) ot c”
Kp - nOZO o.64 4s.6 -73.5
' Kp - nOAO 0.254 -47.3 | -59.49
nOAO - K+E_' : 2.64 | -57.0 | =yen
"Hozo SKET - 2.64 6.7 -73.1

I

~a(0) ' ,.0.35
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Forward cross sections for -K_p —>K+E—.

plab, GeV/c -ty -ty do/Qt(nbo/GeV )
2.24 ' 0.02 0.27 ~4000 + 3000
3.0 0.007 0.391 2291 + 1599
3.5 0.005 S 0.k81 0 + 1979
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VI-T.
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FIGURE CAPTIONS

Laheling of the s, t and P! channels for the proofs of

'p,Agﬂ'andbof i&,z | exchange degeneracy. ‘No strong reson-

T

ances occur in the u-channel, which has exotic quantum.

» numbers.

Evidence from the hadron spectrum fcr',p;Ag and ';j,zy

exchange degeneracy
(a) Nonplanar duality graph for the reactlon K n —aKOp,
(b) Planar graph for K D —afo .

Absolute squares of various components of the s-channel

_nonfllp amplltude, as functlons of t. Solid llne--pole

term, long dashes=~-cut contrlbutlon in the DDRe casej short

dashes--full amplltude in the DDRe case, dots--full amplltude

in the DDPh case. See the text for explanatlon.

Same as Flg. VI L, for the s~ -channel fllp amplltude

Locatlon of the dlps arlslng from cut pole interference,

as.a functlon of the cut strength. SOlld llne—-nonfllp

amplitude; broken line--flip amplitude.
Contributions of the P' -and p poles, and of the
PP, P®o, and p@p cuts to gn scattering at

Contributions of the P' and o poles, and of the
(P' + p)®(P' + p) cuts to the reactions T e
(DDPh) and x5 —x n  (DDRe) at s = 10 GeVe. The pole

contribution is marked Input. The curves marked DDRe,

DDPh represent the (coherent) sum of poles and cuts.
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Fig. VI-9.
Fig. VI-10.

Fig. VI-11.

Figo VI-lgo )

Fig. VI-13.

Fig. VI-1L,

Fig. VI-15.

.
Fig. VI-16.

Fig. VI-17.

Fig. VvI-18..
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Il

5-GeV2.v

Same as Fig. VI-9, for s = 20 GeVe.

Same as Fig. VI-8, for s

Differentié; ¢ross sections fér'ﬁhei'(K*;K** exéhange
fédctioﬁsvdiscussed in the text, computed fr§n1the EXD
fitvto hiéh-eﬁergy associated production, at 5 GeV/c
inéident momentum. |

The spinlfotation parameter A fbr the reactions exhibited
in Fig. VI-11l, which are labeled by their baryon vertices.
Contribution of K* exéhange fo the reacfions‘of,interest.
Néte the noﬁsensé, wfong-signature zero near -t = O.kh
(GeV/c)g. . | .

Contribution:of K** exchange fd the reactions under
discussidn;'

Predictéd'crogé:section‘f6r> K_b‘—>K+E' at 5 GeV/c. The
full célculatiqﬁ)iS'rép?esented by the thiék, sdlid line.
OAO

** graphs, x

The éomponents from K*-K*> graphs, K**;K
intermediate states, and .nOZO intermediaté states are
also éhown,separately. |

The A parameter predicted for K™p K=" at 5 GeV/c.
Predicted differential cross sectiéns fér Kp - K=" at

2,3, and 5 GeV/c incident momentum.

Production angular distributions for the reaction

 K"p - K= for the incident momentum range 1.2 to 3.5

GeV/c (from Lyons, 1966). The data up to 1.6 GeV/c are

from Alvarez, et al. (1962). .(a) 1.2 GeV/c, %3 events;
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| /o
(b).iQB GeV/c;’56vevents; (c) 1.k GeV/c, 47 events;
(a) 1.5 GeV/é;‘QOT évents; (e) 1.6 GeV/c, L1 events;
(f) 1.8»Gev/¢,_96 eveﬁ£s; Ticho (1962); (g) 2.2k Gev/c,
38 events, Bertanza, et al. (1962); (h) 3.0 GeV/c, 28
events, Badiér, et_al. (1964); (i) 3.5 GeV/c, 17 events,
B-G-L-0-R Collaboration (1965). |
Production angular distribution for Kp LKYET at 2.2k
GeV/e, from London, et al. (1966). ‘

Production angular distribution--for K'p'-;K+E' at 3.0

- geV/e, from,Badier,'ét al. (1966).

Production angular distribution for Kp XK'= at 3.5

GeV/c, from B-G-L-0-R (1966).
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XBL707-3470

Figo VI'?l.
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Fig L] VI —12“

- XBL '709-61;67



Bl

do/dt, pb/GeV?

1000

100

0.l

0.0l

~-129-

| T ; T T T T T T
k*890) Component
PA
.' P 52
. / =~ ~
4 ~
Y, N T
! AH ~
o N
/I 1 1 |
0.5 | 1.0

-1, (GeWc)?

Fig. VI-13.

XBL 709-6465



100
o 10
> .
[3)
©
~
S
~
L
)
~
b
©
0.1
0.0l

-130-

! ! i ! i I . ' !

L K*(1420) Component

-t (GeV)?

Fig. VI-1k.

XBL 709-6469



nb./GeV?

‘dcr/dt, |

100

ol

/hlv_l T

| I~I|ll|

!

T T 3eTTT

/s

K'p —K'H .
5 Ge VWt ]

VR W

i

: .
\ \Y
K \ > -
\ K*.
Y ] ! | ] 1 ] L.
0.5 v 1.O

—t, GeV/c)?

XBL 709-64T0

Fig. VI-15.



o -132-

Kp—~K'H™
Py - O GeVsec

. Fig. VI-16.

XBL 709-6&57



1000
100

N

>

o

O

N

o

c

s

~ o

N

o

0 05
-1, (GeW/e)?®

-133-

2 GeV/c

'R R RO R B T

 pig. VI-17.

‘. XBL T09-64T71



dg/afl, pub./sr.

. -13h-

40

: 20 B

40 [

20

- b
! |

P =
cos o

XBL{709-6M65,

Figc VI-.]_8¢



R ;,London, ot a. 2.24 GeV/c |

EVENTS / 02

10

+]

13-

K p — K*E‘

© XBL 709-646:

. Fig. vI-19. -



EVENTS/ 02

BADIER, et aL. 3 GeWe|

_136_

Kp — K*H~

cCoS O,
XBL 709-61;63

Fig. Vi-20.



EVENTS/ 0.2

-137-

Kp—K*8~

B-G-L-0-R, 3.5 GeV/c

XBL 709-6&62

Fig. VI-2l.
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VII. SUMMARY AND CONCLUSION
The cause of rigorous deriVations of Eegge cut amplitudesl

certainiy-has not been advanced by this work. Ivhave, however, tried
to clarify somerof'the pitfalls one encounters in attempting to go from
Feynman diagram calculatlons to reallstlc amplltudes for hadron-hadron
scatterlng. Hav1ng galned some apprec1at10n for the dlagram approach
| "I formulated a phenomenologlcal amplltude for the Regge cut arising from
two-Reggeon exchange, which manlfestly satlsfles s-u cross1ng Some
‘simple calculatlons were made more accessible by the rec1pe glven for the
Reggelzatlon of s~ channel hellclty amplltudes. The model was formulated in
terms of s-channel helicity partial-wave-amplitudes; in order that
detailed predictions for exotic e#change reactions might easily be made
in the near future. o | |

| In the precedlng chapter I reviewed the present.state of affalrs
of Regge cuts vis a vis duality-breaking schemes. The various alternative
schemes reflect an obvious need for more data. A model calculation
exhibited some of the shortcomings‘of a theory in which exéhange degen-
eracy isvbroken by Reggeon-Pomeranchuk cuts. The next step to be taken
should be a quantitative.study of the possibility that exchange degeneracy
is broken:by Reggeon—Reggeon cuts.v This will require both theoretical
effort to understand how to calculate cuts reliably and the accumulation
of experlmental data on llne-reversed pairs of reactlons as well.
Obviously trajectories other than ,p and A2 should be the objects of

study.
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As an example 6f the exotic exchange feactions now becbming
calculable, I presented predictions for the double hypercharge exchange
reaction K-p —>K+E_. AThe»neai-forwar& créss section was evaluated on
the basis:bf a simpie exchange degenerate Regge pole fit to the high-
energy associated production data. There are a large number of analogous
reactions which are amendble to analysis in terms of two Reggeon
exchange graphs. If.Regée cuts arevdominant in exotic reactions, we
should be able to confront cut ﬁodels with éxperimenté directly, and

thereby learn about the nature of Regge cut amplitudes.
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APPENDIX A. DEFINITIONS AND CONVENTIONS

1. Kinematical Quantities
FO; tvo body'to twoxbody collisions, I order the partiéles as ih
Fig. A-1. The direct (s-) channel reaction is 12 - 3k4; the crossed

(t-) channel reaction is 13 — 24, The Mandelstam invariants are

5 = -(pl + pg) = '(p3 + pLI») .
L 2 2 -
to= -(pp - pg)” = -(py - B)° ? o (A.1.1)
, 2 Y
u = -(pl . p)-‘») = : -(p2 pB)
where I specify a four-Vector by v = (X,vo), and VoW = VoW - VoW,
‘The Mandelstam variables satisfy
s +t+u = z fnig = T . | . (A.1.2)
i=1 ' '

It is convenient to define threshold and pseudothreshold factors

\

et |
' o (A.1.3)
1
,wgg] [x ~ (mi - _mj)?_]2

4
where (ij) - specifies_the'incbmihg or outgoing péir of particles in the
x-channel. For my choice of particle labels x,(ij) occur in the -
combinations x(ij) = s(12), s(34), t(13), t(eu), u(il), u(e3). Néwblet
iYij = ¢£§] ng] be a generic symbol for )i{ij’ ﬁT;j’ éi/;j. The
energy of partiéle "in

in the x-channel center of mass (c.m.) system

is
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W, = V(x+mi2-m )/2}{2 S ' » ‘ (A.1.4)

The magnitude of the corresponding three-momentum is
ij/2x . - (A.1,5)

The’Kibble function (Kibble, 1959) @(s t u) is positive within

the phy31cal region, and vanishes on’ ‘the boundary of the physmal region.

L 2 2 2 2
®(o,t,u), = stu - s(m1 2 + m ", t(m1 3 +m,"my )
- N 2
-u(m m,” + m, m3 ) +2m1 2rn3 mh (Z 2) , (A.1.6)
It is also related to the x-channéi c.m.vscattering angle by
L2 Y vV 42
sin” 6 = #x ¢(s,t,u)/[$¥ij 9(i“j'] . , (A.1.7)
The c.m. scatterlng angle is given more compactly by

- *Ju cos O = s(t - w) + (m” - mg"’)(m;2 - m),
' (A.1.8)

| iT;E f];u cos 6, t(s - u) + (ml m3 )(m -m, ).

'~ For the reactlon ab —»cd I choose the positive z-axis along Ea, and
the p031t1ve y axis along Ea‘x P (in conformity with the Basel .
convention). Thus the reaction. takes place in the x-7 plane. The

- coordinate system is illustrated in Fig. A-2.
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2. Single Particle States

Following Jacob and Wick (1959) and Wick (1962) let 12%50) be
an invariantly normed state with four-momentum po = (0,m) and spin
component A along the z-direction.* (I suppress a label for the total

spin, s.) These rest states are assumed to transform in the usual wza.yJr

under rotations . r:

RIp%; &) = Z 08 (r)lp HETR o | - (a.2.1)

Now define

R P N

By invariant nérmélization I meaﬁ (p'; x']p; A) = (Eﬂj5 5 g(p',p)
wheré' SK N is a Kronecker delta and 6(p,p ) = E(R +m )2 6(5)(p -p")
is the invariant 8- fUnctlon onthe mass shell. This corresponds to
uélng the 1nvar1ant volumevelement on the massvshell, ‘

=_[2(22 + mg)%]';.dBR“ = 8+(p2 +-m2) dup,'in ﬁlace of the normal
volume elemént. o ’ '
T I specify a rotation by the Euler angles (aBY) 3 fhus

-iad, -igd, -ivd, X X )

RGBY =e e e . This follows the convention of Brink
and Satchler (1968), Rose (1957), aﬁd Messiah (1960) that K& (og7)
rotates the system through Euler aﬁgles (qﬁy). Others.(e.g. Wigner,
l959,vand Edmonds, 1957) use the opposite convention, that {}(QBY)
rotates the system through angles (=0,-B,-Y). Explicit representa-

tions of rotation matrices;are given in Appendix. B.
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for {0 <6 <gx; -1 < ¢ < n}, whére 7 is a "boost" in the z-direction,
wﬂichﬁimpaits to the particlé the.deéifed momeﬁtum. The'Qotation R
fakesrcaréAof the direction. The helicity A is.the'préjection of spin
on the airectioﬁ of ﬁotion. | | : |

Let us nbﬁ'use h(p)v to déﬁote the Lbrenfz transformation
(A.2.2) dnd' ﬁ(j) to indicateithé correspoﬁdihg.operétor,-

Rp) = Rgo g2 ; (aes)

which genergtes the state of four-moqentum p. The particular form
"(A.2.3) is the Jacob;Wick héliéify éonventioﬁ; but T will note some
other possibilities below. Now apply #£[L], an arbitrary ﬁorentz
transformation such that fp = p'.. The resulting state will be

lp's A) = H(p")'liaos' ADe Furtherm’ore,. Lp = Zh(p)po - p' = h(p")p",
so that h-l(p') Zh(p)po = po. In other words, the transformation
h°l(p’)'zh(p) is an eleméht éfbthe little group (isotropy group) of

po, and is therefore a rotation r. Thus

| 1
Lip; ») = ()% &) = H(')R[D; A) = -
: , 0 (A.2.4)
= H(p') E: Jauxs(r)lpoi n) = E: pr(ﬁ:P)lp'; "y
H M J

where U(.ﬂ,p) = ’,&S(r) = 38@-_]‘(p')zh(pD. (This shows that U is

unitary.) Consequently the transformation law for helicity states is

Llp;VM = Z ,,B'MS@'l(ep) Eh.(pDMP; b | (A.2.)

4
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Among the other kinds of single particle. states which can be
defined by their transformation properties I mention in particular Wigner
spin states (Wigner, 1939, 1957;.Blatt and Biedenharn, 1952), for. which

the projection of spin on the z-axis is specified:

Lpm) = Y 5600 me)lmsn),  (ae.6)

where 'b(p) ‘is & pure~boost'along_the direction p. I also define -
transversity states'(KotanSki;_l966a,b),'for which the projection of
spin on the“negatiVe normal to the reaction plane is specified:
| . . S . . 'V—l . . -1 . .
Llp,) = DR 17 () mp)® )" gp,T ).
: = v

T
2273

NE
nofa

X
)2)

. - (a.2.7)

o

Figure A-3 shows the axes of Quantization for these‘three kinds of
states. |

| Lastly I meﬁtion spinor stétés (Joos, 1962), which are defined
by éxteﬁdingrthe operator df} to be a represgntaﬁion of the hémogeneous
Lorentz éroup, instead of the rotation group as before. Spinor states

transform as

'Llp;‘a> = E:'ljbas[zllgp; b}. ,'_ » | (A.2.8)
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3. Scattering Amplitudes™

" The S-matrix element connecting an initial state a of total
four-momentum Py with a final state b of total four-momentum Py is

related to the scattering amplitude Tba by
\ :

(), o -
Sba = _aba +i(2r) B (pb - pa) Tya o | (A.3.1)
The transition probability per unit time is given by

Pbal - v(gﬁ)h S(A)(Pb ; pa)|Tba|2' | (A°5'2)

It is straightforward to derive'the‘followihg useful relations between

the scatterlng amplltude and observables

(i). . General dec;yAprocess o’ —>(l 2,-.+,n) = p. The decay rate
is
o ‘"',h' ﬁ o '. -
et eMe ap) R
i, = e | T 5 - (A.3.3)
T U o : (2n)

(ii) Two body decay o — (1,2) = B.

4

12 , :
;—3— dQc.m,' | ’(A.3.u)
.

= 1 2
aw, = —s|T. |

(iii) General two bddy,collision cross section

Q Ev(‘l,?) (3: "’:n)

e - ﬁgigs“%pa b1 |‘Tf

)5 (A.3.5)

2

* .
See Collins and Squires (1968), and Taylor (1965).
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(iv)  Two body to two body cross section o = (1,2) - (3,4) =8

.,

2 - 1P - (4.3.6)

48, m. Elin"s ):Jle
Since
o, = 2sdt 4, (A.3.7)
s 12 &34 -

do

1 > : '
= -l | o (A.3.8)
dt 164 ?122 500

il

The unitarity of the-S-matrix impliés
v(SS ) -}: Spe B ca = Opa- . o , (A'5'9)
Substituting (A.3.1) we find

Ty, -

X ) h (u) i : , N iO .
) = )t 3 e, - pg) Ty, TE,  (A:3:10)
where the channels a‘ and b now satisfy the four-momentum conservation
- Z . . 7 2 5 f h
relation, P, = Py and o means integration over dp/( ) or eac
particle in channel c¢ and summation over all channels c. If channels
a and b are the same, Eqs. (A.3.5) and (A.3.10) give the optical
theorem relation between total cross section and imaginary part of the

forward scattering amplitude,
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E}— im[Taa(s,t=O)]. | o (A.3.11)
12 :

it

'Utotal(a —>al;)

With T, = 8rxs? £, (0°), Eq. (A.3.11) takes a more familiar form

b v . . _ - :
'P'#ﬁ Im[fc.m.(O )], = Y%otal’ o ' (5‘5‘12)

C.Ile

where p,  ~ 1is the intial c.m. momentum and f_ (0°) 1is the forward

spin nonflip scattering amplitude.“,[Thus -fc n corresponds to the

normalization adopted by Jacob and Wick (1959) in which

“ac/an, = |£(e)]?.]

Different kinds of amplitudes may be'obtained by taking matrix
Elements'of T between the severalvkinds of states described in Sec.

A.2. The most useful amplitudés are helicity amplitudes. For these it
' ' . 52+su-(x2+xh)

is customary to insert an additional phase factor (-1)

SO that,'fdf example,

ML A Ay s y+sy, ()
ot8) "\t
H?”12=(-1) 4

(xBxulTlxlx2> | (A.3.13)

defines the s-channel helicity amplitude. With the normalization
exhibited in Eq. (A.3.6), the differential cross section averaged over

initial helicities and summed over final helicities is given by

do . 1 'J5h | 1

Fm. | Ghnls Jp @+, +1)
< Mg Ay A s |2
X ‘HS3 e s | (A.3.14)
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Where si vis fhe spin of pérticlel i. A minor subtlety arises here,
namely that the number of he1101ty states of a massless partlcle is
5 onlyv 2, not 28 + l For a massless partlcle 1nc1dent an obv1ous
modification of the statistiéal factor is therefore required.
The'helicity partial'wave expansion can be written in the form
A Xh:xlx

B F T (et) - Z (7 + B xhlh T(6) gl J0,) WP,

Jem. | . (A.3.15)

where ‘A = - kg, u = Mg - Xu, and m = Max(|x|,|p|). The properties
of the rotation matrix dJ are reviewed in Appendix B. .Hereafter T .

-choose ¢ = 03 this reflects my conventlnn for the reaction plane. The

J

orthogonallty property of d&° [cf. Eq. (B.1.8)] permits the inversion

of (A.3.15) for J 3

"'l
Kshh Xl

‘d(cos © ) Hy (s cos © ) d J(Q ).

Oy 17 () g =
. i -1
”(A.5.16)

Relations among the helicity amplitudes may be obtained from the discrete

symmetries. From parity we find

<-x5,-xulhsJ(s)l-xl,—A2§ ng<x3xu1hSJ<s)lxlx2>, |
| » (A.3.17)

S5+ -(s,+s )
(anh/nlng)( SPEA

ﬂg.

with ni the intrinsic parity of the iﬁh particle. Translated into a

condition on the helicity amplitudes themselves, this is
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Az =Nt A A : A ]
DT T2 gy < 5 2
' | * \ 3 : (A.3.18)
: Axhg, A
e T e L S
= g(-DTEES T T E(e, )
From time reversal we obtain
ot () gny) = O () Ing) (8.3.19)
whence
A A AN Azhy A A
i O e 1& . (A.3.20)

To close this section I>briefly note the relations between

helicity amplitudes and some other amplitudes.

(i), wWigner amplitudes. With particle 1 (2) along the plus (minus)

z-axls, the relation to helicity amplitudes is
Haght), SHq 1 s Nz SHq 5 =M
4 T R~ _ h 3 Ay 3 *Hy 2 7HD
Wsl1,2] = 4, ”‘h( ) 4, >¥3(9 ) H, : (a.3.21)

The Wigner (spin) amplitudes are usually expanded in terms of angular

momentum states (Blatt and Biedenharn, 1952) as

M Huiulug
Ws%l,é] E (s s2ulu2IS uy (s suu3uh|sfuf

(U-:Hf)

X E (25 + 1)2(213 +1)2 (zfsf hy uf,quJu AVEERTH |Ju )

E Zf,J

Y/

f
X T[J £,58;50058, ] <5L_Ll _Hf,o(es). (A.3.22)
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The versatility of the heliéity ampiitudes invented by Jacob and Wick
(1959) has rendered these amplitudes somewhat archaic.

(ii) :Trénsversity ﬁmplitudes. These amplitudes, introduced by

Kotanski,(l966a,b)_are»bccasionally useful in the study of kinematic
constraints at thresholds and pseuddthresholds. They are related to

the helicity amplitudes by

T_oTy) sT, 7T '
g2 12 (Z,2%
Ks , = ODT N ’2’2) o@ ) (-5:5:3)
' 33 N
INTED UDN s Lo s .
X3 L1 1 7N 2 T %X :
X HS ‘a%‘lﬁrl( 59 §’§)°8 _}\‘2T2(-“2‘,-§,§) . | | (A.§.25)

This cofrespdnds to'takiﬁg fhe negaﬁive ndrmal to the‘reaction plane as
the axis of quantizatioﬁVfor fhe tranéversitiés T. The utility of these
amplitudés at threshoids fesults from the fact that.the crossing matrix
becomes diagonél iﬁ the transversity basis.

Being uncondérhed.in'this thesié‘with rigorous énalyticity
proﬁéftiesvof scattériné amplifudés; I.fofego listing the properties
of spinbr amplitudes (Joosg 1962) and M—functions (Williams, 1963).

- .
4. Crossing Relations for Helicity Amplitudes

Trueman and Wick (196k4)--hereafter TW--have given an elegant
geometrical derivation of the croésing matrix for helicity amplitudes.
Fox (1967) determined the overall phase in the TW relation and. it is

his result which I quote here. ' : 'ﬂ

See Trueman and Wick (l96h), Muzinich (1964), Fox (1967), Cohen-

Tannoudji, Morel, and Navelet (1968).
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A }\. :}\ by v . -ix[s,.-8 +p,. Ha +p +p,:']
30 M L ¥ 2 "3 1N Ry
1 | T
: °3 oty sHiH3 L
X | )\ (Xl) d’\e“e(xg) d% 3(x ) d " (x,) H . (A1)

The crossing angles xi a.ll,sat‘is-fy’ 0 < xi < ;s they are defined by

'2412 fT;3 cos x;‘ = (s + mi - 2 )(t + mi m3 ) + 2m EA,

xglg ZT;M cos.xe" = -(s + m22 - m )(t + my 2.—' 4 ) + 2m 2A,
"33& 3/ XB = (s + 1}1327 - n'lf.)(t + m32 - .Imie) +lv2m32A,
ngu Ejjh cos X, ;=.'(s ¥:mué,e‘m32)(t + mhé - m22) + EmMEA,
| (A.h.2)’
where A‘= m32'+>m22.— mlé_; mh?. oThe-phese eij. is 41 unless i and

‘j are both fermlons in whlch case eij ='fl; The crossing phase Aa
corresponds to the relatlve phase between the particle annlhllatlon
operator . ay and the antiparticle creatlon operator EaT in the field
.theory approach of Welnberg (196ka, b) and of Carruthers and Krisch

(1965). For example they deflne the spinor

'.Xa (2n) 3/ .jrdp[a e ‘f* + A*’ e -ip- x] . '(Afh;ﬁ)

The cross1ng phase is 1ncluded to‘meke contact with fhe isospin crossing
phase of Carruthers and Krlsch. If 'np, nc? nT_ are the phase:facﬁors
which appear in the transformations of the single particle states under
»the discrete operators parlty, charge conjugation, and lee reversal,

then
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_ qpnch;°‘ for bosons,
A = A= = ‘ : - ) . ) (A.l&.l&)

Ri%nnw for fermions.

See also the general dlscu531on of Felnberg and Welnberg (1959)

A ve1001ty space dlagram as popularlzed by chk (1962) is helpful
for visuallz1ng the'meanlng of the crossing angles. Indeed one ‘can
actually caiculate the dngléé"from sdchia picture by ﬁeans of non-
Euclidean geometry.*' The rﬁles afe given by Wick (1962). 1In Fig. A-L -
is shoﬁn the velocity space.diagram forvthe final (s-channel) configura-
tion. The lines leaving a vertex represeﬁt the directions of the
correspoﬁdihg particles as Séen erm thé‘rest frame associated with that
vertex. Thus Xy is the.angle between the,direcfion of particle 3
and the @iréction of particle 2, measured in the:rest frame‘ Ol' of
partiélé l. iLikewise Os is the_angle between particle 1 and
particle 3, measured in the s-channel é;m. ffame, Os'

“5. Perturbation Theory Conventions

Spinor notation. The Y-matrices are Hermitian, and ", is

diagonal. Explicitly,

o  -ig \ | /o -1
<ig o) | < -1 0
| - (A.5.1).

The Pauli matrices ¢ are as usual

* ,
For an elementary discussion see Sommerfeld (1952).

B s o VU —
- —~—



o 1 0 -i 1 0
Gx = s UY | = 3 OZ =
1 OJ o i 0 ' 0 -1
(A.5.2)

The spin tensor is -

(a.5.3)

t
-
-

o, = @/20)lr,r]1 = (t/21)(n, 7, -

Spinors are normalized acéOrding to uu = ~VV 2m; and satisfy the

free-particle Diréc equations
(m + iv:p) u(p) = 0, (m - ir.p) v(p) = 0. (A.5.4)

For an antiparticle of momentﬁm"g .and helicity 'x it is sometimes

useful to replace
. ’ __]; » .
w® = (DEFru ). . (8.5.5)

The Dirac conjugate spinor is ﬁi(g) = [ux(g)]T 1,

Explicit represenfation in the helicity basis. The positive

energy spinor with momentum P = |R|2 and helicity A 1is
N 1/ , ;
ux(pz) = (E +m)2 v , v (A.5.5)
Cox . . .
NE +m ")\-
. . - 2 24
where m 1is the particle mass, E = (p°~ + m“)2, and

4 C) kg (:) L v(A'.-S-?"
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The spinor corresponding to a particle with momentum Q' such that

’ 5'.2 = cos © 1is obtained by a rotation about the y-axis. Thus

o o-ige/e
uX(E‘) = e 7 ux(p;)
ra cos g - (l -a) siﬁ g
N a sin g + (1 - a) cos g :
= (E +m)? _
[a cos g - (1 - a) sin g] axp'/(E + m)
| -V o o
ga sin 3 + (L - a) cos 5] 2p'/(E + m)J (A.5.8)

where Q =% + A. I do not incorporate the Jacob and Wick (1959)
particle 2 phase into my spinor. This is instead explicit in (A.3.13) °

which defines helicity amplitudes.



Fig. A-l.

Fig. A-2.

Figa A‘B -.

Fig. A-4.
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FIGURE CAPTIONS
Lébeling of particles for a two body to two body collision.
The momenta are labeled P;> maéses m, , particle spins S5
and intrinsic parities of thie particles m; .

Coordinate system for two body scattéring. The scattering

angle is' ©. The azimuthal angle @ is equal to zero for
- scattering in the x-z plane.
“Coordinate systems for the definition of single particle

‘states; The axes x-y-z are fixed in space. The particle

momentum is p; the quantization axis is in each case along
zo. . .
Velocity space diagram for the s-channel configuration. The

meaning of the angles is explained in the text.
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Og4

XBL707-3479

. Figo A-L|.
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_ APPENDIX B. PROPERTIES OF ROTATION MATRICES

1. Definition and Properties

In an irreducible representation bf the rotation group of
dimension (2J + 1) corresponding to an angular momentum J the

rotation (0BY) is represented by the matrix

o y(@BT) = (0 g | 2. | (B.1.1)

aBY

As the operator ]E{Jr is the adjoint of R, its matrix elements are

related to those of R by

(ulrtow) = e Rl - (BF,0% (2.2)

The operator R is unitary:

o e 4 o
N (_RaBT) - @OLBY) R-Y,-B,‘-a’
hence
Qo) = DI (-rp-0). (B.1.3)

Furthermoré, the property RRT = RTR =1 iﬁplies

Z ("BD{I'N(I‘D,*OQ;'M(I') = S - (B.1.k4)
M 7 ' R ' . :

T bl (B )" - (3.1.5)
- |

See Brink and Satchler (1968), Andrews and Gunson (1964), Collins

and Squires (1968).
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Because the basis states of the representation are chosen as -
elgenfunctions of JZ, ~and. R has the form specified in the footnote

to Eq. (A.2.1), the matrices simplify to-

’ . : . . -10/J -_]'..BJ‘ -iyJ_ -
B ) - (me Ze Ye Fm )
| . -ipd -
= expl-i(oM + W) I{aM|e Y aw) - ) (B.1.6)
- exl-i(o + )] a7 (5).
expl-1{aM | }

The phases of the rotation matrices depend ﬁpon the convention. adopted
for the Euler angles and upon the-choice of phases. of the matrix _'
elements of  £. With the Condon and Shortley (1935) choice of phases,
| . o ' 1 '
(jm[lejm) = m5(jm t l]J+|jm} =[(3 +m+1)(3 ¥+ m)]?, the reduced

rotation matrices Y  §re real. ‘They satisfy the symmetry properties

Jg) = a9 (6) = (-1 a (o) =a J(-0) = (-1)9 Y -0).
dku (@) = d-u,'k(e)'— ( l) dux @) B dux (-8) = (-1) x,-u(n )
(B.1.7)
The orthogonality reiations are
7T . .
J 3" Ay s 40 - 2 - - (B.1.8
4, (6) dx”(G) sin 6 40 = By, 571 ( 3)
0 : ’
J J , ’ '
a “(e) a () = & ., . . B.1.9
E: %y.( ) NL ©) '’ _ K )
v Y

.%' §: (23 +.1)-dx#3(9)'dkuj(9') = &(cos © - cos ©'). (B.1.10)
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2. Expansions in Terms of Other Functions

It is fruitful to obtain expansions for the reduced matrices in

terms of well-studied functions, for this allows the deduction of -

analytic properties. First note.thevexpansion in terms of Jacobi "
polynomials ‘Pnab(z),

v‘dx“j(g) = [gﬁ ; 2%§§§ ; ﬁ%i] (sin (e/2)0 M Ifcos (o)1

X Ig?;“l’x+“(cos 8), - (B.2.1)

where m = Max(),p), n = Miﬁ(x,u); and the ekpansién only holds for

m > O. FOr; (3 _'m) .a nonnégétiVe integér,>the funcfion f??m(z) is a
polynomial in z. As a consequence the expansion (B.2.1) is useful for
establishing.analytic properties éf dj in z.

To exhibit the analytic structure of ad 'in_the J plane it is

convenient to express the reduced matrices in terms of the hypergeometric

function, by

dxuj(g)‘ = %ilgf&%T [sin (9/2)]»“‘—ul [cos (o/2)1MH

m
n

=

eefo=

8 :B F(-j +m, j+m+1, m-n+1; sin2(9/2)>. |

)
)

x>
—
o~
cu e,
++
o=fo-

(B.2.2) -

The hypergeometric function is analytic in j, so all the j-plane I

singularities are explicit in the square root factor. The singularities

oceur at integral values of (J - m) for which either



-165-

ngd<m | (B.2.3a)
or |

-m' g < n. - ' _ (B.2.3b)

Taking the asymptotic form .of F<é,b,c; (i - z)/é) for large

Z = COS G,'one obtains the ‘asymptotic expreésionh

nj=

| 3 o (_l)ﬁ-u“im-nf" (3 +m)i(§ - ﬁ)!
dku (Q) ~ 2j + 1 [(g-+ ﬂjﬁ(g - m)i]

(25 + 1)t S O B O |
X B _[1,+.<j’(z -’] R C s )

X {1 + (z-lﬂ , C (B.2.K)

again for m > 0.

Next consider the functions ex“j(e), the relation of which to
the dkuj(e) .ié anaiogdus to the relation of the Qz(ﬁ) [Legendre
functions of the second kind] to the Pﬂ(z) [Legendre functions of the
first kind]. These functions were introduced by Andrews and Gunson (1964),
who‘alsq provided a vaiuable discuSsion of the properties of the ‘ej
for nonintegral j.* The expansion of the.reduced rotation functions of

the second kind in terms of Jacobi Polynomials is

Note that the functions e, (8) of Andrews and Gunson (196k) are

J
(-l)x-“ times.my eXuj(Q);
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0 = 7 [t caent e

X Q‘]!i\l;p',)\m(cos ‘Q),b> ' (_B.2..5)

for m > O. - The e-function have the symmetry properties

S ,; CoW-u 5 o B | et . .
e, (®) = (- c _u(e) = (e ). (B.2.6)

=\,

The Jacobl functlons of the second klnd are related to those of the

flrst klnd by

o, *(2) = @G-+ [ o q ) )P
. . J=1 )
X 206, (5.2.7)

for n a nonnegative integer.

" A useful relation between the d° and the o9 is

e e e e o)
sin ,fw(j N COSM;(j =) oo ;\%j“- 5 - (B.2.8)

Finaliy, the asymptotic behavior of e for large z is given by

. n % | |
e, () = géggl;-IjT (3 + 21 = D+ WG - W)

X explt ix(n - u)/2](z/2);j-l[l L OEY, (B.2.9)

:\)10—'_

v >
where the + occurs as Im 2z < O,
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Let us also mentioﬁ two special cases for which the' gE%-functions

are pafticularly simple:

- Jaﬁpj(dﬁr) ; <§§t%f%>'[fjé(é,a)l* , o | | (B.2.10)
and '

rdmoj(B) )" [ - o i]é.ij(a),- m>0. (B.2.11)

1

Here ij"is a'spherical harmonic and ij is an associated Legendre
function. In Table B-1 I have listed some explicit forms of the d-
functions for low spins.

3. Computational Details

The d-functions required in the éalculations described in
Chapter VI were evalﬂated*nUmerically by forward recursion of the

Legendre functions, using the formulae (Jacob and Wick, 1959)

dooj(e) - Pj(cos e), o (B.3.1)
dl 1(9) = (3 +1) COS(G/E)(PS-’_,_]_ - P'j): (B.3.2)
s . - |

a '1(9) = (3 +1) sin(Q/E)(P5+l + PS), (B.3.3)
21,72 ’

where 'Pj means de(cos ©)/d cos 6. The Legendre functions were

computed from the recurrence relations

(v +2) P () = (v +1) 2P (2) - P, (2), | (B.3.4)
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(2% - 1) —f— = wvzP (2) - v (2), ' (B.3.5)

Z

stated by Abramowitz and Stegun (1964).



Table B-l. Explicit forms of the

spins.

dl,—l(g)

dboo(g)

cos ©

-1,1

(e)

Il

It
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reduced rotation matrices for low

cos(6/2)
éin(e/e)'

%(l + cos ©)

- -4y (@) =

%(l - cos ©)

1
4, -1

(6) - -sinofVE
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APfENDiX C. REGGEIZATION OF S-CHANNEL HELICiTY AMPLITUDES

. The model formulated iﬁ'Chapfer V-is ra%hér.cumbersomé, requiring
several applications of the helicity cfoséing‘matrik‘to complete a
calculation. For detailed fits this wouid present little obstacle to
the computer but for the iliuétrative caiculatioﬁs we‘wish to eiamine
in this thesis these complicétions merely obécure the ?hysiés. For
these model calculations it sufficés to Réggéizé the s?channel hélicity
amplitudesQ»to ieading order in s.

a) The General Result,:Following from Crossing
The formulation of high-energy exchange models in terms of

direct-chanhel_amplitudes has been studied by Fox (1967) and by Cohen-
Tannoudji, Salin, and Morel (1968). To leéding order in s, Regge
theory is as easily expressed in the s-channelhas_in the t-channel. A
simple solutionlto fhe.problém is possible because the heliéity crossing
matrix factorizesv(to leadiﬁg order in s), as noticed by Fox and Leader
(1967); The leading order coﬁtribution of a boson Regge pole at
Jj = a(t). may be written as

Hx§xu:xlx3 . i agamngd/2 (o, inalt)y
t = "€ | 2 sin wa(t)

, 0
0o V! ' . _(s/s )a( (c.1.1)
kgxl M5 0] ’

where the Regge pole has signature T and scale factor S The
Trueman and Wick (196L4) helicity crossing matrix is given in Appendix

A.4, so we only restate the basic formula here

A%
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FTIETTIO | ‘ ~in[ 0,=0, Hu, Hi ]
R T R 2 "3 P Fo Ry
HS = €23€3h€h~2A2A; e . o
c "o | o ' Ay N
. % MM .
. “1 l(xl) du (xe) d )\3 5 ("u) Ht . (A1)

Applied to (C.l.l), the helicity crossing matrix gives an

expression for HS which I rewrite in a more symmetrical form as

];a(.t') -

TRTHEITN . \ a(f)
b R R B (r+e 5
H = “€ps 3&%2 2"3 2 sin (%) g“5“1 guhug( 5
05+ ) M), .
c (-1) 272 gy b nt o e, . (c.1.2)

where the Regge pole has parity P and the (s-channel) external
particles "2 and U4 have‘intrinsié parities nép, nuP. The s-channel

Regge residue functions are.

v‘_ﬂ \'in(xa+ib)‘k;l)ca+Ka'

g = e ¥
. A,
O 2
G&_ _ Voo c'b , o 7
SIS EN G | (¢2.5)
where \
@ L (t + mée - mbz)
cos = -
) S $ (c.1.1)
& ‘ C.l.h
'.."' N (t + mb? -.ma ) |
oS X = ZT;b



are TruemanFWick crossing'#néles in the 1imit s —;m. [The "extra
phases” in‘(C.l.2), ﬁot present in (A;h.l) are the result of a parity
oberation at the 2-4 verfex thé purpose of whiéhAwas to definé the
functions .gujul and gphpé in the same way. This is accomplished py .
undoing the asymmetry in the definitions of Xl .compared with 'xj and
of X, compared with Xh in (A.k.2).] The practical advantages of
attention‘to’the.CTOSSing ppases become apparent only when comparing
several reactions and ipdeedvsuch caré is superfluoﬁs for séme of the
more basic featufes I wish tovstudy‘below. |

b) Effects of Discrete Symmetries on the Residue Functions

Pdrity conservation at each vertex for the exchange of a particle

of spin J and parity P implies a relation among the t-channel

helicity partial-wave amplitudes,

THOpH0) - Nzhy A N

ASA .2}\. A= . . .
2™ M N PP _; -
Ht,J' | = 15 o p(-l) Ht’J . : | (C.l.))

For Reggeon exchange, the quantity (—l)J is replaced by 1. This may

. be translated into a condition on the t-chahnel residue fﬁnctions,

‘ 0.+0
2% o
Y! n—P nhP TP(-1) ° T , ~(C.1.6)
)\.LI_)\.§ 2 ‘M,L’-NQ_
thence into a condition on the s-channel residue functions,
0,t0y U+ : -
P _P 27k 2’ "L
g T, Ty tP(-1) -~ 7 (-1) g . (c.1.7)
HyHs : “Hy o THs _ :
If particle 2 equals particle UL, then

! =TT CoLl.8
quXE o IYX§%M’ ( : )
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but if a state of definite t channel isospin (I) has been formed there

21, -1
is in addition an isospin ‘swapping phase (-l) 4 . The condition is
equally simple in the s-channel, namely
= 18 . , | - (c.1.9) -

g -

Similarly if particle 2 ‘equals particle L4, then we may form

states of definite G-parity in the_tQChannel, for which

Yoo= TG(-l) Y! = 1C_ 1 S (c.1.10)
Kuk , ngu n X§Kh '

" where G is the G-parlty of the exchanged Reggeon -and C is the

charge congugatlon elgenvalue for the neutral member of the Revgeon

1somult1plet Agaln the condltlon is equally simple in the s-channel,

g . = 1Cg . o , © (c.1.11)
L - -

Evidently iﬁuis»poesible to form combinations of s-channel
amplitudes whieh have definite‘t-channel properties, e.g. s-channel
combinations with‘definite t—cﬁannel‘parity.

| c) Consequencesﬁof Factorization

Asymptotieally the physicai'region boundary lies at t = O.
Thus the halffangle facﬁors that'eneure angular momentum conservation -
[compare Eq. (A.3.15)]veppear as powers of t% in the residue functiens.
In particular amplitﬁdesvmust vanish ét t =0 at least as rapidly as
the helf-anglevfactors prescribe. Fof'example, the s-chanﬁel residues

) *
must have the minimal behavior

In this context, t 1is to be undersfoqd as t/sO



e

o . 1M "HoTH o
: » =|"1 F2 4 :
e g o (-t)F] TR 7 (c.1.12)
as t — 0 . However g is related by parity [and with no
) . v :

. N u5ul'guuu2
powers of (-t)2] to

g g through (C.1. ~so the residues
THghy T THy T et ( E . ‘

must also satisfy ’

FITE TA TR T

g o (wyEl TR

Bughy Sy, (C_'~l ;'113)

as t — 0, which contradicts (C.1.12) unless (u; - “3):= 0, or
(u2 - “h) = 0, or both are equal to zero. The only way to make (C.1.12)

. . gapu:ulug
and (C.l,lB) consistent with each other is to make both Hs

“5"“h:“1"“2

and H

s _vanish at the faster rate By taking

g ., 8 @ (-t)z”5 LI '2“. P " (C.1.1k)
Mgty HyMo 50 - ' :
In order to satisfy factorization and parity we must therefore have

1|8
g od (-t)al &

oy |
gty ) . (C.l.lj)

Apart from this behavior at t =0 'gLl - is free of all kinematical
k a : :
singularities.

The stringent constraints implied by'(C;l.IS) are. responsible
- for some quite definite predictions which are in fact in conflict with
experiment. In charged pion photoproduction the s-channel nonflip

HZ“XN :XY_AN)

amplitude (written as

i

N
[V

101,
.S
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may be finite at t = 0 and satisfy'angular momentum conservation.

1, 1
2 'l:‘z

If, however HS’E' ‘receives contributions from a single Regge

pole the factorization argument given above implies that
1 : v ' )
oc [(-t)2]° ~ t. . , L (c.1.16)

Thls predlctlon is dramatlcally contradlcted by the data (Boyarskl et

al., l968a b) on N - x N' which dlsplay sharp forward peaks. The

argument leadlng to (c.1. 16) flrst was stated by Drell and Sulllvan (1967)
Another clas51c example ocecurs in np - pn, i.e. neutron—proton

charge exchange for which the amplltude

@. conStant, by angular momentum conseryation,
‘ ' (c.1.17)

L 1.1 1
H 22 2272
s

@ t, in a one-pole model.

The lattef predlctlon is again contradicted by data (Manning et al.,
1966) whlch display a sharp forward peak. Further references for
photoproductlon may be found in Jackson and Qulgg (1969, 1970). Ap
enllghtenlng dlscuss1on of the behav1or at t =0 1is given in Appendix
B(e) of Jackson (1970).
| - d) Conspiracy

The result (C.1.15) which followéd from factorization and

parity indicates that_no mafter how many different Regge poles

: ' 1g(Hqy =ty [F ok
contribute to the scattering amplitude, H, @ (-t)zfl 13 h|}_

[y o= ),
rather than (-t)Z L 2 '3 4|

as expected from rotational
invariance. Such a prediction is not however inevitable and in

viewvdf_the experimental situation one may try to thwart the

factorization argument by considering two poles which differ only in
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thelr values of " 1P and whlch collide 1n the j' planelfor;o = 0,
Before giving the result I note that such a consplracy of poles is not
the only way around the argument. All that is requ1red is to add a

contrlbutlon which does not factorlze, for example the absorptive

corrections discussed in Sec. V.l. Factorization holds for pole residues,
so Regge cuts are exempt from its restrictions. An understandable and

didactic treatment of conspiracy in terms of poles is given by Leader

(1969), and a more detailed discussion than the one I give here appears
in Cohen-Taonoodji, Salin, end Morel (1968). I reproduce the crude
results of Fox (1967) which grevsufficient for p?actical purooses.

Thus the s-channel reeidﬁeufunctions g correSponding to the
originai Regge pole and h_ corresponding to the conepirator Regge pole

must satisfy

l’pl'UQ—“3+ou

g g -h. h e (-t)2 ~ (Cc.1.18)
and by parity |
Ky Hly=H, =1
g g  +h h ( )2l (c.1.19)
HBHl “hug 'HBMl HMHQ )
A consistent solution is to take
» f 1 p, - 1 ) .
. 5' a ub,'? -
« (-t) »  for fu -p | #0
h 8 4 U : _ (C.1.20)
Habp ™ Hakp - (—t)% . for h-n | =0
J s : My Hb -
\ o . o
and : L o =
g = o+ 1h (1 + () for by oy > O (c.1.21)

hghhy
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' 1 o
whereas the coefficients of (-t)2 for Mg=Hy = O are arbitrary. This

is the prescription of Fox (1967).

It is worthwhile to illustrate it with a simple example. Consider '

" the s-channel nonflip amplitude for photoproduction mentioned above.

Before conspiracy we have

® 8,18 .1 [(-t)2]7 [(-t)2]" @« t

s 2 (C.1.21)
but after conspiracy,
O:%: l;'.% »
BT e e qg )
oo iny [l + 0’(t)hh1 s o)1
-h h
0,-1 %)"é‘ s (C l )
« h h; 4+ (Mt
0,-1 _é' '% ( )
o« 1+ O) J
_ ' : | ’ 0.Lt..1 -1
is finite at t = O. The amplitude related by parity to Hs rar 2]

which is a double-flip amplitude in the s-channel, continues to vanish

as t, as required by rotational invariance. Thus

-O;‘%:'l:% o | |
i * 80,_1 g%f"% ¥ ho)"'l a

< oc  t. (c.1.23) "

-

1 _
22



-178-

e) Putting in the Physical Region Boundary
» ‘Nonasymptotically:

I adopt the same prescription as was used by Fox (1967) and
by Cohen-Tannoudji, Salin, and Morel (1968), which is to multiply Eq.
(C.1.2) by the factor -

-+ . - -
A o A T S (R T Y
53 sin 2 . cos 52
5o/ 2 R S~

P

D

@ J|H1THeH Y| o |y mHotHahy |

1
(-s/t)2 sin 28_ cos 5o : . (c.1.2k)

i

Two objectibns mayvﬁe raiéed_against.ﬁhis'form; The.first is that upon
crésSing to the t;channel we éhdﬁid find in addition to the Regge pole
at a(t) a sequence of p;rallel trajeétories, integrally spaced fér

all t; :This reflecté the faéﬁ fhat ourfrééipe is not a proper one for
moderate values of s. The second flaw, noticed by Fox, is the lack of
proper analyticity in s. Thus if the Regge pole makes a particle of
spin J at t = M2 6ur reéipe does not force the pole residue in Ht'
to have an s-dependence xnldj(et). One expects this shortcoming to_be

more important, the nearer the particle is to the physical region.

» Y

For the pion Regge pole Fox (1967) reports 50% nonasymptotic corrections
at s = 5(GeV/c)2. This reinforces my claim, made at the beginning of
this section that the Reggeized s-channel amplitudes are more useful

for model calculations.than for detailed fits.
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. Finally let us state our phenbmenologiéal pfescription in

detail.

k), 2 b
H 3 LeP1M2

0.+ gy =u
, * 272 Ly
] - ’€23€3h€h2A2A5 (-l)‘ (-1)

P_P
Ny Ty TP

ol [ sl oy

ST ’ cos. 5~ 2 sin no(t)

. gu5ui(ﬁ) g“h“z(é),(jggj>  “{, : | (¢,1,25)

4 _%iua-ub1 S
u =) ", and g 1is regular in &.

o) -8 t)
o) = Fug, M (55

where g
. Hg,
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