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ABSTRACT1

Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare2

phylogenetically remote strain NVH391-98 was recently characterized to encode a3

particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic4

strain and its close relatives can be phenotypically distinguished from other strains of the B.5

cereus group by the inability to grow at temperatures below 17°C and by the ability to grow at6

temperatures from 48 to 53°C. A temperate phage phBC391A2 residing in the genome of7

NVH391-98 allows to distinguish the three known members of this thermophilic strain8

cluster.9

10
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Bacillus cereus (Bce) group includes Gram-positive aerobic spore-forming bacteria1

commonly found in soil and  sometimes implicated in food poisoning. This opportunistic2

pathogen causes gastrointestinal diseases manifested by diarrheic or emetic syndromes (5,3

12). Practical importance of the Bce group studies is growing because of the increasing4

number of related food poisoning cases, especially in developed countries. Since this problem5

has an obvious relevance to the ability of some Bce strains to multiply in chilled products,6

psychrotolerant strains have been in the focus (3, 4, 8, 22). It was shown that psychrotolerant7

and mesophilic strains have optimal growth temperatures in the range of 25-35°C but8

psychrotolerant strains can be distinguished by their ability to grow at 4-7°C, but not at 43°C9

(14). Based on several distinctive features of psychrotolerant strains, including the presence of10

a specific signature in the 16S rRNA sequences, a new species, B. weihenstephanensis (Bwe),11

was proposed (14, 21). In contrast, the data available in regard to the ability of growth of the12

Bce group bacteria at moderately high temperatures, that is close or slightly higher than 50°C,13

are scarce, non-systematic and not sufficiently detailed. Some isolates were reported to grow14

on plates at 55°C after 5 days of incubation (18). A strain NVH200 was able to grow up to15

50°C in a liquid medium after a long lag phase of 72 h (1). Here we show that only very few16

strains of the Bce group are able to grow at temperatures higher than 48°C. In fact this ability17

seems to be restricted to a few strains represented by the genetically remote strain NVH391-18

98, isolated from a severe food poisoning outbreak, which caused three fatal cases (15). This19

strain is able to synthesize in elevated amounts a particularly efficient diarrheic cytotoxin K20

(2, 7). NVH391-98 and its close relatives are the unique thermophilic isolates of the Bce21

group, presumably representing another novel species.22

23

NVH391-98 represents a cluster of thermophilic strains.24

Psychrotolerant strains Bwe KBAB4 (20, 24) and Bwe WSBC10206 (14), obtained25

from Dr. V. Sanchis (INRA, La Minière, France) and Prof. S. Scherer (IM, Freising,26
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Germany), were isolated from soil in France and Germany, respectively. Mesophilic strains1

Bce ATCC14579 (9), obtained under the designation 6A5 from Dr. D.R. Zeigler (BGSC,2

Columbus, USA), and Bce ATCC10987 (19), obtained from Dr. D. Lereclus (INRA, La3

Minière, France), were of air and dairy origin from UK and Canada, respectively. The strain4

NVH391-98, obtained from Dr. D. Lereclus, was isolated from a vegetable purée in France in5

1998 (15). The strains INRA AF2, obtained under the designation INRA398, and NVH883/006

(10) were from Dr. M.-H. Guinebretiere (INRA, Avignon, France). Bacillus subtilis 168 was7

from the laboratory collection. Standard manipulations with bacteria, phages and DNA were8

done as described (16).9

In a preliminary experiment we noted that NVH391-98 strain was able to grow rapidly10

at 48°C, while none of other tested strains of the Bce group grew at this temperature. This is11

illustrated by a simple plate growth test (Fig. 1). The strain B. subtilis 168, known to be able12

to grow up to 52°C (11), was used as the high temperature growth control. This experiment13

clearly indicated that at least at the high temperature there is a large difference in the growth14

abilities of NVH391-98 strain compared to other representatives of the Bce group. To15

characterize these differences quantitatively we examined the growth of five strains of the Bce16

group, including two psychrotolerant strains, two mesophiles and  NVH391-98. We used17

three different liquid media,  LB (Luria-Bertani), BHI (brain heart infusion) and YYT (LB18

medium supplemented with 6 g/l bactotryptone and 5 g/l yeast extract), at temperatures19

ranging from 8 to 55°C.20

For each strain, an aliquot of the overnight culture was diluted 100 fold into fresh21

medium. Growth was monitored by measuring the increase of the optical density at 600 nm22

with an automatic cell growth analyzer (Bioscreen C, Labsystems). Microtiter plates23

containing 300 µl per well were shaken continuously during 96 h.24
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Extrapolation of the growth profile curves for the psychrotolerant Bwe strains KBAB41

and WSBC10206 to the zero growth rates, using a model of Ratkowsky et al (17), indicated2

the minimal theoretical growth temperature of 1 to 4°C. Experimentally, growth was detected3

at the minimal temperature of 8°C (Fig. 2, the data for all tested strains and the equation4

parameters are presented in Suppl. 1). Above the optimal growth temperature of 30-32°C, the5

specific growth rates rapidly decreased with increase of temperature. Above 38°C no growth6

was experimentally detected, while the theoretical maximal growth temperature was in the7

range of 40-46°C. For the two mesophilic strains experimentally detected minimal growth8

temperature was 12°C, while 2 to 7°C was the theoretical estimation, and an optimal growth9

was observed between 35 and 40°C (Fig. 2, see Suppl. 1 for all data). The strain Bce10

ATCC10987 was able to grow up to 47°C, while the Bce ATCC14579 strain did not grow11

above 46°C. The theoretical maximal growth temperature for the mesophilic strains was in the12

range of 49-53°C, again slightly higher (1°C) for the Bce ATCC10987. Multiple plate tests13

for about 100 Bce group strains from our laboratory collection (not shown) confirmed the14

general conclusion that almost all strains of the Bce group are able to maintain experimentally15

detectable growth between 8 and 47°C and not beyond this range. If the Ratkowsky’s model16

adequately describes the whole range of temperature dependence of growth, these17

temperatures can be extended to 2-53°C. Presumably, longer incubation times are needed to18

detect the slow growth at the extreme temperatures. But also some growth induction19

constraints can exist in our experimental conditions that do not allow to detect growth up to20

the theoretical limits. These constraints can result in very long lag-times, hampering the21

measurements of very slow exponential phase growth. That is why it is necessary to apply a22

theoretical model for estimation of the extreme growth temperatures. The strain NVH391-9823

did not grow at temperatures below 18°C but was able to grow up to 53°C (Fig. 2). The24

optimal growth temperature was 40°C in LB, 42°C in YYT and 46°C in BHI, displaying a25
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relatively high dependence of growth ability of the strain on the media used. Theoretical1

limits of growth, based on Ratkowsky’s model, were 8-15°C and 58°C. The strain NVH391-2

98 is therefore able to grow at temperatures 6-8 degrees higher than the mesophilic strains of3

the Bce group.4

Phylogenetic remoteness of NVH391-98 and distinction from its close relatives5

The phylogenetic remoteness of the strain NVH391-98 to other representatives of the6

Bce group was demonstrated recently (6, 13). Fig. 3A illustrates this using the Multiple Locus7

Sequence Typing (MLST) schema proposed in Tourasse et al (23) for the extended set of8

strains compared to that reported earlier (6). This comparison includes the sequences of the9

strains NVH883/00 (GenBank acc. # # EF108377-383) and INRA AF2 (AF2), which are10

closely related to NVH391-98 (6, 10) and have the similar thermophilic phenotype. We re-11

sequenced the relevant loci for NVH883/00 and confirmed the differences with NVH391-98.12

MLST and several other independently determined sequences (acc. ## EF108376, EF108384-13

390) for the strain AF2 do not allow to distinguish it from NVH391-98.14

We noted that after overnight propagation on solid media at 50°C and subsequent15

longtime storage at room temperature the two strains, NVH391-98 and AF2 (but not16

NVH883/00), show typical auto-lytic morphology, characterized by plaques-like clearings in17

areas of dense growth on agar. Using double-layer agar assays, we found that the NVH391-9818

strain produces bacteriophage (phage) that formed turbid plaques on the AF2, but not on the19

NVH883/00 cell lawn. This phenotype allows to distinguish NVH391-98, AF2 and20

NVH883/00 strains. We detected phage clear plaque forming mutants among turbid plaques21

on AF2 with a frequency of  approximately 2x10-4 (Fig. 3 ). Analysis of genomic sequence of22

the strain NVH391-98 (acc. # NC009674) revealed two regions, near 2,690 and 3,010 kb,23

designated phBC391A1 and phBC391A2, respectively, containing clusters of phage-related24

genes and thus potentially encoding inducible prophages.25



7

To identify the phage infecting the strain AF2, we isolated DNA from a clear plaque1

forming phage mutant, designated phBC391B3vir (Fig. 3B), and analyzed it by EcoRV2

digestion. Resulting profile corresponded the theoretical profile of the phage phBC391A23

DNA, rather than to that of phBC391A1 (not shown). Direct sequencing of this DNA by4

primers specific to NVH391-98 chromosomal DNA produced readable chromatograms, with5

the average signal strength 7-10 folds higher, only with primers corresponding to the6

phBC391A2 (not shown). Moreover, we determined that the mutation causing the clear7

plaque phenotype of phBC391B3vir was due to insertion of additional A into the stretch of8

five A, resulting into a reading frame shift in the Bcer982969 gene encoding potential phage9

repressor (Fig 3C). Therefore the three strains can be phenotypically distinguished by using10

their different susceptibility to the phage phBC391A2. Only the strain NVH391-98 produces11

this phage and only the strain AF2 can be used as an indicator strain to detect plaque forming12

units.13

In conclusion, the formal sequence based comparisons allow to consider the strain14

NVH391-98 and its close relatives as a rather genetically remote species of the B. cereus15

group. At present NVH391-98 and its two close relatives described here are the only known16

strains of this group for which thermophilic growth is confirmed. We proposed earlier to17

consider the strain NVH391-98 as a representative of a new species, for which the name18

“Bacillus cytotoxicus“ was suggested (13). The existence of two closely related but different19

strains INRA AF2 and NVH883/00 validates the novel species status of NVH391-98.20

21
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FIGURE LEGENDS1

Figure 1. Growth of different Bacillus strains at 30oC and 48oC.2

B. subtilis 168 is used as a positive control for high temperature growth. The strains Bce3

ATCC14579, Bwe KBAB4 and NVH391-98 are of the B. cereus group.4

Figure 2. Growth of Bacillus cereus group strains at different temperatures.5

Growth rates (r) for representatives of psychrotolerant (B. weihenstephanensis KBAB4),6

mesophilic (B. cereus ATCC14579) and thermophilic (“B. cytotoxicus” NVH391-98) strains7

in different media are plotted against the growth temperature (T). The experimental points are8

mean values of three independent experiments. Solid line shows non-linear least squares9

approximation according to the Ratkowsky’s equation (17).10

Figure 3. Phylogenetic and phenotypic distinction of the “Bacillus cytotoxicus” strain11

cluster.12

A. Neighbor-joining phylogenetic tree for a representative set of the B. cereus group strains.13

Strain names and concatenated sequences are taken from the MLST database described in14

(23), GenBank or genomic sequences. Vertical bars labeled C, T and W indicate the major15

strain clusters according to (20). The cluster of the three strains closest to NVH391-98 is16

labeled by Y. Sequences of four bacilli strains closest to the B. cereus clade, B. subtilis 168,17

B. amyloliquefaciens FZB42, B. licheniformis ATCC14580 and B. pumilis SAFR-032, were18

extracted from GenBank entries (acc. # # NC_000964, NC_009725, NC_006270 and19

NC_009848) and used to represent an out-group. Completely sequenced strains are labeled by20

seq. B. Turbid (left) and clear (right) plaques formed by the phage phBC391A2 and by its21

mutant phBC391B3vir, respectively, on the INRA AF2 strain as indicator. C. Partial22

nucleotide and corresponding amino-acid sequences of Bcer982969 gene in the phages23

phBC391A2 (top) and phBC391B3vir (bottom). Location of this mutation in the putative24
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repressor gene of phBC391A2 proves the identity of phBC391B3vir as a clear plaque mutant1

of the former phage.2

3
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Supplemental material.

Growth of Bacillus cereus group strains at different temperatures.

Growth rates for representatives of psychrotolerant (B. weihenstephanensis KBAB4 and

WSBC 10206), mesophilic (B. cereus ATCC14579 and ATCC10987) and thermophilic (“B.

cytotoxicus” NVH391-98) strains in different media (LB, BHI and YYT) were measured in

the whole range of  growth temperatures. Three independent growth experiments were done

for each temperature, each medium and each strain. The non-linear least squares

approximation was done according to the Ratkowsky’s equation (1). The equation :

�r = b(T-Tmin) {1- exp [c(T-Tmax)]},

where r (min-1) is the growth rate and T (oC) is the growth temperature, contains four

adaptable parameters : Tmin, Tmax, b and c.

Tmin and Tmax correspond to the minimal and maximal growth temperatures.

Since the equation is not linear, the initial estimation of least square regression is needed. For

this the parameters b and Tmin are first estimated from the low-temperature part of the curve.

The equation can be rearranged as :

c(T-Tmax) = ln [1 -  �r / b(T-Tmin)],

From this new equation c and Tmax are estimated using the high temperature part of the

curve. Random variation of the four estimated parameters allows then to find the optimal least

square regression. The found parameters b, c, Tmin and Tmax for all five strains and three

media are listed below. Figure shows the experimental points, which are the mean values of

three independent experiments for each temperature, and non-linear least squares

approximation according to the Ratkowsky’s equation (solid lines).

1. Ratkowsky, D. A., R. K. Lowry, T. A. McMeekin, A. N. Stokes, and R. E. Chandler. 1983. Model
for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol.
154:1222-6.
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Parameters of Ratkowsky’s et al equation (1) for growth of different strains in liquid media.

strain medium b Tmin, OC c Tmax, OC

B. weihenstephanensis KBAB4 LB 0.0041 4 0.25 40
B. weihenstephanensis KBAB4 BHI 0.0034 0 0.18 43
B. weihenstephanensis KBAB4 YYT 0.0033 0 0.25 42
B. weihenstephanensis WSBC10206 LB 0.0036 2 0.2432 41
B. weihenstephanensis WSBC10206 BHI 0.0035 2 0.18 44
B. weihenstephanensis WSBC10206 YYT 0.0035 1 0.139 46
B. cereus ATCC14579 LB 0.004 6 0.14 49
B. cereus ATCC14579 BHI 0.0038 5 0.2115 49
B. cereus ATCC14579 YYT 0.0035 2 0.138 51
B. cereus ATCC10987 LB 0.0039 6 0.13 50
B. cereus ATCC10987 BHI 0.003 2 0.1572 53
B. cereus ATCC10987 YYT 0.0043 7 0.0922 52
"B. cytotoxicus" NVH391-98 LB 0.0072 15 0.046 58
"B. cytotoxicus" NVH391-98 BHI 0.0038 8 0.1501 58
"B. cytotoxicus" NVH391-98 YYT 0.004 8 0.0925 56
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