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I. INTRODUCTION 

The recent fashion of describing two body to two body hadronic 

processes in terms of branch cuts (together withthe usual Regge poles) 

in the crossed channel complex angular momentum plane seems to hold 

great promise for the accommodation of high-energy scattering data. At 

present Regge cut models are much too flexible to have real predictive 

power, but there is some reason to hope (see Chapter vi) that under-

standing will be gained through a study of the interplay between Regge 

cut corrections and duality-breaking schemes. In this thesis I will 

discuss the formulation of a model amplitude for the Regge box graph, 

which represents the physical picture of beam particle and target 

particle interacting twice, and the use of such an amplitude in two 

cases of experimental interest. The first obtains when normal quantum 

numbers are exchanged in the t•-channel but simple Regge pole descriptions 

fall to represent the data adequately. [Normal quantum numbers are those 

which occur in the simple quark model. For bosons these occurin the 

su() product 3®3 whereas for fermions they are contained in 

All other quantum numbers are "exotic.'] In such instances 

it has become common practice to invoke the virtues of the absorptive 

peripheral model (Jackson, 196) by considering amplitudes in which 

elastic scattering either precedes or follows the quantum number 

I 

	

	
exchange. The second case is that in which both Reggeons represent 

quantum number exchange, so the amplitude may represent the exchange 

of exotic quantum numbers in the t-channel. In the latter circumstance 

the box graph presents an alternative to the exchange of a single exotic 

trajectory. 
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The rejection of the idea of meromorphy in the j plane and the 

concomitant consideration of Regge cuts are motivated both by theoretical 

notions and byphenomenological necessity. All dynamical models of 

scattering amplitudes.extant require the existence of branch cuts in the 

angular momentum plane. None of these models is sufficiently mature 

to permit the calculation of the discontinuity across the cut in 

interesting cases, but the existence and location of the branch points 

can be stated with some certainty. The graphical approach employed here 

suffers from this ambiguity, but by appeal to the successes of the 

peripheral model with absorption it is possible .to formulate a definite 

if arbitrary model. Phenomenologically, the fact that Regge poles 

don't work has been widely documented in the past year, even by 

adherents to the aesthetics of meromorphy (Barger, 1969). I hasten to 

add that the difficulties with Regge poles are quantitative and in no 

way minimize the remarkable fecundity of the Regge pole hrpothesis 

(Regge, 1959, 1960; Chew and Frautschi, 1961, 1962), which is exposited 

by Barger and Cline (1969). The case for Regge cuts has been reviewed 

by Chiu (1969), Fox (1970), Jackson (1970), and Sonderegger (1969). 

While it is important to remember that Regge cuts are not a phenomeno-

logical panacea (see Fox, 1970), it seems evident that complicated 

j-plane structure is unavoidable. 

The plan of the succeeding chapters is as follows. In Chapter 
	 I 

II, I list some of the termino1or and classical results of S-matrix 

theory, to establish a frame of reference for later discussions. The 

history of the Amati-Fubini-Stanghellini branch cut takes up most of 
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Chapter III. Chapter IV contains a brief discussion of a particular 

Feynman diagram which produces a prototype Regge cut. It is there that 

I make contact with the recent work of Gribov on a Reggeon calculus. I 

formulate a phenomenological amplitude for two-Reggeon exchange in 

Chapter V. In Chapter VI I discuss some aspects of the relevance of 

Regge cuts to the questions of exchange degeneracy and the existence 

of exotic trajectories. Chapter VII is a summary of the work. 

Conventions and such are collected in the appendices. 



- 

II. SOME NECESSARY RESULTS FROM S -MATRIX THEORY 

I record here results from analytic S-matrix theory which will 

be useful in the succeeding development. All of this material is 

classical, but it will be valuable to have the concepts fresh in mind 

later. The reader is referred to Eden, et al. (1966) and Collins and 

Squires (1968) for more complete expositions. 

To make this rather dull, technical chapter somewhat readable 

I have relegated many definitions and conventions to Appendix A. The 

intent of the present chapter is merely to remind the reader of terminol-

ogy to be used later; therefore I ignore the complications of spin here. 

1. The Scattering Amplitude: Analytic Structure 

In this thesis I am concerned almost exclusively with the four 

line connected part of the S-matrix, i.e. the two body to two body 

scattering amplitude. The kinematical quantities for two body scattering 

are given in Chapter A.l. The S-matrix and scattering amplitude for a 

general process are written down in Chapter A.3. Here I write the two-

to-two amplitude as A(s,t,u) or, suppressing the redundant variable, 

as A(s,t). 

In each channel there will occur the singularities required by 

unitarity. Thus there are simple poles corresponding to bound states, 

and branch points corresponding to production thresholds (Eden, 1972). 

Traditionally the branch cuts in the relevant energy plane are drawn 

along the positive real axis as shown in Fig. 11-1. (The minor compli-

cations of complex thresholds which occur for unstable particle scattering 

are ignored here.) With this choice the physical s-channel amplitude 

is the boundary value 
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urn 	A(s-1-i€,t), 	 (ii.i.i) 
E9 O+ 

rn 

and is Herniitian analytic. [That is, A and its Hermitian conjugate 

At are boundary values of the same analytic function. See Eden, et al. 

(1966), Section 4.6.1 

2. Dispersion Relations 

Assume that the singularities shown in Fig. 11-1 represent all 

the singularities of A(s,t) on the physical sheet. Take,,C.'  as the 

contour of Fig. 11-2, inside of which A(s,t) is regular. We define 

the discontinuity functions at fixed s, 

Dt(s,t) 	(1/2i)[A(s,t) - A(s,t_)], 

D(s,u) 	(1/2i)[A(s,t(u)) - A(s,t(u))], 

where t = urn (t ± i€), the discontinuity being taken across all cuts 
- 

in t (or in u) at fixed s. By Hermitian analyticity 

A ( s,t *) 	A*(s,t), 	 (11.2.2) 

so 

Dt(s,t) = (1/2i) Disct[A(s,t)], t > t; 

Du(SU) 	(1/2i) Disc[A(s,t(u))],  u > u0 . 

Iw 	
Then, suppressing for brevity any bound state poles, we can apply Cauchy's 

theorem and.obtain the result 

* I denote complex conjugation by a star (*) and Hermitian conjugation 

by a dagger (t). 



A(s,t) = (1/2i) . f dt' 	st) 

Let us assume that A(s,t) —O as Iti -*w. Then the contribution to 

the_integral_from the semicircies at infinity will. vanish This gives 

A(s,t) 

00 	r t1 Dt(s,t') 	

fUO 

du' D (S,Ut) 

= Pole terms + ( l/)J 	
.tt - 	+ (i/n)

0
(11.2.5) 

This form, which is just a special kind of Hubert transform, is a 

fixed-s dispersion relation. 

If instead of vanishing at infinity the aniplitude is bounded by 

an integral power (of t), we can ensure convergence by making a number 

of subtractions. . 

3. The Mand.elstam Representation 

• 	An important extension of the single-variable dispersion relation 

is the double dispersion relation conjectured by Mandeistam (1958), for 

whiäh a general proof, even in perturbation theory, is lacking. To 

proceed, we define the discontinuity in s of Dt  to be 

• 	 p8t( 5 ,t) = (l/?i)[D(s+,t) - D(,t)], 	s > b1 (t) > 0 

and 

pt(t,u) = (1/2i)[Dt(u+,t) - Dt(u,t)], 	u > b2 (t) > 0 

(11.3. 2 ) 

so that 
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r ds" 	(s",u) 	

lb 

du" t (s,u") 

00  

Dt(s,t) = ( 1/n)] 	 + (1/ 	
U" - u 

b1 (t) 	 2(t) 	 ( 11.3.3) 

The boundary functions b 112  have been given in general by Kibble 

(1959). Likewise we can write 

rds" pSU  (s",u) 	rat" 	(t",u) 
D(s,u) = ( l/i)J 	 + (i/)J - 	" 	- 	( ii..)i.) 

Substituting Eqs. (11.3.3)  and (II.3.4) into (11.2.5) we get the 

Mandelstam• representation, 

r 	p 
A(s,t) = Pole terms + 	J dsf1 - s)(t' - t) 

+ 	fdstvf thi' 
ps') + 	fdt?f"P:,u") 

	

Notice that the double spectral functions pj 	are symmetrically defined. 

Thus 

= (-l/l){A(s,t) + A(s,t) - A(s,t) - A(s,t + ) 1 

	

= (-) Dise5 Dt(s,t).. = .(-) Disct D 5 (s,t). 	(11.3.6) 

An understanding of the roles of the three double spectral functions 

5t' su' tu is needed for the work of Chapters III and IV Let us 

therefore review the connection between signature and double spectral 

functions. 



4, Signatured Amplitudes and the Mandeistam R epresentation * 

In the z = cos 9 plane there lie right-handsingularities 

of the scattering amplitude corresponding to t-channel singularities, 

and left-hand, singularities corresponding to u-channel singularities. 

These are illustrated schematically in Fig. 11-3. it is more convenient 

to work with amplitudes which possess only right-hand singularities. 

Therefore I construct amplitudes of definite signature (in the s-channel) 

as follows, Let 

A(s,t) = AR(s,t) + A1'(s,t), 

where AR  contains only right-hand singularities and AL  only left hand 

ones. Thereupon we can write dispersion relations in z for these 

functions 

AR(s,t) = tes 

	
(s,t1-z5(s,t) 

u. 	 1 	 dz' D(s,t')

j2z s (s,t 

AL(s,t) 	
z (s,E-s-u) - z 5 (s;t) + - z 5 (s,t) 

S 	 fzo( S , F,-S-uo) 

(ii..2) 

with t' = t(z',$). 

4 

* Cf. Collins and Squires (1968), Chapter II. 



Now define amplitudes of definite signature, 

A±( s ,t) R  AR,t(s,z5)) .± AL(s)t(s_z5)), 	 (11.4.3) 

each of which has, by definition, only right-hand singularities. 

Neglecting for simplicity any bound state poles we may write dispersion 

relations for 

A±(s,t) 

= 	

dt' Dt(s,t') 	f 	du'D(s,u') . 	 (n.4.4) 

In terms of the double dispersion representation, this becomes 

A±(s,t) = !fdsHfdt 	
p5t(:",t')±p5(s;',t') 

+ 	fdu'f dt p(t',u'
T ) ± pt(u",t') 

(uvr 
- u)(t' - t)  

Equation (11.4.5) may be rewritten more compactly as 

CO 

D±( t') 
A±(s,t) 

=

dt' 	, 	 , 	 ( 11 ..6) f~T0=Min[t0,t(s,u0 )] 

with 

Dt±(s,t?) 	fTS4
- s) 	57T,t') ±

su 

+ f(u" 	y [pt(t',u " ) ± ptu '.' t]• 	(11.4.7) 

It will be convenient later. to define also the s-discontinuity function 
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D5±(s,t) 	 7t~ _ t) [p 5 (s,t') ± 	 (II 4 8) 

.5. The Froissart-Gribov Projection 

Putting back possible poles into (11.4.6) we have the, dispersion 

relation 	. 

	

A±( s ,t) = 	
- t)  

t-poles 	 u-poles 

00 

+fT

D ±(s,t) 

-

0  

	

= 	
, 	 - z 5 (s,t)] 

t-poles 

	

+ 	9 1 (5)/[z8 (s,E - s - M 2 ) - z5 (s,t)] 

u-poles 	 . 	 .. 

CO  

	

- 	 1 	 Dt±(s,tf) .. . 	 ' 

+ ; 	

, dz 	
:' - z (s, -t)  

)z5 (s,T0 ) 

where 

= g/2p12P 4 , 	(s) = 9/2p12p34 	(II 5 3) 

and z' = z5 (s,t'). We now define a partial wave projection, 

* 	 . 

See Froissart (1961), Gribov (1961). 
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Cl 
A(s; 2) = (1/321T)J 	dz 5  P2 (z) A(s,t[s,z]).  

-1 

Inserting (11.5.2) into (II.5.4),  we invert the order of integration and 

use Neumann's formula [HTF 1, Section 3.6 (29)] 

C l  
Q2 (z) = (-1/2) j 

	

dz' P2 (z')/(z' - z)  
-1 

to perform the z integral, 

A±( s;  2) = (1/16it) 	1t() Q2(z5[s,Mt2]) 

±g (s) Q2 (z5 [s, E - s 
-U. 

+ (l/l62)f 	dz' Dt ±(st t ) Q2 (z'). 	(11.5. 6 ) 

z5 (s,T0 ) 

Suppressing poles, we are able to write two expressions for the 

partial wave projection of signatured. amplitudes, 

A±(s, 2) = (l/l62)fzs(s,TO) dz' Dt±(s,tt) Q2 (z'), 	(115 7) 

 

* References to the Bateman Manuscript are cited as [Name Volume, 

Section (Equation)] where name is HTF for Higher Transcendental 

Functions or TIT for Tables of Integral Transforms. See Erdelyi 

(i9). 
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and 

A±( s ; 2) =. (1/32) f dz P2 (z') A±( s ,t.),  

for integer 	2. Now D2±(s,t)  is the t-discontinuity of A±(s,t). 

It therefore exists only for z > z5 (s,T0 ). On the other hand, the 

discontinuity of 0,2 (z) is 

(-/2) P2 (z), -1 <z < i 

IinfQ2 (z)}  

	

.0, 	jzj > 1, £ integral. 

In .con$equence we can combine (11.5.7) and (11.5.8) as 

A±( s ; 2) = (_i/322)f 	dz' Q2 (z') At(s,t'), ( 11.5. 10 ) 

or 

where the contours 	 are shown in Fig. 114. The partial wave 

series for the signaturedampiitüdes, corresponding to the inverse of 

is 	 . 

00 

A(s,t) = i6 	(22 + 1) A±(s;  2) P2 (z5 ). 	(ii..ii) 

Since P2 (z) is even or odd in z for integer £ according as £ is 

even or odd it follows that 

+ 
A. (s; £), £ even 	. 

A(s; 2) = 	 (11.5.12) 

A(s; 2), £ odd. 
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It is also useful to remark here that A±(s,t)  contains the even) odd 

part of A(s,t). 

6. Singularities in s of the Partial Wave Amplitudes 

It is evident, from (II.5.10)  that .A±(s;  £) has in the S 

plane the same right-hand singularities as A±(s,t)  except that it will 

not necessarily have all the. poles. There will be in addition a set 

of left-hand singularities generated by the pinching of t- or u-channel 

singularities with the branch points of Q0 (z) at z = ±1. For any 

singularity of A±(s,t)  at t = t, A±(s;  t) will have a branch point 

at 

z5(s,t1) =' ±1. 	 (ii.6.i) 

For nonintegral ..e the left-hand singularities are rather more 

complicated, for Q(z) has four branch points and is cut between 

= (—co, -i), as well as z = (-1,1). Thus Eq. (11.5.10) remains valid 

for noninteger £ but the contour 	must encibse the real z-axis, 

for 1 > z > —cc •  The new contour is represented in Fig. 11-5.  The 

generalization of (11.5.9) is given by HTF 1, Section 3.3. ( ii, 12): 

(-/2) P2 (z), 	-1 K z <. 1 

sinttQ(-z), 	-co<zK -l. 

This provides us with two expressions for the partial wave projection, 

namely 

A±( s ; t) = (l/l62)fZOO(s',TO) dz' Dt±(s,tt) Q2(zl) 

5 



- 

as before, and 

A(s, 2) = (1/2) f dz' 	A±( s ,t?) 

- (sin T ri/16,T2) f 	t  Q(.-z') A±( s ,tt). 	(11.6.) 

The utility of these equations can be enhanced somewhat through elimina-

tion of the extra cut for z < -1. This may be done (see Collins and 

Squires, 1968for the arithmetic) by writing, dispersion relations not 

for the full partial wave amplitude A±(s;  2) but for the "reduced" 

partial wave amplitude 

A±( s , 2) = A±( s , 2)/(p12p)2  

The results may be summarized as 

z5 (s,T0 ) 

Im((s, 	h 	= (1/32) 11 	dz' p2 (-z') Dt±(s,t)(_pl2p) -2 

+ (1/162)f 	dz' Q2 (z')[l 	e 2]p(t',u f )(p123 ) 2  (II 6 6) 

	

ptu o 	 .. 

on the left-hand cut. For physical 2 the last term does not contribute. 
• 	 • 	 • 	 • 	 • 	 . 

On the right-hand cut, 

• 	 • 	 • 	 . 

00  

Im((s, £))r h = (1/16 2)dz Q,W) 
I(s,T 

0
) 

	

X [p5 (s,t') 	p5(s,t')](p12p3)2 	 (ii 6 7) 



-15- 

This is a most useful result, for it states the connection between 

signature and the double spectral functions. We shall find it useful 

in Chapter IV. 

* 
7. Sommerfeld-Watson Transforms 

Heretofore we ignored, for the sake of brevity, the subtractions 

which might be necessary to ensure convergence of 

A±(s; £) = (i/i62)fzOO(s,TO) dzT Dt ±(s,t t ) Q2 (z' 

5  

In reality, this equation is likely tobe undefined as it stands for 

many values of s. But if Dt±(s,t?) is power-bounded, i.e. 

Dt ±(s,t t ) 

S-4Oo 

N(s) an integer; 0< a(s) < 1 

then we may subtract Eq. (11.5.2) N(s) times at the point z = 
019 

whence 

+ 	
N(s) 	

dz' Dt±(s,t T ) 

A(s,t) = 	N-l's 
+ 	

J 	(z - z ) z?N 
z 5 (s,T0 ) 	s 	

(11.7.2) 

In (.11.7.2), 	1(s,z 5 ) is a polynomial in z 	of degree N-i, nd 

the remaining integral converges. Now applying (Ii...ii-.) we obtain 

See Sommerfeld (191 9), Watson (1918), Collins and Squires (1968). 
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A(s; 2) = (1132r) ] 

	

dz P2 (z) 

-1 

[i(5Zs) 	

z 	 dz' Dt±(stt)3 

f(s,TZ - z)z 5   

(1 
As / 	dz p2(z)zM = 0 for M < 2, we put 

J_1 

(z/z)N = [1 + ( z5 - 	 expand in powers, and get 

A±(s; 2) 
= (

1/l62)JzOO(s,TO) 

	

dz' 	2(z') Dt ± (s,t l ), 	(II.7.) 

5  

for £ > N(s). Since [HTF 1, Section 3.9 (21)] Q2 (z) 

the integral in (II.7. 1 ) will converge. 

Providing that the Mandeistam representation is power bounded, 

the higher partial-waves are given uniquely by the double spectral 

functions, whereas lower partial-waves may depend on arbitrary subtrac-

tion constants. To proceed to the Sommer feld-Wat son transform, we 

suppose that the signatured partial-wave amplitude A±( s ; 2) defined 

in (11.5.7) is an analytic function of £ (in the physicist t s sense) 

* 
in the right half-plane. 	The import of this assumption is that we can 

continue (II.7.4) below Re(2) = N(s) to interesting physical values 

of 2. Observe that because the only singularities in £ of Q 2 (z) 

are simple poles at the negative integers [HTF 1 1  Section 3.3 (3)], the 

* 
Thus, by analytic we mean that only isolated singularities occur. 
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amplitude A±(s;  2) is holomorphic (free of any singularities) for 

Re(2) > N(s). 

We now replace the partial-wave expansion (11.5.11) by a contour 

integration in the 2-plane, 

A±( s ,t) = 	f /CJ 

d2(22 + 1) A±(s;  2) P2 (-z) 

Siflj2 

which is illustrated in Fig. 11-6. The contour includes the nonnegative 

integers, but avoids any singularities of A±(s;  2). The integrand has 

a pole at each integer n, for which sin 3T,8 	(_1)fl(2 - n)it. Since 

(.-i)' Pn (Z) [HTF 1, Section 3.3 (10)] the pole residues are 

2i Pn(zs) A±( s;  .n)(2n.+ 1). 	 (11.7.6) 

With this information it is easy to veri±'y (Cauchy's theorem) that 

(ii..) is equivalent to the partial-wave series 

= 16 	 (22 + 1) A±(s;  2) P2 (z5 ). 	(11.5.11) 

positive, 
integral £ 

We now wish to continue in 2, and we assert that A±(s;  2) as 

• 	 givenby (II.7.4) is the unique analytic continuation of the partial- 

wave amplitude for integral 2. For the proof, we invoke Carlson's 

theorem (Titchmarsh, 1939). [Although we did not remark upon it in 

Section 11.5, the point of the Froissart-Gribov projection was to build 

a continuation which satisfies the conditions of Carison's theorem.] 
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If f(z) is regular and of the form 

O(eXI), x < 
iT, for Reid >A, and f(z) = 0 

for an infinite sequence of integers z = A,A+1,"•, then f(z) E 0. 

We notice that 

Q(z) 	COe[(2 + ) logz + (z2 - ') j] 	(77) 
ieI—oo 

[HTF 1, Secion.3.9 (i)]. Thus if the integral (II.7.4) converges, it 

is the lowest values of z' in the range of integration which d.ominate 

the high partial-waves. That is to say, the high partial waves are 

controlled by the nearest singularities (in t or u). If the nearest 

singularity is at z 0, then (subject to the assumption that the amplitude 

is power-bounded) 

2 	1 

+ -e[log(z0+(z0  
A(s; £) -) Ø(s) e 	 , 	 ( 11.7.8) 

where 0(s) is a function of s. The asptotic form (11.7.8) satisfies 

the requirements of Carison's theorem (which is applied to the 

difference between the t!truel? amplitude and the Froissart-Gribov 

continuation), so our continuation in £ is unique. 

Next we distort the contourC into ,,C', opening it up with 

a semicircle at infinity and a line parallel to the imaginary axis at 

Re(2) = L. This is shown in Fig. 11-7. So long as L > N(s), no 

singularities will be encountered as this displacement is-made. Thus 

Moreover, the contribution from the semicircle vanishes 
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because of (11.7.8) and 1P2 (-z 5 )/sin rt€J 	 We continue to 
CO 

distort the contour by rduc±ng L. For L <N(s), we shall encounter 

singularities in the £ plane. These are swallowed by the contour and 

we pick up their contributions as prescribed by Cauchy. The situation 

is shown schematically in Fig. 11-8, for L= -i-. The result of moving .  

the contour back to ReU) =— is 	. 

f —1+iOO 
2 

A *(s 0 	 &e(22 + 1) A(s;)  P2(-z) 

-i. 

— 

	

162(2ai(s) +i) 1 (s) PC,(z5 )/S1fl a1 (s) 	' 

poles 	 1 

di 

. f , 	 ( 22 + 1) A(s; 2) P2 (-z.)/sin 2. 	(11..9). 

• but s 
t-3  

The first term, the background integral, vanishes as 'z5 - co leaving a 

sum of Regge poles and Regge cuts. 

In order to make the complex angular momentum analysis useful 

for physics, one has to ensure that the Regge poles and Regge cuts 

uncovered in the distortion of the contour dominate for large energy 

over the contribution of the background integral. In(11.7.9), we 

pushed the contour back to Re(2) = -. For large values of z, 

. 	 (11.7.10) 

* See, e.g., Collins and Squires (1968), Section 11.7-9. 
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if a is not a negative integer [HTF 1, Section 3.2 (23)]. Therefore 

the first term in (11.7.9), the background integral, is least important 

(as z — o) for Re[2) = --.; for example, Regge poles with A(s)>--

will be more important. As Re(.) is decreased from --, the asymp-

toticforrn (11.7.10) of Pa
seems to indicate that the background 

integral will become asymptotically dominant over the singularities in 

the right half £ plane. 

The way out of this difficulty was found by Mandeistam (1962), 

who demonstrated the dominance of the right-hand singularities as 

z —.00, for Re(2) < - 	in the background contour. We follow the 

summary of Collins and Squires (1968), Section 11.12. Rewrite the 

partial-wave series (11.5.11) by adding and subtracting a piece: 

00 

A±(s,t) = i6 	(2 + 1) A(s; 2) P 2 (z5 ) 

+ (l)2(22) A(s; £-)  

co 

- 16 	(1)2 (22) A±(s; £-) Q2 (z).  

Now using [HTF i, Section 3.3 ()] 

P2(z) - 1 Q2 (z) 	= - ! Q21(z) 	
(11.7.12) 

sin 1T2 	c cos t2 	r cos rt2 ' 
3 

we obtain 
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fL_iOO 

 L+ioo 
+ 	 16 	 Q 	( 

A-(s,t)' = 	d(2 + 1) 
A±(s;  t) 

COSjt2 

00 

- 	'(22) A(s; --) Q2 i(-z 5 ) 

+ (Regge poles) + (Regge cuts), 	 (11.7.13) 

• 	 where -L' is the smallest half-integer, greater than L. Since [HTF 

1, Section 3.2 ( 1 1)] 

Q2 (z) 	 (II.7.1) 
• 	 Z-9'OO 

the first and second terms in (11.7.13) die as z 	 for L < -, and 

the dominance of the Regge singularities is assured. 

8. Mellin Transforms* 

Mellin transforms provide another technique for calculating 

high-energy behavior by picking out the rightmost singularity in the 

£ plane. The Mellin transform F(c) of a function f(s) is defined 

by 

F(a) 

= 

f ds f(s) 	 (II 8 1) 

The inverse transform is 

See Bjorken and Wu (1963); Courant and Hilbert (1953); Eden, et al. 

(1966), p.  151. 
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fCr  Cr+iCO .  

f(s) = (1/2ri) 	dx F(a) sa, 	 (II 8 2) 

—ioz 

where F(a) is analytic on the line Re (a) = a. These are simply 

the Fourier integral formulae in the variables in s and -ia0 

An important class of functions f(s) is given by 

a0 	-i 
s (2ns) b 
	

s>1 

f(s)  

0 	ssl 

for which the Mellin transforms are poles of order b if b is 

integral, 

F(a) = r(b)(a - a)b 	 (II 8 ) 

For noninteger values of b, F(a) is cut from a =, — oo to a = a0 ; 

then the integration contour specified by the parameter a must be 

chosen to avoid the cut. 

The application of Mellin transforms is similar to that of 

Sommerfeld-Watson transforms. For example, if F(a) is regular in a 

region, except for poles, then we may displace the contour 	(a) to 

the left and obtain a.sequence of contributions from the poles encoun-

tered. As in the case of Sommerfeld-Watson transforms, the rightmost 

singularity in a will dominate the behavior of f(s), as s -. 
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FIGURE CAPTIONS 

Fig. 11-1. Branch cuts in the complex t-plane arising from thresholds 

A 
	

in the t-channel (on the right) and in the u-channel (on the 

left) for a fixed value of s. Two poles are also shown. 

Fig. 11-2. The Cauchy contour of integration in the complex t-plane, 

used in writing a dispersion relation. 

Fig. 11-3.  The schematic singularity structure of Fig. 11-1, mapped 

onto the z8 -plane. 

Fig. II-4. Integration contours in the complex z-plane, for the 

Froissart-Gribov projection (11.5.10). 

Fig. 11-7. Contours of integration in the z5 -plane for the Froissart- 

Gribov projection when £ is complex. 

Fig. 11-6. Integration contour for the Sommerfeld-Watson transformation. 

• Fig. 11-7. The opened contour with a semicircle at infinity. 

Fig. 11-8. The contour pushedback to • Re(t) = -1/2. Two schematic 

Regge poles and one schematic Regge cut are shown. 
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III. THE AMATI-FUBINI-ST.ANGIIELLINI BRANCH CUT 

Historically, the possible existence and potential importance 

of Regge cuts were first acknowledged by Amati, Fubini, and Stanghellini 

(1962a,b) [hereafter, AFSI, in the context of the multiperipheral model. 

In this simplest case the cuts are only illusory, and result from an 

unjustified truncation of the unitarity sum (Mandeistam, 1963; 

Polkinghorne, 1963). I shall review the AFS calculation and discuss 

the cancellation of the apparent cut by many-body contributions to the 

unitárity equation. Then I will specify the conditions under which 

Regge cuts can be generated, and note some consequences of the existence 

of cuts in the j plane. 

1. Generation of the AFS Cut by Two-Body Unitarity 

Mati, Fubini, and Stanghellini considered the effects of 

s-channel unitarity upon their multiperipheral model. In the simplest 

case of a single iteration in the s-channel, one considers the set of 

graphs shown in Fig. 111-1, where each blob (or bubble) represents a 

complete sum of Fey-nman graphs. That is, 	is a ±'ull (off-mass- 

shell) scattering amplitude. To study the two Reggeon cut we specialize 

to the diagram of Fig. 111-2 in which the blobs are represented as 

Regge pole exchange amplitudes. Following AFS, let us call T(s,t) a 

Regge pole amplitude and call A 1 (s .,t) the absorptive part of the once-

iterated amplitude. The Regge pole amplitude is given by 

T(s,t) = c(t) ()(/)a(t)  

where 	(t) is the signature factor, 	+ e_1(t))/in a(t). The 

first iteration gives 
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fA1 (s,t) = (8) -2 	
dQ T0  (s,t') T0 (s,t"),  

where t' is the momentum transfer squared through the first Reggeon, 

is the c.m. solid angle between the initial and final states, and t' t  

is the momentum transfer squared through the second Reggeon. As (111.1.2) 

is a unitarity equation, the intermediate states are on the mass shell. 

This expression can be manipulated into the form 

A1(s,t) = 2(8)_2 s 	f dt'  f dt" T0*(s,t) T0 (s,t") K(t,t',t"), 

(111.1.3) 

where 

81-a2 - 	- c2  + 2ab + 2ac + 2bc] it(a,b,c) = 
[-a - b - c + 2ab + 2ac + 2bc] 

With the amplitudes (111.1.1) as input, this becomes 

A1(s,t) 	2(8)_2.f dt' f dt" c(tt) c(t") (t') (t' T ) 

	

x 	K(t,t',t") (5/s)(t')(tV')_1 	(iii.1.4) 

This displays explicitly all the s-dependence in A1, and we appear to 

have produced asymptotic behavior corresponding to a continuous super-

position of Regge poles or in other words a Regge cut with branch point 

at 

acut 	= Max(a(t') +a(t".) - 1). 	 (111.1.5) 



- 

Indeed, by taking a Froissart-Gribov or Mellin projection [for which 

see Section 11.5-81 it can be shown that a Regge cut occurs with branch 

point at (111.1.5). For more specific results, see Rothe (1967). 

In this, the AFS approximation, the s-channel intermediate 

states are taken to be on the mass shell, and indeed in the approximation 

of two-body unitarity, Eq. (I1I.1.4) is exact. However it was soon 

pointed out by Mandeistam (1963) and by Polkinghorne (1963) that 

truncation of the unitarity sum with two-body intermediate states only 

was unwarranted. Specifically, there are contributions to the unitarity 

sum from "higher order" intermediate states which precisely cancel the 

AFS cut on the physical sheet in the s plane. 

To discuss the cancellation we turn to the Feynman integral 

technique used by Rothe (1967). This route is rather clumsier for 

computation than the Sud.akov variable method but provides good insight. 

2. The Rothe Cancellation* 

When Mand.elstam demonstrated the absence of the AFS cut in Fig. 

111-2, he proposed that there should be an uncancelled cut in the double 

cross diagram shown in Fig. 111-3. He further conjectured that cuts 

should exist only in those diagrams of the form of Fig. iii-t in which 

both blobs contain third double spectra] functions with respect to the 

t-channel 	su 0). This conjecture was verified  for Feynman graphs 

by Wilkin (1964), and emerges easily in Rothes method. 

* The calculation is nicely summarized by Landshoff (1969), and by 

Risk (1970). 
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Consider Fig. 111-2 as a Feynman diagram. The amplitude is 

	

A(s,t) = C 	 2 	2 	 2 	2 
j 	

k2  -m +1€ -k4  -m +1€ 

\ 	R(s, 2 , k22 ,k 2 ) R(s,k32, k22,k2) 	 (iii 2 i) 

where R(s,-t; 	 is the off mass shell amplitude associated 

with the exchange of a Regge pole with trajectory a(t.). Now make the 

change of variables dk. -J' dk 2, which is accompanied by the 

Jacobian 
1 

j= e(D)/D 

(111.2.2) 

D = -16 detl 2k 1.k 3  .I. 

We assume that the limit s - 	can be taken inside the Feynman 

integral, insert the asymptotic form of the Jacobian, and arrive at 

• A( s , t) 	- 
	fdk  2 

f 	2 (-Ic12 , -k32 , t) 

X 	2 
1 
 2 	 2 	2 	R(s,k12 , k

22 ,k 2 ) R(s,k32, k22,k2)] 

	

-Ic2  -m +i€ 	-k 	-m +iE 

(111.2.3) 

Consider the -k22  integration. There is a pole from the propagator 

(-k22  - m 2  + i€) 	which appears below the integration contour, by 

virtue of the +iE prescription. There may also be branch points from 

the two vertex functions that depend on Ic22 . Drawing upon experience 

in perturbation theory (for which see Eden, et al., 1966), we assume 

two properties for the vertex functions: 
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They have only a right-hand cut in -k2 2 , which also appears 

below the integration contour. 

They vanish for large values of 1k2 2 1. 
Property (ii) permits us to close the contour of integration with an 

infinite semicircle in the upper half plane, and property (i) results in 

the integral vanishing. This is shown pictorially in Fig. 111-5. The 

original contour of Fig. 111-5(a) is deformed into the contour sketched 

in Fig. 111-5(b) which, enclosing no singularities, shows that the 

integral vanishes. 

Alternatively we could wrap the contour around the right-hand 

singularities as indicated in Fig. 111-5(c). This must of course give 

the same answer as Fig. 111-5(b), which means that the pole contribution 

(the on mass shell piece) must be canceled by the integral along the 

cut. The procedure of Amati, Fubini, and Stanghellini (1962a,b) amounted 

[Fig. 111-5(d)] to picking up only the pole term from the propagator, 

and ignoring the singularities of the vertex function. 

3. Diagrams with Cuts 

Clearly if we wish to write down a diagram with a Regge cut, we 

must arrange to have both right-hand and left-hand singularities in 

-k22 . The presence of left-hand singularities prevents the distortion 

of the contour which results in Fig. iii-(t) and thereby invalidates 

the proof that the Regge cut vanishes. The simplest change is to replace 

the left-hand side of Fig. 111-2 by a cross (this substitution is repre-

sented in Fig. 111-6). After the replacement, the bubbles representing 

the vertex functions have both left-hand and right-hand singularities in 
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-k22  (which is the total energy-squared. flowing vertically through the 

cross). We ignore for the moment variables internal to the cross, and 

note that because the cross has an su double soectral function it has 

both right-hand and left-hand cuts in -k22  at tixed t. Thus the 

contour cannot be closed in either the upper or tower half plane, but 

as the cross tends to zero faster than 1/k2 
2  fr large Ik2  2 we can 

make the deformation of Fig. 111 -5(c) to obtain an integral over the 

imaginary part of the cross graph. 

Identical arguments apply to the -k 2  integration. Therefore 

to obtain, a diagram with aRegge cut we must ma1e insertions having su 

double spectral functions into both ends of the graph. These insertions 

will then have third double spectral functions in the t-channel sense. 

Finally we see that the simplest graph with a Regge cut is the .Mandelstam 

graph shown as Fig. 111-3. A summary of the calculation of this double 

cross graph is given in the next chapter. 

Cuts in the j plane weaken the analyticity properties of the 

scattering amplitude which can be proved from the unitarity equation. 

In particular the existence of certain fixed-j poles is related to the 

existence ofRegge cuts. Some aspects of the p]'operties of the scattering 

amplitude when Regge cuts are present are discwsed by Collins and 

Squires (1968),Sections V. 4-6.. 
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FIGURE CAPTIONS 

Fig. 111-1. The set of graphs representing one iteration ofthe 

scattering amplitude in the s channel 

Fig. I1I-2. A special case of the s-channel iterations corresponding to 

• 	two-Reggeon exchange.. The Reggeons are represented by 

wavy lines 

•Fig. .111-3. The Mandeistam (double cross) diagram. 

Fig. III-4. A general diagram for two Reggeon exchange. 

Fig 111-5 Contours of the -k22  integration in Eq (III 2 3) 
• 	

(a) The original contour,which passes above the on mass 

shell pole contributed by the s-function part of the propa-

• 	 .gator, and above the right-hand cut in the vertex functions. 

• 	. 	(b) The contour closed in the upper half plane. (c) The 

contour wrapped around the right-hand singularities 	(d) 

The AFS approximation, in which the cut contribution is 

neglected 

Fig 111-6 Replacing the left-hand portion of Fig 111-2 by a cross 
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IV. THE DOUBLE CROS.S DIAGRAM 

In this chapter I shafl.investigate the asymptotic behavior of 

the double cross diagram suggested by Mandelstain (1963) as a prototype 

Regge cut diagram. First I will sketch the calculation by Gribov, based 

on Sudakov's technique. Next I examine a modification of the Gribov 

work, due to Polkinghorne, which removes some of the arbitrariness in 

the technical assumptions. After showing how Gribovts result is simpli-

fied for use in phenomenology, I state a number of objections to the 

graphical procedure. 

1. Sudakov Variables: A Simple Example 

The Sudakov variables (Sudakov, 1956) are particularly suited 

for the calculation of asymptotic values of Feynman graphs, for they 

provide a clear separation between negligible and important invariants. 

As an introductory illustration let us consider the simple two body to 

two body graph of Fig. IV-1, which represents the lowest-order scattering 

amplitude in a scalar 03 theory. Define lightlike four-vectors 

pi = 	

- 	2'l 	 (Iv.l.l) 

p = P2PPij 

where 

s/i) + (s/)(1 - 	2/) 	i/s. 	 (Iv.1.2) 

	

Then (p.) = 0 is negligible, whereas p . p 2 	s is not. Let 

be the transverse part of q i  (in the 3-vector sense) in the c.m. frame: 

4 



k. 	p 	= 0,k. > 0 (spac.ellke). 	 (iv.i.) 

The Sudakov variables ai i k are defined implicitly by 

	

• 	•q.a. p+ 	. p + k..  

at do they mean? Enerr-mOmefltum conservation (q1  + q2  p1  + p2 ) 

implies that 

	

+ k 	0 . 	• 	 • 	. 	 (Iv.1.5) 

a1  + a2  - 	+ 	= l + 2 - 
	+ a2 ) = 1 	(Iv 1 6a) 

or 

+ a 	 = (i - 	 l +2 	
(IV.1.6b) 

As a result we can write s 12  -(q1  + q2 ) 2  as 

	

12 = 	2(0i 
+ a2 )( 1  + 	p 	= s, 	 (Iv 1 7) 

and the momentum transfer-squared as 

	

2 	2 	
2pp 	 . 

	

H 	
-(p1 	

q1) 	= - 	-, 	. 2 	
+ p(a11  + a22 ) 

(i+p) 

- p2a ] 	 (Iv 1 8) 

+ s(l - 	 + p(a11  + a22 ) - p2a21 1 
(l+p) 



For forward scattering, .the Sudakov variables become 

a1 = 	= p/(l 

(Iv.l.9) 
2 

a2 = 
	) 

Having studied the Sudakov variables in a very simple example, let us 

move on to a description of Gribov's evaluation of Mandeistam's..graph. 

2. The Two Reggeon Branch Point 

In this section I sketch the evaluation, using the Sudakov 

technique, of a specific diagram which has a Regge cut, the double cross 

diagram.which is labeled for kinematics in Fig. IV-2. This calculation 

has been done already by Gribov (1967) and by Winbow (1969), and I refer 

to their work for details. Momentum conservation yields 

Pi  +. p = p + p 

k1  + k2 	k 	k : 

(Iv.2.l) 

k = 	-= -k2  + 

q = p1  — p3 	-p2  + Py 

and as usual s 2 -(p1  ± p2 ) 2  and t 	-(p1 — p3 ) 2 . The graph is to 

be corputed asa function of the asymptotic forms of the bubble ampli-

tudes f(k1 ,k,k2 ) and f'(p1  - k1 , q - k, p 2  — k2) in the limit as 

S --->oo for fixed t. In this limit it is supposed that each bubble 

amplitude is a Regge pole exchangeamp1itude. It is further assumed 

that the bubble amplitudes vanish if the momentum transfer (through the 



bubble) or any of the external masses tends to infinity (Mandelstam, 

1963; Rothe, 1967). This assumption,once accepted, motivates some 

otherwise ad hoc assumptions about the significant region of integration. 

For simplicity, assume that all the particles (the solid lines 

in Fig. IV-2) are scalar and have the same mass M. The Sudakov param-

etrization [compare Eq. (Iv.l.l)] is 

k 

= 	+ 1p + k 	 (IV.2.2) 

= a2p + 	+ k21. 
10 

4 	1 	2 The volume element is d k = sIdad6d k1. Consider the left-hand part 

of the diagram (Fig. 1V-3): it involves the denominators 

- 	+ iE = 	1s(i - p) 2  - 	- 	+ i€ 	(IV.2.a) 

-k1)2 	M2  + i€ = a1s(l - p)(1 + p1[1(l - p)2 - 1] 

+ ps(1 + p)2[1 - l(l - p2)] - 	- 	+ iE, 

(Iv.2.3b) 

d3 (k -  k) 2  - 	+ i€ 	p) 2s 

- (k1- k±)2  - 	+ i€, 	 (IV.2.c) 

d4 	-(p1 - k1  + k - q) 2  - 	+ i€ 	p2)' 	+ 	± q2/s] 

	

2-1 	
2/s] (l - p 2 ,K [-p(l -. p) 	-a1 +a-q 	)s 

- (k1 -k +q)2  - 	+ i€. 	 (Iv.2.3d) 
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Now let us assume that the amplitudes 	f(k1 ,k,k2 ) and 

f' (p1  -. Ic1 , q - k, p2  - k2 ) 	are large when their energy variables 

= -(k1+k2) 2 

S2 = - (p1  + p2 - k - 

(Iv.2.4) 

are large, i.e. of order s, at the same time their momentum transfers 

-k2 , -(q - k) 2  and masses [-k 2 i -k22 , -(k1 -. k) 2 , -(k2  + 

are of order unity (SO) If any of these last variables becomes large, 

the amplitude becomes small--by assumption- -and the corresponding region 

is unimportant in the integral. This is the "finite mass hrpothesis" 

made explicit. Winbow (1969). gave an elegant summary of the calculation, 

which I shall follow here. The asymptotic form of the denominators 

{d2d3d] 	is proportional to 

(a) 8(a - 	)/2• 	 (Iv.2.5) 

The factor (a1 ) arises from a pinch between d1  and d2 , whereas 

the factor 	(a - o) is caused by a pinch between d3  and d1 . 

Contributions of parts of the integration region of a1  and p, away 

fromthepinches are of lower order in s. Thus the proof of (IV.2.5) 

hinges upon the finite mass assumption, specifically on the finiteness 

of k11  and (k1j  - k . 

Similarly one obtains from the right hand cross an asymptotic 

contribution proportional to 

2 6(2) 	2 - )/ 	 (Iv.2.() 
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which arises from pinches which are compatible with those in the left 

hand. cross. Consequently, for very large s we find 

a = 0 = 	_. 	 (1v27) 

a result that also may be seen in a more pedestrian analysis of the 

implications of the finite mass hypothesis. 

Assume that the bubble amplitudes factor (as Regge pole ampli-

tudes, to which we shall immediately specialize, do) in the form. 

f(k1 ,k,k2 ) = 91(k12,(k - 	)2 k2) g2 (k22 1 (k2  + k) 2 ,k 

	

X G(k2,2k,;k2 ) 	 (Iv.2.8) 

where the functions g1  and g2  of external masses and momentum 

transfers are Regge residues. A similar form is assumed for V. We 

write the fundtion G as a Mellin transform, 

2 	 2 	Li 
G(k ,2k1.k2) = J11TL1 G2(k)(2k1k2) 

(Iv.2.9) 

f dil  

= 	
G2(k2)(a21s)1, 

where 	= 	+ exp(-iit11)1/sin lcLi  is the signature factor, and -r 
1 

is the signature For Regge pole exchange the Mellin transform is 

GL (k2) = 	- Ø(k2 )] 	 (Iv.2.10) 
1 	 - 

2 	 . with Ø(k ) the Regge tra3ectory. 
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Because of the condition (Iv.2.y) the asymptotic form of the 

Feynman integral factorizes and one obtains the result (Gribov, 196(; 

Winbow, 1969) 

f d2 f d2 	 d2k 
A(st) =2is 
	 £2f(22 

stl2[2 
- Øl()][22 - 	

- 

12  

	

J 	 (iv.2.11) 

where 

	

Nt2 
= 8f(2)' 

f 	
di3l 	

g1g11(i-1)2 

(Iv.2.12) 

and X is the 03 coupling constant. Evidently N g2  is independent 

of § Furthermore (Gribov, 1967; Winbow, 1969) N2 £ is real for 

2 	 12 
-q < 0, so the signature factors determine the imaginary part of A 

by the factor 

Re[ 	I = 	 ( Iv.2.13) 

	

ti £2 	£12 

Finally, using the Mellin projection 

00 

a3 (q2 ) = ds -j-1 Im A(s,q2 ), 

0. 

important cases çf which are listed in (Ii 8 5, 11), one exposes the 

bra -nPh point in the j plane at 
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= Max (Ø1(k). + Ø2 (k1- q)2 - 1), 	 (IV..2.1) 
cut

[k1 

the same location as we found for the AFS cut in Eq. (11 1 . 1 .5). 

3. Polkinghorne's Modification 

The use of the finite mass hypothesis to pick out the significant 

region of integration is somewhat distasteful, because it makes the 

calculation very qualitative. Thus the corrections to the asymptotic 

form are difficult to estimate. Polkinghorne (1970) has invented an 

appealing alternative which is based on the use of Veneziano (1968) 

amplitudes to represent the Reggeons. While the beta functions do not 

have the rapid decrease with external mass required in the Gribov theory, 

the Feynman integrals may be evaluated by the method of stationary phase. 

The result is completely analogous to (IV.2.11). 

4. Application to Physical Processes 

it is convenient to rewrite (Iv.2.12) as 

°° ds 

	

N22 

= f 	A22 (s1 ,k1 ,k2 ) 	 (iV..1) 

where 

	

A22(s1,,k2) 
= 	

fa f1f d2k111 1(1 - i ) 2  

d1d2d3d2  

(Iv. 1. .2) 

is the particle-Reggeon scattering amplitude and s = -(p1  + k1 ) 2  = as. 

We distort the contour of integration [shown in Fig. IV-)-i-(a) for Eq. 

(Iv..l)] to close on the right-hand cut of A2 £ (s 1,k1 ,k2 ). in the 
12. 	 . 
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s1  plane. The final configuration, which appears in Fig. IV-4(b), 

leads to 

N22(k1,k2) =  

fS l  ( 0 ) 

ds1  Im(A22 (s1 ,k1 ,k2 )), 	M. 3) 

where s1 (0) is the right-hand branch point. Gribov and Migdal (1968) 

wrote this form for N and gave:a plausibility argument that the 

absorptive, part of A2 £ (s 1 ,k1 ,k2 ) should satisfy a unitarity condition 
.12 

analogous to the one for normal scattering amplitudes. The first few 

terms of such a "unitarity" sum are depicted in Fig. IV-5. 

Kaidalov and Karnakov (1969a,b) retained only the first term in 

the sum and assumed that the single particle intermediate states could 

be replaced by a sum of narrow resonances. In this approximation 

[cf. (Iv.2.11)] the amplitude for a -.*b.. is given by 

A(s,t) = 82Js! 	
fd 2  k I  A 	(sk1) A2 (s,k1 - q), 

(iv.l.l) 

where A[a] 	9192(s/s0)a is the contribution of the pole a to 

the amplitude for a -n, and n is the two-particle intermediate state 

corresponding to the poles in N. . This procedure is similar in spirit 

to the one advocated by Henyey and Risk, as reported by Risk (1970). 

Further restriction of the sum En  to include only n (a,b) reduces 

(iv.4.4) to a statement of the absorption model (for which see, e.g. 

Sopkovich, 1962; Jackson, 1965a; Arnold, 1967; .Cohen-Tannoudji, Morel, 

and Navelet, 1967). 	. 	 . . 
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7. Objections to the Graphical Approach 

While much has been learned--and is to be learned--from the 

graphical approach it is easy to raise significant objections to the 

results deduced from Feynman diagrams. Even accepting the utility of 

graphs, one is forced to admit that it would be overly optimistic to 

expect that a few graphs contain a credible theory of high energy 

scattering. To be fair I must remark that Gribov's program is to 

obtain Feynman rules for Reggeon diagrams (a Reggeon calculus) which 

would permit the evaluation of arbitrarily complicated graphs. A set 

of Feynman rules was indeed given by Gribov (1967) and checked by 

Winbow (1969) in some more complicated cases. Even in this circumstance 

the interpretation of results remains ambiguous. To pose a few unanswered 

questions, what is meant by the input Reggeon? What is the effect of 

t-channel iterations (do they just renormalize the Regge pole)? It may 

be that in the present embryonic stage of the theory of Regge cuts we 

should take a more operational point of view and assign these questions 

only secondary importance. 

But metaphysical objections aside, I am troubled by more practical 

uncertainties. In the Gribov-Migdal-Kaid.alov-Karnakov approach or in 

the equivalent Henyey-Risk model it is necessary to impute internal 

structure to the s-channel intermediate states. This is certainly 
4 

required in the diagram picture because third double spectral functions 

must be built in to both ends of every graph. It seems to me defensible 

to fabricate specific diagrams which have cuts and then to abstract from 

them a plausible form for the two Reggeon branch cut. Thus I should be 
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willing to tolerate ideas gleaned from the studyof individual graphs 

if the imputed structures seemed physically realistic. 

With this in mind I wish to voice a new objection to the deriva-

tions from Feynman graphs, which is rooted in phenomenology. The point 

is not subtle and surely has occurred to others, although I have never 

seen it stated explicitly. Recall that the diagram which was in the end 

regarded as a useful approximation to the general two Reggeon exchange 

graph is the one shown in Fig. iv-6, 'where the s-channel intermediate 

states consist of two physical particles, each on its mass shell. 

Recall, too, that cuts are "second-order in the third double spectral 

function" (Matsuda, 1969),  i.e.both halves of the box must contain 

nonvanishing p5(s,u).  If the diagram is to produce a Regge cut in the 

t channel. As p 
su 
 is the second double spectral function in the s-

channel sense, it is responsible for the signature of the s-channel 

intermediate states. If the s-channel states are assumed to lie on 

* 
exchange degenerate Regge trajectories, signature is unimportant and 

the effects of p 	 are negligible. Thus if exchange degeneracy issu 

exact, no t-channel Regge cut exists in the graph of Fig. iv-6. From a 

purely theoretical point of view exchange degeneracy is a most attractive 

hypothesis, and it appears to be approximately satisfied in the hadron 

spectrum. Furthermore, only'one of the intermediate particles need be 

unsignatured (i.e. have p 	0) in order for the cut to be absent. su 

This argument, which is not based on details of the graphs, but only 

* 
The reader who is unfamiliar with the idea of exchange degeneracy 

will find an elementary discussion in Section VI.l. 
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upon the known (or indeed, hoped for) properties of the particles which 

are identified as intermediate states, strongly challenges the deriva-

tions of the absorption model from Feynman graphs. (See Gribov and 

Migdal, 1968; Kaidalov and Karnakov, 1969a; Risk, 1970.) Moreover, 

this flaw seems more immediate and damaging than the deeper questions to 

which I alluded above. 

I close this discussion on a hopeful note. Many of the same 

issues which appeared in this section have been debated for several years 

in the context of the Glauber theory for hadron-deuteron scattering. 

(See the review by Joachain and Quigg, 1970, for details and original 

references.) In that field, as in this closely allied one, the effect 

of graphical derivations has been rather to disprove the model, than to 

prove it. Thus the Glauber formula contains a Regge cut whereas the 

Feynman graph with which the Glauber formula has been identified does 

not. An instructive potential scattering calculation (Harrington, 1969) 

demonstrates that the Glauber formula corresponds to a sum of Feynman 

graphs, some of which contain higher than double scattering terms (in the 

Feynnian graph sense) and that a conspiracy between the various terms 

yields precisely the Glauber. formula, in the eikonal limit. The relevance 

of potential scattering to relativistic problems is always questionable, 

but Harrington's example makes it clear that proofs (or disproofs) of 

the Glauber (or of the absorption) model based on a small number of 

graphs are probably specious. It may be--this is the attitude I will 

take for the remainder of this thesis--that absorptive models are 

appropriate for hadron physics, quite apart from the detailed derivations 

considered above. 



-57 - 

FIGURE CAPTIONS 

Fig. IV-l. Kinematical diagram to elucidate the meaning of Sudakov 

variables. 

Fig. IV-2. Kinematics of the double cross diagram. 

Fig. IV-. The left hand side of the double cross graph. 

Fig. iV-!i. (a) The contour of integration in Eq. (Iv.)-i.i). (b) The 

contour wrapped around the right-hand singularities, for 

Eq. (Iv. 1 .3). 

Fig. IV-5. t'Unitarity" sum for Im A 2 (s1,k1 ,k2 ). The lines bearing 
12 

crosses represent particles on the mass shell. 

Fig. iv-6. The diagram evaluated as an approximation to the general 

Reggeon box diagram. The lines bearing crosses represent 

particles on the mass shell. 
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V. A PHENOMENOLOGICAL MODEL OF REGGE CUTS 

The desirability of having a plausible model with which to 

confront the high-energy data argues against the pessimism of the 

previous chapter and demands a pragmatic approach. Thus I am led to 

construct an amplitude for two Reggeon exchange by fiat rather than 

orderly derivation. The result is not startling; it is in fact the 

answer one expects from the derivations described before, if indeed the 

derivations could rigorously be concluded. The model amplitude contains 

elements dictated by physical ideas and motivated principally by the 

relative success of the peripheral model with absorption. A novel 

feature is the incorporation in a phenomenologicaily useful way of 

s-u crossing. 

I begin by reminding the reader of the Sopkôvich (1962) prescr.ip-

tion for absorptive corrections to single particle, or as now seems 

more sensible, single Reggeon exchange. This formula serves as a proto-

type for the case in which two Reggeons, of which one and only one is a 

Pomeranchuk trajectory, are exchanged. Let R 3(s) be an s-channel 

helicity partial-wave amplitude for the exchange of a Regge pole in the 

reaction ab -cd. Then accordingto the guess of Sopkovich the influence 

of competing channels is included in the full s-channel partial-wave 

helicity amplitude Ha (s) by means of the prescription 

cd:ab 1  • - r ab:ab]- Rr cd:cd1- 
J 	

Sj -. LS 	 J. .Lj (v.1.1) 

where S. is the partial-wave S-matrix element for elastic scattering 

of the initial or final particles. The elastic scattering amplitudes 
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need not be diagonal in the helicities. but I suppress any such dependence 

for the moment to make the equations more succinct. The equation 

(v.1.1) is based on the distorted-wave Born approximation, which has 

been used by many authors after Sopkovich (1962) with qualitatively 

similar results. (A few of the important references are Gottfried and 

Jackson, 1964; Durand and Chiu, 1964; Ross and Shaw, 1964; Jackson, 	I 

1965; Jackson, et al., 1965.) I take the liberty of replacing the 

geometric mean of the elastic S-matrices by the arithmetic mean. Then 

with 

S. =.l+2iE 
	

(v.1.2) 

I Obtain 

= Rcd:ab[l + 	+E]), 	 (v.1.3) 

which is represented graphically in Fig. v-i. This recipe has enjoyed 

wide acceptance up to the present day, usually with the additional 

ab:ab 	cd:cd 
assumption E 	= E 

Anobvious shortcoming of (v.1.3) is that it fails to satisfy 

s-u crossing or what is known in Regge theory as line reversal. Thus 

in general one obtains one result if he absorbs in the s-channel and 

crosses to the u-channel, and another result if he absorbs in the u-

channel directly. If only the Pomeranchuk singularity contributed to 

and if allelastic scattering amplitudes were equal, there would be 

no difficulty in practice. in principle, however, a contradiätion exists 

which should be eliminated before we proceed to the general two Reggeon 

case. It is easy to see that s-u crossing is restored by adding the 
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graphs of Fig V-2 to those of Fig V-i Crossed graphs lack the 

intuitive appeal of the box diagrams that enter (V.1.3), for they involve 

the elastic scattering of an initial-state particle with a final-state 

particle. Such an occurrence is contrary to the strict time ordering 

implicit in the Sopkovich picture, but apparently intuition must be 

sacrificed for crossing. On the other hand, time-ordering is an 

essentially nonrelativistic concept which should not be expected to be 

a reliable guide for high-energy scattering. (The relevance of this 

point to Glauber theory is explained by Joachain and Quigg, 1970.) 

The Reggeon graphs I have drawn in Figs. V-1,2 are useful as 

mnemonics but the reader will be aware, after the discussion of chapter 

IV, that they are not to be regarded as Feynman graphs. In order to 

specify.with care what is meant by the crossed graphs it is useful to 

define a line reversal operator 	which crosses a graph (and the 

corresponding helicity partial-wave amplitude) from the s-channel to 

the u-channel. The action of ot  on the single Reggeon exchange graph 

is illustrated in Fig. V-3(a). It amounts to 

cd:ab 
RJ[b] = RJ[b]  

By the notation J{xy] I indicate that the partial-wave projection is 

to be performed in the directchannel implied by the helicity amplitude 

in question. It is of course these full helicity amplitudes which have 
* 

simple properties under s-u crossing. 

* 
See Appendix C. 
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The similar action of 	on a two Reggeon graph is shown in 

Fig V-3(b).. As 	= 1, the contribution of the crossed graph in 

Fig. v-3(b) can be writtenas 

cd:ab 	 -P 	ad:cb cb:cb -iH 	(crossed graph) = 	• 	E. 	3 

= 	. 

 

[Rcd 	{E]3. 	(v.1.5) 

To summarize, the action of 	is to (i) sum the helicity partial-wave 

series, (ii) line-reverse the ftll helicity amplitude, and (iii) reproject 

the desired partial-wave in the new direct channel. In this context it 

• 	is important to emphasize that the cut generated by Reggeons with 

signatures 'r,'r2  has signature T 1 'r 2 . This was deduced in Chapter Iv 

from the double cross diagram, and we assume it to be true in general. 

An ambiguity to be faced is whether to add the crossed graphs to the 

usual box graphs, or to average the two sets. I will argue below, after 

discussing normalization with more care, that the correct procedure is 

to average them. With this rule, the (explicitly s-u crossing 

symmetric) absorbed amplitude will be 

cd:ab 	cd:abr 	i ab:ab 	cd:cd. = R 	l+LE 	+  

+ 	( 	(B 	)[(Ecb:cb) + 	E)]). 	(v.1.6) 

Then under the extreme assumptions that the elastic amplitudes are 

helicity independent, diagonal in the helicities, and independent of 

the scattering particles, the absorbed amplitude simplifies to 
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Hab( S ) = R(s)[l + 2iE(s)] 	 (v.1.7) 

This is precisely the result given by the usual absorptive prescription 

in the same simple circumstances. It is necessary to emphasize that 

(v.1.7) refers to a trivial limit of Pomeranchuk-Regge pole cuts, and. 

not to an amplitude for pole-pole cuts, to wh.ich we now turn. 

At this point I am able to construct, in analogy with the 

absorptive model, the general model amplitude for two Reggeon exchange. 

It is built of the graphs of Fig. V-Li., and I write it as 

(i + 12 H i 	
Rab + R 	+ 	(R 	Rcd:efli 	

e,f 

cd:ef ef:ab 	r ef:cb 	d:ef 	ad:ef ef:cb + R1J 	R2J 	+ 	LR1 	R23 	+ R1 	R2J 	]. 	V•1 

The factor (1 + 12 is inserted to avoid double counting if Reggeons 

1 and 2 are the same. The labels a,b, •,f represent helicities as 

well as particle identities. The amplitude (v.1.8) is implicit in the 

hybrid model work of Chiu and Finkeistein (1969), which in turn is 

related to the formulation of Arnold (1967). The normalization in 

(v.1.8) and in the equations leading to it has been schematic, to make 

it possible for the reader to compare figures and formulae with a 

minimum of confusion. Having obtained the partial-wave amplitude (v.1.8) 

in this schematic and hopefully understandable manner I now state the 

result for the full s-channel helicity amplitude with normalization 

which corresponds precisely to my conventional choices listed in 

Sections A.1-3. The resulting amplitude is 
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CO 

	

(1 + 12 )H ab = Hcd:ab + d:ab + 	 (j + ) d(G) 

r ef:ab cd:ef 	cd:ef ef:ab 
• ' L Lh (1)  h(2) + b3(1)  h (2)  

[ 
e,f  

.+ 	.(h 	rh 	
+hhb)] 	. 	 (v.1.9) 

Here H ( . )  is the contribution of the Regge pole "i" to the s-channel 

helicity amplitude, and h. ( . )  is its partial-wave projection which 

is given by 

	

cd:ab 1 	 cd:ab 	 J 

	

h3( i )  (s) 
= I 	d(cos Q5) Hs(i) (s, cos G5) d? 

J-i 	 (A..16) 

Notice that because the sum 
Ee,f  runs over all possible two 

body on-mass-shell intermediate states, this model includes possible 

"coherent inelastic states" in the Reggeized absorption model case that 

one of the Reggeons is a Pomeranchuk trajectory. (See Heriyey, et al., 

1969.) I do not wish to discuss the magnitude of these contributions 

in any detail because the diffractive production data for reactions such 

as pp Np and 1Tp A1p seem to me inconclusive. I should be very 

surprised, however if the total contribution of inelastic intermediate 

states turned out to be more than 30 of the elastic scattering component 

(in the amplitude). Thus I disagree with the Michigan group (Henyey, 

et al., 1969), who believe the strength of the absorptive cuts to be 

approximately twice the strength. implied by the elastic scattering 

amplitudes alone. 
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It is instructive to see that the crossed Reggeon graphs are 

already included, at least in principle, in the diagram versions of the 

* 
theory discussed in Chapter IV. How this comes about may be seen in 

Fig. V-5. 
The uncrossed Reggeon box graph is identified with a particu-

lar double cross graph which imputes a specific internal structure to 

the vertices. Similarly the crossed graph is identified with a partic-

ular double cross graph with crossed Reggeons. When the latter diagram 

is untwisted (by pulling on the constituent lines of the right-hand 

vertices) it becomes an ordinary double cross graph, but with the vertex 

particles at the initial and final vertices on the right-hand side 

going to different Reggeons. Since in principle all the various 

possibilities are put into the Reggeon-particle vertices the general 

set of diagrams would seem to contain the crossed graphs. Indeed if one 

is willing to be tied to particular vertex structures it is possible to 

argue, by returning to the integration contours of Fig. IV-4, that, it 

is correct to average the crossed graphs with the uncrossed ones. Thus 

the integral over the contour in Fig. Iv-4(a) is equal to one-half the 

integral along the contour in Fig. IV_l-(b).aroufld the right-hand 

singularities plus one-half the integral around the left-hand singu-

larities (contour not shown). The proof is completed by identifying the 

right-hand singularities with vertex structures from the uncrossed-

graphs, and the left-hand singularities with vertex structures from the 

crossed graphs. The argument can be made less model dependent: notice 

that in untwistiflg the Gribov graph in Fig. V-5 we line-reversed one of 

* I owe this observation to professor Jackson. 
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the vertex functions. In Gribov and Migdal's nomenclature, a Reggeon-

particle scattering amplitude was line-reversed. For the narrow 

resonance scheme, this has the effect of replacing p 5 (s,t) by 

so that by dispersing in the Reggeon-particle subenergy one 

picks up contributions from states on mass shell in the u-channel. 

A simpler principle (for fixing the normalization) is that the 

absorption model recipe should be recovered when enough simplifying 

assumptions are made. We saw this to be the case in Eq. (v.1.7). 

The crossed graph prescription is, therefore, a way of taking 

into aôcount the complexity of the vertex structures, inphenomenologi-

cal calculations. It has the attractive property of satisfying s-u 

crossing manifestly, which is certainly an important feature to preserve 

in abstracting a phenomenological model from a theoretical one. In the 

simplifying limit discussed in obtaining (v.1.7), the added complexity 

of my recipe (compared with the usual box graph model) makes no difference 

in the final result. Does it ever make a difference? More to the point, 

does the new formulation reproduce any desirable result which would 

have to be imposed by hand on the simpler model? The answer is that it 

does make a difference, that is nicely illustrated in the reaction 

Kp -3K 	which we shall study in detail in Chapter VI. 
* 	* 	** 	** 

A priori, there are contributions from the K 	K , K - K 

* 	** 
and K - K 	Regge cuts. If for concision we restrict our attention 

to It YO intermediate states, the amplitude for the exchange oftwo 

Reggeons can be represented by the graphs in Fig. v-6. Upon untwisting 

the crossed graphs as described above, we find the resulting amplitude 
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to be (1+ T1T 2 ) times the contribution of the box graphs alone (times 

the factor 1/2 which occurs because we are averaging boxes and 

*  
crosses). Consequently the contribution of the K - K

**• 
 cut vanishes 

• and we are left with only the even signature K
* 

- K
* 
 and •K

** 
 - K

** 
 

cuts. This is a correct result, which in the conventional box diagram 

approach would have to be imposed as a symmetry on the vertex functions 

(compare Appendix C). By building in crossing, we have taken care of 

such discrete symmetries explicitly. 

Thus the crossing-symmetric model is expected to have two 

practical, phenomenological advantages Over the box graph model. First, 

some cancellations due to discrete symmetries are made explicit. 

Second, by averaging over narrow resonances in two channels, we may  

hope to obtain a better approximation to the actual Regge cut amplitude 

than would be the case in either channel separately. 
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FIGURE CAPTIONS 

Fig. V-i. Reggeon exchange graphs for the conventional absorption model. 

Fig. V-2. The graphs which when added to those of Fig. V-i restore 

crossing symmetry. 

Fig. 'v-. (a) Action of the line reversal operator 	on the single 

Reggeon exchange diagram which represents a helicity partial-

wave amplitude. (b) Effect of the, line reversal operator 

on the two Reggeon cross diagram. If the wavy line represents 

the Pomeranchuk (or specifically, elastic scattering),' then 

e=c and f=b. 

Fig. V-LI-. .Graphical representation of the model for two Reggeon exchange. 

Fig. V-5. Identification of some Reggeon graphs considered in this 

chapter with some Gribov graphs,' to elucidate the role of 

the crossed Reggeon graphs. 

Fig. v-6. The set of graphs relevant for the reaction Kp 

which proceeds by (K* ** 
	. 

, K ) exchange. 
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VI. REGGE. CUTS AND EXCHANGE DEGENERACY 

In this chapter I consider some applications of the Regge cut 

model formulated above. These are very much in the nature of model 

calculationswhich serve to answer some. questions about the effects of 

absorptive cuts on high-energy amplitudes. Thus I shall fit no data, 

but try to make semiquantitative observations that will shed some light 

on possible connections between exchange degeneracy breaking and Regge 

cuts. The model calculations form part of a larger program which will 

be reported elsewhere (Fox and Quigg, 1970). 

1. Regge. Cuts and Duality 

I mentioned in Chapter IV a possible conflict between exact 

exchange degeneracy and the popular formulations of Regge cuts, namely 

the requirement that third double spectral functions be nonzero if cuts 

are to exist, whereas exchange degeneracy implies the absence of third 

double spectral functions. Accordingly the simple Reggeon box diagram 

interpreted as a Feynnian graph gives no Regge cut if the world is 

exchange degenerate. However, I swept such difficulties under the rug 

by arguing in analogy with potential scattering off deuterons that 

conclusions based on a small number of Feynman graphs could well be 

misleading. 	. . 	 . 	. 

Another obvious question to pose is whether Regge cuts in general 

and specifically those generated by the absorptive prescription I employ 

are compatible with finite energy sum rules (FsR) or equivalently with 

"global duality" (Dolen, Horn, and Schmid, 1967, 1968). Certainly with 

* For a synopsis of work on FESR's, see Jackson (1970). 
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data of infinite precision over a wide range of energies it might be 

possible to distinguish poles from cuts on the basis of their different 

energy dependences, but this is notoriously difficult. What can be 

shown is that FESR's cannot distinguish between different classes of 

models, given the present state of the low-energy data. An explicit 

demonstration of this was given, for charged pion photoproduction by 

Jackson and Quigg (1969) who constructed a number of models with evasive 

it and A2  exchange and "conspiring" absorptive cuts to fit the high-

energy data and the sum rules. 

On the operational level, cuts may be duality-preserving or 

duality-breaking with respect to the prediction of exchange degeneracy 

(if it is legitimate to ignore possible conflicts between exchange 

degeneracy and the existence of cuts). Indeed it has been proposed 

(e.g. Michael, 1969b; Lovelace, 1969) that exchange degeneracy might 

be broken only by the effects of Regge cuts. This is one of the ideas 

I wish to elucidate here. Already in Chapter IV I gave a rather formal 

statement of what exchange degeneracy means, to wit p(s,t) = 0. An su 

explanation of the connection between the absence of exchange forces and 

exchange degeneracy may be found in Section V-3(b) of Jackson (1970), 

or in Arnold (1965). 

As an example let us consider as the u-channel K+p  _*KO++ a 

quark model exotic channel in which no strong resonances have been 

observed. I label the other channels as shown in Fig. VI-1,. so the 

s-channel contains resonances on the p,A 2  trajectories and the 
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t-channel contains resonances on the Z IZ trajectories.* As there 

are no u-channel forces, we conclude that the p and A 2  Reggeons are 

exchange degenerate, that is they are described bya single trajectory 

function a(t) and by one residue function for each pt helicity state. 

The example of p,A2  exchange degeneracy is classical; see Mathews 

(1969) for a detailed phenomenological stu&y. Tests of exchange degen-

eracy for the trajectory functions recently have been made by Cline, 

Matos, and Reeder (1969) and by Lai and Louie (1970). By relabeling 

the channels we may repeat the argument for the EaEy trajectories and 

prove them exchange degenerate. This pair has been studied by Schmid 

(1969). The fragmentary evidence from the resonance spectrum for p,A 2  

and EcEy degeneracy is collected in Fig. VI-2. The spectrum itself 

only provides plausibility; more concrete evidence that the exchange 

degeneracy is at least approximately satisfied is given in the references 

cited. The conclusion is that scattering in an exotic channel is 

governed by exchange degenerate trajectories in the crossed channels. 

The duality diagrams of Harari (1969) and Rosner (1969) are neat 

mnemonics for the predictions of su(3), exchange degeneracy, and 

factorization. Each particle is represented by its quark constituents, 

which rearrange themselves during the collision. If the initial quarks 

can be connected to the final quarks so that no quark lines cross, the 

duality, diagram is said to be planar and the corresponding amplitude 

* 
There are four classes of baryon trajectories, distinguished by the 

quantum numbers ('r,P): a 

= 
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has a t-dependent phase. If not, the graph is nonpianar, and the 

amplitude must be purely real. For illustration, consider the forward 

charge-exchange reattion 

+ 	0 K n -4K p,  

for which the s-t duality diagram is drawn in Fig. VI -3(a). The 

graph is nonpianar so the amplitude for p,A 2  exchange is predicted 

to be real. The line-: reversed reaction 

- 	—o 
K p -K n (vi .1.2) 

has a planar diagram which is obtained simply by untwisting the graph 

for reaction (vI.l.l). Shown in Fig. vI-3(b), it implies an amplitude 

proportional to exp [ -ira(t)]. Whereas the derivations of duality 

graphs can only be taken seriously for forward (00)  scattering, I will 

assume that their predictions hold for all values of t K 0. For easy 

reference I list in Table VI-1 the quark composition of some common 

hacirons. 

2. Systematics •of Exchange Degeneracy Breaking 

In fact, exchange degeneracy is not an exact symmetry, or at 

least does not appear to be in the intermediate energy regime 

(5 GeV/c < pia K 10 GeV/c) in which quasi-two body reactions have so 

far received careful experimental attention. As the references cited in 

the previous section testify, it is approximately satisfied and therefore 

a useful phenomenological tool. One could of course stop at this point 

and accept exchange degeneracy as an approximate truth, but it is 

appealing to view exchange degeneracy instead as a broken symmetry, i.e. 
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a symmetry broken in a particular (simple) way. The motivation for 

this viewpoint may be more visceral than rational. Yet. I can cite a few 

reasons why such an approach may be sensible. For example there is 

considerable evidence that su() predictions, when modified by physical 

mass kinematics (phase space corrections) are satisfied rather well. 

Here is evidence for an exact symmetry, broken in a simple way. The 

elegance of the Veneziano (1968) representation, to which exact exchange 

degeneracy is built in, suggests aperturbative approach in which the 

final amplitude satisfies exchange degeneracy in an approximate way. It 

is tempting (Lovelace, 1969) to suppose that the exchange degeneracy 

breaking, which presumably is the outcome of unitarization of the 

Veneziano formula (Kikkawa, Sakita, and Virasoro, 1969), might be 

adequately described by the absorptive corrections given by Regge cuts. 

With unbridled optimism one might thereby hope to elucidate the nature 

of exchange degeneracy breaking and the role of Regge cuts at one swoop. 

Such optimism is at least partially sustained by the discovery of the 

systematics described below. 

[My understanding of the ideas discussed here has evolved in 

the collaboration with G. C. Fox cited above, in the course of the past 

year. However, as I hope to make clear through references, these 

notions are not ours alone; many of theni have indeed been published 

already by others.] 

A key observation is that for a pair of reactions related by 

line reversal, the one with amplitudes predicted to be real by duality 

diagrams seems in all cases to have a larger cross section than the one 
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with amplitudes proportional to exp(-iiia). This behavior is predicted 

by the scheme of su(3) for Regge pole residues plus exchange degeneracy- - 

broken by the use of physical trajectories. The same scheme also accounts 

for the observed failures of exchange degeneracy in pairs of reactions 

for which, because of G-parity restrictions, one trajectory of the 

possibly degenerate pair is exchanged in each of the reactions. That 

exotic (in the sense of duality graphs) channels always have larger 

inelastic cross sections suggests that there is more absorption in the 
* 

nonexotic channels. 	The greater absorption in turn suggests that 

nonexotic channels have larger total cross sections, as is observed. 

Let us consider these regularities in more detail 

For notational convenience I will abbreviate exchange degeneracy 

(equal trajectories and equal residues) as EXD. Equal trajectories but 

unequal residues corresponds to "weak' 1  exchange degeneracy, or WEXD. 

Finally I define residue exchange degeneracy, REXD, to mean equal 

residues but unequal trajectories. 

The amplitude AT  for exchange of a trajectory with signature 

T is 

* 
This seems contradictory at first sight, for absorption is actually 

the inelasticity caused by competing reaction channels. It may be 

that there exist more reaction channels with smaller individual 

cross sections which communicate with the nonexotic channel. 
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i + 	
cot ra~/2 - I 

A+cc 2sinna 	 2 

(vI.2.l) 

A oc +1 - 	

= 1 + tan ItaJ2 

- 	 2sinTra 	 2 

Thereby in the EXD limit 

A + A oc csc ia(t) 	 (vI.2.2) 

is purely real, whereas 

A - A cc 	i ra 	csc 	(t) 	 (vI.2.3) 

has a rotating phase. An amplitude which should on the basis of duality 

diagrams be purely real.will be called DDRé; the amplitude related by 

line-reversal, which should have a rotating phase will be called DDPh. 

Consider now the case of REXD, with a+ = a; a = a + 6. Then 

A + A = + 	[cot a/2 + tan (a + 

(vI.2.I1) 

- 	 csca 
- 1 - tan na/2 tan  777 

* 
is still purely real. 	This implies a cross section proportional to 

* 
Obviously this cannot be exactly true over an infinite range of 

energies, but in the intermediate energy regime it is accurate to 

the extent that (s1s 0 ) 3  1. 



csc a 
+ A_I 	

= (1 - tan a/2 tan 

(VI • 2.5) 

IA+  ± AI/(l- tan ra/2 tan EXD 

which is larger than the one predicted by EXD if tan na/2 tan it5/2 > 0. 

For 5 small and for all the trajectories which enter into near-forward 

scattering, an equivalent condition is aS > Q. 

The DDPh combination is only slightly more complicated: 

tan t5/2 sec2  Tta/2 
- A 	= -i + cot Ira -  

1 - tan ra/2 tan 

(vI.2.6) 

tan t5/2 sec2  ira/2 
= e 	

tan  

The implied cross section is decreased from the EXD value if cot Tca 

and tan 5/2 have the same sign, or increased if the signs are differ-

ent. Again I ignore the effect of (s/s 0 ) 5  upon the imaginary part. 

In the peripheral region, a > 0 for the vector and tensor 

trajectories. Thus if a vector trajectory lies above its tensor 

partner, as > 0 and o(DDRe) > (DDPh).* To be specific, let us 

consider the charge-exchange reactions (vI.1.1,2), which proceed by 

p,A2  exchange. It appears (see for example Mathews, 1969) that 

S 0.1 and .aA  (0) 	0.45.  The REXD scheme predicts, .therefore, 
2 

* Here a may be taken to mean d.a/dt near the forward direLion. 
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o(Kn 	K0p) > o(Kp 	 (vI.2.7) 

in apparent agreement with the rather low-energy data 	1ab ' 5.5 GeV/c) 

considered by Cline, Matos, and Reeder (1969). The effect does not, 

however, appear to persist experimentally at higher energies. Thus the 

+ 	0 
differential cross section for K n - K p at 12 GeV/c recently reported 

by Firestone, et al. (1970)  is equal to the 12.3 GeV/c Kp _*k0n cross 

section of Astbury, et al. (1966). 

In proposing a REXD model, Auvil, et al. (1970)*  have noted that 

in the comparison implied by Eqs. (VI.2.5, 6 ) the difference between 

cross sections should change sign at C A
= 0, i.e. near -t - 0.5. 

2 
In fact this is far from the case, at least at low energies, where the 

ratio 

da + 	0 
a• 

(K fl - K p) 

dc 	- 	—o 
yt- (K p : K n) 

(vi .2.8) 

is maximal at around -t = 0.5. The remedy proposed by Auvil, et al. 

is to include a pair of lower trajectories (p',  A) which account for 

the observed t-dependence. Such a complication just pushes the implica-

tions of the straightforward REXD model to higher energies. 

* 
There is a minor error in this paper. in Table 1 a comparison 

-  
should correctly be made of K p - Tt 0 A with 1 x the cross section 

- 	0 
for itp KA. 



Similar coniderations may be brought to bear on the hypercharge-

exchange reactions mediated by K,K* exchange. Assuming a > 

we again predict the DDRe cross sections to be systematically higher 

than the DDPh cross sections. The results of Birnbaum, et al. (1970) 

indicate that, up to 16 GeV/c, 

dcY 
TT (Kp 	

2 1 	 (vI.2.9) 
Tt 
do(+ 	

K) 

in qualitative agreement with the REXD prediction.
*  

Predictions based upon the REXD idea can also be made for 

reactions that proceed by rP- exchange, e.g. for Tt and B exchange. 

For the latter example we expect on esthetic grounds that a < a K 0, 

which would again imply that DDRe cross sections should be larger than 

DDPh cross sections. A typical prediction is that 

do + 
p00  (Kp_K A 

do - 	
0 p00 	K n K ,A) 	

1, (vi .2.10) 

in the peripheral region. In a world where Regge cuts may be important 

it is of course very difficult to separate the contributions of individual 

Regge poles, even when one considers particular moments of decay angular 

distributions. Thus it may be hard to perform tests like (vI.2.10) in 

convincing fashion, particularly when the lower-lying 'rP- trajectories 

are involved. 

* 
See also Kirz (1970). 



The three competing hothesis of EXD, WEXD, and REXJJ are all 

quite splendid theoretical ideas which lead to distinct and definite, 

if only qualitative predictions. Each has a simplicity or elegance that 

makes its potential value for increasing our understanding enormous. 

Thus it is essential to answer experimentally, and at high energies 

(for the study, of quasi-two body inelastic reactions, this means 

10 GeV/c < p 	 < 30 GeV/c) questions of the following kinds:lab 

Are line reversal tests satisfied? An affirmative answer 

confirms WEXD, without making any statement about the residues. 

, Do violations of line reversal tests, and thereby of WEXD, 

occur systematically? If so, does the particular pattern 

n(DDRe) > a(DDph) persist to higher energies? An affirmative answer 

will lend support to REXD schemes and may suggest ways of refining them. 

Is EXD satisfied? In particular, are DDRe amplitudes actually 

real? Such tests (e.g. the absence of polarization in DDRe reaôtions) 

are especially delicate, and hard to assess quantitatively; it is 

difficult to know how to assign errors if an amplitude is Talmdst" real. 

It is appropriate to inject here a bit of theoretical bias, which 

diminishes the appeal of the REXD scheme. In the absence of a T'higher 

symmetry imposed on hadron dynamics from without, it is hard to see how 

REXD could be less badlybroken than WEXD. Thus the trajectories, which 

are determined dynamically by a large number of channels, are observed to 

be approximately, but not exactly, degenerate. It seems plausible that 

for some processes the residues must be very badly broken from REXD. 

Consequently unless there is a dynamical miracle, WEXD is probably closer 

to the truth than REXD. 
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As we have no complete theory for high-energy collisions, it is 

hard to overestimate the importance of sorting out regularities such as 

those bearing on EXD, EEXD, and WEXD. Some lists of useful line-reversal 

tests may be found in the papers of .  Gilman (1969), Quigg  (1970),  and 

Auvil, et al.. (1970).. Other suggestive hints of systematic behavior are 

to be found in the review by Rosner (1970).  There is no paucity of 

simple ideas; what we need is large amount.s of good data. 

3. Regge Cuts and the Breaking of Exchange Degeneracy 

If exchange degeneracy is broken in some systematic manner, it 

will be useful to understand how the breaking occurs. For example in 

the RE)O mOdel described in the preceding section the burden is placed 

on the obsérvedmass splittings of the hadrons, which one may regard 

either as God-given or as needing explanation on a deeper level. 

Alternatively, it may be appealing to suppose that Regge cut corrections, 

applied to EXD input Regge poles, might produce scattering amplitudes 

which violate the predictions of EXD and agree with the data. As I 

stressed above, systematic experimental tests are only beginning to 

emerge, so it is difficult to know which direction to take. Apparenfrly 

present Regge cut models are sufficiently flexible that many reactions 

must be studied simultaneously and in detail before success ceases to be 

guaranteed by a surfeit of parameters. What I am considering here is 

whether a simple pattern exists, that is instantly explicable in terms 

of Regge cuts. 

To clarify the possible effects of Regge cuts upon EXD input 

poles, I have done the simplest calculation imaginable. Starting with 

s-channel nonflip and flip amplitudes appropriate for DDRe and DDPh 



- 92 - 

reactions, I have computed: the absorptive corrections corresponding to 

an elastic scattering amplitude given by a fixed-pole Pomeranchuk (i.e. 

a positive imaginary elastic amplitude). For simplicity I took 

- 	 1S 	at/2 
s,elastic 	 e 

(vI.3.1) 

Hs:1ati 	= 

and used the familiar Fourier-Bessel representàtion* for Eq. (v.1.8) 1  

which yields 

H(s,t) 	H (s,t) - 	dt' ea(t+t )12 
10 [a(tt' )] 

X ( s ,t?) 
s,Regge 

	

H'(s,t) = Hegge(st) - 
	

dt' et+t')/ I1[att'] 

H5;gg(S,t'). 	(vI.3.2) 

Here I 	is a modified Bessel function of the first kind, of order n; 

a = 8(G:V/c) 2  is the slope of the forward diffraction peak, and. C 

is a dimensionless parameter, given in principle by 

C = Ott /Lh-(a 	 (vi .3.3) 

* 
See, for example, Jackson (1970), Section IV.-i-. 
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For the input Regge pole amplitudes I followed the recipe developed in 

Appendix C, so that the DDRe amplitudes are 

Hegge(s,.t) = 21'(l 	a(t))(s/s0 )a ( t ) ,  

(vI.3.L) 

H:egge(s,t) = 2(-t/s 0 
)2 r(l - a(t))( s/s0 )a(t) .  

The DDPh amplitudes are the same, times an extra factor of e (t) .  

In the example I will discuss I chose a(t) 	. + t, s = l(GeV/c) 2 , 

and 	 10. 

In Fig. vi-4 I have plotted the results for the nonflip amplitude. 

The absolute square of the input pole amplitude is the solid line; it is 

the same for both the DDRe and the DDPh cases. The contribution of the 

Regge cut (for C = 1, which corresponds roughly to total absorption of 

the s-wave) in the DDRe case is plotted with long dashes. It is smaller 

than the pole contribution at t = 0, but is less peripheral. The 

absolute square of the output, "pole minus cut," amplitude is plotted 

with short dashes, for the DDRe case. It is more peripheral than the 

input was, for the effect of the absorptive corrections is to subtract 

out low partial waves. There is a zero in the amplitude caused by com- 

plete destructive interference between pole and cut, at ,-t 	0.37 (GeV/c) 2 
. 

When the input is the DDPh amplitude one eects (Michael, 196 9b) a 

smaller cut for a given value of C, since the rotating phase of the 

input pole enhances the possibility of cancellations in the convolution 

integral, Also the destructive interference between pole and cut will 

not be total, for the pole and cut will in general have different phases. 

Both these features are shown by the DDPh output, IPole minus cutj2, 
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which appears as a dotted line in Fig. VI- 1 . it lies above the DDRe 

output., reflecting a smaller cut subtraction, and has only a shoulder at 

-t 	0.37, rather than a zero. 	what is somewhat surprising is that the 

ratio 

tDPht1DRe' 
	

15 	. 	. 	 (vI.3.7) 

is so large. (As expected it is >1, whereas the REXD mnemonic 

predicts Ki.) 

The same effects are seen in the calculation for the flip ampli-

tude, the results of which are plotted in Fig. VI-7. Again the DDRe 

output has a zero [at -t > 1.0(GeV/c) 2 ] but the DDPh output has only 

a shallow dip; again the ratio. 

IHDphI2/HDRI2 	1.5 	 (.5.6) 

is rather large. Some calculations similar to these were published 

recently by Meyers and Salin (1970), which agree qualitatively with my 

conclusions. 

As expected Regge cuts even when generated by a flat Pomeranchuk 

invalidate the predictions of WEDO (although not in a manner consistent 

with experiment). While this theory is wrong--and therefore unrealistic--

it may be worthwhile to remark that it preserves the prediction of no 

polarization in the DDRe reaction (both flip and nonflip amplitudes 

remain purely real) but breaks the EXD prediction of no polarization in 

the DDPh reaction. This is because the phases of the flip and nonflip 

amplitudes are altered in different ways. In my examples, the flip- 
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nonflip phase difference is small for -t < 0.3(GeV/c) in the DDPh 

reaction and also for T+ and 'r- exchange separately. 

From the perspective of duality .graphs, the REXD predictions 

have a natural explanation in terms of absorptive cuts generated by 

full (not just Pomeranchuk) elastic.amplitudes. In the computation 

reported above I assumed that the elastic scattering amplitudes were 

equal in the initial and final states and were equal in the DDRe and 

DDPh channels. Now in fact this is not so. The "exotic" channels which 

give rise to nonplanar quark graphs for inelastic processes have smaller 

total cross sections (thus smaller forward elastic amplitudes) than the 

channels to which they are related by line reversal. Thus the DDRe 

amplitudes should be absorbed less than the DDPh amplitudes. If 

elastic scattering amplitudes are represented in terms of Regge poles 

(or poles and cuts) this means that the difference between DDRe and 

DDPh cross sections should be explained by two-Reggeon cuts, in which 

neither Reggeon is a Pomeranchuktrajectory. Thus the REXD recipe might 

serve to take account of the effects of two-Reggeon cuts. However 

REXD, in the simple form stated.above, treats flip and nonflip amplitudes 

in the same way, so does not account for polarization, whereas two 

Reggeon cuts may well do so. The importance of two Reggeon cuts, with 

neither Reggeon a Pomeranchuk trajectory, was suggested by Michael 

(1969b). 	Recent work along the same lines has been reported by 

O'Donovan (1970). Some relevant model calculations are discussed below. 

A final comment derived from the model calculation discussed 

here bears on the vaunted dip systematics of the Michigan strong cut 

model (see Ross, et al., 1970). In Fig. VI-6 I have shown the values of 



t for which dips are generated in the flip and nonflip amplitudes, as 

functions of the strength of the Regge cut. Although my input poles, 

in having conVentional nonsense zeroes, differ from the input of the 

Michigan model, the dips appear at the expected positions for a cut of 

Michigan strength (C 1.5). In the DDRe case the dips are quite 

dramatic, representing excursions through two or more decades in 

I 	even when the observed real part of the elastic amplitude is 

tacked on by the substitution 

C - C[i - i(Real part/Imaginary part)]. 	 (vi .3.7) 

In contrast the structure in the DDPh case is a break or a shallow dip. 

Some care is therefore required, precisely to state the predictions of 

the Michigan model in specific reactions. The strong cut systematics 

may be every bit as fuzzy as those of the classical Regge pole model. 

Obviously this remark applies equally to proponents and detractors of 

the strong cut model. 

Krzywicki and Tran Thanh Van (1969) [see also Krzywicki, 19701 

investigated the effects on polarization predictions of cuts generated 

bya nonflat Pomeranchuk trajectory. Their discussion utilizes a very 

simplified parametrization which cannot be taken seriously for quantita-

tive features (such as the magnitude of oiarizations), but two natural 

predictions of the model stand out. First, near the forward direction, 

the polarization P is of the same sign in the DDRe and DDPh reactions 

related by line reversal. Second, P(DDRe) has a constant sign over a 

substantial range in t, whereas P(DDPh) changes sign at some small 
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value of -t. Despite these attractive features, which appear to be 

present in the data, it is unlikely that this scheme can accommodate 

all the experimental features. The cut corrections to DDRe amplitudes 

will exceed those to DDPh amplitudes and thereby disagree with what is 

observed. 

4. Reggeon-Reggeon Cuts and Line-Reversal Violations 

The model calculation described in the preceding section 

illustrated the conclusion that the recipe of exchange degenerate Regge 

poles plus pole-Pomeranchuk cuts does not account for the experimental 

fact that o(DDRe) > c(DDPh), at intermediate energies. It is therefore 

of obvious interest to assess the effects of two-Reggeon cuts, when 

neither Reggeon is the Pomeranchuk. trajectory. To accomplish this, I 

have calculated the non-Pomeranchuk contributiOns to the reactions 

+- 	+- 
DDPh: 	Tt7t.TtT( 

DDRe:  

(VI.4.la) 

(vi .4. lb) 

i.e. the P' + p poles and the (p' + p)Ø(P' + p) cut. The 

restriction to a spini-ess reaction is made for technical simplicity, 

to avoid becoming bogged down in details of flip to nonflip ratios, 

etc. 

For the Regge pole amplitudes I chose 

_2gr(1 - a(t))( s ))t) e_1(t), 	(Vi.4.2a) 

-2F(l - a(t))Ca(s)) t) , 	. 	(VT.1.2h) 



corresponding to amplitudes for P' and p exchange 

H
( 
	= 	- a(t))( s ))t 	- e 1 0t)) ,  

(vIJ.3) 

H(1)  = —gr(1 - a(t))@(s))t, + e 0tj .  

The trajectory function a(x) = 0.48 + 0.9x, and the coupling constant 

g = 16c were taken from the paper by Shapiro (1969). The prescription 

(v.1.9) gives 

Hs,tota1(St) = H () (st) + H 	) (s.t) 

00 

.;(J.+ )d0Q(95)(hJ( ) hj 	+[(h( 	
+ (hJ(P']) 

(vI..') 

where 

= f d(os @ 	(1)  ) H(scos 95 ) d003 (95 ). 	(vI..5) 

In practice I truncatedthe partial-wave expansion at J <30, and 

performed the partial-wave projection by 96-point Gaussian quadrature 

on the CDC 6600. Numerous..cheekswee" made to verify the orthonormality 

of my d00  functions, and the ability of the projecting and resumming 

routines to reproduce various input functions. Each, of the examples 

discussed below required about 3 seconds of computer time. 

Figure 1JI7  shows the contributions of the various components 

in :(VI.4.4) for the parameters chosen, at s = 10 GeV . Broken down 

in this way,.the pieces are the same--in magnitude--in the two reactions. 
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The weakness of the p-p, cut is due to the vanishing of the p Regge 

pole amplitude at -t 0.58. The integrated cross section contributed 

by the poles is ae 	2mb., a not unreasonable value. In Fig. \JI-8 

I have plotted the contributions of the cuts as they occur in the two 

reactions of interest. The DDRe cut, for nt - 	is the result of 

convoluting the real amplitude (vI.4.2b) with itself. As expected, it 

is somewhat larger than the DDPh cut, which is the convolution of the 

rotating phase amplitude (VI.4.2a) with itself. In the DDRe case, the 

cut contribution is a real number times the explicit factor of i 

that appears in (vi.t.k). Consequently the cut and pole contributions 

add incoherently, for the reaction 	- 	Near the forward 

direction, the effect of the (P' + p) (&(•' + p) cut is insignigicant 

in T 	
as evidenced by the near equality of the DDRe and 

Input (= poles only) curves in Fig. Vi-8. 

The situation is completely different in the DDPh case. The 

phase of the cut piece at any value of t is approximately twice the 

phaáe of (VI.4.2a) at t/4, plus ir/2 (from the explicit factor of i). 

At t = 0, the input amplitude (VI..2a) is cc + i. Thus at t = 0, the 

cut is roughly negative imaginary; it interferes destructively with the 

pole amplitude, as stated by Michael (1969b). For my choice of the 

coupling constant, the cross section is diminished by about 20%, for 

s = 10 GeV2 , in the forward direction. The effect is larger at larger 

values of -t, because the cut amplitude is less peripheral than the 

pole amplitude. Amusingly, indeed encouragingly, the violations of 

line reversal in KN charge exchange are bigger at moderate values of 

-t than at t = 0, 
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To give a feeling for the energy dependence of the pole-pole 

cuts I have plotted the same quantities at S = 	and 20 GeV2  in 

Figs. VI -9, 10 . Alternatively, these can be interpreted as reflecting 

the sensitivity of the results to the coupling constant g. These very 

simplified calculations show that the pole-pole cuts do contribute with 

the right phases to make a(DDRe). > (DDPh), and may be substantial in 

magnitude at low energies. (it is worth remarking that if the DDPh 

input had been a - 1, the poles and cuts would have interfered 

constructively.) In addition, the cut corrections become more important 

at nonforward angles. Rather remarkably (at first sight) the cuts have 

an energy dependence characterized by aeff(0) <2cx(0) - 1, at these low 

energies. (See Figs. VI-8,9,10.) Thus the argument of Cline, et al. 

(1970) that the energy dependence of pole-pole cuts is too gentle to 

account for the probable diminution with increasing energy of the line 

reversal violation in KNCEX is too naive, and therefore misleading. 

O'Donovan (1970) points out that his estimates of pole-pole cut corrections 

to KNCEX fade away faster with increasing energy than acut(o) = 2a(0) - 1 

would lead one to expect. He ascribes this rapid energy variation to 

complicated pole-cut interferences. This misses the point. As shown 

by Figs. VI-8,9,10 the cut pieces alone behave as a ff (0) < 2a(0) - 1. 

This merely reflects the fact that the cut amplitude is not proportional 

to 	(S))0ut, but to(s))ut/[2n(a(s)) 	i/2]. For small lues 

of a(s), the logarithm varies rapidly, and the net energy dependence 

will resemble that characterized by a power somewhat lower than 

(For a more explicit demonstration, see Fig. 18 of Jackson, 1970.) Thus 
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a cut describing the energy dependence of the but as s 	at small values 

of s is dangerous and may lead to wrong conclusions. The question of 

energy dependence recurs in the discussion of exotic exchanges, which 

follows. 

5. Exotic Quantum Number Exchange 

It has been recognized for some time that two-Reggeon exchange 

graphs provide a mechanism for the exchange of exotic quantum numbers, 

without the necessity of exotic trajectories (e.g. Chiu and Finkelstein, 

1969). The formalism constructed in Chapter V needs only the existence 

of reliable amplitudes for the individual rungs of the box diagrams to 

* ** 
be quantitatively useful. Our work in progress on (K ,K ) exchange 

soon will yield amplitudes which should permit reliable statements to 

be made about production angular distributions, absolute normalizations, 

and so on. As an example of the kind of results which will be the 

outcome of this program, I present here a calculation of the near-forward 

differential cross section for the reaction 

Kp - 
	 (vi .s .1) 

assumed to proceed (as discussed in Section V.2) by double K* or by 

** 
double K 	exchange. Although such calculations have been talked. 

about before (Chiu and Finkeistein, 1969; Rivers, 1968), this seems to 

be the first one aätually carried through. I hasten to add that for the 

reaction (vI.5.1) the dominant mechanism is assumed to be baryon 

(y = 0, I = 0,1) exchange. The present calculation is thus an attempt 

to estimate the magnitude and shape of the contribution at small t 
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generated by two successive nonexotic mesonic exchanges, and not an 

attempt to fit the observed cross section over the whole angular range. 

For simplicity, and to facilitate the discussion of qualitative 

features, we take the amplitudes for the allowed associated production 

reactions K- p - i 0 0 Y from an EXD Regge pole fit to the available high- 

00 	+_-. enerr data. The amplitudes for rr Y -* K 	are obtained by su(3) 

rotations. We neglect intermediate states in which Ti replaces 

for lack of useful data on Kp - 'nY 0, although these states in 

principle contribute. We then have 

H :?() 	 (j +h*)1 (s) h ()111 (s) 

JL 

V. 	 • 	 V 
I \ h 	/ 	 \ ,, A . . 11 + 	s(K*)11k 5 ) J(K*)IV1 + h J(K**)I /

S1 LIJ(K**)III S  

+ h**)11(s) h (K*)Iv(sfld,(@S ) 	 (vi 5 2) 

where the, individual reactions are denoted by 

- 	0 Kp -4 'nA 

Kp - itE 

0 	+ - 
tA -9 K _  

00A +_') IV: 	Tr E 

To parametrize the single meson exchange allowed reactions we 

make the usual decomposition into invariant amplitudes 
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M - 	 (i/2)y •. (q1  + q2 )B)u1 , (vI.5.3) 

where 	q1 	.(q2 ) i the c.m 	four momentum of the incoming (outgoing) 

meson. 	The s-channel helicity amplitudes are then 

H 	(A 	+ B[1+(s)2 
(m 	+m2 ) 

cos.9 
2 	

5/2,  

• 	
• (A~ + B[(s) 2 	 Q/2, 	(vi.s.$) 

where m1  (m2 ) is the mass of the incoming (outgoing) baryon, and we 

define 

1•. 	pip2 
= [E1  + rn1 ][E2  + rn2 1 	1 ± (E1  + ml )(E2  + m2) J 

in which p and E are respectively the. baryon momentum and energy in 

the center of mass system. We define the quantities T XI  •' which are 

related to the t-channel helicity amplitudes by factors that remove the 

kinematical singularities: 

I 
= A'[( 	+ rn2 ) 2  - J , (vi .5.7) 

= vB(-t/[(rn1  + rn2 ) 2  - 	 • 	 (vi.5.8). 

with v =. (s - u)12, A' = A + xB, and • 

(m + m) 	(m - rn)( 
2 	2 

- 

X. 	 2 	IV + 	2(m +m, 
) 	 I 	(vI..9) 

(m1  4 - m0 ) - t 	 1 	j 
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For each reaction, the amplitudes T :?\. are characterized by 

four parameters. Thus 

- [T + e(_i(t)] 	fv a(t) ± at 
2rLl + a(t))sin a(t) 	

C e 	(vi..io) 

is. the contribution of the Regge pole with signature T. We require the 

* 	** 
K and K 	to be EXD, and fix the slope of the trajectory a' = 0.9 

GeV 2  and the scale factor v0  = 1 GeV2 . There remain as parameters 

the intercept a(0), the vertex exponential a, and two coupling 

constants C  and C. As the intercept must be the same for all 

reaátions we have a total of seven free parameters to fit the reactions 

rtN —.KA 

when the constraints of factorization and isospin conservation are 

imposed. The fits to associated production will be discussed in detail 

elsewhere (see Fox and Quigg, 1970). It suffices, for present purposes, 

to know that the E)UD fit yields a fair overall fit (x2 = 891/220 

differential cross section points; X = 231/48 polarization data which 

are irrelevant for the fit sinc.e P 0 in the model). The data 

considered are summarized in Table VI-2; for details and references, 

consult our paper. The best fit parameters are given .  in Table VI - 3, 

00 	+_- 
together with the coupling constants for rr Y —K 	obtained from 

them by su() rotations. We chose the vertex exponeritials for YE 
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equal to the one for pE, which was much better determined than the one 

for pA. 

The differentialcross sections computed (from EXD poles alone) 

from these parameters at 5 GeV/c are plotted in Fig. VI-il. [The 

reaction Kp - jtE is plotted rather than Kp —* Tt °E°  which cross 

section nearly coincides with the one for Tr°A —KE.] Details, such 

00 	+- 
as the forward dip for Tc E —K , should not be taken too seriously, 

as the couplings for Kp - t°A are quite uncertain.. However the 

magnitude of the cross sections is probably reliably estimated by our 

simple model. The spin content of the crosssections, expressed through 

the useful parameter 

- 

A 	
IHI2 + 	:-2 

 

is conveyed by Fig. VI-12. As one would guess from the previous figure, 

all the reactions but 
0;0 

 —K 	are dominated by nonflip amplitudes 

for small values of -t. Since we are assuming EXD, Fig. VI-12 applies 

* 	** 
separately to the K and K 	contributions, as well. Each cross 

section is an incoherent sum of the K*  and K** components, which 

are shown in Figs. VI--13 and VIlL, respectively. The presence of the 

nonsense, wrong-signature zero in the K*  contribution suggests-- 

compare the pp cut computed in Section 4--that double K* exchange 

will be unimportant compared with double K** exchange. We will see 

below that, this is indeed the 'case. 	. 

In Fig. VI-15 I have displayed the results of the,calculation 

+._ — 
of K p —K 	with the pole-pole cut. The thick, 'solid line marked 
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"All" is the full cross section implied by (VI 5 2) The contribution 

from graphs with a 	intermediate state (>) is negligible. This 

suppression is a consequence of the forward dip in 	Z 	K 	The 

graphs with A°  intermediate state (n) contribute nearly the entire 
** 	**  

cross section. Similarly, the K. - K 	graphs (K
** 
 ) are responsible 

	

* 	* .  
for most of the cross section, and,the K - K graphs (K

* 
 ) are of little 

importance. To summarize the content of Fig. VI-15, we may remark that 

for the model based on (vI.5.2) K - K 	exchange in the two-step 
- 	0 	+_- process K p - 	-* K 	is the dominant mechanism for a peripheral 

+- 	** 
(small t) peak in K p.-4K 	. The K 	dominance is an expected, 

qualitative feature, whereas the unimportance of the E0 intermediate 

state is model-dependent. The A parameter for .Kp -*K, plotted 

in Fig. vi-16, shows that the calculated cross section is dominated by 

the nonflip amplitude. 

The calculated near-forward cross section forlab = 2,3, and 7 

GeV/c is shown in Fig. VI-17. The cross section is quite small: 

da/dt (t = 0) = 605, 166, 32 nb/GeV2  at p 1ab = 2, 3, 5 GeV/c. These 

are rather less than the value of 24b/GeV 2  at 3.5 GeV/c estimated by 

Rivers (1968) or the estimate of 2.6 ib/GeV2  at 3.11 GeV/c deduced in 

a rescat.tering quark model by Dean. (1968). Measured production angular 

distributions for the incident momentum range 1.2 to 3.5 GeV/c are 

collected in Fig. vi-18. The prominent feature of these distributions 

is a backward peak suggestive of baryon exchange. At the lower momenta 

(particularly at 1.8 .GeV/c) there is some evidence for forward peaking 

as well, but this is probably a result of s-channel resonance formation. 
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At th higher momenta there is no hint of a (forward) peripheral peak. 

The 'high-energy" data of Fig. VI-18g,h,i are shown in Figs. VI-19,20,21 

respectively. [Some of the data evidently were revised after the compila-

tion of Lyons (1966), from which Fig. VI-18 was taken, was made.] 	The 

cross sections in the forward bins are tabulated in Table VI-4. The 

apparent absence of peripheral peaks agrees with our prediction of 

rather small forward cross sections, but the number of events in the 

forward bins is greater than we expect. Possibly the tail of the baryon 

exchange production angular distribution can account for these events. 

We may also compare the total peripheral cross section predicted by 

the model with the observed peripheral u-channel cross sections. From 

the curves shown in Fig. VI-17 we find o 	180, 44, 7 nb. atcut 

lab = 2, 3, 5 GeV/c, whereas the experimental cross sections are 

175 ± 16 tb at 1.70 GeV/c, 58 ± 6 pb at 2.64 GeV/c (Dauber, et al., 

1969); and. 21 ± 3.5 pb at 3.0 GeV/c (Badier, et al., 1966). 

It has been hoped (Michael, 1969a)  that exotic trajectory 

exchange might be identified by some characteristic energy dependence, 

such as 

do 	-10 TT a S 

which is easily distinguished from the behavior expected of Regge cuts, 

do 	2[a1(0)-fa2(0)-1]-2 . 	. cc 	S 	. 	 . 

* 
See also Fig. 2 of Dauber, et al. (1969),in which their statistically 

superior results are summarized.. 
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near t = 0, if a(0) corresponds to an established, high-lying 

trajectory. In the preceding Section I noticed that the logarithmic 

energy dependence of the Regge cut can confound such simple estimates. 

In j-plane language, the cut discontinuity is large below the branch 

point, thus a effective a cut . The present calculation gives another 

illustration of this effect. Determining aeff(t = 0) from the 2, 3, 

and 5 GeV/c predictions, we obtain aeff(t = 0) 	-0.57, whereas 

at(t= o) 	-0.31. Itisworth remarking that for baryon (A,:) 
cu 

exchange, a ff  -1 andhence the pole-pole cut contribution may 

eventually dominate. However the energy at which it dominates will be 

extremely large, because of the factor of lO in magnitude that must 

be overcome. 

Let me further caution that such energy dependence arguments 

are not rigorous, for ReggeonboX graphs can infact generate contribu-

tions that vanish rapidly with increasing s. A specific examplewas 

given by Wilkin (1964) who showed that a diagram with p (s,t) 0 su 

has an amplitude which goes as S 	 , for t = 0. In a 

ladder model for Regge poles, a(-oo) = -1, so that 

da 	-8 

	

, 

	 (vI.5. 12 ) 

which is uncomfortably close to s 10 . It would indeed be disgusting if 

nonleading contributions from two-Reggeon exchange diagrams played an 

important role in any reaction. On the other hand this (admittedly 

far-fetched) example weakens any arguments in favor of exotics based on 

anomalously low effective Regge pole intercepts. There are no doubt 

assorted weird objects lurking in the left-half j plane. Thus we shall 

a 
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have evidence for exotics either when an exotic resonance is established 

or when quantitative two-Reggeon-exchange calculations fail. 

The present calculation, which gives an unobservably small 

cross section, is somewhat academic (as befits a thesis.), but it is 

sufficiently, simple that it can be explained concisely. , It was intended 

to illustrate an approach to Regge cut calculations, and to demonstrate 

some features of my s-u crossing symmetric prescription. Other, more 

experimentally interesting reactions come to mind. Many of these are 

more complicated calculations, in terms of the number of Regge poles 

and diagrams involved, than the simple example treated here, but are 

still of finite difficulty. I intend to consider some of these more 

interesting examples in the near future. 



Table VI-1. Quark compositions of some hadrons. 

Hadron Constituents 

pn 

0 
—P 	-)/-\/-2 (p 	+ nn 

pn 

K + PX-, 

nX 

_0 
K nX 

K P%- 

P ppn 

n pnn 

A pn% 

PPX 

E 0 pn >,- 

E nn% 

—0 

nXX 

Z\ ppP 

ppn 

0 pnn 

nnn 
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Table VI-3. Parameters for K*(890) exchange. 

C Reaction a(GeV 2 ) 	• C +  

Kp 	0 E 2.64 	• 45.6 
-73.5 

Kp 	°A°  0.274 -47.3 -59.9 

it °A° 	K 2.64 -57.0 

2.64 -6.7 -73.1 

a(o) 	0.35 

$ 



-113- 

Table VI-. Forrd cross sections for 	Kp 

1ab 	
GeV/c -t1  da/dt(nb0/GeV2 ) 

2.24 0.02 0.27 -4OOO ± 3000 

3.0 0.007 0.391 2291 ± 1599 

3.5 0.005 o.481 0 ± 1979 



FIGURE CAPtONS 

Fig. VI-1. Labeling of the s,t, and u channels for the proofs of 

p,A2  and of 	exchange degeneracy. No strong reson- 

ances occur in the u-channel, which has exotic quantum. 

numbers. 

Fig. VI-2. Evid.énce from the hadron spectrum for p,A 2  and 

exchange degeneracy. 

+ 	0 
Fig. VI-3. (a) Nonplanar duality graph for the reaction K n -K p; 

(b) Planar graph for Kp.-4 °n. 

Fig. VI-4. Absolute squares of various components of the s-channel 

nonflip amplitude, as functions of t. Solid line--pole 

term; long dashes--cut contribution, in the DDRe case; short 

dashes--full amplitude in the DDRe case; dots--full amplitude 

in the DDPh case. See the text for explanation. 

Fig. VI-5. Same as Fig. VI-4, for the s-channel flip amplitude. 

Fig. vi-6. Location of the dips arising from cut-pole interference, 

as.a function of the cut strength. Solid line--nonflip 

amplitude; broken line--flip amplitude. 

Fig. VI-7.. Contributions of the P' and p. poles, and of the 

pf 	p 	p' 	p, and pp  cuts to -rr scattering at 

s = 10 GeV2 . 

Fig. vi-8. Contributions of the 	! and p poles, and of the 

(P' + p)(Pf + p) cuts to the reactions ri 

(DDPh) and 3T 7t-tIT 	(DDRe) at s = 10 GeV2 . The pole 

contribution is marked Input. The curves marked DDRe, 

DDPh represent the (coherent) sum of poles and cuts. 
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Fig. VI-9, 	Same as Fig. 111-8, for S = 5 GeV2 . 

Fig. VI-lO. Same as Fig. VI-9,  for s = 20 GeV2 . 

Fig. VI-li. Differential cross sections for the (K*,K**)  exchange 

reactions discussed in the text, computed from the EXD 

fit to high-energy associated production, at 5 GeV/c 

incident momentum. 

Fig. VI-12. The spin rotation parameter A for the reactions exhibited 

in Fig. VI-ll, which are labeled by their baryon vertices. 

* 
Fig. VI-13. Contribution of K exchange to the reactions of interest. 

Note the nonsense, wrong-signature zero near -t = 04 

(GeV/c) 2 . 

Fig. VI-1 14. Contribution of K**  exchange to the reactions under 

discussion. 

Fig, VI-15. Predicted cross section for K - +__ p K 	at 5 GeV/c. The 

full calculation is represented by the thick, solid line. 

** The components from K *  -K* 	 ** graphs, K -K 	graphs, Tt 
0 
A  0  

intermediate states, and 1 O 0  intermediate states are 

also shown. separately. 

Fig. 111-16. The A parameter predicted for KTh 	at 5 GeV/c. 

Fig. 111-17. Predicted differential cross sections for Kp -Kt at 

20, and 5 GeV/c incident momentum. 

Fig vi-18 Production angular distributions for the reaction 

• Kp -K 	for the incident momentum range 1.2 to 3.5 

GeV/c (from Lyons, 1966). The data up to 1.6 GeV/c are 

from Alvarez, et al. (1962). (a) 1.2 GeV/c, 33  events; 
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J 
(b) 1.3 GeV/c, 56 events; 	(c) 1.4 GeV/c, Lr 	events; 

(d) 1.5 GeV/c, 207 events; 	(e) 1.6 GeV/c,)-1.1 events; 

(r) 1.8 GeV/c, 96 events, Ticho (1962); (g) 2.24 GeV/c, 

38 events, Bertanza, et al. 	(1962); 	(h) 3.0 GeV/c, 28 

events, Badier, et.al . 	(196 11.); 	(i) 3.5 GeV/c, 17 events, 

B-G-L-O-R Collaboration (1965). 

Fig.'VI-19. Production angular distribution for 	Kp 	at 2.24 
412, 

GeV/c, from London, et al. (1966 ). 

Fig. VI-20. Production angular distributionfor 	Kp 	K+__7 	at 3.0 

GeV/c, from Badier, et al. 	(1966). 	. 

Fig. VI-21. Production angular distribution for 	Kp -K 	at 3.5 

GeV/c, from B-G-L-0-R (1966). 
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VII. SUMMARY AND CONCLUSION 

The cause of rigorous derivations of Regge cut amplitudes 

certainly has not been advanced by this work. I have, however, tried 

to clarify some of the pitfalls one encounters in attempting, to go from 

Feynnian diagram calculations to realistic amplitudes for hadron-hadron 

scattering. Having gained some appreciation for the diagram approach, 

I formulated a phenomenological amplitude for the Regge cut arising from 

two-Reggeon exchange, which manifestly satisfies s-u crossing. Some 

simple calculations were made more accessible by the recipe given for the 

Reggeization of s-channel helicity amplitudes. The model was formulated in 

terms of s-channel helicity partial-wave amplitudes, in order that 

detailed predictions for exotic exchange reactions might easily be made 

in the near future. 

In the preceding chapter I reviewed the present state of affaii's 

of Regge cuts vis vis duality-breaking schemes. The various alternative 

schemes reflect an obvious need for more data. A model calculation 

exhibited some of the shortcomings of a theory in which exchange degen-

eracy is broken by Reggeon-Pomeranchuk cuts. The next step to be taken 

should be a quantitative study of the possibility that exchange degeneracy 

is broken by Reggeon-Reggeon cuts. This will require both theoretical 

effort to understand how to calculate cuts reliably and the accumulation 

of experimental data on line-reversed pairs of reactions as well. 

Obviously trajectories other than p and A 2  should be the objects of 

study. 
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As an example of the exotic exchange reactions now becoming 

calculable, I presented predictions for the double hypercharge exchange 

reaction Kp -p  K+. The near-forward cross section was evaluated on 

the basis of a simple exchange degenerate Regge pole fit to the high-

energy associated production data. There are a large number of analogous 

reactions which are amenable to analysis in terms of two Reggeon 

exchange graphs. If Regge cuts are dominant in exotic reactions, we 

should be able to confront cut models with experiments directly, and 

thereby learn about the nature of Regge cut amplitudes. 
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APPENDIX A. DEFINITIONS AND CONVENTIONS 

1. Kinematical Quantities 

For two body to two body collisions, I order the particles as in 

Fig. A-i. The direct (s-) channel reaction is 12 -*3)-; the crossed 

(t-) channel reaction is 13 —,2L The Mandeistam invariants are 

	

2 	
2 

	

= -(p1  + p2) 	= -(p3  + p) 

	

- p3 ) 2 	_(p2 	 (A.1.l) 

	

2 	 2 
u = -(1 - 	) 	= 	- p3 ) 

where I specify a four-vector by v = (v,v0 ), and v•w = v•w - v0w0 . 

The Mandelstam variables satisfy 

s + t + u = M. 	 (Al2) 

It is convenient to define threshold and pseudothreshold factors 

IX -+ m)2 ] 

(A.1.3) 

LrXJi 
	 1  2- 4r. .  13 	[x - (m. 1 - 

m.) ]2 
J. 

where (ii) specifies the incoming or outgoing pair of particles in the 

x-channel. For my choice of particle labels x,(ij) occur in the 

combinations x(ij)= s(12), 	34), t(13), t(24), u(14), u(2). Now let 

= 	 be a generic symbol for 	 The ij 

energy of particle "i fl  in the x-channel center of mass (c.m.) system 

is 
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= (x +m.2 - 	2)12x  2. 	 (A.l.4) 

The magnitude of the corresponding three-momentum is 

p.. =/2X2. (A.1.5) 

The Kibble function (Kibble, 1959) 	(s,t,u) is positive within 

the physical region, and vanishes on the boundary of the physical region. 

2.2 	22 	•2 2 	22 (s,t,u) = stu - s(m1  m2  .+ m m1 ) - .t(m1 .m3  + m2  m14  ) 

	

- u(m12m42  + m22 ) .+ 2m 2m32m42  ( M. 	 (A.1.6) 

It is also related to the x-channel c.m. scattering angle by 

sin2 9 	4x (s,t,u)/['.. 	'i'j'2• 	 (A.1.7) 

The c.m. scattering angle is given more compactly by 

1 
'l2 A4 34  cos G 	 2 = s(t - u) + (m1  - in22  )(m3

2 
 - m42 ), 

(A.1.8) 

. 	2.2 	2 	2 cos 	= t(s - u) + ( in1  -xn )(ni2  -rn4 ). 

For the reaction ab - cd I choose the positive z-axis along 
ka 

 and 

the positive y-axis along p, x Zc  (in conformity with the Basel . 
convention). Thus the reaction, takes place in the x-z plane. The 

coordinate system is illustrated in Fig. A-2. . 



- 

2. Single Particle States 

Following Jacob and Wick (159) and wick (1962) let Ip° ;) be 

an invariantly normed state with four-momentum p °  = (O,m) and, spin 

component x along the z _direction .* (I suppress a label for the total 

spin, s.) These rest states are assumed to transform in the usual wayt 

under rotations . r: 	'. 	 .. ' 	 . 	 . .. 

Rp0 , ) = 	1 	
5(r)pO, 

L) 	 (A 2 i) 

Now define 

Ip, x) = R0, 	Zp° , x) 	 (A 2 2) 

* 
By invariant normalization I mean (p'; x' Ip; x) = ( 2t) b 	(p' ,p) 

where 	is a 	onecker delta and 	(p,p r) = 2(2 + 2 )  5(3)( - 

is the invariant s-function onthe mass shell. This corresponds to 

using the invariant volume element on the mass shell, 

dp = [2( 2  + m2 ) 2 ] 1  d3 = 	(p +m)d P.,  in place of the normal 

volume element. 

t I specify a rotation by the Euler angles (ar); thus 
lJy _TJz  . 

R 	e 	e 	e 	. This follows the convention of Brink 

and Satchier (1968), Rose (1957), and Messiah (1960) that a& (ar) 

rotates the system through Euler angles (ay). Others (e.g. wigner, 

1959, and Edmonds, 1957)  use the opposite convention, that 	(ay) 

rotates the system through angles (, - , -
i). Explicit representa-

tions of rotation matrices are given in Appendix.B. 
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for (0 < 9<. Tr; -r < 0 K d, where Z is a "boost" in the z-direction, 

which imparts to the particle the desired momentum. The rotation B 

takes care of the direction. The helicity 7. is the projection of spin 

on the direction of motion. 

Let us now use h(p) to denote the Lorentz transformation 

(A.2.2) and H(p) to indicate the corresponding operator, 

H(p) = RZ, 	 (A.2.3) 

which generates the state of four-momentum p. The particular form 

(A.2.3) is the Jacob-Wick helicity convention, but I will note some 

other possibilities below. Now apply L[L], an arbitrary Lorentz 

transformation such that £p = p'. The resulting state will be 

Ip'; x) = H(p')Ip ; x). Furthermore, £p 	£h(p)p 0 = p' = h(p')p
0  

so that h 1 (p') £h(p)p° = p0 . In other words, the transformation 

h 1 (p')Th(p) is an element of the little group (isotropy group) of 

and is therefore a rotation r. Thus 

Lip; 	) = LH(p)p0 ; ) = H(p')Rip° ; ) = 

(A.2. )i) 

= H(p') 	5(r)p0
; t) = 	u(,p)p' ;  

ol 

where U(,p) 	S ( r ) = D s Qh 1 (p')h(p)). (This shows that U is 

unitary.) Consequently the transformation law for helicity states is 

Lip; 	= 	 £h(p2p;  
ILI 
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Among the other kinds of single particle states which can be 

defined by their transformation properties I mention in particular Wigner 

spin states (Wigner, 1939, 1977; Blatt and Biedenharn, 1972), for which 

the projection of spin on the z-axis is specified: 

Ltp,nl) = 	 £b(p))12p, m'), 	 (A 26) 

where b(p) is a pure boost along the direction 	. I also define 

transversity states (Kotanski, 1966a,b), for which the projection of 

spin on the negative normal to the reaction plane is specified: 

Ltp,T) = I 	 h+(p) Lh(p)(R 	)1J £p,T' 

Figure A-3 shows the axes of quantization for these three kinds of 

states. 	 . 	. 	 . 

Lastly I mention spinor states (Joos, 1962), which are defined 	. 

by extending the operator 0& to be a representation of the homogeneous 

Lorentz group, instead of the rotation group as before. Spinor states 

transform as 	 . 	 . 

Lip; a) = 	ba [t]I 2P b). 	 (A.2.8) 
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3. Scattering AmpIitud.es* 

The S-matrix element connecting an initial state a of total 

	

four-momentum 	with a final state b of total four-momentum p b  is 

related to the scattering amplitude Tba by 

5ba = ba + i(2) 
	 - 	Tba 	

(A 3 1) 

The transition probability per unit time is given by 

ba = (2 	 -' Pa)ITbaI20 	 (A.3.2) 

It is straightforward to derive the following useful relations between 

the scattering amplitude and observables. 

, General decay process 	a -+ (1,2,...,n) 	13. The decay rate 

is 

dW 	
= 	 -_PaTl2 	

3 	
(A 3 3) 

Two body decay a -* (1,2) 

A 
dW 	

= 611- 
2IT2 	

12 

ma  

General two body collision cross section 

a 

	

= 	
- pa)lTaI2 	

(2 ) 	
(A.3 5) 

* See Collins and Squires (1968), and Taylor (1965). 
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(iv) 	Two body to two body cross section a (1,2)  

IT 	1 2.(A 	6) 
dO c.m. - 6t2s 	12 

Since 

2sdt 	do = 
C.M. 	

12 	31 
(A.3.7) 

= 	2ITI2.. 	. 	. 	. 	. 	. 	.(A.3.8) 

The unitarity of the S-matrix implies 

(SSt)ba 	5bc Scta 	aba' 	
(A.3.9) 

Substituting (A.3.1) we find 

1{Tba - T] 	 - 	Tbc T*, 
	(A 10)

ac 

where the channels a and b now satisfy the four-momentum conservation 

relation, 	b = a' and 	
means integration over dp/(2) 	for each 

particle in channel c and summation over all channels c. If channels 

a and b are the same, Eqs. (A.3.5) and (A.3.10) give the optical 

theorem relation between. total cross section and imaginary part of the 

forward scattering amplitude, 
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.ati(a al1) 	
412 	

Taa 	 (A.3.11) 

With Taa  8Tcs-ff fcm(O°)  Eq. (A.3.11) takes a more familiar form 

im[f 
C.M.

(0)] = atotal, 	 (A..3. 12 ) 

where 
p C.M.

is the intial c.m. momentun and fcm(O°) is the forward 

spin nonflip scattering amplitude. [Thus • c C.M. 
corresponds to the 

normalization adopted by Jacob and Wick (1959) in which 

da/da= 

Different kinds of amplitudes may be obtained by taking matrix 

iements of T between the several kinds of states described in Sec. 

A.2. The most useful amplitudes are helicity amplitudes. For these it 
s +s -(+x ) 

is customary to insert an additional phase factor (-1) 

so that, for example, 

H 3 12  = (_l) 22 ( 3 ITklX2 ) 	 (A.3.13) 

defines the s-channel helicity amplitude. With the normalization 

exhibited in Eq. (A.3.6), the differential cross section averaged over 

initIal helicities and summed over final helicities is given by 

da 	- 	1 	
. j,2

64Tc2s 	
(21 + l)(2s 2  + 1) 

X 	____ l 
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where s is the spin of particle 1. A minor subtlety arises here, 

namely that the number of helicity states of a massless particle is 

only 2, not 2s + 1... For a massless particle incident an obvious 

modification of the statistiàal factor is therefore required. 

• 	 The helicity partial wave expansion can be written in the form 

00 

H. 	2(s,t) = 	t 
•J=m 	 (A..15) 

where ?. = ? -, 	= 	- 	and m = Max(I?.I,I). The properties 

of the rotation matrix d are reviewed in Appendix B. Hereafter I 

• choose 0 = 0; this reflects my convention for the reaction plane. The 

orthogonality property of d3  [cf. Eq. (B.1.8)] permits the inversion 

of (A.3.15) for J m: 

=  f
1 

d(cos o) H5 3 	2(s,cos 	) d 3(Q5 ) 

(A. 13 . 16) 

Relations among the heliôity amplitudes may be obtained from the discrete 

symmetries. From parity we find 

( -x3, - lh5 (s)I l'2 	=• 1g(x3Ih5 (s) 1x1x2 ), 

(A.3.17) 

S +s-(s1+s2 ) 

= (3/12)(-1) 
13 

with 	the intrinsic parity of the ith particle. Translated into a 

condition on the helicity amplitudes themselves, this is 
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X 
H 3 41 2(.@ Ø) = 	H 3 	(@ 5, 	 ,ø) 	

(A.3.18) 
S 	

= 	g(_l)X 	 . 

From time reversal we obtain 

= (Ih5(s)Ixix), 	 (A.3.19) 

whence 

7'. 	 7'. 
H1 	= (-i)'. 	H 3 	 . 	 (A.3.20) 

To close this section I briefly note the relations between 

helicity amplitudes and some other amplitudes. 

(i). Wigner amplitudes. With particle 1 (2) along the plus (minus) 

z -axis, the relation to helicity amplitudes is 

W
I.t L44L1 L 	 S)4 	 S 	 7'.4X .L1 -L2  

51,21 	= •d 4, _(G3 ) d 3  ,(G3) H 	 . 	 (A.3.21) 

The Wigner (spin) amplitudes are usually expanded in terms of angular 

momentum states (Blatt and Biedenharn, 1952) as 

t 

W12] 	T, 	ls2plP2 	3s4~L3~14 1  ?,f 
s.,s 

(4,) 
x 	> 	(22. + l)(22f  + l)(2fSf  

2i' 2f' 
2 

X 	T[J,2.,S.,2f,Sf ] d 	
Os 	(A.3.22) 

1 
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The versatility of the helicity amplitudes invented by Jacob and Wick 

(1959) has rendered these amplitudes somewhat archaic. 

(ii) Transversity amplitudes. These amplitudes, introduced by 

Kotanski (1966a,b) are occasionally useful in the study of kinematic 

constraints at thresholds and pseudothresholds. They are related to 

the helicity amplitudes by 

TTTT 	 S 	 S 12 	3 	(17t\ 	14 	(1t7t11 

s 	 'U 	' 2''2' o(J 	'2'2'2 
T33 	 714  

X(A.3.23) 

This corresponds totaking the negative normal to the reaction plane as 

the axis of quantization for the transversities T. The utility of these 

amplitudes at thresholds results from the fact that the crossing matrix 

becomes diagonal in the transversity basis. 

Being unconcerned in this thesis with rigorous analyticity 

properties of scattering amplitudes, I forego listing the properties 

of spinor amplitudes (Joos, 1962) and M-functions (Williams, 1963). 
* 

14. Crossing Relations for Helicity Amplitudes 

Trueman and Wick (19614)--hereafter TW--have given an elegant 

geometrical derivation of the crossing matrix for helicity amplitudes. 

Fox (1967) determined the overall phase in the TW relation and it is 

his result which I quote here. 

* See Trueman and Wick (19614), Muzinich (19614), Fox (1967), Cohen-

Tannoudji, Morel, and Navelet (1968). 



-173- 

	

- 	* H 	 - E23 E342A3A2  e 

X d' (Xi) d(x) d( 3) d(4) Ht2 
	13 	

(A 4 i) 2   

The crossing angles X all satisfy 0 x - r; they are defined by 

1 ere 	
2 	2 	 2 	2 	2 

12 	, 13 
 cos 	= (s + m1  - in2  )(t + m1  - in3 ) + 2m1  A, 

o 	 2 	2 	22 	2 
12 24 cos x2 	-(s + m - m1  )(t + m - m4 ) + 2m2  A, 

O 	 2 	2 	 2 	2 	2 

	

434 13 cos 	-(s ± m3  - m4 )(t + in3  - in1 ) + 2m3  A, 

o or' 	 2 	2 	2 	2 	2 
34 ' 24 cos x4 	(s ± m 	-rn3  )(t ± m4 - 2 	+ 2m4  A, 

(A.4.2) 

where 	= m 
3 	. 
2 + m

2 	i- 
2 	2 - 
	2 • The•phase €. . is +1 unless i and 

ij 

j are both fermions in which case €. = -1. The crossing phase Aa 

corresponds to the relative phase between the particle annihilation 

operator aa and the antiparticle creation operator 	in the field 

theory approach of Weinberg (1964a,b) and of Carruthers and Krisch 

(1965). For example they define the spinor 

xa = ( 25)_3/2fap[aaeiP X 
+ nate_1P X] 	

(A 4 3) 

The crossing phase is included to make contact with the isospin crossing 

phase of Carruthers and Krisch If 1T are the phase factors 

which appear in the transformations of the single particle states under 

the discrete opeators parity, charge conjugation, and time reversal, 

then 
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for bosons, 

A 	= A— = 	 (A.4.4) a 	a 

pcT' 	for fermions. 

See also the general discussion of Feinberg and Weinberg (1959). 

A velocity space diagram as popularized by Wick (1962) is helpful 

for visualizing the meaning of the crossing angles. Indeed one can 

actually calculate the angles from such a picture by means of non- 

* 
Euclid.ean geometry. 	The rules are given by Wick (1962). In Fig. A- 

is shown the velocity space diagram for the final (s-channel) configura-

tion. The lines leaving a vertex represent the directions of the 

corresponding particles as seen from the rest frame associated with that 

vertex. Thus X is the angle between the direction of particle 5 

and the direction ofparticle 2, measured in the rest frame 01  of 

particle 1. Likewise Q is the angle between particle 1 and 

particle 3, measured in the s-channel cm. frame, O. 

5. Perturbation Theory Conventions 

Spinor notation. The 1-matrices are Hermitian, and 14 is 

diagonal. Explicitly; 

70 -ia 	 (i O\ 	 7Th -1 

), 	= ( 

	

.) . 

\ ia 0 	 \ 0 -i/ 	 -i 	0 

(A.5.l) 

The Pauli matrices a are as usual 

* 
For an elementary discussion see Sommerfeld (1952). 



	

70' l' 	 '/0 -i 	 71 	0 

= .( 	 ) 	= ( 	 ) 	= ( 

	

\' 1 0J 	 i 0/ 	 \ 0 -1 

(A.5.2) 

The spin tensor is 

a 	= (1/2i)[T , r] = (1/2i)(rT - 	 (A.5.3) 

Spinors are normalized according to uu = -vir = 2m, and satisfy the 

free-particle Dirac equations 

(m + irp) u(p) = 0,.' (m - ir.p) v(p) = 0. 	 (A.5.4) 

For an antiparticle of momentum• 	and helicity N it is sometimes 

useful to replace  

	

= (-i) 	i u). 	. 	. 	 (A.5.5) 

The Dirac conjugate spinor is % (P) =  {u(p)] t 	. 

Explicit representation in the helicity basis. The positive 

energy spinor with momentum 	= p 	and helicity X is 

u(p) = (E + m)( (A.5.6) 

E + m X  

2 	2' where m is the particle mass, E = '(p + m )2,  and 

xi = ( ) 
	, 	x 	= 	) 	. 	 (A.5.7) 

2 	 0 	 2 
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The spinor corresponding to a particle with momentum 	such that 

= cos 9 is obtained by a rotation about the y-axis. Thus 

y 
912, 

u() = e 	u(pz) 

a cos - (1 - a) sin 

asin+(1-a)cos 

= 	(E+m) 

[a cos -  (i - a) sin 	.] 2xp'/(E + m) 

[a sin a + (1 - a) cos 	] 2p'/(E + m) (A.5.8) 

where a =+ X. I do not incorporate the Jacob and Wick (1959) 

particle 2 phase into my spinor. This is instead explicit in (A.3.. 13) 

which defines helicity amplitudes. 
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FIGURE CAPTIONS 

Fig. A-i. Labeling of particles for a two body to two body collisiOn. 

The momenta are labeled p, masses m 1 , particle spins S i , 

and intrinsic parities of the particles r. •  

Fig. A-2. Coordinate system for two body scattering. The scattering 

angle is Q. The azimuthal angle 0 is equal to zero for 

scattering in the x-z plane. 

Fig. A-3.  Coordinate systems for the definition of single particle 

states. The axes x-y-z are fixed in space. The particle 

momentum is p; the quantization axis is in each case along 

z. 

Fig. A-n. Velocity space diagram for the s-channel configuration. The 

meaning of the angles is explained in the text. 
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XBL707-3479 

Fig. A- 1i. 
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APPEI'JDIX B. 	PROPERTIES OF ROTATION MATRICES 

1. 	Definition and Properties 

In an irreducible representation of the rotation 	group of 

dimension 	(2J + 1) 	corresponding to an angular momentum 	J the 

rotation 	(ar) 	is represented by the matrix 

MMT) 	= 	( 4 IRay I 4 )•  

As the operator 	Rt 	is the adjoint of 	R, its matrix elements are 

related to those of 	R 	by 

(IRtIt) 	= 	( 	IR) 	= WM (B.1.2) 

The operator 	R 	is unitary: 

(R 	)t 	= 	(R 	= 	R ay 	U43 

hence 

= M M  

Furthermore, the property 	ERt = RtR = 1 	implies 

( N ( * M(r) 	=8M,1 (B.1.1) 
M t 

(r) 	( , (r )) * 	= 
 

M t 

* 	
See Brink and Satchler (1968), Andrews and Gunson (1964), Collins 

and Squires (1968). 



-163- 

Because the basis states of the representation are chosen as 

eigenfunctions of J, and R. has the form specified in the footnote 

to Eq. (A.2.1), the matrices simplify to 

-iaj -iJ -iTJ 
(a) = (JMle 	

Z e 	e 	
Z1) 

-iJ 
= éxp[-  i(aivi + yN)](JMIe 	Im) 	 (B.1.6) 

= e[-i(aM ± )]dM  

The phases of the rotation matrices depend upon the convention adopted 

for the Euler angles and upon the choice of phases of the matrix 

elements of J. With the Condon and Shortley (1935) choice of phases, 

(jmIJjm) = m;(im  ± 1IJ+Ijm) = [(j ± m + l)(j 7 m)], the reduced 

rotation matrices d3  are real. They satisfy the symmetry properties 

= d(G) = (_1)X 
	d(G) = d(-@) = (-i) 	d , (-G). 

(B.l.7) 

The orthogonality relations are 

fo d 3 (@) d(Q) sin 9 dG = jj' 2j + 1 ' 

d 3 (Q) d,(Q) = 	ttT 

	 (B.1.9) 

	

(2j + 1) d(Q) d(Q') = 	(cos @ - cos 9'). (B.l.lO) 



2. Expansions in Terms of Other Functions 

It is fruitful to obtain expansions for the reduced matrices in 

terms of well-studied functions, for this allows the deduction of 

analytic properties. First note.the expansion in terms of Jacobi 

ab 
polynomials P 	(z), 

d 3 (Q) = (-i) 	 : [sin (Q/2)]I[cos  

x PJ 	M.L(cos G), 	 (B.2.1) 

where m = Max(X,4, n = Min(X,i), and the expansion only holds for 

ab 
m 0. For (j - m) a nonnegative integer, the function P(z) is a 

polynomial in z. As a consequence the expansion (B.2.1) is useful for 

establishing analytic properties of di in z. 

To exhibit the analytic structure Of d3  in the j plane it is 

convenient to express the reduced matrices in terms of the hypergeometric 

function, by 

d  [sin (9/2)1 	I [cos (Q/2)] 
- 

1 

x:_'] F(_i + m, j+ m + 1, m - n + 1; sin 2 (9/2)). 

(B.2.2) 

The hypergeometric function is analytic in j, so all the j-plane 

singularities are explicit in the square root factor. The singularities 

occur at integral values of (J - m) for which either 
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n < j Km 	 (B.2.3a) 

or 

-m •c: i K n. 	 (B.2.3b) 

Taking the asymptotic forin.of F(a,b,c; (1 - z)/2) for large 

z = cos G, one obtains the asnnptotic expression. 

• 	 n- • m-n 	, r. 
+ m) (J - fl 

- 

ci J( g ) 	(-1) 	1 	 4) 
2j + 1 	[(i + n)(j - 

X 3 ++m 2 t  [i ~ z-2)] 
- ( 	

n) 

[i 
+ 	

(B.2.) 

again for m 0. 

Next consider the functions e(G), the relation of which to 

the d.(Q) is analogous to the relation of the Q2 (z) [Legendre 

functions of the second kind] to the P(z) [Legendre functions of the 

first kind]. These functions were introduced by Andrews and Gunson (1964), 

who also provided a valuable discussion of the properties of the e 

for nonintegral j. The expansion of the reduced rotation functions of 

the second kind in terms of Jacobi Polynomials is 

Note that the functions e j (G) of And.rews and Gunson (1961 ) are 

(-i) 	times my e(Q). 
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e(G) = (-i) 	± m  

	

X 	 Q), 	 (B.2.)) 

for in >O. The e-f'unction have the symmetry properties 

e 3 (G) = (-i) 	e(Q) 
= 	e(G). 	(B.2.6) 

The Jacobi functions of the second kind are related to those of the 

first kind by 

ab () 	 - 1) a(  + 1)b 

f 	
dz' (i 

- Z 1)a(l + 

X ab 
 (B.2.7) 

for n a nonnegative integer. 

A useful relation between the d 3  and the e is 

d 	 e 	 (@) 
= 	 - 	 2.8) sin Tr(j - 	 cos 	

- 	 cos ITO
- 	 . 	 . 

Finally, the asymptotic behavior of e for large z is given by 

1 

	

e(Q) 
- 22j ~ l) [(i + 	 - 	 + 	 - 

X exp[± it(X - 	 + 	 (B.2.9) 

where the + occurs as urn z < 0. 
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Let us also mention two special cases for which the s-functions 

are particularly simple: 

-= 
	2+ 11 [Ym(,a)]* , 	 (B 2 10) mo 

and 

=()m [ 

	
] P(), m> 0. 	(B.2.11) 

Here 	is a spherical harmonic and P 	 is an associated Legendre 

•function. In Table B-i I have listed some explicit forms of the d-

functions for low spins. 

. Computational Details 

The d-functions required in the calculations described in 

Chapter VI were evaluated numerically by forward recursion of the 

Legendre functions, using the formulae (Jacob and Wick, 1959) 

d00 (Q) = P.(cos Q), 	 (B.3. 1 ) 

d 	(@) = ( j + l) 	cos(@/2)(P 1  - pt), 	 (B.3. 2 ) 
22 

d 	= ( j + i) 	sin(9/2)(P 1  + p'.), 	 (B..3) 

22 

where p means dP.(cos Q)/d cos 9. The Legendre functions were 

computed from the recurrence relations 

	

(v + i) P 1 (z) = (2v + 1) zP(z) - vP 1 (z), 	 (B..1) 
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2 	dP(z) 
vzP(z) - vP 1 (z), 	 (B.3.5) 

stated by Abrathowitz and Stegun (1964). 
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Table B-i. Explicit forms of the reduced rotation matrices for low 

spins. 

= 1 

I 	I 

d(G) = d 	(Q) = cos(19/2) 

22 	 22 

I 	 •I 
2 	

= -d 	= sin(9/2) 

22 	 22 

d111(G) = d(Q) 	(i + cos 

d101 (G) = d 10(G) = -d011 (9) = -d(Q) = - sin 

= cos 9 

= d111(Q) = 	- cosG) 
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APPENDIX C. REGGEIZATION OF S-CHANNEL ffELICITY AMPLITUDES 

The model formulated in Chapter V is rather cumbersome, requiring 

several applications of the helicity crossing matrix to complete a 

calculation. For detailed fits this would present little obstacle to 

the computer but for the illustrative calculations we wish to examine 

in this thesis these complications merely obscure the physics. For 

these model calculations it suffices to Reggeize the s-channel hélicity 

amplitudes, to leading order in s. 

a) The General Result, Following from Crossing 

The formulation of high-energy exchange models in terms of 

direct-channel amplitudes has been studied by Fox (1967) and by Cohen-

Tannoudji, Salin, and Morel (1968). To leading order in s, Regge 

theory is as easily expressed in the s-channel as in the t-channel. A 

simple solution to the problem is possible because the helicity crossing 

matrix factorizes (to leading order in s), as noticed by Fox and Leader 

(1967). The leading order contribution of a boson Regge pole at 

j = a(t) may be written as 

H 	
-

213 	 + 
- 	e 	

2 sin a(t) 

0 1 .)  i(s/s) a(t) 
	

(c.i.i) 

where the Regge pole has signature T and scale factor 	The 

Trueman and Wick (1964) helicity crossing matrix is given in Appendix 

A.4, so we only restate the basic formula here 
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H3412 
s 

A A* 
- 	23I12 2 3 

• 	d(x1) 2 d(x2)  d 3 (x3 ) d(x) 	Ht2 4  (A 	1) 

Applied to (c.i.i), the helicity crossing matrix gives an 

expression for 	H 	which I rewrite in a more symmetrical form as 

H = 	-E23€3E2A2 (T + e -
i Tra  

2 sin 	(t) 	g() 
a(t) 

02+14 2  P 	P 
12 	1j 	TP, (c01.2) 

where the Regge pole has parity P and the (s-channel). external 

particles. 2 and Ii- have intrinsic parities 12" fl. The s-channel 

Regge residue functions are 

+). 	0 +? 
g 	= 	) 	e 	a 	( _1) a a 1, 

14a14b 	 %a"b 
Xa i 

a 	 a 
d a (_Xa ) d(_Xbc0 ) 14 	 , (c.l.3) 
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are Trueman-Wick crossing angles in the limit s -. [The "extra 

phases" in (c.1.2), not present in (A.4.1) are the result of a parity 

operation at the 2-4 vertex the purpose of which was to define the 

functions g 	and g 	in the same way. This is accomplished by
11 3 1 	1-42 

undoing the asymmetry in the definitions of X 1  compared with 	and 

of X2  compared with X in (A.4.2).] The practical advantages of 

attention to the crossing phases become apparent only when comparing 

several reactions and indeed such care is superfluous for some of the 

more basic features I wish to study below. 

b) Effects of Discrete Symmetries on the Residue Functions 

Parity conservation at each vertex for the exchange of a particle 

of spin J and parity P implies a relation among the t-channel 

helicity partial-wave amplitudes, 

X 7— J+a +a4  -?.---?.4  : ?'.1  ?.— 
H 	

= 	P. 4P (-i) 	
2 	

Ht 	 (c.l.5). 

For Reggeon •exchange, the quantity (_1)J  is replaced by T. This may 

be translated into a condition on the t-channel residue functions, 

a+o 
=P T14 P iP(-i) 2  

thence into a condition on the s-channel residue functions, 

g 	= i 21'  7 4 TP(-i) 	(-i) 	g 	. 	(c.i.7) 

If particle 2 equals particle 4, then 

xx'  
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but if a state of definite t-channelisospin (i) has been formed there 
2I-I 

	

is in addition an isospin swapping phase (-1) 	. The condition is 

equally simple in the s-channel, namely 

g . 	= -rg 	. 	 (C.1.9) 

Similarly if particle 2 equals particle 41.  then wemay form 

states of definite G-parity in the t-channel, for which 

c r' (c.i.io) 

where G is the G-parity of the exchanged Reggeon and C is the 

charge conjugation eigenvalue for the neutral member of the Reggeon 

isoniultiplet. Again the condition is equally simple in the s-channel, 

• 	g 	= 'rC g 	. 	 • 	 (C.l.11) 

Evidently it is possible to form combinations of s-channel 

amplitudes which have definite t-channel properties, e.g s-channel 

combinations with definite t-channel parity. 

c) Consequences of Factorization 

Asymptotically the physical region boundary lies at t = 0. 

Thus the half-angle factors that ensure. angular momentum conservation 
1 

[compare Eq. (A.3.15)] appear as powers of t 2  in the residue functions. 

In particular amplitudes, must vanish at t. =0 at least as rapidly as 

the half-angle factors prescribe. For example, the s-channel residues 

must have the minimal behavior 

* In this context, t is to be understood as t/s0. 
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-- 
g 	: g 	cc 	(-t) 2 	 , (C.l.12) 

as t 	0. 	However 	g 	g 	is related by parity. [and with no 

1 	 3l 	J2 
powers of 	(-t)] 	to 	g 	g 	through (C.1.7), so the residues 

P31 

must also satisfy 	 . . 

1 
cc 	(-t) 2  g 	g 

'31 	 . 	i . 

as t 	which contradicts (C.1.12) unless - = 0, or 

- 	= 0, or both are equal to zero. 	The only way to make (c.1.12) 

and (c.1.13) consistent with each other is to make both H 

and H 	 vanish at the faster rate by taking 

1c 
g 	g 	a 	(-t)21 3 	. 	. 

1 2 t-0 	. 

In order to satisfy factorization and parity we must therefore have 

g 	cc (-t)2 a 
	 (c.l.15) 

Apart from this behavior at t = 0 g 	is free of all kinematical 

singularities. 

The stringent constraints implied by (.c.1.15) are responsible 

for some quite definite predictions which are in fact in conflict with 

experiment. In charged pion photoproduction the s-channel nonflip 

amplitude (written as H 5  

(1 

S 
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may be finite at t = 0, and satisfy angular momentum conservation. 

If, however H 2l2  receives contributions from a single Regge 

pole the factorization argument given above implies that 

r- 1.i 	1 	 1') 

	

H 2 T'2 	=: 	[(-t)] 	.- t. 	 (c.1.16) 
S. 

This prediction is dramatically contradicted by the data (Boyarski et 

al., 1968a,b) on yi which display sharp forward peaks. The 

argument leading to (c.1.16) first was stated by Drell and Sullivan (1967). 

Another classic example occurs in np —*pn, i.e. neutron-proton 

charge exchange for which the amplitude 

cc constant, by angular momentum conservation, 

	

1 	.1.11 

• 	
. 

	

 
5 	 (c.1.17) 

oc t, in a one-pole model. 

The latter prediction is again contradicted by data (Manning et al., 

1966) which display a sharp forward peak. Further references for 

photoproduction may be found in Jackson and Quigg (1969, 1970). A 

enlightening discussion of the behavior at t = 0 is given in Appendix 

B(e) of Jackson (1970). 

d.) Conspiracy 

The result (C.1.15) which followed from factorization and 

parity indicates that no matter how many different Regge poles 

	

• 	
J•f 	L1L 	

+ contribute to the scattering amplitude, H 5  ci (-t) 2  

	

rather than (-t) 2 	 as expected from rotational 

invariance. Such a prediction is not however inevitable and in 

view of the experimental situation one may try to thwart the 

factorization argument by.considering two poles which differ only in 
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their values of TP and which collide in the j plane for t = 0. 

Before giving the result I note that such a conspiracy of poles is not 

the only way around the argument. All that is required is to add a 

contribution which does not factorize, for example the absorptive 

corrections discussed in Sec. V.1. Factorization holds for pole residues, 

so Regge cuts are, exempt from its restrictions. An understandable and 

didactic treatment of conspiracy in terms of poles is given by Leader 

(1969), and a more detailed discussion than the one I give here appears 

in Cohen-Tannoud.ji, Salin, and Morel (1968). I reproduce the crude 

results of Fox (1967) which are sufficient for practical purposes. 

Thus the s-channel residue functions g corresponding to the 

original Regge pole and h corresponding to the conspirator Regge pole 

must satisfy 

g 	g 	- h 	h 
31 	42 	'3'l 	#2 	

, 	(c.1.18) 

and by parity 

g 	 (_t\ 2 3 4 1 
31 

g 	+ h 
42 	3l 

h 
 -2 	

(c.1.19) 

A consistent solution is to take 

	

a 	_t)2 	 2 	for 	ab1 • 0 
h 	,g 	 (c.1.20) 
ab 	

(-t), 	 for 	p at! = 0 

and 

= + ih(1 + 9(t)) 	for 'ab > 0 	(c.1.21) 
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whereas the coefficients of (-t) 2  for 	= 0• are arbitrary. This 

is the prescription of Fox (1967). 

It is worthwhile to illustrate it with a simple example. Consider 

• the s-channel nonflip amplitude for photoproduction mentioned above. 

Before conspiracy we have 

1 	 1 1 	•1 l 0 ,2. 1  11 	,2 Oc i cc [(-t)] 	[(-t)] 	c t 
S 	 1 22 • 	 ( c.1.21) 

but after conspiracy, 

1 
H ,2.l,2 	

g, g1 	- h 	h1 

	

"a- 22 	O,L 1 	22 

cc ih0, _1 [1 + 	(t)1ih , 4[l + 

- h0, _1   

cc 1i,_ 	+ &(t) 

cc i+&'(t) 

is finite at t = 0. The plitude related by parity to H0212 

which is a double-flip amplitude in the s-channel, continues to vanish 

as t, as required by rotational invariance. Thus 

0 . 	1 

H ,21,2 
 cc g0 1 g1 	+ h0 1  h1 	cc t. 	(C.1.2) 

S 	 -'- 	2, 2 	 22 
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e) Putting i'nthe Physical Region Boundary 

Nonasymptotically 

I adopt the same prescription as was used by Fox. (1967) and 

by Cohen-Tannoudji, Salin, and Morel (1968), which is to multiply Eq. 

(c.1.2) by the factor 

.1 	 I I 	1 
St 	 I 	s 

I  j —i 	2 S]fl 	 (eQs - 
\s 	 2 

f(2J 	3 

QSJ]111 - ~t2 - ~t 3 +~I 41I 	Qsj 11234I 
= 	(-s/t) 2  sin 	 cos 	 . 	 . (c.1.24) 

Two objections may be raised against this form. The first is that upon 

crossing to the t-channel we should find in addition to the Regge pole 

at a(t) a sequence of parallel trajectories, integrally spaced for 

all t. This reflects the fact that our recipe is not a proper one for 

moderate values of s. The second flaw, noticed by Fox, is the lack of 

proper. analyti city in s. Thus if the Regge pole makes a particle of 

spin j at t = M2  our recipe does not force the pole residue in Ht 

to have an s-dependence nc d3(Gt).  One expects this shortcoming to be 

more important, the nearer the particle is to the physica1 region. 

For the pion Regge pole Fox (1967) reports 70% nonasymptotic coriections 

at s = 5(GeV/c) 2 . This reinforces my claim, made at the beginning of 

this section that the Reggeized s-channel amplitudes are more useful 

for model calculations than for detailed fits. 
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Finally let us state our phenomenological prescription in 

detail. 

p 
H 	 = 	€23 E31 1 €)42A2A3 	 TP 

I 9 ]I 1-2- 3 	I9 S  J"l- ~
'2-111 3 -1A4 I 	+ e 1t  

	

Sin 	 S . 

 J 	2 sin a(t) 

, 	 a(t) 

	

g 	(t) g 	t) 
( 

 

3l 	 \ 5 o J 

fab 2 	 I 
where g 	(t) = 	(t) ( -t

.) 	
, and g is regular in t 

0 
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